Copyright Notice

The following manuscript

EWD 622: On making solutions more and more fine-grained (In gratitude dedicated
to C.A.R.Hoare, D.E.Knuth, and J.F.Traub.)

is held in copyright by Springer-Verlag New York.

The manuscript was published as pages 292-307 of

Edsger W. Dijkstra, Selected Writings on Computing: A Personal Perspective,
Springer-Verlag, 1982. ISBN 0-387-90652-5.

Reproduced with permission from Springer-Verlag New York.
Any further reproduction is strictly prohibited.

html transcription

5 May 1977 ' EWD622 - O

In gratitude dedicated to C.A.R.Hoare, D.E.Knuth, and J.F,Traub.

Bn_making sclutions more and more fine-grained.

This note deals with a problem that I owe to £.5.Scholten. Today seems
an appropriate day to start writing this note, for yesterday evening I completed
EWD595' (the second version of EWD595 which, itself, is the n-th version of our
joint article on the on-the-fly garbage collection): Scholten's problem was al-
ready with us for a few weeks, before we realized that it had, in a way, the
same flavour as the collector's problem of detecting that the marking had been
completed., Perhaps we shall see one day, that all these solutions, which at
present seem disconnected pieces of logical ingenuity --not to say: intricacy-~-

are all members of the same family,

In the an-the-fly garbage collection the cooperation of mutator and collec-
tor ensured during marking that a stable state --all reachable nodes black and
all white nodes garbage-- would be reached in a finite number of steps of the
cnllectﬁr's marking cycle: the problem was the design of the detection mechanism
for the collector that, indeed, the stable state had been reached. Scholten's

problem poses such a detection problem for N machines.

in the following y denotes a vector of N components y[i] for 0 <i<N.
With the function f we shall dencie a vector-valued function of a vector argu-

ment, and the algorithms we shall study solve the eqﬁaticn

y = {y) (1)

or, introducing fO , f1 , f2 , ... for the components of f

y[i] = ri(y) for O0<i<nN . , (2)

It is assumed that the initial value of ¥ and the function f are such

that the repeated assignments of the form
<ylil:= fi(y) > | (3)

will lead in a finite number of steps to ¥y being a solution of (1). In (3)
we have used Lamport's notation of the angle brackets: tﬁey enclose "atomic |
actions™ which can be implemented by ensuring mutual exclusion in time (when
they are considered "to take time"). The sequence of i-values for which the
assignments are carried out must be one of some sort of "fair random order”

in which, for instance, a finite upper bound is given for the maximum number of

consecutive asszignments --i.e.: i-values-— in which a given j (0O < j <N}

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD06xx/EWD622.html

EWD622 - 1

-

does not occur: in other words, we assume the absence of individual starvation

guaranteed.

Because eguation (1) is assumed to have at least one solutian, such an
initial value of y always exists: start with y equal to a solution! This
is, of course, not an interesting case; Scholten has formulated more genesral
conditions (on the domain of the elements of y , on the functions f and on the
initial value for vy) under which convergence in a finite number pf éteps, and
towards a solution which is uniquely determined by the initial value of y , can
be guaranteed. These conditions do not interest us here: we shall study. the
more general situation in which in & finite number of steps a not-necessarily
unique solution of (1) will be reached. (In passing we note that also the

marking in the garbage collection had that characteristic of nondeterminacy.)

Note 1. The mechanisms we shall design will even "operate” when no solution of
(1) is reached within a finite number of steps: then they will fail to terminate.
In this sense our programs can be considered as a multi-dimensional generali-

zation of the Linear Search. (End of note 1.)

