EWD709.html

Copyright Notice

The following manuscript

EWD 709: My hopes of computing science

is copyright © 1979 IEEE. Published in Proc. 4th Int. Conf. on
Software Engineering, Sept. 17-19, 1979, Munich, Germany.

This material is posted here with permission of the IEEE. Such
permission of the IEEE does not in any way imply IEEE endorsement of
any of The University of Texas’s products or services. Internal or
personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or
redistribution must be obtained from the IEEE by sending a blank
email message to pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the
copyright laws protecting it.

http://userweb.cs.utexas.edu/users/EWD/transcriptions/EWD07xx/EWD709.html

MY HOPES OF CDMPUTING SCIENCE {EWD709)

Edsgetr W.Dijkstra

BURROUGHS

Plataanstraat 5
5671 AL Nuenen
The Netherlands

Fozmulae have always frightened me. They
frightened me, I remember, when I was sixteen
and had bought my books for the next year. I
w88 particularly elarmed by my new book on tri-
gonometry, full of sines, casines, and Greek
letters, and asked my mather --a gifted mathe-
maticisn-- whether trigonumetry was difficult,
I gratefully acknowledge her wise answer:

"Oh no. Know your formulae, asnd always
remember that you are on the wrong track
when you need more tham five lines."

In retrospect, I think that no other advice has
had such & profound influence on my way of
working.

A quarter of a century later, formulas
atill frightened me. When [saw Hoare's car-
ractness proof of the procedure "FIND" for the
firat time,] was horrified, and declared that
such & bellet of symbols was not my cup of tea.

And even now my first reaction to formu-
lae, written by someore else, ias one of repul-~
sian --in particular when an unfamiliar nota=-
tional convention is used-- and when reading an
article, my natural reaction is to skip the
formulae.

At the same time I have a warm apprecia=
tion for well-desmigned formalisms that enable
me to do things that I couldn't posaibly do
without them. I scquired almost naturally my
agility in the first-order predicate calculus
like I had learned trigonometry 25 years ear—
lier, and in both cases using the tool effect-
ively givea me grest intellectual setisfaction.

I can explain this love-bate relatianship
only in one way. Why should I continue to
shudder at the sight of formulae, whereas in
the mesntime= I should know better? I think
thet, by now, I know from sad experience that
only too many mathematicians and computing
scientists have had the misfortune of missing
my mother's wise mdvice st the impressible age
of sixteen. Too often the five-line limit is
ignored and, inatesd of using the compactness
af the formal notation to keep the text con-
cise, authors use it --in & still limited
space!~-~ far the introduction af much more
complexity than I feel comfortable with. Hence

my shudder, {I don't know how you feel about
the famoue Report on the Algerithmic Language
ALGOL 6Q . 1 admire it very much and think its
fame well-deserved. But in retrospect I think
ALGOL 6C's syntax, though rigorously defined,
more barogque than is desirable, and it is cer-
tainly the compactness of BNF that has made
the introduction aof so much arhitrariness pose-
sible.)

Later I learned that for the kind of
affectivaness that] loved, mathematicians had
a perfectly adequate, technical term: they
call it "mathematical elegance" or “"elegance"
for short. I alsoc discovered that the term is
much more "technical” than most methematicians
suspect, much more "technicel"™ in the sense
that even among mathematiciana of very differ-
ent brands there exists a much grester consen-
suz sbout what is a really elegent argument
than they themselves seemed to be aware of.
Show any mathematician a reslly elegant argu-
ment that is new for him: B8t the moment it
bacomes his intellectual property, he starts
to laugh!

The discavery of this atrong conaenaus
has made a great impression an me. It was very
encauraging., I came at a moment that --in
private, so to speak-- I had already come to
the conclusion that in the practice of compu-
ting, where we have so much latitude for making
a mess pf it, mathematical elegance is not =&
dispensable luxury, but a matter of life and
death. But 1 hesitated to say so very much in
public, just for fear of pushing another buzz-
word; now I dare to do it, assured as I am
that mathematical elegance is a clear notion,
firmly rooted in cur culture. But I am also
awsre of the fact that my sensitivity for it
cen be tracked down to how I was educated in

my youth.

