EWDES3 - 0O
EWDG653.html

!

Exploiting contiguity in a linear store,

Warning. In this text I have regularly followed the custom of underlining
technical terms at their first occurrence in a context that is supposed to
define them implicitly. This is a bad practice, and I apologize for having

yielded to the temptation., (End of warning:)

My starting point is g classical von Neumann store consisting of 2N
locations, each of the same capescity, and each with its own address, the
N
set of addresses being the numbers from O through 2"-1 . The value N

is known as the address length. Access of a location --either for changing

or for extracting its contents—— requires that the address of the location
is supplied to the selection mechanism., I assume that the locations in store

are randomly accessible,

The fact that the available addresses, besides being different from each
other --a necessity because they have to identify locatiocns uniquely in storg-- ,
form the set of consecutive integers (from O through 2N~1) is of great importance
in combination with the circumstance that electronic equipment is very good at
adding: it allows subscription. If m vector elements a[i] (with 0 <i<m)
are stored in contiguous locations —-i.e, locations with successive addresses--
selection of a[i] can be implemented by computing the address of a[i] by
adding i +to the address of a[O] i this subscription is assumed to be fast,

and the time it takes is supposed to be independent of the value of i .,

In view of the central position of the subscription we are entitled to
attach great importance to the notion of centiguity. Because in 8 randomly
accessible store each lacation is "as good as any other", we may even expect
that the fact that the elements of a vector are stored in order in a set of
contiguous locetions will be of s much profounder significance than the actual

position the vecter occupies in store.

The fact that the vector's position as a whole is less significant than
its being a vector has been pbscured in thz past by the high cost (in time)
of moving & vector, a time which was proporticnal to the length of the vector.

This high cost has resulted in a relative immobility, and in overestimation

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD06xx/EWD653.html

EWDES% - 1

of the significance of the ectual position.

In order to do justice to this difference in significance between con-

tiguity and position, we assume the availability of a storage shift operation .

Indiceting with M[i] the contents of location with address i , and with M?*

the store before the shift operation, the latter establishes
M[i] = mi+t]

for constant t and & contiguous range af i-values. For the time being

I assume the storage shift operation only availshle for two values of t

t =+ 1 (shift up) and t = - 1 (shift down). The shift operation is assumed
to be a fast operation, jn time independent of the length of the vector being
shifted. Its availability is hoped to ease a number of the traditional storage

&llocation problems.

The use of storage shift operations may ease a number of storage
allocation problems, it certainly introduces a new problem: it requires the
introduction of a new, let me call it, "level of identification®. It does so

in the following manner.

At any moment in time the state of the computation is recorded in the
current values of a number of variables; the actusl number of variables may
change as the computation evolves: upon block entry, new variables are intro-
duced, upon block exit, existing variables disappear. In terms of storage
usage: at any moment in time a number of locations is used to store the
current value of currently existing variables, the other storage locations are
free. If information is not shifted, each variable can be identified uniquely
during its lifetime by the address of the location allocated to it upon its
introduction. The flexibility to shift information, i.e. the possibility to.
reallocate variables during their lifetime, disqualifies the location address
&s identification for the variable. Hence the need for a new "level of iden-

tification™.

One way of identifying variables is by the ordinal number of their

creation w-in very much the same way as is done in some political parties:

EWD653 - 2

"party member nr.83" is then almost one of the founders. (In the Dutch Com-
puter Society. I used to be “nr.17"!)-~ . When an old number is never re—
issued, this is an identifying "overkill™, for we only need an identification
mechanism distinguishing between any two concurrently existing variables; this
overkill can be avoided by giving each variable upon creation "the lowest free
number" say. These are very neutral techniques for generating an identifi-
cation for each new wvariable crested, so neutral that, later on, they give
rise to high processing costs -~usually in terms of large associetative stores
or their simulations-- . The reason for the high price is that nothing can
be deduced from contiguity of such numbers: from the existence of variasbles
nr. 812 and nr.814, we can deduce nothing about the existence of variable
nr.B813. .