We consider solutions consisting of N repetitive processes of the form:
prog.i: do vo. = <yl[ili= fi{y) > od PRO

but the problem is, of course, what to fill in for the dots. The roughest sketch
would be

prog.i: do <E j: 0<j<N: y[3]# fily) >~ <y[ils= fi(y} >od PRI

but this version is rejected for two reasons: firstly, the guard is an unaccept-
ably large grain of action, secondly and more important, we wané the construction
of prog.i +to be independent of fj' for j # i . We can remove the secaond
objection and reduce the first one by introdueing a global array e with the

boolean elements e[i] for 0<i<N, and maintaining

(Ai:o<i<meli] =([i]l=ri(y))) . (4)
Because (4) is trivially satisfied by all e[i] false, we assume that
initialization. With the convention that j ranges over 0 < j <N , we can

now write (with some more notational liberties that will be explained later)

EWD622 - 2

prog.is do <E j: gon e[3] >~ ' PR2
<if y[i] = ri(y) - e[i]:= true >
I y[i] # fily) = y[i):= £ily)s
(ft_ js e[j]:: false) >
fi

Note 2. I have used the abbreviation Q& b e[j]:: false) for the pfogram that
performs the assignments e[0]:= false through e[N-1]:= false in some order.
Because here it is part of an atomic action, the undefinedness of the order is

still irrelevant, (End of note 2.)

Note 3. In PR2 , the whole alternative construct is effectively a single
atomic action., In view of later needs, however, I have given each alternative

its own closing angle bracket. (End of note 3.)

Note 4. 1In the first alternative of PR2 , the superfluous assignment to y[i]
has been suppressed. (End of note 4,)

Note 5. 1In a more abstract version we could have introduced a set E of those
processes j for which y[j] = fj{y) is guaranteed to hold. In that case

(ﬁ_j: e[j]:: falsa) would have been coded as = ¢ . Honesty forces me to
mention that during more abstract explorations I have, indeed, used such a
notation, and to admit that the reason that I don't do so now could very well be,
that the symbols of set theory are nat on my typewriter. The boolean array can
be regarded as the characteristic function for £; the brublem, of course, is
that~we can also regard the value of E as a coding for the value of e . (End

of note 5.)

It is clear that both alternatives in PR2 leave (4) invariant. It is
also clear that y = f(y) is a stable state as far as y is concerned. Ter-
minetion aof one of the processes implies (ﬁ_j: e[j]) » from which, tagether
with (4), y = f(y) can be deduced, i.e. that the stable state has been reached,

and that all other programs will terminate as well.

Note 6. If we really want to spell this out, we would have to show the invariance

of, say,

EWD622 -~ 3

(& j: e[5]) and vy = £(y) .
As we have more difficult problems shead of us, I shall not waste my time on that

demonstration: it is really trivial. (End of note 6.)

* *
*

One of the ways in which we could try to chop up the large grain of action
in PR2 would be to separate inspection of ¥ », computation of fi , and modi-
fication of y[i] + With a local vector vi and a local "scalar" qgi we

could try:

prog.i: do <E j: non elj] >~ / PR3
<vii=y > {y[i] = vi[i]};
gir= fi(vi) {gi = fi(vi)};
if ui[i] =qi - < e[i]:: true >

H vi[i] # gi —»<Zy[i]:= gi; (A i a[j]:: false):>

fi
od
Note 7. We have allowed ourselves vit= y as an abbreviation for

(A j: vi[j]:= y[il) . Upon its completion the relation "y[i] = vi[i]" can be
regarded as a local assertion of prog.i , in spite of the fact that it contains
a reference to the global y[ij ¢ we can do so because for j # i, prog.j only

inspects, but never modifies the value of y[i] . (End_of note 7.)

The proof of the invariance of (4) s however, fails far the first alter-
native in the following manner, The weakest pre-condition for <Ce[i]:= true >

to establish (4) is
(4) and y[i] = rily)

but we can only guarantee --see the assertions betweén braces--
(4) and y[i] = vi[1] = qi = fi(vi)

- and in order to conclude the former from the latter we need the further assumption
y =vi . Program PR3 is, indeed, wrong, but the failure of its correctness proof

indicates how to repair it.

Because the non-destruction of (4) by <Le[i]:= true > depends on the

truth of y = vi , we can repair program PR3 by replacing <'e[il}:= true > by

EWD622 - 4

<e[i]:= (y = vi) >
which is a shorthand notation for

<eli]i= @ 5: v[3] = vil5]) > .

