Copyright Notice

The following manuscript
EWD 623: The mathematics behind the Banker’s Algorithm
is held in copyright by Springer-Verlag New York.

The manuscript was published as pages 308-312 of

Edsger W. Dijkstra, Selected Writings on Computing: A Personal Perspective,
Springer-Verlag, 1982. ISBN 0-387-90652-5.

Reproduced with permission from Springer-Verlag New York.
Any further reproduction is strictly prohibited.



EWD623 - O

html transcription

The mathematics behind the Banker's Algorithm.

(1 recently showed at my lectures the so-called "Banker's Algorithm" as
an example of a method for deadlock prevention. Because my informal justifi-
cation left my students visibly unconvinced, I designed a more explicit one
while preparing my next week's lectures. This note is written because I think
the argument I developed at that occasion rather nice; it is not a symptom of

any revival of my interest in the Banker's Algorithm as a scheduling strategy.)

We consider a non-empty set P of processes p , each of them engaged on
a finite transaction for the completion of which it may need a (varying but
bounded) number of units of some shared resource at its exclusive disposal.

(The units are all equivalent, say: pages of store.)

A process may "borrow" one or more units, which are then added to its
current "loan", it may "return" one or more units, which are then subtracted
from its current loan. The act of borrowing is restricted by the condition that,
for each process, the loani will never exceed a pre~stated "need", i.e. the
maximum number of units that may be simultaneously needed by that process for
the completion of its transactions. The act of returning is restricted by the
(obvious) constraint that for no process the loan can ever hecome negative; upon

completion of a transaction, the corresponding loan!returns to zero.

If there are "cap" units in the system, the sum of the loans' cannot exceed

cap . More precisely, if we define

cash = cap - sum(p from P: ldan[p]) (1)
then "cash" represents the number of unallocated units and must satisfy

0 < cash < cap . (2)
For each process p we have

0 < loan[p] < need[p] < cap . (3)

A simple example shows that the danger of deadlock is present. Consider

with two processes the following pattern of loans and needs:

cap = 4 , need[O] = need[1] =3, loan[0] = loan[1] = 2, cash = 0O .


http://www.cs.utexas.edu/users/EWD/transcriptions/EWD06xx/EWD623.html

b

EWD623 -~ 1

Because for each pruocess lean < need still holds, each process is gntitled to
request a further unit before returning units; because, hOwever, cash = 0 ,

deadlock would result 3if they both do so.

The act of borrowing is, therefore, split into two parts. The process re-
quests the units to be borrowed from a banker and waits until the banker has

granted this request.

Definition. A "pattern” {of loans and needs) is Ysafe" if a granting strategy
exists such that it can be guaranteed that all (current and future) requests

can be granted within a finite period of time. (End of definition.)

It is the function aof the panker to keep the pattern safe. The banker
does so by inspecting for each request, whether the pattern that would result
from granting that request is safe or not. If it is safe, the request can be
granted immediately —-and we assSume that then the banker doss so-= . If it is
not safe, the banker postpones the granting of. that request until a more fa~-
vourable moment: because the postponement has not changed the pattern of loans
and needs, which is therefore still safe, that moment will come within a finite
period of time. It is the purpose of the so-called "Banker's Algorithm" to

investigate, whether a given pattern of lcansland needs is safe or not.

* *
*

For each process P We introduce as abbreviation

claim{p] = naed[p] - lnan[p]{ H

for each process p the current claim[p] thusirepresents the maximum number

of units it may need to borrow before it returns any units. Suppose that P

consists of N processes, and that |

plo], PD]! RE P[N"1]

represents a permutation of the process numbers such that

(a i: 0 <i <N: clain[p[i]] < cash + aum(0 < j < i: loan[p[i1])) .(4)

Lemma 1. Relation (4) implies that the pattern is gafe. (End of lemma i)

procf. The existence of a granting strategy such as required for safety is



—

EWD623 - 2

shown by the strategy of only granting(all)requests from process p[i] » provided

that all pracesses p[j] for 0 < j<i have terminated their transactions. Re-
lation (4) then implies that for i =0, 1, ... , N-1 in succession, cash will
be sufficient to grant all requests from process p[i] without viclating (2) .