* *
*

Langusge is another issue, I often feel
uneasy about it. At the time I got my mather's
wise advice about triganometry, I wrote many
poems, and often I was dissatisfied: I knew
that what I had written was nmot "it", yet I
found myself unable to identify the shortcam-
ing, and hed to conscle myself with A.A.Milne's
“"As near ms you csn get nowadays.".

MY HOPES OF COMPUTING SCIENCE (EwD709)

My first task at the Mathematical Centre
in Amaterdam was writing the precise functional
specification far the computer that was there at
that moment under design. 1 did so to the best
of my ability, and thaught I had done so rather
well —-and, from the point of precision, I had--.
But it was something of a shack far me to dis-
cover that, within a few days after its appear-
ance, My beautiful report was generally knawn as
"The Appailing Prose".

At that time I only felt that we had to
imarn how to write better about our own subject.
I think that it was nat until 1960, when Peter
Neur scquaintsd me with Wittgenstein's famous
quotatiaon:

h
"Wat can be said at all, can be said clesar-
ly; mnd on whati we cannat talk sbout, we
have to remain silent.”

that it slowly dawned upon me that, therefarse,
we had ta learn how to think better about our
bwn subject.

In the meantime I had had another linguis-
tic shock: I beceme a memter of the ACM, short=
ly befare its Communications started ta appear.
Prior tc that I had hardly had any exposure to
the foreign iiterature, What I then read was
written in a way so totally different from what
{, in relative isclation, had acquired as my own
habit, that I was sbsalutely flabbergasted. The
heavily anthropomorphic terminolegy was tatally
pew far me, and hardly compstible with my cul-
tursl roots; so was the mnimism betrayed by the
term "bug": we had never calied a bug a bug, we
had always called it an srror.

S§+ill hesitating whether or not toc adopt
the jargon, 1 wes confronted with a next term of
¢ glaring inadequacy --was it "program mainte-
pance"? I don't remember-- and 1 knew that I had
ta design my own way of writing esbout our subject
in English, as I had done in Dutch. In retro-
ppect this may strike you as a proud decisiaon,
but it wasn't: it was s decision taken in dea-
perstion, for ctherwise I could not think in the
wey I wished to think.

One more remark about language that seems
televant. wWith English being computing science's
Esperanto, colleagues with English as their
native tongue often feel somewhat guilty about
what they regard as their undeserved advantage
over most foreigners. Their feeling of guilt is
misplaced, because the advantage is ours. It is
very helpful to have to do your wark in what al-
ways remains s foreign language, as it forces
you to express yourself more consciously. {About
the most excellent prose written in our field
that I ecan think of, is to be found in afore-
mentioned -ALGOL 60 Repart: its editor had the
great advantage of being, besides brilliant, a

Dans. 1 have always felt that much of the eta-
bility and well-deserved fsme of ALGOL 60 cauld
be trasced down directly to the inexorable ac-

curacy of Pster Naur's English.)}

* *
*

The above has been presented, by way of
background information, as & help for the in=
tarpretation aof what fallows: a summary af my
hopes of computing science. Thig topic is not
as frivoloum as it might sesm at first sight.
Firatly, already in my early youth —-from 1940
until 1945-- I have lesrned to hope very seri-
vusly: secondly, my hopes of computing ascience
~=which have directed most of my work-- have
shown s great stability. They evolved: some
hopea became fulfilled, some hopes, originally
far away, beceme almoat chalienges as their
fulfillment began to appear tachnically fes-
sible. Admittedly they sre esnly my hopes, but
they sre of e sufficiently long standing that
I naw dare to confess them.

How were we attracted to the field of
sutomatic computing? Why do we remain fsaci-
natad? What is really the core of computing
scianca?

Well, everybady got attracted in his or
her way. ! entered the field by accident. I
became attracted by the combination of the
urgency of the problems tnat needed to be
salyed for the recovery of my country from the
damags done to it in World Wer II, and the dis-
covery that carefully applied brains were an
essential ingredient of the solutions. Up till
that moment I had never been guite sure whether

.my love of perfection had been & virtue or a

weakneas, and | was grestly relisved to find an
environment in which it weas =sn indispensabla
virtue.