Because --specially for large N -- this is again a bulky atomic action, we can
introduce a global array d with boolean elements d[i] for 0 <i <N, such

Tt A i 0<s < s dfi] = (y = vi)) : v (5)

If we can keep (5) invariantly true, replacing <:e[i]:= true > in PR3 by
<Ie[i]:= d[i} > ensures that e[i] will not be set to true erronecusly, i.e.

g0 as to destroy the.truth of (4) « Assuming all the d[i] initialized to false,
keeping (5) invariant leads to the following progrem, that is now derived from

PR3 in a straightforward manner:

prog.i: do <E j: pon e[j] > - PR4
<:d[i]:= true; vii= y. > ; 7
qis= fi(vi);
if vifi] = qi s <efli]i= a[i] >
[vili] £ qi -~ <y[ili= qi;
A j: dli]:= ralse);
QL AE e[j]: false) >

i

The transition from PR2 to PR4 was motivated by something like the
sssumption that the fi-computations wers time-consuming; Another way of
chcpbing up atomic actions in PR2 would be to separate the modification of
y[i] from the false-setting of the e[j]'s. In the following program, derived
from PR2 , we have introduced a global ghost-variabie ef for reasons that

will become clear in a moment; ef is assumed to be initialized at false,

prog.is de <E j: pon e[j] >~ | PRS
<if y[i] = fi(y) = e[i]:= true >
I w[i] # ri(y) = y[i]:= £i(y); efi= true > ;
< (A j: e[ili= false); efi= false >
fi

EWD622 . 35

The reasan for introducing the ghost—vériable ef becomeg clear as goon
B8 we realize that y[i]:: fi(y) without setting a1} the e[j]'s to false, might
C8uge g violation of (4) 8S & result ofF the modificatipn of v . The intro~

duction gf ef enableg Us to express the temporary violation of (4) by Teplacing

I (WA S 1] = O] = £100))) o of (6)

Note 8. The name "ef" jg fop Me a mnemonic for "e-implicatian false". (Eng of
note 8.) ’

Thanks tg the intrmductinn of ef , (6) is now clearly an invariant; it is,
however, all by itself tgq weak tg conclude that Upon termination y = f(y) holds,

As it stands we can anly conclude UPOn termination

8 conclusion that Ssuffices, if WE can algp show the in&ariance of
°F = (E i non ef]) , (7)

for then ef js guaranteed to pe false upon terminatign, It is indeed PoOssible
to show that (7) is inveriant 85 well, angd that, tharefore, Pragram PRS ig

carrect,

let this pe Performed by pProg.k , Then, prior to that atomic action we can

assert (6) -E.,..D.El_-n—uﬂ ef and _y[k_] ?é fk(y)

from which non e[k] can he concluded, Because Prog.k is the only ong that can
reset e[k] to true ang CANNOt cause thig Tesetting to take Place befgre re-

setting af g false, E[k] must renain false =~=-and, hence, (g J: nan e[j])

it does,‘hnwever, show the way out, Introducing @ glabal variable (Olggk < N)
We can represent non ef by k = N, and ef by O0<k <y . (In Particylarp.
en k<N, it has been Prag.k that lagtly Cauvsed af g become true, i,e.

that lastly Caused k g become different from N .)

EWD622 - 6

prog.i: do <E j: non e[jJ‘>—. ' PRS 1
<if y[i] = fiy) - efi]i= true >
D y[3] # £i(y) - vli]i= fi(y);
if k <N - skip
Ix=n-x=j
fi>;

<< (_A_ js e[j]== f‘alse); ki= N >

.

The program has been called PRS' because it only differs from PRS by
the ghost-variable , The ghost-variable K is assumed to have been initialized

=N . It is then easy to prave the invariance of)
k <N => non e[k] (77)

(or, if we don't like undefired righthand sides of implications, k = N cor non efk]).

To complete the treatment, relation (6) must be rewritten as

(A it 0<i<n: eli] = (y[i] = ri(y))) or k <N . (61)

*

The above three stars stand for asg many days of vain struggle, when I
tried to merge the two achievements embodied in PR4 and PRS' , Eventually I
had some success when I started from the rejected correction of PR3.. 1In the
text below, the e[i]'s have been renamed for reasons that will become clear

later; initially, all the g[i]'s are false.

