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Some beautiful arguments using mathematical inductian.

The purpase of this article is to exemplify the possibly great role in our
reasoning played by mathematical induction. Mathematical induction is of spe-
cial significance for computing science because the latter deals almost ex-—
clusively with & discrete universe of discourse. Furthermore, when applied
well, mathematical induction can lead to very compact and effective —--in
short: beautifull-- arguments, and when we recognize the battle agsinst
chaos, mess, and ummastered complexity as one of computing science's major
callings, we must admit that "Beauty is our Business". Finally I hope to
demonstrate how a conscious effort at applying mathematical induction can

be of great heuristic value,

For educaticnal reasans 1 have chosen three examples from rather dif-
ferent areas; they are aof additional educational value, because the arguments
can —-and will-- be presented in a way that mirrors closely the way in which
they have been discovered (or, if you prefer: have been designed). For none

af the results opbtained, however, is novelty claimed.

First example.

Let n be a natural number (n 230) and let p be a prime (p Ej2) .
Let s be the sum of the p-ary digits needed to represent n in base p ;
let m be the multiplicity of the factor p in nl! --i.e. the maximum

value m such that pm divides n! -- . Prove that

h-s

Because the factorial funciion is defined recursively by
0! =1 and {(nt1)! = (n+1)* n? ,

mathematical induction over the natural numbers seems indicated. Expressing

the dependence on n therefore explicitly, we rewrite (1) as
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m{nt) &;_5_(3)_ (2)

= —

and look for a base and an induction step, valid for any prime p .

The base is easy: because m{0!) =m{1) =0 and s(0) =0 , relatiaon
(2) holds for n =20 .

For the induction step we observe first that, because p is prime,
m((n+1)1) = m(nt) + mnst)

i.e, replacing n by n+l increases the lefi-hand side of (2} by m(n+1) .

Realizing that m{n+1) equals the number of zero digits with which the
p-ary representation of n+l ends, and thersfore also equals the number of
p-1 digits with which the p-ary representation of n ends --performing the

subtraction of 1 in base p makes that last conclusion obvious!-- we deduce
s(n+1) = s(n) + 1 - (p—1)*‘m(n+1) )

from which it follows immediately that replacing n by n+l dincreases also

the right-hand side of (2) by m(n+t). D.€.D.

Second example.

Here we deal with the problem, what shape a polygon with sides of given
--possibly different-- lengths will take if the enclosed area has to be of
maximum value. Because the number of sides may be any number >3 , an
inductive argument dealing with the sides, for instance in the oxder in which
they occur along the circumference, would be nice. But because nothing has been
given about the lengths, an induction step that is independent of the lengths
of the sides would be the nicest of all.

With the polygon built from rigid sides, flexibly joined in their end
points to their two neighbours, the shape enclosing the maximum area is stable

when a constant outward pressure p is exerted on all sides. (This is because
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under changing shape the pressure performs an amount of work equal to
p * the increase of the area enclased.) Hence the outward force on each
side, that results from the pressure p , is entirely compensated by the

forces of reaction exerted upon it by its two neighbours.

The outward force resulting from the pressure p exerted an a side of
length b eguals p.b and is applied to its midpoint in a direction ortho-
ganal to it. The stability of the side requires that the parallel components
aof the two reaction forces cancel, and that their orthogonal components be
p.b/2 . Hence the two reaction forces have the same value, T say, and
make the same angle, % say, with the side, the four gquantities being re-

lated by . p_b = E.f-Sin(ﬁ) .

From each end point we now draw a line orthogonal to the force of reac-
tion, and call the point where these two lines meet M , Because the two
lines meet at an angle 2.? y and the point M 1lies at the same distance,

r say, from the two endpoints, we have

b = 2.r.5in(?) .
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Combining the above twno relations we derive

r=‘F/p .

Knowing the physical law "action = reaction" and also the fact that the
pressure on the next side has to be compensated by two reaction forces of

the same value, we conclude that the pressure on the next side is compensated
by two reaction forces that also have that same value f . The pressure p
being constant as well, the top of the isosceles triangle, similarly con-
structed for the next side, has therefore the game distance r from the
endpoints of that next side. Furthermore, because in each joint the forces

of reaction have opposite directions, the orthogonals to them coincide. Com-
bining the two we conclude that the top of the isosceles triangle constructed
on the next side coincides with M , Hence, without any assumption ahout
the length of the next side we have derived that also its other endpoint

lies at a distance r from the point M , Via mathematical induction along
the circumference we may now conclude that all vertices of the polygon have
the same distance 1 from the point M . Hence we have proved that the
vertices of the polygon with given lengths of its sides and with maximum

enclosed area lie on s circle.