I propose to explore an almost(OPpngite technique for generating the
new "level of identification"™: during its lifetime each variable will be i—

dentified by a so-called "global index train" of some length

C1, C2, “as g Cn-_1s cn .

Contiguity in the nomenclature is intended to be reflected by the fact that
the existence of a variable with the above global index train implies the

existence of variables with global index trains

Cys Cor wne cn“1, i

for all wvalues if i satisfying 0 < i < € -

Note that not all variables need to have global index trains of the same
length. At any moment in time, different variables must have different
global index trains; if the global index train of A is a beginning sub-
sequence of the longer global index train of B , the variable B will

emerge as a component of the composite variable A .

* *
*
In order to investigate the viability of such a proposel we have to

investigate at least the following aspects:

1) how should a programming language implementation issue new global in-
dex trains upon "block entry", in general "when new variables are created"?

2) what algorithm will perform the general address calculation, i.e.

EWDESZ - 3

given the global index train of a variable, how is its address derived?

3) * besides the actusl globsl index train the general address calculation
just mentioned has to process the "positional information"™ that has/ito be
adjusted whenever information is shifted in memory; the question is how to
represent this positional information such that

3,1) general address calculation is not unduly complicated

3.2} in case of information shifting the updating of the positional in-
formation is a well-defined and modeét task.

4) how --when for 2), 3}, and possibly to a certain extent for 1)—- pro-
posals have been chosen, can additionel hardwere be used for speeding up the

selection process?

»

1 shall first deal with 2) and 3): they present a less open-ended problem
than 1) and 4), and I do have a praposal that (even after 10 days of dreaming
about it) strikes me as convincing. I shall first describe it in its purest

form.

Denoting, as before, the contents of location with address i as M[i] ’
the address that corresponds to the global index train cy through . is
in principle computed by the following algorithm:

do i <n~i,b:=i+l, b+ Mbic] od . (1)

This two-line algorithm reflects the notion of so-called nested segments .
A segment occupies in store a set of contiguous store locstions and is & unit
of contiguity. The final value of b after processing according to (1) a

giobal index train of length n is called the base address of the ccrfespon—

ding segment which is a segment of order D . The total store itself is in

this terminology the one and only, implicit, segment of order 0 .

There are two types of segments, lgaf segments and node segments. Leaf

segments are the ones that are identified by & global index train that is not
the beginning subsequence of a longer existing global index train; the others

are called node segments.

EWD653 - 4

The possible values of the variable b during execution of the address

calgulation (1) ere called the segment base sddresses. By inspecting (1) we

see that O is by definition the segment base address of the only segmént
of order 0, and that M[0], M[1], ..., M[mc1] are the segment base
addresses of the segments of order 1, if mecl is the maximum value of the

leading index c, of the global index train. In other words, the first mcl

locations of thejsegment of order 0 --together called the header of that
segment-~ contain what we can regogniie as the mcl descriptors of the mct
segments of order 1. Those segments themselves ars placed in the remaining
locations of the segment of order O . The segments of order 1 are all
subseqments of the same segment of order 0 . In exactly the same way, each
segment of order i (>0) is e subsegment of one segment of order i-f, to be
more precise: the segment with global index train cy through c, is a

subsegment of the (unique) segment with globsl index trasin ¢, through ¢

1 i-t

we call the latter the first's "supersegment”.

Remark 1, Because different global index trains processed by (1) must lead
to different finsl values of b., the subsegments of a segment occupy different

locations in their supersegment. (End of remark 1.)

Remark 2, As far as (1) is concerned the order in which inside =a segment its
subsegments are allocated is immaterial. For simplicity's sake I assume that
it is the same order as in which their descriptors sre stored in the segment's
header. If the descriptor also contains thé length of the corresponding
subsegment, this eases the administration of unused location between the sub-
segments, or between the header and the first subsegment or beyond the last

subsegment. (End of remark 2.)