- prog.i: do <E j: pon g[j] >~ PR6E
<viz=y > {vifi] = y[i]};
qi:= fi{vi) {qi = fi(vi)};
if vifi] = qi ~ < g[i]i= (y = vi) >
Dvili] £ qa ~<ylili= qi; (a j: gli)i= false) >
fi

I won't repeat its correctness proof, but proceed immediately to chop up its

last atomic action as in PRS!', .

EWD662 -~ T

Initially, k = N ; for the reformulation of (7') we can assume g[N] ta be

constantly falss.

prog.i: do <E j: non gfi] >~ {k # i} PRT
LO: I <vir=y > {vi[i] = y[1]};
qiz= fi(vi) {gqi = fi{vi)};

L1: ifvi[i] =qi »<gli]i= (y = vi) >
L2: ﬂ vi[i] £gi - < y[i]:z gi;

if k <N = skip’ '

' I k=N=k:=

fi>;

L3: < {A j: gljli= false); ki= N >

fi {k # i} :

In the following correctness proof the atomic actions are referred to

by the label on the line of their opening angle bracket.

We first ohserve that {k £ i} is a local assertion for prog.i in isolation,
valid everywhere except between L2 and L3 3 LO and L1 don't assign to k
L2 may destroy it, but, because N £ i , L3 will restore {k £ i} . But,

although k is a global variable, {k # i} also remains true in combination

1

with the other prog.j's , because neither their assignment k:= j (j # i !),

nor their assignment k:= N (N £i!) can destroy it.

We next observe the invariance of

(A 5: ali] = (Wil =fi(W)) ar k <N . (8)

Action LO does not assign to its variables. Action L1 can only affect

.

the implication for J =1 ; the weakest precondition of LT for that impli~

cation is, according to the Axiom of Assignment,
(y = vi) = (y[i] = rily))

which follows, indeed, from the local assertions and the guard, for
y[i] = vi[i] =qi=fi{vi) .

Action L2 establishes (8) on acecount of its term k <N , and action .L3

also establishes (8) because it makes all implications vacuously true,

EWD662 - 8

-~

The next invariance to be established is
(A i:g[i]=>(vi=y)) oz k<N . (9)

It is, like (8), initially true because then all the g[j] are false; actions
LO" and L1 can affect in (9) only the implication for j = i , but make that
implication true, action L2 establishes the truth of (9) on account of its

term k <N » and action L3 , again, makes all implications vacuously true.

The next invariant relation is
k <N = non g[k] . (10)

Action LO does not affect its variables, action L1 does not do so on
account of the lacal assertion {k # i}, action L3 makes (10) vacuously true,
Action L2 leaves (10) clearly invariant if, initially, k <IN‘; only if
initially k = N, we need for L2 a more elaborate argument, for we have to
show that then, initially, non g[i] holds. We shall demonstrate this by
deriving a contradiction from the assumption k = N and g[i] . From this as-
sumption and (8) we conclude y[i] = fi(y) y from this assumption and (9) we
conclude vi = y , hence y[i] =‘fi(vi) : from the local assertions and the
guard, however, we derive y[i] = vi[i] # qi = fi(vi) y which gives the
required contradiction. This concludes the demonstration of the invariance

o.'F (10) .

On account of (10) , (f._ i g[j])_=> k = N, and hence, on account of (8),(9)
we can conclude that (& i: g[3]) => (A j: y[i] = £i(y) and vj = y). This

concludes our treatment of PR7.

We now introduce d[i]'s and e[i]'s, for the time being considered as

ghost-variables. They are initialized as false.

prog.i: 8o <E j: pon g[_j] >~ PRB
LO: <d{i]:= true; vi:= y >
: qis= fivi);)
L1: if vili) = qi = <g[i]i= (y = vi); e[i]:= d[i] >
L2: H vi[i] % gi - < y[i]:: qi; (&_j: d[j]:: false);

if k <N - skip [k = N = ki= i fi >

EWD622 - 9

L3: <:(ﬁ_j: g[j]:: false; e[j]:: false);
k:= N >

In addition to the invariance of (8), (9), and (10) we establish the in-

variance of

(A 50 d5] = (vi = ¥)) . 1)

-

Relation {11) is true to start with, LY leaves it invariant, and so do L1, L2,

and L3 .