I became -—and remained-- fascinated by
the amazing combination of simplicity and com=
plexity. On the one hand it is a trivial warld,
being built from a finite number of noughts and
ones, 80 trivial that one feels oneself mathe-

 matically entitled, and hence morally obliged,
to complete intellectual mastery. On the other hand

it has shown itself to be a world of treacher-
pus complexity. The task that shauld be pos-
aible, but wean't, bacsme the fascinating
challenge.

For me, the first challenge for computing
sgience is to discover how to maintain order in
a finite, but very large, discrete universe
that is intricately intertwined. And a second,
but not less important challenge is how tD
mould what you have achieved in smolving the
first problem, into a teachable discipline: it
does not suffice to hane your own intellect
{that will join you in your grave), you must

MY HOPES OF COMPUTING SCIENCE (EwWD709)}

temch athers how to hone theirs, The mors you
concentrate an these two challenges, the clearer
you will gee that they sre anly two sides af the
same cain: teaching yourself is discovering
what is teachable,

As I said, my hopes have evolved, and
ons way in which they did so was by becaoming
more pracise snd mors articulate. Ten years
ago I expressed my dissatisfaction with the
then current state of the art by eiming at pro-
grams that would be "intellectually manageable"
and “"understandable”. At the time they repre-
sented the best way in which I could express my
then atill vague hope; I mpologize for these
terms to the extent thst they became buzz-words
before they had become sufficiently precise to
be technicelly heipful. What does it help ta
atrive for "inteilectuel manageability" when
you dan't know how you would prefer to "manage
intellectually”? What guidance do you get from
the goal of "understandability® before you have
chosen the way of understanding? Very littlse,
of couras.

I particularly regret my use of the term
"understanding”, for in the combinaticn "ease of
understanding” it has added to the confusion by
not inviting to distinguish carefully hetwaen
"eonvenient” and "conventional, and that dis-
tinction, I am afraid, is vital: | expect for
computing scientists the most convenient way of
thinking and understanmding to be rathsr yncon-
ventional. (That is not surprising &t all, for,
after all, alsc thinking is only a habit, and
what right do we have to expect our old habits
to be sdequate when faced, for the first time
in our cuwlture, with & drasticslly novel uni-
verae of diacnurae?)

My hope became mare articulats, when
pragramming emsrged as an spplication area par
sxcellence of the technigues of scientific
thoaught, techniques that are well-known because
we struggle with the small sizes of our heads
as long as we exist. They are roughly of three
differant forms:

1) geparation of concerns and effective
uam of abstraction

2) the design and use of natations,
tailored to one's manipulative needs.

3) avoidipg case analyses, in particular
cambinatorially expleding anes.

When faced with an existing design, you can
apply them as a checklist; when desigrning your-
self, they provide you with strong heuristic
guidance. In my experience they make the goal
"intellectually menageable™ sufficiently precise
toa be actually helpful, in a degree that ranges
fram "very" to "extremely sa".

Far the techniques of scientific thought
I called programming sn sppiication area "par

sxcellence”, and with that last term [mamant
two things: indiapensable and very effactive,

That they sre indispensable seams obvious
to ma. They summarize the only ways in which
we have ever besn able to dissntangle complexity
mare ar less successfully; and we cannot expect
our designs to turn out to be mny batter than
the waye in which we have thought about them,
:fnr that would be a miracie. The indispensabi=-
ity of the technigques of acientific thought is,
edmittedly, only my belief, and you are free to
dismiss it; you could remark that I am primsr-
ily a mcientist and that to someona, whose only
tool ia a hemmer, every problem loocks like &
nail.

