Team Identificetion 142-48 EWD659 - O

On the BLUE Languasge submitted to the DoD.

The diary entry that records my initial reactions io the Revised "Ironman",

July 1977, starts with the following introduction:

(Quotaticn from my diary)

Let me remark, right at the start, that it is much better than the earlier
versions I have seen. The iteration process has not only more or less converged,
during the process it has slsc become more realistic. So much for the praise.

But we have still a long way to go! To quote Niklaus Wirth from

"Programming languages: what to demand and how to assess them."

Bericht 17 des Instituts fuer Informatik ETH Zuerich, March 1976

"I believe that there will be no real progress until programmers learn
to distinguish clearly between & language (definition) and its implementation
in terms of compiler and computer. The former must be understood without
knowledge of the latter. And we can only expect programmers to understand
this vital distinction, if language designers take the lead [...]. Hence we
conclude that the first criterion that any future programming language must

satisfy, and that the customers must ask for, is a complete definition without

reference to compiler or computer."

I happen to share Niklaus's belief, to say the least. (I would like to
go even one step further: the definition should be independent of any underlying
computational model.) But even in comparison to Niklaus's more modest goal,

the crew of IRONMAN is still absolutely nowhere! (End of quotation from my diary.)

I had been disappointed in particular by the opening sentence of Require- -

ment 1D : "The language design should aid the production of efficient object

programs." (my underlining) instead of "The language design should aid efficient
implementation." I was disappointed to see that the phrasing of that sentence
still betrayed the old misconception that a programmer should pruducé object
pragrams and that a compiler is a "programming tool" for that purpose, instead
of viewing the object code as an implementation detail to be ignored by the

programmer.

Upon careful reading the remainder of the Revised "Ironman" reveals, I



EWD659 - 1

em happy to say, & more subtle attitude. It is true that sentences such as
(from 3C) "Type definitions shall be processed entirely at translation time.",
{from 3-3D) "The number of dimensions for each array [...] shall be determinable
at translation time.", (from 4E) "Constant valued expressions {i.e. expressions
whose values are determinable at translation time) shall be allowed wherever
constants of the type are allowed. Such expressions shall be eveluated before
execution time.", (from 6C) "Only the selected branch shall be compiled when

the selected case for a conditional statement is determinable st translation
time.", {(from 7D) "The result type for each function [¢..J shall be determinable
at translation time. [...] its size must be determinable at translation time.",
and (from 7H) "The number of dimensions for formal array parameters [...] shall
be determinable at translation time." all received from me in margine the same
comment "Mixture!"™. As I now read them they are either direct requirements for
the implementation --and as such out of place in a document stating requirements
for the programming language~- or indirect language requirements --in the sense
that the language shnuld be such that such and such an implementation technique

suffices-- . The quoted sentences require an awareness of the implementation

process from the language designer, but not from the programmer using the lanqguage!
This is an enlightened attitude (%hat.i failed to notice on first reading). '
Compared with that enlightened attitude the BLUE Language seems to me to be a

step backwards.

In Section 1.3 (LS 1-10) I encountered --and was puzzled by-- the
"manifest—integer—expressinn", in Section 3.1.4.1 (LS 3-14) I found the

(not very illuminating) syntactical definition
"[3-14] manifest-expression ::= expression"

but eventually, still in Section 3.1.4.1 (LS 3-18), I retrieved the intention:
"A manifest-expression is an expression whose value is computable at translation
time." The text continues with "Such expressions are defined in more detail

for each of the predefined types", a promise that I haven't seen fulfilled. (Its
fulfillment may be hidden somewhere, but without an index I couldn't find it.)
It is my impression --but I am always willing to be corrected if my impression
is wrong-- that what are manifest-expression's is not defined by the BLUE Lan-
guage itself, but is left to the translator. This impression is confirmed by
Section 3.5.6.2 (LS 3-80) where the function "IS_MANIFEST" is introduced with

the semantics "This function returns the value TRUE if the expression is a



EWD659 - 2

manifest expression; otherwise it returns FALSE.. [...]". 1In the justification
we find the comment (J3.5-4): "This function is required by the IRDNMAN, It
was probably intended to be used to control conditional compilation for INLINE
routines.” The only expression of doubt is the word "probazble". I could

not find IRONMAN's requirement of that function —--perhaps I cannot read-—

and definitely missed the remark that it is absolutely superfluous if the
language definition itself settles whether an expression is manifest or not.
(Note that the further remark in the semantics for IS MANIFEST (LS 3—80):
"This function is a manifest-expression." does not exclude that the notion

of manifestness is translator dependent!)