Inspection of {1) also explains why we have called the segment a unit
of contiguity: the sum b+ci leads to & descriptor, them b + descriptor

leads to the segmeni base address of one order higher.

The descriptors in the headers contein the "positional information®
referred to above under 3). We can now answer the question mentioned under
3.2): if a segment is shifted up over 1 location ~~under the assumed initial

presence of at least one free location beyond it in its supersegment-~ its

EWD653 - 5

descriptor should be incressed by 1; if a segment is shifted down —--again:

under the assumed initial presence of st least one free location in front of
it in its supersegment-- its descriptor should be decreased. by 1. Alguiithm
(1) implies that when a segment is shifted, the adjustment of its descriptor

is the gnly sdjustment of positional information required.

Remark 3. Note that our convention of nested segments, where each segment
has a defined length and a defined position in its supersegment, implies

that each free locetion belongs to exactly one segment. (End of remark 3.}

* *
#*

The next thing we investigated was programming language implementation.

At the start we had only two principles that seemed reasonably firm,

First principle. System infermation pertinent to each segment will be stored

in the segment descriptor rather than in the segment itself.

A very simple example is provided by the segment length: we have to
choose between storing the length of a segment in its descriptor or, say, in
the segment's first location, The first principle says that it will be
stored in its descriptor. [must admit that I have no strong further justi-
fications for this first principle; I tried to find them, but none aof the
attempts at justification was anymore convincing than the first principle
itself, Hence it seems more honest to stop this "petitio principii", and

' i
to postulate the First Principle openly as such.

Second principle, The addressing scheme considered will only interpret
deseriptors and all the infarmation in descriptors will be relevant to this
purpose; es & corullary: a leaf segment occupies a number of locations, the
contents of which remain at this level uninterpreted and its descriptor con-

teins no information about the interpretation thus abstracted from.

Suppose that at a certain block ‘entry three single-length integers and
two double-length integers are to be introduced, requiring together seven
locations. We could have introduced all sorts of different kinds of leaf

segments, one for each type. Then we would introduce separate leaf segments

for the three single-length integers and the two double-length integers, and

EWDE53 - 6

the descriptors would then contain ean indication of the type of information
stored in the leaf segment. Such an arrangement, however, is ruled out by
our Second Principle: in the exemple a leaf segment of seven ccnsecutige
locations will be introduced.

'

Again I must admit that I have no strong further justification for this
principle. It can be viewed as an effort of separating concerns. In this
report we are concerned with placing sequences of bits in location sequences,
and I would like to treat that (if possible: the principles are tentative!)
in isulstion and independence of whatever "primitive data types" can eventually

be distinguished in a full-blown language implementation.

For a while 'we thought that we would have two types of segments: un-~
interpreted leaf segments, and node segments containing a header and ss many
subsegments as descriptors in that header. But when we tried to use this,

we encountered the following dilemma.

Suppose that st a block entry we introduce three single~length
integers x , y , and z , and two vectors u and v of varying length.
Because the lengths of u end v vary independently, we essume that both
get their own subsegment with descriptors du and dv respectively. Original-
ly we decided to allocate for x, y, and z a leaf segment with descriptor
dxyz say. But then we have the dilemma thet we can iﬁplement the block .in

two egually defensible (or indefenSible) ways:

1) For the block incarnation we introduce a node segmenti with a three-
descriptor header, containing dxyz, du , and dv . In this case the index
chain identifying the sequence of storage locations allocated to xyz is one
longer that necessary, the potential variation in size of the leaf segment

for x, y, @and z remains unexploited,

2) We really make the block entry a double block entry that increases the
(static) block height with 2 instead of with 1 . In the outer block entry
a leaf segment for x, y, and z is introduced, in the inner block entry a node
segnrent with a two-descriptor header containing du and dv is introduced. Here
the mixed introduction of scalar and vector variables gives rise to in increase

of block height.