I am, however, strengthensd in my belief
af their indispensability by the outcome of the
experiments that we could take, viz. trying how
effectively we could learn to apply the tech-
niques of scientific thought. Of the expsri-
ments I am aware of, the outcome has been very
éncouraging. Engaged in thess experiments, you
start to tressure the just solvable problems,
and try to present the mast elegant =olution
yau can think of as nicely as possible. I have
now joined that game far several years and
cannat recommend it warmly encugh. It is a
highly rewsrding and fascirating learning pro-
cess,

It is very rewarding for its immediate
benefit: a significant decrease in the average
amount of effort, nesded to find 5 soclution,
The untrained thinker --unless a geniug-~
spends inordinste amounts of effort in evoid-
able complications, and only tao often, unaware
of their aveidability, he fails to disentangle
himgelf agein: a vast amount of effort has
then been spent on praducing an inferior solu-
tion.

Our sducators have something to answer
for. Resding the literature, I must come to
the sed conclusion, that untrained thinkers
mre rather the rule than the excepticn: peoplse
have been teught facts and tricks, but not a
methodology for using their brains effectively.

The gcope of the educational challenge is
enormous, If you acceapt it =-and I think we
should=- you have my blessing. You'll need it
~-and much more!-. hecause you will encounter
formidable obstacles on your way. You'll have
at leant two dragons to slay. Confusing "lave
of perfection" with "claim of perfection",
peaple will accuse you of the latter and then
hlame you for the first. Furthermore, in spite
of all the evidence to the contrary, the teach-
ability of thinking effectively will be Fflatly
denied, and your methadological contributians
~-n@eded more than anything else-~- will bs die=-

MY HOPES OF COMPUTING

missed as "for geniuses only": remember, while
fighting this second dragan, that most frequent-
ly the term "genius™ ie not used as a compliment,

but only as an alibi for the mantally lazy.
* *

*

For a prosperous future of cemputing
acience --like for any science—- it is essentisl
that ita achievements are puhlished well, so
that the next gensrstion can atart where the
preceding one left. Above, I have expressed
some of my dissatisfaction about the quality
of today's publicaticns in our field. The pro-
blem is & very serious one, and it is more than
a purely educatiaonal problem. How do we publish
a sophisticated piece of software? (Wa can ree
produce the code, but that is only fit for me=
chenical execuytion, I meant "to publish" in
the scientific sense: our text should fully en-
lighten the attentive :eader.) Admittedly, many
papers about slgorithms could be written much
better already now, but beyond a certain limit,
'no ona knows for certain, how to do it well!

And that universal inability mekes it a techni-
cal problem, urgent and ss yet unsolved. One
aof my ferveant hopes is that we shail solve it.,

How should a well-written publication
about a sophisticated piece of softwars look
lika? We don't know yet, but two things seasm
certain. Firstly, the texts will he "mathema-
tical™ in the senme of Morzis Kline, whan he
wrote:

"More than anything else mathemsticas is
a method.". :

Secandly, the texts will have to be written in

s atyle that is very different from the style

of traditional mathematical texts. Depending

on your mood you may regard this either as dis-
turbing or as exciting, but in any cese you
should be convineced of the necessity of devel-
oping a radically new style of writing mathe-
matical texts, very unlike anything ever written
befors: this novelty is required by the novelty
of tha subject matter. Traditionally, mathema-
tical texte are written on a fairly wniform se-
mantic level, and that style cannot suffice for
the disentanglement of the many intricate inter-
twinings we have to deal with. '

In the relation betwmen mathematics and
camputing science, the latter hes, up till now,
mostly been mt the recsiving end, and it seems
ta me that the timm has come to start repaying
our debts. BHesidee broadening the scope af
applicability of mathematical techniquea (as
indicatad above} we could also change their
traditional applications, When, at last, the
predicate calculus were to become an indiapans=-
able tool in the dayly reasoning of all sorts
‘of mathematiciana, when the raplacement of the
ssymmetric implication by tha aymmetric dis-

SCIENCE (EWDT0Q)

junction wera to rob the so-called "reductio ad
nbsurdum" from ite spacisl status and eguivalence
would no longer be expressed by the clumasy "if
and only if", whsn mathematics would became en-
riched by & greater variety of inductive argu=-
ments, in all those cases such s development
could passibly be traced down to computing
science's wholesome influence.

But repeying our debt to mathematics at
large is certainly not our only task: alsa com-
puting proper needs our attention, We know that
the problems of programming snd system design
are puch that they cannat be solved without an
effective application of the technigues of
acientific thought. But how well ars we abla
to apply them?