But now we are in a position to establish

(& j: el[i]l = g[i]) , (12)

because LO, L2, and L? leave it trivially invariant, and L1 does so on account

af (11) .

From (12) we deduce that (ﬂ_j: e[j]) =>'(ﬁ hE g[j]). Hence, the program
is still correct if we turn the e's and the d's into non-ghost-variables, and
replace the outer quard by < E j: non e[j] > . After that replacement, however,
we can regard the g's as ghost-variables! Removing the operations on the g's

and on k , we get

prog.i: do <E j: pon efj] >~ PRY

if vi[il = qi = <e[i]i= d[i] >
0 vili] # ai = <y[ili= qi; (A j: d[i]:i= false) > ;
‘< Q‘-_ M e[j]:: f‘alse) >

* *
*

_ (The above three stars stand for an interval of about two weeks, during

~which I wrote EWD623 through EWD626, while C.S.Scholten cnntinued"tﬁ tEiﬁE about
his problem. As I have seen his work in the meantime, the following is unavoidably
heavily influenced by his results.) '

EWD622 - 10

-

In my next refinement, I start again from PR5S (Dr PR5') s, but wish

this time to replace the last line, which is effectively
< (& Js e[j]:: false) >
by Q J: <e[j]:= false >)

i.e. the single grain that sets all the e[j]'s false should be broken up into

N little grains, each setting a single E[j] « The single global ghost-boolean
is no longer sufficient, nor is ths single global ghost-integer ﬁrom. PR5Y |

We propose to introduce for each prog.i a boolean ghost-array ri , with
elements ri[O] through ri[N—1] » all initialized at false, and each ri[j]

representing prog.i's "obligation™ ta set e[j] to false,

prog.i: do <E j: pon e[§] >~ {(& j: non ri[;]) PR10
LO: <if y[i] = fi(y) ~ e[i]:= true >

L1: 0 vlil # £ily) - {Ri} y[i]i= £ily);
(A 5: ri[i]i= true) > ;
L2j: {A j: < eli], ri[j]:= false, false >)

2

The first atomic action has two labels, labelling its alternative courses of
action; on the last line we have condensed N labels. It is clear that
(ﬂ j: non ri[j]) is an invariant of Prog.i's repeatable statement. (Remember

that the ghost-variable =i is local to prog.i ,) Again we have to prove that

(A 32 e[5]) = (& 3¢ y[5] = £i(y)) , ‘ (13)

This conclusion (13) is justified, provided we can find N predicates Rj ,

such that
(A 5 G514 rily)) => ;) ' (14)
and (& j: e[i]) = (& j: non Rj) . - (15)

Intuitively --that is what (14) says-- Rj may be interpreted as "it is un-
certain whether the j-th equation of (2) is satisfied. We shall, however,
define Rj quite differently --as will be shawn in a moment, in a way such

that (15) is obviously satisfied-- and then prove the invariance of (14) .

Because (15),can be rewritten as

EwD622 - 11

€ 3 R3) = (€ 3¢ non o[5])

an analogy with the marking process of the on-the-fly garbage collsection, in-
deed, presents itself. In the latter we had relations like "the existence aof

8 white reachable node implies the existence of a grey node", or more precisely
"for each white reachable node, there exists a grey node from which it can be
reached via (what we called) a propagation path." In other words, (15) is
trivially satisfied if we can define Rj to be true if and only if node j

is in some sort of transitive closure starting from the nodes with a false e .
(If all the e's are true, the set of starting points, and therefore the whole

transitive closure is empty.)

A bold guess is to interpret the truth of ri[j] as the presence of an
arrow from node nr.i to node nr.j and to interpret Rj as non e[j] ar

reachable via a directed path from another e that is false. In formula

Rj = (non ef] oz (E k: Rk and tk[j])) (cee Ewn622-18) (16)

from which (15) follows., Because initially all e[j]'s are false, all Rj's are
‘initially true; we have thus established the initial truth of (14), the in-

variance of which will be demonstrated now.