EWDES3 - 7

Hoth are equally viable and equally ugly. What we would like to do is
to introduce one segment with descriptor dxyzuv, containing the (fixed size)
“"leafy" information x , y , and z and the two-descriptor header for du
and dv (and the two corresponding subsegments). The conclusion is that it
was too severe a constraint to confine uninterpreted informstion (such as
X, ¥, 2) to leaves, 'but that it must be allowed in nodes as well,

A general node segment then consists of three areas (forgetting free lo-

cations for a moment)

1) uninterpreted information
2) header
3) subsegments (as many as there are descriptors in the haadar)

When the last two are empty, it only contains uninterpreted information and

is identical to our original leaf; i¥ the uninterpreted information is missing,
it is in shape like the restricted node we originally considered. The

original distinction between leaf segments and node segments seems to have
largely diseppeared: we are left with one type of segment, in which either

the uninterpreted information or header+subsegment may be missing. This seems
a definite improvement, but we get nothing free: the price to be paid is a more

elaborate descriptor, which now contains four values, say:

pPs (= segment position) b+ps = address of first location of the segment
ns (= segment length) b+ps+ns-1 = address of the last location of the segment
ph (: header position) b+ph = address of the location of the first descriptor
nh {= header length) b+phtnh-1 = address of the location of the last

descriptor

In the case that a segment is shiftedzup, the ps end ph in its descriptor
have to be increased by 1 . Ir all cases we have Ps < ph < ph+nh < ps+ns .
A pure leaf is charaterized by nh =0 ; if ps = ph , the uninterpreted in-

formation is missing.

In a segment ph - ps from its descriptor equals the number of
locations allocated to the uninterpreted information. It is at this stage
an open question whether we shall alioo this difference to change during the
existence of a segment with nh >0, i.e. a non-empty header. If we do,
the difference between a node segment and a leaf segment disappears still

further, because then both can accomodate uninterpreted information of

EWD653 - 8

varying size; it would, however, require a second type of shift operation,

viz, a shift operation that does not shift a subsegment, but shifts a header
(rquiring adjustment of ph nnly). If we don't, the difference between

leaves and nodes is a little bit more marked, as then only leaves can accom-
modate uninterpreted information of varying size. The guestion is still open,
I think that I have a wild, intuitive preference for the second choice; the
reason is probably that then we can come éway with ané type of shift operstions

Only.

It seems that the implementation of a single seguential program --like
an ALGOL 60 program with the difference that array sizes are viewed as varying-—
can now proceed in a fairly standard manner. With such a sequential process
we essociate what we might call & "stack segment". The --at this level!-- un-
interpreted information of the stack segment is available --by way of "stack
bottom", so to speak-- for the fixed amount of system information that need
to be stored for each sequentisl process. Its header grows by one descriptor
each time a procedure is called --and shrinks agein upon return from a pro-
cedure-- ; the corresponding subsegments --we might call them "block segments"
are introduced for the local variebles of the procedure called: the uninter-
preted information of the block segment is available for the local variables
of the block, in the header of a block segment we introduce a descriptor for
each local array. In contrast to stack segments, block segments will have
constant header lengths. {(Further decisions have to be taken about the
allocation of anonymous intermediate result, actual parameters being passed, and
return and further linking information; although important, these questions

will not be pursued nnw.)

The important conclusion is that each block segment is identiff%d by
an index train consisting of the index train of the stack segment --which
also serves to identify ihe process-- followed by one more index, which
equals the dypamic dapth; As long as parameter passing is confined within
this sequential program, this last index --the dynamic depth-- suffices for
the identification of block segments, and is the proper tool for block segment
identification when, say, scalar variables are passed by reference. If prao-
cedures have access to global variables in the style'nf ALGDL 60, the display

--or its equivalent-- would be used to translate the (static) block heights

into the corresponding dynamic depths.