How well are we, for instance, able ta
separate the concern for correctnass from the
concern far efficiency? Both concerns are so
"major", that I don't helieve thet significant
progre=ss will be possible unless we managa to
separats tham completely.

Efficiency has to do with cost sepects of
program exacution, correctness has to do with a
relation batwean input and output, between init-
'inl and final states. Complete separation of
these two concerns means that we can desl with
the correctness issue without teking into ac-
count that our programs could be executed. It
mears that we can deal with the correciness
issue, temporarily ignoring that our program
text also mdmits the interpretation of sexecut-
able code, i.®. we musti be able to discuss
‘correctness indeperdently of any underlying
computationel model, To learn to dissociate
our reaaoning from underlying computational
madels, and to get rid of our operational
thinking habits, that is what 1 regard as com=
puting science's major task. That ie what I
would like to see schieved mors then anything
elag.

Its difficulty should not be undersatima=-
ted: it is like asking the sverage mathemati-
cian suddenly to do Euclidean geometry without
drawing pictures., As Morris Kline remarks:

"But the picturea are not the subject
mattar of geometry and we are not permit-
ted to reason from them. It is true that
most people including mathematicians, lean
upon these picturss as o crutch and find
thempelves unable to walk when the crutch
ie remaved. For s tour of higher dimen-
sional gmomstry, howsver, the crutch is
not svailable.”

The anslogy is mlmoet perfect: the pictures
are to geometry whet computationasl hiatories
{or "traces") sre to computing science, "and

wa are rnot permitted to reason from them", But

MY HOPES OF COMPUTING SCIENCE (EWDTO9)

the cperational thinking habite are firmly
rooted in many wide-spread traditions, ranging
from mutomata theary, via LISP, ta FORTRAN and
BASIC, snd many people, including computing
scientists, lean upon traces "ams a crutgh, and
find themselves unable to walk when the crutch
is removed", In the case of unipraogramming the
trace is a linear sequence of states and events,
about as managesble and "“helpful" as & picturs
in two- or thres-dimensional geometry. But in
the case of multiprogramming traces are unman-
sgeable and "the crutch is not available".

Far Euclidean geometry the analyticael
methods of Descartes provided the slternative
‘to the cruteh, and in snmlytical geometry the
generelizetion from three to more dimensians
was technicslly very smooth. In programming,
the poertuletional methods of Floyd and Hoars
provided the alternstive to the crutch; in
uniprogramming they did so very successfully,
but their generalization from uni- to multipro-
gremming is --at the time of writing and to my
knowledge-- less smooth, although after the
successful start of Griea and Owicki I haven't
the slightest doubt that in the lang run it will
be done quite successfully., The need to delin-
eate very carefully one's "point actiona” is a
naw aspect of the game; so is the discovery of
Laws that give the implementer a greater free-
dom in embedding in space and time the activi-
ties invoelved in the implementation of single
point actions. {One of the ways in which we
can mppreciate the manifestly greater difficulty
of designing multiprograms is that the imple-
menter is interested in much greater freedom:
under which circumatances, for instance, is hbe
allowed to implement in a distributed system
a point action --in the presence of othar traf-
fic!—- by an activity in node A , follawed by
@ "slow" message from A to B , and finally,
upan recaption of the message, some activity
in B ?)

Dealing successafully with these technicalw
itims will, I am very much afraid, be a minor
task, compared to the educsticnal challenge of
getting noroperational arguments accepted and
gatting pmopla thersbhy out of their operational
thinking habits, for over and over again they
prove to bs a mental stumbling block for accept-
ing a nonoperationsl argument, particularly when,
from sn operational point of view, it does not
make sense. It is distressingly hard to make
someone accept a universsl invariant while he
all the time remains obsessed by his knowledge
that in his implementation it will pever be trus,
bacause his implementation will never show a
moment in which it won't be halfway engaged on
pne ar more point actiona somewhere in the net-
work. The . fight against pperational thinking
babits is a major educational task {of which
the crusade against anthropomorphic terminology

is only a modeat baginning.}
*

*

I hope very much that computing scisnce at
large will become more matura, as I am annoyed
by two phenomena that both atrike me as symptoms o
immaturity.