The choice LO leaves (14) invariant: its implications for j % i are
left unaffected because their antecedents remain (trivially) unaffected, and
because their consequents are left unaffected on account of (16) and the fact
“that LO is executed under the circumstance that node mr.i has no outgoing
arrows (remember Qi J: non ri[j])). The implication for j =i is and re-
mains vacuously true on account of the falsity of its aﬁtecedent, as implied

by the guard.

The choice L1 leaves (14) invariant. On account of the guard and the
initial truth of (14} we conclude that it can only be chosen when Ri holds.
Because the truth of Ri is not destroyed by the creation of arrows, and

because of (16)
. (A k, j:(Rk and rk[j]) = Rj) (17)

L1 establishes Rj for all J » i.e. upon completion each implication of (14)
holds on account of its true cansequent,

EWD622 - 12

-~

Also egach of the individual actions L2j leaves (14) invariant, because
on account of (16), removal of an incoming arrow of node j , together with
e[j]:: false can never cause for Rj --and hence for any other Rk-- the

transition from true to false.

This could complete our treatment of PR10. There is, however, a little
bit more that might be worth observing., If it is the sole purpose of the
arrows to propagate from nodes with pon e the property R , and, no obvieusly

redundant arrows are retained, we may hope that even
(A x, j: =k[j] = (Rk and Rj)) (18)

is ipvariantly true.

We have already observed that choice LO cannot affect Ri for j #£i.,
If, initislly, node nr.i has an incoming arrow, i.e. there exists a k such
that rk[i] holds , then k # i because of non ri[i] ; then (18) tells us, that
initially Rk dis true. We have just established that Rk then remains true,
and on account. of (17), Ri remains true. If node nr. i has no incoming
arrows, Ri becoming false can do no harm to (18) s+ because it has no out-

guing arrows either when LO is executed.

L1 does not violate (18) because it is only executed under the truth

of Ri and ali Rj are certainly true upon completian,

L2j does not violate (18) either. Because the ri[j] are local ghost-
variables of prog.i , the initial truth of ri[j] is obvious; therefnre.(18)
tells us that Rj holds initially and the assignment e[j]:: false ensures that
Rj holds upon completion. Hence we can conclude that any act L2j leaves all
Rj unchanged. Therefore, sll right-hand sides of (18) are constant; only

one antecedent is ‘strengthened, and thus (18) is indeed an invariant.

Having established that eny act L2j leaves all Rj unchanged, that
L1 can only cause for Rj a transition from false to true, and that L0 can
only affect Ri , we see that the truth of Ri is not destroyed by any prog. j
for j £ i, and that only LO of prog.i can set Ri to false.

* *
*

EWD622 - 13

(The above three stars stand for a two-hour failure to prove the correct-
ness of the next version without the introduction of more ghost-vaeriables,

followed by a restless night.)

Encouraged by the success of the ti's and the Ri's I shall now try to
combine the introduction of the vi from PRI with the chopping up of the
false-setting of the efj]'s from PR1O . I think that this text should not
become too repetitive and that I should make a larger jump:: in addition I
shall also Separate the false- settlng of the d[J]'E from the 3351;nment to
y[l], and furthermore the false-setting of the d[J]'s will be chopped up.

Analognus to the rl[J]'s we introduce ql[J]'S to record prog.ifs Mobligation"

to set d[J] to false. i

In my treatment of PR10 I dislike that the nice relation (18) could
only be derived at the end. In order to derive it earlier, I shall try a
new proof experiment: I intend to strengthen guards of the alternative
cnnstruct by adding "ghost-constraints" and show eventually that the strengthening
was ineffective because the truth of the added term is implied by the truth of
the guard it was supposed to strengthen. The choice ef the strengthening is
inspired by my desire to keep the initial proof of the invariance of (18)
simple. (Because the strengthened guards contain ghost-variables, I have
placed them between (tempnrary) angle brackéts.) We consider the following
program, where Ri is defined as by (16)

prog.i: do <E js non e[j] >~ {& j: non ri[j]} PR11
LO: <d[i]:= true; vii= y > {y[i] = vi[i]};
] ' qi:= fi(vi) {qi = filvi)};
L1: if vifi] = qi = {y[i] = fi(vi)} < ef[i]:= d[i] >
I <vils]#qi and Ri >~ {y[i] # £i(vi))
L2: <Iy[i]:= qi; (ﬁ_j{ qi[j], ri[j]:: true, true) >
L3j: (& 5= {zil3]} <al3], qilj]e= false, false >);
L4j: g i) < e[y, ri[j]:= false, false >)
fi
| ad