The interchange of two neighbouring sides leaves the area enclosed
and the radius of the circumscribed circle unchanged. Because any permutation
can be written as the product of interchanges of pairs of neighbours, we
conclude, again via mathematical induction, that the maximum area enclosed
and the radius of the circumscribed circle depend only on the lengths of
the sides, but not on the order in which these lengths occur along the

circumference.
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Third example.

For N >1 we consider a sequence of N elements: A[O],...,A[N-1]
The order of increasing subscript value will be called "the order from
left to right". For any s satisfying 0 <s <N , we can take from
A[O],...,A[N—1] so-called "subseguences of length s " by removing an
arbitrary collection of N-s elements and retaining the remaining s ele-
ments in the order in which they occurred in the original sequence. As a
result, A[O],...,A[N—1] contains 2N subsequences. When, in addition,
each element has an integer value, we call a subsequence an "upsequence"
if and only if it contains no element with a right-hand neighbour smaller

than itself.

Note. According to this definition, all N subsequences aof length 1

~-and sven the empty subsequence-- are upsequences. (End of note.)

Our problem is the design of an algorithm that determines for any

such sequence the maximum length of an upsequence contained in it.

Not=. Although there need not be a unigue longest upsequence, the maximum
length is unique, e.g. the given ssquence (3,?,1,2,5,3) yields 4 for the
maximum length, realised either by (1,1,2,5) or by (1,1,2,3) . (End of

nute.)

Let the final value of the variable k represent the answer we are

looking for, i.e. we seek te establish the relation

R k = the maximum length of an upsequence contained

in A[0], ..., A[N-1] .

A moment's reflection tells us that each element of the given sequence

has to be considered, and we only make the (modest) assumption that we can

get away with taking the elements into consideration in the order from left

to right. More formally, we propose to introduce a second variable, n S3Y,
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and to establish initially and to maintain subsequently the so-called "in-

variant relation”

1 k = the maximum length of an upsequence contained
in A[0],...,A[n-1] and
I <n<N ’

to be used in a program of the structure —-assertions having been inserted

between braceg—-

"establish P1 for n=1" {P1}
don#N-={Pland 1 <n <N}
"increase n by 1 under invariance of P1 " {P1}

od {P1 apd n = N} .

Relation P1 has been inspired by the fact that R contains the
parameter N ; it has been derived from R by the standard technigue of
replacing a constant (here N ) by a variable (here n ) w-and (as usual)

restiricting its range-- so that, as & result

(P1 and n = N) =R .

from which we deduce that the above program would do the job; +this inspi-
ration is further encouraged by the observaticn that P1 is easily established

initially as (h=1and k = 1) =>P1 .

The repeatable statement ™increase n by 1 under invariance of
P1 * is the algorithmic equivalent of the induction step: given the solution
for n it has to construct the solution for n+! . The required invariance
of P! means that the increase n:=n + 1 may have to be accompanied by an
adjustment of the value of k (the only other veriable occurring in P1 1.
Because extension of the sequence considered with a next element can never
decrease the maximum length of an upsequence contained in it, and can in-
crease it by at most 1t , the adjustment of k , when needed, will have the

form k:i= k + 1 . For the repeatable statement we can take the form
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=k + 1 [ v.v. - skip fi;

and our only task is now to fill in the dots, i.e. to decide under which
circumstances k has to be increased by 1 , or can remain unchanged res-
pectively, such that after the subseguent increase n:i= n + 1 the relation

P1 is again guarantesd to hold.

Because A[n] is the next element to be considered, we can fill in

the dots as follows:

{P1 and 1 <y <N}
it m<A[n] - ki=k +1 [ Aln] <m - skip fi;
n:=n + 1 {P1}

provided the value of m is defined by

D: m = the minimum right-most element of an upsequence

of length k& contained in A[O],...,A[n—i] .

In other words: the obligation to keep P1 invariant requires, besides the
value k , the value m as an additional derivative from A[O],...,A[na1] .
Introducing m as a variable, and replacing the original invariant relation

P1 by the stronger P1 and D , we find ourselves considering the program

ni= 1; ki= 1; m:= A[0]; {P1 and D}
don#N-—{Pl and D and 1 <n <N}
if m <A[n] » ki= k + 15 m:= A[n]
laln]l<m-....

n:t=n + 1 {P1 and D}

od {R}

Note. Strengthening the invariant relation is the computational analogue to

the strengthening of an induction hypothesis. (End of note.)