The one is the wide-spread sensitivity to
fads and fashions, and the wholesale adaption of
buzzwerdes and even buzznotions. Write a paper
promising salvation, make it & "structuzed”
womething or s "virtuel” something, or “abatract",
"distributed” or "highar-order" or “applicativa®
and you cen almost be certain of having started
s new cult.

The other one is the senaitivity to the
markat placs, the unchallanged sssumption thet
industrial products, juet becaues thay are
thers, bacome by their mers sxistence a topic
worthy af scientific attention, no matter how
grave the mistakea they embady. In the sixties
the battla that was nseded to prevent computing
science from degsnerating to "how to live with
the 360" has been won, and "courses" i-usually
"in depth"!=- about MVS or what have you are
now confired to the not soc respectsbls subeul-
ture of the commerciel training circuit. But
rnow we hear thst the advent of the microproces-
s0rs is going to revolutionize computing ecienca!
I don't believe that, unless the chasing of day-
flies is confugsed with daing research. A simi-
lar battle may be nseded.

An unmistakable symptom of maturity of
computing science would be a consensus about
“what matters®™ amcng its lesders, a cansensus
that would enable us to discuss ita future
course as if computing science were an end in
itself., Obviously, such a consensus can only
smerges ss the byproduct of @ coherent body of
knowledge and insights, but the crucial point
is "knowledge of what?" and "insights in what?".
What would be worth knowing? What would be
warth understanding?

I believe that a bold extrapolation from
the past will help us to find the answers.
When programming methodology in the sarly sev-
antisa adopted formal techniques for verifica-
tion and for the derivetion of correct programs,
earlier ways in which programming language faa=-
tures had been discumeed were suddenly obsolete.
The marlier pragmstic discussions, blurred by
different tastes and habits, had only created a
confusion worthy of Habel, but then the simple
question "does this proposed feature simplify
ar complicate a formal treeatment?” cut as a
knife through the propossls and did more ta
establish consansus than elogquence or bribery
could ever heve achieved. My extrapolation
from that sxperience ias thst our knowledge

MY HOPES OF COMPUTING SCIENCE (EwWDT709)

should concern farmal techniques, and gur under=
standing should be of the limits and of the po-
tentlel of their applicetion.

Let me comment in this connectieon shortly
on two developmenta currently in bloom, develop-
mente that certainly fall under the heading
"formal technigues™: the knowledge is being
developed, but about the understanding of limits

and potentiasl I have in both ceses my misgivinga.

1 mesn sbatract data types and program transfor-
‘mation, both under development in an affort to
separste corractnesa concerns from efficiency
concerns.

For the blooming of abetract data types I
feel some co-responsibility, having coined and
launched the tarm “"representational abstraciion”
back in 1972, and if it turne out to be a mis-
take, psrt of the guilt could be ming. One hint
that it might be a mistake comes from the fact
that it is only a slight exaggeration to state
thet, mfter five years of intensive research
and development, the stack is still the only
sbstract deta type ever designed. This is in
‘'strong contraat to whet happened when its in=
spirator, the closed subroutine, was invented!
Far this disappointing outcome, so far, of the
research devoted to ebstract data types I can,
at my current stage of understanding, offear two
tentative explanations. The one is simply that
an abstract data type is ap much more complicat-
od, so much harder to specify, than a subrou=-
tine, that it is orders of magnitude harder to
invent a usaful one. (If that is tha casm, 1
hava only besn impntient.) The other one is
that, when all is said and told, the type of
intarface, as provided by an abstract data typs,
is inappropriste for ita purppae: when we ana-
lyzm carafully reeslly sophisticated algarithms,
we could very well discover thet the correctness
prouf does not admit » percelling out, such that
one or two parcels can comfortably be identified
with an abstrsct dats type. In other words, tha
hope that abstrect data types will help us much
could very waell be based on an underestimatiaon
of the logical complexity of sophisticeted al-
garithms and, conseguently, on an averaimplifi=~
gatian of the program design process.