LO and L3j can trivially not affect any Rj. L4j , although it re-

moves incoming arrows for node nr.j , can never cause for Ri a transition

EwWD622 - 14

-

from true to false, as it leaves Rj +true on account of the final non e[j] .
Action L2, that only adds arrows, cannot effectuste for Rj a transition

from true to false either. Hence, L] is the only action that can do so. But
because L1 is executed under absence of outgoing arrows, it can only do so for
Hi i hence all through the second alternative Ri which occurs in the guard

is invariantly true; hence --on account of (17)-— action L2 makes all Rj
true, and ~-as Ri and ri[j] is a pre-condition for L4j - actions L4j

find and leave the Rj's true.

*

Now we are ready to prove for PR!11 the invariance of
(A k, j: =k[j] = (Rk and Rj)) (18)

LO and L3j trivially don't affect {18), L4j leaves the consequents unaffected
and only strengthens an antecedent, L2 makes all consequents true and L1 does
not violate (18) either, as it can only set Ri false in the absence of in-
coming arrows =--as the existence of a Rk and rk[i] will keep it true-- and

L1 is executed under the absence of outgoing arrows,

The next step is to draw as quickly as possible the relevant conclusion
for which we need the qi[j]'s, and to eliminate them from then onwards from

our consideration. We prove the invariance of

(A i: (vi £y and d[5]) = (€ k: qk[3])) (19)

L0 can only affect the i-th implication, but leaves its antecedent false,

action L1 does affect none, L2 leaves all consequents true, L3j can
only affect the j-th implication, but it leaves its antecedent false, and
L4j affects none. Initially all antecedents are false, and the universal.
validity of (19) has been established.
Because --remember that the ri and qi are local variables of prog.i f--

it is eésily established that (ﬂ k, j; qk[j] i>-rk[j]) , we can deduce from
1 . . . :
(19) @ 5+ (vi £y and a[5]) = (€ ks wk[5]) : (20)

From now on we won't refer to the qi's anymore; we shall need (20) once.

In order to prove the invariance of {14) we may expect ~--because such

a circumstance is not unusual at all-- to have to strengthen it. 1 propose

EWD622 - 15

-

to do so by weakening the antecedents y[j] £ fily) , because in view of the
local assertions in the alternative clause of PR11 it seems attractive to

Feplace them by vl31 £ #5(u3) oz y # v3

(frnm the negation of which y[j] = fj(y) duly fcllows). Because we also
expect d[j] to hold eventually, it seems safe to weaken the antecedents still
further by adding the term "or non d[j]“ + Thus we arrive, inspired by (14),

at our tentative invariant relation -—initially'trivially trug—-

L4

(A 3: (w31 # #5(vj) or y £ vj or pon d[j]) = gj) (21)

Action L2 , which sets all consequents true, is harmless, action L3 can

only affect the j-th implication,.hut is harmless because L3j is executed under
the invariant truth of ri[j] and on account of (18) under the invariant truth
of its consequent Rj . Any action L4j is trivially harmless naw we have
already established that it leaves the Rj's unaffscted. We are left with LO
and L1 .

Action LO leaves the consequents unchanged and can only affect the
antecedent for j = i : in that case it suffices to show that a false antecedent

remains false, i.e. with P the negation of the antecedent

P: y[i]l = ri(vi) and y = vi ang dfi]

we have to shaw that
P = wp(“<id[i]:= true; vii= y >, p)
The Axiom of Assignment defines this weakest pre-condition as

y[i] = fi(y) and vy = y and true .

The last two terms are true all by themselves, the truth of the first term is

implied by the first two terms of P , and hence LC leaves (21) invariant.