EWD653 - 9

We encounter new problems, hnwaver,_és scon as we try to accommodate
8 possibly varying number of such sequential processes --each with its own
stack segment-- that, in addition, should be allowed to communicate with
each other. An added complication --that is: a complication for me, while
writing this text-- is that I would prefer to commit myself as little as
possible sbout the, say, linguistic form in which several such communicating
sequential processes are presented. I would like my treatment to be equally
applicable to a co-routine organization of what is essentially view as a
single-processor program, as to what is essentially presented as a sét.of
cancurrent processes on which in principle an equal number of processors
could be engaged. In view of this desire not to commit myself in either
direction] propose not to discuss in this report how the progress synchro-
nization between various sequential processes is going to be organized, with
but one exception, viz. my cne and only "model" for process creation and

destruction,

In & sequential progrem may occur a so-called “"parallel compound™, sa
q prog h) ¥

[st])s2]|s3] .

(Here, following C.A.R.Hoare, I have used square brackets as statement brackets
and two vertical bars --as opposed to a semicolon-- to separate the components

of & parallel compound.)

The beginning of the execution af the parallellcnmpound coincides with
the beginning of the execution of all its parallel components --in the above
example S1 , 52 , and 5% -- , termination of the parallel compound is the
termination of all its components. Far the time being we confine ourselves
to parallel compounds with a finite number of components that is known when

its execution starts.

In a.caée like the above three new stack segments have to be created at
the start of the parallel compound , and; again, it is en implementation de-
cision what index chain to assign to them. My proposel is to introduce the
three stack segments, corresponding to 51 , 52 , and 5% respectively, as
subsegments of the stack segment corresponding to the sequential process in

which the parallel compound is executed. More precisely:

EWDES3 - 10

let C be the index chain identifying (the stack segment of) the process that
is about to split into three, and let i be the current dynamic depth --header
length-- such that a block entry would cause the creation of a block seément

with index chain "C, i" ; then the entry of the parallel compound

[st]]s2]] s3]

“would cause the creation of three stack segments --note: not block segmentsl--

with index chsins "C, i", “C, i+1", and "C, i+2" respectively.

The rationale behind this proposal is exsctly the same one as the one
that would heve assigned the index chain "C, i" to the newly crested block
segment if, instead of the psrallel compound, s normsl biock would have been

entered: contiguity of used velues of the last index is maintained and, per-

haps more important: "C, i", "C, i+1", and "C, i+2" are by definition evail-
able! This is in strong contrast to the situation in which the start of the
three-fold parallel compound would have implied the acquiring of three stack
segments from a common pool of free apes. In the latter arrangement two

such (pnssibly) concurrent splits would almost certainly need to be implemented
under mutual exclusion in time, and that is exactly the kind of interdependence

that with the nested segments I seek to avoid.

This proposal definitely introduces a phenomenon that otherwise perhaps
could have been avoided: our version of the so-called "cactus stack" now leads
to stack segments --and hence to sequential processes-- identified by index

chains of different lengths.

I fear that a severe implementation problem presents itself when we are
requested to cope with what we might call a "recursive split", as occurs when
from the components of a parallel compound within the bédy of & procedure
that same procedure may effeciively be celled again. The possible depth of
the cactus stack is then'in principle as unlimited as the depth of a stack
in the case of the traditional implemeniation of & sequentisl recursive pro-
cedure. In that traditional case, each activation is characterized by its
depth, i.e. a scalar, which may become large, but remains a scalar. The
depth of the cactus, however, equals the length of the index chain of the
stack segments in its top, and the manipulation of such long index chains is

definitely unattractive. Although there is conceptually nothing wrong with

EWD653 - 11

the recursive split, it has another nasty consequence: if the procedure can
be called from more than one component of its internal parallel compound,
the number of stack segments to be identified and allocated may grow as an
exponential function of the depth., So there is some justification to chicken
out and to restrict ourselves to exploring what can be done when a recursive
split is excluded or by other means it can be guaranteed that the maximum

depth of the cactus stack remsins under a modest upper bound.