Note that now we have to increase n by 1 under invariance of
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P1 and D . In the first alternative the invariance of D presents no
problem: all upsequences of the increased length have A[n] as their

right-most element, and this is therefore the proper new value for m ,

But what in the second alternative, when A[n] <m 7 The new element
A[n] cannot be used to form a longer upsequence, but should it be used to
lower m because, thanks to its inclusion, the right-meost element of an
upsequence of length Kk —can now be smaller than was paossible before the
extension? A moment's reflection will tell us that for our last dots we

can fill in

{A[n] <Lm}

ifrm' <A[n] = mi= Aln]
ﬂ A[n] <m' - skip

fi

provided the value of m' is defined by

D*: m' = if k =1 - minus infinity

ﬂ k > 1 -+ the minimum right-most element of an upsequence

of length k-1 contained in A[0],...,A[n-1]
fi .

In other words: the obligation to keep D invariant requires, besides the
values k and mwm , the value m' as an additienal derivative from
A[0],...,A[n=1] . After the introduction of m' as a variable and of
the strengthened relstion P! and D and D' , the obligation to maintain

the invariance of D' reguires an m" , etc., and by mathematical induction

we conclude that we could use a whole array of m-values, and combine

I and D! and D" and ... into

p2: (A j: 1 <j<k: m[j] = the minimum right-most element
of an upsequence of length j con-

tained in A[0],...,A[n-1])

where the old m is now m[k] , the old m' is now m[k—1] , etc,

With the new invariant relation P1 and P2 our program takes its
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final shape:

ni= 13 k:= 13 m[1]:= af0]; {P1 and P2}

do n £ N - "increase n by 1 under invariance of P1 and P2" od {R}

We leave to the reader the now straightforward verification that for

the repeatable statement the following suffices:

"increase n by 1 wunder invariznce of P! and P2":
if m[k] <A[n] - ki= k + 1; m{k]:= Afn]
I a[ln] <m[1] = m[1]:=A[n]
I ml1] <a[n] <m[k] - "establish j such that m[j-1] <A[n] <wm[j]";
m(3]:= aln]
fi;
ni=n + 1 {P1 and P2}

Using
P3: mli] <Aln] <a[j]land 1 <i<j<k
as the inveariant relastion in the binary search for our last refinement

"establish j such that mw[j~1] <A[n] <m[j]":
{m[1] =aln] <mlk]}
ir= 15 ji=k; {P3)}
do i#j-1-h=(i+j)div2; {i <h<j}
it m[h] <A[n] - i:=n {P3}
[ Aln] <m[h] = j:=n {P3}
£i {P3}
od {m{i-1] = a[n] <n[i]}

It

we have solved our original problem with an N.ng(N)-algDrithm.

Note. Because the difference j - i decreases each time by at least 1 and
remains positive, termination of our last refinement is guaranteed, and the

existence of a j such that m[j—1] fEA[n] <Zm[j] is thereby proved. (End
af ncte.)
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If we assume the elements of the array m initialized to plus infinity,
we ohserve that in the above algorithm the adjustment of the array m , prior

to the increase n:=n + 1 , boils down to the effective decrease of exactly

one element of the array m to the value A[n]-

Suppose that we determine in parallel h = the maximum length of a
downsequence contained in A[0],...,A[N-1] . That computation would com-
prise a corresponding array, p say, —-with elements initialized to minus
infinity-- such that each adjustment of it boils down to an effective in-

crease of exactly one element of the array p to the value A[n].

We call a pair (i, j) --with 1 <i<k and 1<j<h - such
that mfi] f;p[j] "an inversion”., Because m-values never increase and
p-values never decrease, an inversion, once introduced, remains in existence.
Furthermore the double adjustment introduces at least one new inversion (via
the m- and p-elements that are effectively decreased and increased to A[n]

respactively). Hence for the combined computation the relation
n =< the number of inversions

is an invariant. Because by definition
the number of inversieons < h ¥ k

we conclude n < h ¥k . Hence we have proved the

2 .
Theorem., A sequence of length > M contains a monotonic subsequence

of length > M .
And this concludes my treatment of the third example.

(Nuta added during revision. In reponse to the original manuscript, J.Misra

of the University of Texas at Austin, Texas, U.S.A.,, communicated to me a

very nice proof of the last theorem that was based on the Pidgeonhole Prin-

ciple.)
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