EwWD631 - O

fle: "Formal Derivation of Strongly Correct Parallel Programs" by Axel van
Lamsweerde and M.Sintzoff. :

This paper leaves me with very mixed feelings. [have the greatest sym-
pathy for its goal of applying formal techniques at the stage of program con-
struction rether than at the stage of verification of "given" programs; besides
that I have not found any formal error, although I went fairly carefully through
considerable portions of the text. Yet I would hate to see this article publish-
ed in its current form, because in many respects it is so ugly that its public-

ation would fire back on the goals it seeks to promote.
* *

*
The paper is much too long, and as it stands mo one is going to read it.
It is a rambling paper in the sense that it deals with a number of very different
problems. I don't feel that the "unified framework™ alluded to in the summary
justifies their combination into a single paper. My first recommendation to
the authors is to consider +to base upon this material, say, three separate
articles.

fairly isclated problems are .
a) the correct and complete signalling; this is an optimization preblem,
and its isolation could be considered because only here the notational apparatus
of ask and see and the strongest post-condition are needed

—_—

b) deadlock prevention; this is a logical problem that, in principle, admits
a unique solution
c) starvation prevention; this is in general a strategic problem that admits
infinitely meny different seolutions.
* , *
*

It is also a rambling paper in the sense that it is unclear in its objectives:
do the authors want to present a set of workable techniques for program construc-
tion, or do they want to show that most predicates one is interested in during
program construction can be viewed as extremal solutions of derivable equationsg?
Maybe the authors' answer is "Both goals are equally dear to our hearts." Even
if this is tirue -~the article makes upan me the impression that the second
goal is dearer to their hearts, and "sell™ the topic by overstating the degree
in which the first goal has been reached-- it is questionable whether a single
article should hit at both targets, because many readers interested in the ane

goal don't care too wuch about the other, and vice versa,

* *
*

The prose should be written more carefully, for as it stands it contains
too many shaky expressicns. I mention: "to statically abstract", "statically
omitted", "temporarily delayed", "logical properties", "logical starvation"
~-these expressions are not made any clearer by typing "logical™ in italicste—
"predicates which verify" (pg.12) instead of "satisfy", "fixed point equation™
(pg.14) instead of "equation", "fixed point condition" {pg.36) instead of "con-
dition", "fixed point solution® (pg.30) instead of "solution", "(global) dead-
lock-free invariant J" (pg.27) instead of "an ipvariant J ensuring absence

of (global) deadlock®.

* *
*

I was very much amazed when I read (pg.55): "We must confess that our
techniques [...] are not [...} based upon & formal model of parallel computation®,

amazed because I had been struck all the time by the extremely operational
approach. (Each waiting process is "waiting on a queue": while reading I was

EWDE31 -~ 1

associating with each non-rectangular triangle a queue on which Pythagoras's
Theorem could wait to become true.) After re-reading the quoted sentence I
realized that I had skipped the word "formal". The quoted sentence continues
“perhaps this should be done.". Personally I doubt that: I suspect that we
can only make real progress provided we define the semantics independent of
any underlying computational model,

In this article I find a confirmation of that suspicion. What are
the "parallel pragrams" referred to in its title? What we are --or: should be--
talking about is programs whose implementations allow concurrency. It are
not the programs themselves that are "parallel": parallelism or concurrency
are operational concepts that refer not to the program, but to its execution.
In this respsct that paper is half-hearted: on pg.l they write, "if all com-
ponents of the parallel program can be executed an arbitrary number of times,
they do what the specifications reguire them to do" but also "good proof tech-
niques [...] should abstract from all these execution paths"™. But if you
really do a good job of that last abstraction, the operational view would dis-
sppear {as would the word "parallel" from the title, a word whose presence is

already now somewhat hard to defend).

* * -
*

Notation, terminology and formalism are often clumsy, €.Qe
a) They use "I" for identification of en invariant relation: one should
never do so0 in English texts --what sbout "I cannot be viclated"?-- , nor
in texts that also use Roman numerals,see pg.7, line 5 from below:

"according to rules based on the truth of I, see Appendix I."

b) Sections 2, 3, and 4 are done with double (quadrupla) subscripts, only
thereafter the authors simplify. (Dn page 9, line 11 from below, read:
®programs of the simpler form"; this was the cnly typing errar I saw! My
compliments!) :

c) What they call "local deadlock" should have been called “(dahger uf)
collective starvation", because "deadlock" suggests something irreversible,
and "local deadlock" should remain reserved for the situation --not studied
in this paper-- that & true subset of the processes gets irrevocably stuck,
no matter hew the remaining processes are thereafter exscuted.

d) They often "unfold and fold again", but in all cases that I checked it,
these operations were not necessary at all, e.g. in the derivation of (6.3),
where the explicit mentioning of the use of the formula pg.30, line 4 from

above, would have been more helpful.

* *
*

From page 26 onwards, where starvation enters the picture, the treatment
becomes increasingly unconvincing, because the danger of individual starvation
can be exorcized in so many different ways., If we formulate the requirement
operationally as a restriction defining a subset of the possible execution
paths, I prefer the introduction of (perhaps ghost~) variables recording what
is relevant about the path {or: "the past“) so that we'can formulete our re-
striction in terms of (original and) added variables. This being added to the
relation to be kept invariant, the problem is reduced to the previous one, viz.
the prevention of deadlock. That seems a more "upified" approach, which has
the further advantage of making one's design freedom explicit,

Ede)ef \r 'DQLSL;

' /