This chase was started by Example 5 in Section 3.9.1 (LS 3-120). My
first reaction to that example was that in the BLUE Language the gquestion
of type identity could pose not only difficult problems --note that because
of the declaration "WAR X: INTEGER [1:50] i= 50", .which declares X as
a variable end not as a constant, the establishement of the type of STRING_X
already requires a control fléw analysisi{~- but easily unsoluble problems,
because I could make the question of type identity between two variables
dependent on input. That counter-exampls, however, turned out to be invalid
when I reached Section 3.12.1 (LS5 3-149) that states "Type-arguments [...]
of type-specs in declaring type-~formals must be manifest." This constraint
seems to me'to undo most of the potential advantages of parameterized type-
declarations. I ceme to the conclusion that the whole notion of the manifest-
expression --which I cannot see as an IRDNMAN requirement, but only as an
invention of the BLUE Language-- is a mistake {"a manifest mistake" if you

prefer that qualification). It has a whole cascade of nasty consequences:

1) The manual must be burdened with & precise definition of what manifest-

expressions are (and teaching the language becomes more expensive in prcportion)

2) The compiler must he burdened with tracing the consequences of these
rules; as this implies at least control flow analysis, it will be expensive

in trenslation time.

3) A program for which & number of constants is declared at the beginning
can possibly only be made intoc a procedure for which these local constants are

replaced by constant parameters by making it an INLINE routine (see Section 4.3.1



EWD659 - 3

IS 4-13), requiring recompilation over and over again if the flexibility is

needed.

4) As a consequence of the above the notion “INLINE"™ becomes & necessary
language ingredient, instead of an (Dptional) directive for the compiler by
means of which the trade-off between program length and computstion time

can be influenced.

5) It forces the notion “INLINE™ to belong to the routine instead of to
ite individuel invocation points, not all of which are necessarily time-

critical.

The appropriate tool seems to me to control type identity by the chain
that introduced the types and identifying the result of & substitution, and
to call two differently identified results of two substitutions different
types, even when by accident the results of the two substitutions are identical.
The whole analysis should not be more complicated than the following of scope
rules. The authors of the BLUE Language have first been seduced by the acci-
dentally equal results of different substitutions, and thereafter found themselves
forced tonintroduca the notion of manifest-expression in order to be able to

settle the matter.

The design has had more struggles in the same vein. If we take Section
3.9.5 (LS 3-136) with the record-assignment it says in the Constraints "The
type of the record-expression and the variable must be the same.™ and three lines
further "It should be noted that, as mentiaﬁe& in Sec.3.9.1, two record objects
containing constant fields are of the same type if and only if (my underlining)
the wvalue of the constant fields are the same.” I did not find the requirement
that the values with which constant fields are initialized are manifegt-
expressions; as a result assignment compatibility between two variables of
type record has now become a run-time matter. They have similar problems
with the arrsy-assignment, as described in Section 3.8.5 (LS 3—113) where
the DIMENSIDNS and EXTENT attributes of the variable and the expression must
be identical. 1 was very much amazed toc see that the BOUNDS attributes are
permitted to differ; was this because they propose to save on the test? The
" justification J3.8-11 is meagre: "Restricting assignments of arrays to arrays
with matching bounds seems overly restrictive. It seems reasonable to require
only that the number of dimensions and extents match.® It means that after

the assignment A:= B it is possible that A[i] # B[i] , and that seems hardly



EWD659 - 4

an attractive feature. Here it seems to me that the opportunistic implementor

has had a bigger say than the cautious programmer.

* *
*

In Section 4.3.2 (LS 4-17) I discovered another horror. They describe
a two-stage matching process: the first phase tests for type identity, and
if more than one match is found, an error is detected, if one match is found,
the search process stops, if no match is found, the second search stage is
initiated, in which some of the type identities are weakened as "agsignment
compatible"; if in the second stage a single match is found the algorithm stops
again successfully, no match is an error (for lack of a third stage), and two
matches is again an error, because it points to the same sort of ambiguity as
a double match in’ the first stage. In the case of a single match in the first
stage and a single match in the second stage, no embiguity is detected, because
the second stage isn't even initiated. This must be intentional, for otherwise
we could have sterted immediately with the stage requiring assignment compati-
bility only. I am flabbergasted. Even if the translator could establish
assignment compatibility --afier the above I am not so certain anymore-- it
would be a horror: what is left from requirement 1C "The language [...] shaould

emphasize clarity ..." ? The justificstion document is silent.....