Under that restriction we can assume each sequentiéi processor equipped
with enough registers, i.e. one for each index --and probably also the cor-
responding segment base address-- of the global index chain identifying (the
stack segment and) the sequential process currently executed by it., They
would give access to the "dynamically enclosing" stack segments; they are
in the cactus stack the ones on the path from the current steck down to the
raot of the cactus, and along that path each of them is suitably identified
by one of the integers from .0 through n-1 (if the global index trein of
the current stack segment is n indices lung): 0 for the root of the cactus
stack and n-1 for the current stack segment. 1 propose to call these in-
tegers "ranks" of these stack segments. (A split in a process with stack

segment of rank r creates a number of new stack segments of rank 1+l .)

As long as direct contact to {block segments in) other stack segments
is confined to "dynamically enclosing" stack segments, each of these segments
is sufficiently identified by its rank; the displey elements --see EWD653-8,
last paragraph-- would then contain, besides the dynamic depth identifying
the block segment with a stack segment, the rank of that stack segment in
order to identify the latter.

Note. The restriction mentioned at the beginning of the preceding paragraph

seems very strong, and 1 am not entirely happy with it., I feel, howeyer, com-

forted by the consideration that, without further synchronization constraints,
the dynamically enclosing stack segments are the only ones the existence of

which can be guaranteed from within the current pracess. {End of nnte.)

Remark. We remind the reader that the text of a procedure does not fix the

dynamic depth of the block segment corresponding to its call. In complete

EwWD653 - 12

analogy, the text of @ procedure does not fix the rank of the process from
which it is called, end if the procedure body contains & parallel compaund
the rank of the component processes is not fixed by the procedure text: their
rank is by definition one higher than the rénk of the process that celled

the procedure. (End of remark.)

With the above I seem to have achieved two further design goals that,
although constantly at the back of my mind, have not been mentioned explicitly
yet, viz.

1) text does not reflect the rank of the sequential process in which it
will be executed; this is, of course, necessary if procedures of a I%P;ary
are to be generslly available--i.e. at different ranks—~ ,

2) the efficiency’with which a process is executed need not depend on the

rank at which it is executed.

When two processes should communicate with each ather, the global index
chain identifying the one cannot be equal to the beginning of the global in-
dex chain of the other: if this were the case the one of the highest rank
=--being = (sub)cnmpnnent of the other-- would be the only ective one of the
twe. When two processes have to communicate with each other this communication
is visualized as taking place via the highest rank stack segment that contains
the stack segments of the two processes. This choice is & natural one, because
it is the smallest environment the existence of which can be guaranteed when
both communicating processes exist. (And, as long as we don't state more
precisely what is meant by "visualized as taking place via" the proposal seems

harmless.)

Having reached this stage I have the feeling that the further exploration
of point 4) --what further hardware assistance is feasible?-- should not be
done now. I doubt whathér 1 am the appropriate person to do so, and in any
case I think that these investigations should be postponed until more people
have looked at and commented upon the above --may I call it "Conceptusl"?--
design. I know that various people are thinking about programming languages
of the "Communicating Sequential Processes" type, and it would be nice if

they could confront their ideas with the above outline of a machine structure,

EWD653 - 13

Other things such a confrontation might elucidate are the viability
of the separation of concerns sketched at EWD653 - 6, second paragraph
and the proper way of storing anonymous intermediate results and actual
parameters. Almost certainly such confrontations will raise more specific
questions concerning synchranization and megssage passing. Also the question

how "monitors" fit into this picture should be answered.

The writing of the last part uflthis report --in particular pages 9
through 12-- caused me trouble enough and took much more time than antici-
pated. (Any suggestions as toc how to improve the presentation of that part
of the design would be most welcome!) In the meantime it seems better to

conclude this report and distribute it in its imperfect and incomplete

state. .
Plataanstraat 5 prof.dr.Edsger W.Dijkstra
5671 AL NUENEN Burroughs Research Fellow

The Netherlands