Within a finite perjod of time, process p[iJ will have terminated its transaction
. , !
and i can be increased by 1. (End of proof.) ;

The Banker's Algorithm tries to find such a permutation of the process

numbers by keeping
(A i: 0 <i <kt claim[p[i]] < cash + sum{0 < j < i: luan[p[j]])) (5)

invariant. After having established it (trivially) by means of k:= 0 , it then

tries to increase k by 1 under inveriance of (5) until k =N . It does

so hy not changing p[O], cen p[k—1] , anﬁ by searching for an h , such that
k <h <N and claim[p[h]] < cash + sum(0 < j <k: loan[p[j]]) . (6)
If such an h has been found,
"oiswap(h, k); k:= k+i"

increases k by 1 under }nuariancé of (5). If, however, for k <N aquatiunf
(6) has no sclution for h , we say that "the ordering effort has failed". 1If
(6) remains solvable each time, until k = N , we say thats“the ordering effort

has not failed".

Because an ordering effort that dees not fail implies the existence of
a permutation satisfying (4), and, hence, on account of lemma 1, that the
pattern is safe, we conclude that for a pattern that is not safe, all ordering

efforts must fail. Or, with

Ass.0O: the pattern of loans;and needs is not safe

Ass.l: all ordering efforts must fail

we have derived

Ass.0 = Ass.1- . (7)

With
Ass.2: a failing ordering effort is pbssible

we conclude (because the set of possibie ordering efforts is not empty) that



EWD623 - 3

Ass.l = Ass.2 . (8)

Consider next

Ass.35: the non-empty set of processes --Gr, to be quite precise, the non-
empty set P' of process numbers-- can be partioned intec A + B,
such that B is non-empty and

(A b from B: claim[b] > cash + sum({a from A: loanfa])) .

We can then conclude thati

Ass.?2 = Ass.B . (9)

Proof. Consider the state as reached by the failng ordering effort that is

possible under the assumption of Ass.2 . Choose then

A={pli] | 053 <k}

-

from which we conclude that

cash + sum(a from A: loan{a]) = cash + sum{0 < j < ke 1oen[p[il])

choose furthermore

B={p[i] | k<i<n}
becayse k <N , B is not empty, and because the ordering effort has failed,
(6) has no solutian for h , and hence A and B satisfy the criteria that

are imposed upon them in Ass.3 . (End of pruof.)

Finally we conclude

Ass.3 => Ass.0 (10)

. Proof. Let all processes from B from now on try tc borrow until their loans

equal their needs, before they return any units. Let all processes from A

terminate their activity. In spite of what has been returned, Ass.3 implies
that the banker has still not enough in cash to see any process!from B through
to completion, and, hence, the pattern of loans and needs is notlsafe. (End of

prcaf.)

- Combining (1), (8), (9), and (10), we see
Ass.0 => Ass.1 = Ass.2 => Ass.3 = Ass.0

but from this cyclic implication we are allowed to conclude



EWD623 - 4

Ass.0 = Ass.1 = Ass.2 = Ass.3 . (11)

Conclusion (11) is the important one. While it is obvious that a non-
failing ordering effort implies that the pattern is safe, (11) implies that the
discavery of a gingle failing ordering effort allows us ta conclude immediately
—-i.e. without any of the back-tracking that is traditionally involved in the
search for permutations satisfying some criterion-- that no such permutation

exists and that the pattern is not safe.

From (11) it also follows rapidly that, in order to investigate the
safety of the pattern that would result from granting,in a safe situatiaon, a
request to process c , the ordering effort can be stopped as socon as © = p[k] ’
for then safety is already implied. {The credit for this discovery is due to

L.Zwanenburg, who made it in the early sixties.)

* *
*

L3

In retrospect I am grateful to the puzzled looks on my students' faces.
That from a cyclic arrangement of n assertions, each implying the next one, we
can conclude that all n asserticns are equivalent --or to put it more drama-
ticly: can conlude all n(n-1) pair-wise implications-- is not unknown at =al11.
But the larger the value ofl n , the more impressive an example of effective
reasoning we have, in particular if --as in this case-— the assertions have
been arranged in such an order, that the n antecedents are not difficult to

prove,

It is a pity that, probably, the case n = 2 is the most common one,
for in that case the "gain" —»as measured in terms of the number of implications

established—- is nihkil!

Plataanstraat § prof.dr,Edsger W.Dijkstra
5671 AL NUENEN Burroughs Research Fellow
The Netherlands

PS. Please note my new postal code!