* N *

The BLUE Language is unacceptably complex. We could find an excuse
in section 1.2 of the justification document (pg.1-17) "In this language
design effort, we have attempted to satisfy all IRONMAN requirements as fully
es poésible, even thpught it was clear from the beginning that a complex
language would be the probeble result., However, we felt that only by doing
a thorough analysis of language_faaturES to support the requirements we would
truly understand the cost of the requirements in larnguage and/ur implementation
complexity. In this Section, we discuss some changes that, we feel, would lead
to useful simplification of the language." That sounds alright, but ‘the follow-
ing three pages suggesting six changes are so meagre that they make one wonder
whether the whole effort has been worth thé trouble taken: one would have hoped

‘that the designers of the BLUE Language would have learned much more!

We should perhaps give the authors the benefit of the doubt. The problem

is that these documents are an inextricable mixture of technical documentation



EWD659 - 5

and salestalk. If we see a crazy argument, are we then allowed to conclude
that the authors are idiots? It is qﬁestionable: perhaps the authors know
full well that the argument is crazy, but it is possible that the argument has
been included in an effort to win the favour of some general. Whe knows? Be-
cause 1 am not intimately familiar with the military audience for which these
documents have been written in the first plsce, and secondly it would be just
political interpretation on my part, I‘heve decided not to give authors such
benefit of the doubt and to judge their texts as technical documents. But,
again, I would like to state ance more thet such an analysis is possibly un=-

feir.

By the time a group has designed a language of such an appalling complexity
as the BLUE Language, it should, if of any competence at all, hate that design
and abhor the requirements that has led it to such & monstrum. I said that
the suggested changes are disappointing. It is ststed "The fixed point date
type would be considerably simplified if only radix 2 step sizes are permitted."
(By the way: Section %.2 and 3.211 (Ls 3-2% and 3-24) would be considerably
simplified if they would have been correct: replacing "R-S".in the text by R_s
helps a lot.)} I agree. In view of the still remaining complexities I would
have expected the suggestion to restrict S5 to S5 =0 ; a further advantage
is that then 'the value of R no longer wmatters. They also remark thaé
"Variant records are quite complicated." I agrée. They suggest the removal
of "constant components™; that seems sensible. Furthermore they suggest
"One simplification would be to require that functions not have any side-
effects.“ I agree, but not with their motivation "Such a restriction would
ensure that expressions invoking functions would be side-effect free and could
be freely optimized." because this motivatinﬁ is very one-sided: function
routines with side-effects are for the progrsmmer misleading tools! This
orientation towerds implementation is most strong in the first change that
is suggested: "We recommend that aliasing detection be removed as a ;equirement.”
Motivation? “The most important practical problem with aliasing detection
appears to be that it conflicts badly with separate compilation. Separate
compilation is a concept of proven worth in embedded computer system davelop-
ment. Aliassing detection is a new and és yet untested idea...." Now this is
smazing. If there is a conflict between aliasing detection and separate com-

pilation, why sacrifice the aliasing detection? The established (and primitive)



EWDE59 - 6

techniques for sepesrate compilation have been pointed out as one of the major
sources of today's software problems, and a significant step forward is pre-
sumably only possible when those techniques are reconsidered. But the designers
of the ﬁLUE Language are very Ennservative and propose to keep things as lousy
as they are.... (ﬁ similarly backward attitude is reflected in J4.5-12 , (P9-4—13)
where the suppression of exceptions is proposed as norm because that is usual
today. They write "For example, JOVIAL [...] has no way of checking for OVERFLOW
ét all. The lack of such a capability.has not been a problem noted by JOVIAL
users. Quite to the captrarg." (my underlining). Do we have to conclude that
the absence of an OVERFLOW check is a positive convenience? When I read a
sentence like that I feel back in the Middle Ages of Computing, when the ease
of programming was confused with the latitude for meking undetected errors.)

1 think that the two suggestions --to restrict the radix to a power of 2
and to abolish the constant record components~- are but a meagre harvest from

a chapter on TYPES AND OPERATORS that has grown to 160(!) pages. |

Plataanstraat 5 : prof.dr.Edsger W.Dijkstra
5671 AL Nuenen Burroughs Research Fellow
The Netherlands