But what about L1 ? We have established that L1 does not affect Rj
for j £ i; for j £ i s it cannot affect the antecedents either, so we only
need to worry about the i-~th implication of (21). The assignment <Ze[i]:= d[i] >,
which leaves its antecedent unaffected, can only violate the implication by
making the consequent Ri false while the antecedent remains true , A

necessary initial condition for <Ze[i]:= d[i] = to make Ri false --see

EWD622 - 16

(16) and (18)-- ig
d[i] and non (E k: wk[i]) .
Combined with the truth of the antecedent, we derive
(Wil # £ivi) oz y £ vi) and d(i] 2nd non (£ k: =k[1]) .

Combined with the local assertion y[i] = fi(vi) as derived from the guard,

we get vy #vi and d[i] and non (€ k: ck[i]) .

*

But on account of (20) this is false: also L1 does not destroy the validity

of (21), whose invariance has now been established,

We are left with the obligation to show that the ghost-guard Ri can
be omitted. The local assertion y[i] # fi(vi) as derived from the guard)
implies Ri with the help of (21),Df which we regard the invariance as established,

And this completes the correctness proof of

prog.i: do <E j: non a[_j] > PR12

if vili] = ai -~ <e[i]i= a[i] >
D vili]l £ as »<y[i]i= qi >,
(ﬁ_ Je <d[,j]:= felse >);
(_A_ Jj: < e[j]:;: false >)

5

od

Remark, C.S.Scholten's proaf allows for the further chopping up of the second

line into <d[i]:= true >; (& j: <{Ji[j]== v[i]>);

I think that at this stagé I leave that last proof as an exercise fog the

reader. (End of remark.)

Concluding remarks,

'a little bit disappointing: the constructive flavour of itg beginning has largely

disappeared from PR10O onwards., Rather than to verify a posteriori I prefer to

EWD622 -~ 17

merge and synthesize proaf and‘program developments. In sequential programming
this art has been raised to a considerable height; when I was halfway this report
I saw the same merge and synthesis emerging during multiprogram development.

This observation excited me, as it would raise the Gries/Owicki theory mare
clearly to the status of s tool for construction, Perhaps I should nat allow
myself to be too much disappointed by the disappearance of the constructive
flavour: there wasn't much program to be invented anymore, and, besides that,

I was of course biased by having seen Scholten's work,

In other respects I am extremei& pleased with it, I have discovered at
least two tricks that wers new far me: the change of ghost-variables into
non-ghost-variables and vice versa and --probably more generally applicable
than the first tricke- the temporary strengthening of guards by adding "ghost- *
constraints”, I feel that the latter has done a great deal in smoothing the
correctness proof for PR12; in any case it seems a very neat way for preventing

circular arguments,

Furthermore we have now at least a workable -—-be it partial-— grip on a
cancnical problem that I have shunned for at least four years, since the moment
I designed self—stabilizing_systems, and that is the general problem of the
detection that in such distributed system the stabilization towards the legitimate

states has been completed.

The development of this report was not easy: quite regularly it has strained
my agility in the propositional caleculus, but I guess that I can learn it. (1t

was certainly a good training.) In any case it shows -~t0 my taste even convip-

which one tries tg visualize classes of computational‘histcries; furthermore it
shows the vast superiority of the non-operational arguments —-once they have been

found!-- over the traditional aneg,

Acknowledgements. I am greatly indebted to C.5,Scholten for drawing my attention
again to this probiem, and for contributing so much to its solution. (He was

the first to see clearly the analogy with the garbage collector, and to transfer

the notion of "reachability via a path" inta the solution of thig problem.) Further
I am --as usual-- indebted to the regular members of the "Tuesday Afternoon Club™,

(End of acknawledgements.)

EWD622 - 18

Explanation. This was the firgt project I embarked upon, shortly after Hoare,
Knuth and Traub had given me reason to bhe grateful to them. Hence the dedicatian,

in great gratitude and not without some pride. (End of explanatian.,)

26 May 1977

Plataanstraat 5
5671 AL NUENEN
The Netherlands

prof.dr.Edsger W.Dijkstra

Burroughs Research fellow

Note added later concerning (16) on page EWD622 - 11,

Relation (16) is correct in as far as that iﬁ certainly holds. If we
want to use it to define the Rj as a solution of (16), we must add the
remark that the Rj's then must be the minimal solution, i.e. the solution
with as few Rj's trye as pussible; this, because the arrows may form cyclic

paths. (End cf note added later.)