Program transformations --each of which
smbodies a theorem!—- have been suggested as a
candidete that could contribute o the neces-
sary body of knowledge. The hope is that trang-
formationa from a modest library will provide a
path from a raive, inefficient, but obviously
correct program to 8 saphisticated efficient
solution, I have seen how via progrem trana-—
furmations striking gains in efficiency have
been obtained by avoiding recomputations of the
same intermedieate reaulte, even in situations
in which this possibility --note that the inter~
mediate results are never part of the original

problem statament!-« was, at firat sight, sur=
prising. And yet my hope is tempered for the
following reasont when, in contrast to the cor-
rectneass of the naive algorithm one starts with,
the correctness of the efficient one critically
depends on a (perhsps deep) mathematical theso=-
rem, the chain of trenseformations would constie
tute s proof of the letter, and, to the best aof
my knowledge, mechanical proof wverification is
very cumbersome and is expected to remain so.

I #am sfreid that great hopes of progrem trans—
formationa can only be based on what seems to

me sn undesrestimation af the logical brinkman-
ship that is required far the justification of
‘really efficient algoritbme. It ie certainly
‘true, that each program traneformaticn embodies
a theorem, but are these the thecrems that could
contribute significently to the body of knowl-
edge and understanding thmt would give us matur-
ity? I doubt, for many of them sre too triviasl
and too much tied to progrem netation.

And this brings me to my final hope: ba=
forel die, I hope to understand by which vir-
tues the one formal notetional technigue asrves
its purpose wall and due ta which shartcomings
the othar one is just a pain in the neck.

On my many wenderinges over the earth's

'uurface I learned that guite a few peaple tend

to help me starting an animeted conversation by
the well-intended queation: "And, profeassor
Dijkstrs, what are you currently researching?".
I have learned to dread thet question, because
it used to leave me speachless, or stammering
at beat, Cama the momant that I decided that

I had better design s ready-made snmwer for it,
end for 8 while I used the snswer, both true
and short: "Pragramming.". The ususl answer I
got was very illumineting "Ah, I see: program=

‘ming lasnguages.”, snd when I then smid "Na:
-programming,”, my good-willing partner meldomly

noticed that he was being corrected.

The ACM hHas a Special Interest Group on

‘Progremming Languages, but nct one on program-

ming as such; its newest periodical is on Pra-

‘gramming Languages and Systems and pot on pro-

gramming as such. The computing community has
an almost merbid fixation on program notation,
it is subdivided in as many subcultures as we
hava more or lese accepted pragramming lan-
guages, subcultures, none of which eclesrly dis=-
tinguishes betweer genuine probiems and problems
anly generated by the programming language it
has adopted (soﬁtimss almest as a faith). For
this morhid fixatien I cen only offer one ex-
planation: we fully remlize that in our work,
more then perheps anywhere slae, appropriate
notational convantions sre crucisl, but also:

we guffer more than anyone else from tha genarsl
misunderstanding of their proper role.

MY HOPES OF COMPUTING SCIENCE (EWD709)

The problem is, of course, quite general:
eech experienced mathematician knows that
schievementa depend criticelly on the aveilebil-
ity of suitsble notations. Naively one would
tharefore expect that the design of suitable no-
tations would bs & central topic of mathematical
methodology., Amazingly enough, the traditional
mathematical world hardly addresses the topic.
The clumsy notational conventions adhered to in
many mathematical publicstions leave room for
only vne conclusion: mathematicians ars not
aven tsught how to select s suitable notation
from the esteblished ones, let alene that they
are taught how to design a new one when needed.

This amazing @ilence af the mathematicians
on what is at the heart of their trade suggests
that it is a vary tough job to say something
mensible about it. (Dtherwize they would have
dane it.} And I can explain it only by the fact
thet the traditional mathematician has always
the ascape of netural language with which he cap
glue his formulee together.

Hare, the computing scientist im in a
uniqus poeition, for a program text is, by defi-
nitien, for ane hundred percent a formal text.
As 8 result we just csnnot afford mot to under-
stand why = notsticnal convention is appropriaste
or not. Such is our predicement.

Nuenen, April 1979.

	EWD709:

