EWD735 - O
EWD735.html

A mild variant of Combinatory Logic.

The follewing is written in reaction to, the description of Combinatory
Logic as given in [1] by D.A.Turner. With plus standing for the prefix

adding operator, Turner defines the successor function suc by

def suc x = plus 1 x .

To the right of the equality sign, juxtaposition is assumed to be as-

saciative to the left; wmore fully bracketed we would have had

def suc x = (Elus 1) x .

Because at both sides of the equality sign, the variable x occurs only

as the very last atom, we can abstract x from both sides by omission, yielding

def suc = plus 1 .

This wouldn't have been possible if suc had been defined by

def suc x = (glus x) 1

because here the right-hand side is ngt an expression in which x --i.e. the

variable to be abstracted from-- occurs only as the very last atom.

Combinatory logic is a discipline for rewriting, if necessary, such
right-hand sides in such a way that x --or, in general: the variable to be
abstracted from-- only occurs as the last atom of the expression.

Given def f x = E

we derive a G, such that
Gx =E (Law of Abstraction)

from which "by omission"

then follows.

Turner denotes G by [xJE or by ([x]E) --to be pranounced as "abstract
%x from E"-- and describes (fcllowing Eurry) abstraction as a textual operation.
I almost quote from [1] -~remember that juxtaposition associates to the left,

at least at both sides of the egquality sign--

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD07xx/EWD735.html

EWD735 - 1

"We introduce three combinators S5 , K, and 1 [It is customary to print

these constants in bold face, EWD] , defined by the eguations

5 fgx=fx(gx) | (s)
ny:y (K)
I x = x (1)

and define abstractiop as follows
(xJ(e1 €2) =5 ({x]E1) ([x]e2)
[x]x I
[x]y

where y is a constant or a variable other than x . That the abstraction thus

i

Ky

defined oheys the Law of Abstraction given above can be proved by an inductian
on the size of the combination t -- we leave this as an exercise for the

interested reader."

After having pointed out that this abstraction process leads to very
long-winded formulae, Turner introduces for brevity's sake two extra combinators

B and C , defined by

£ (g x) (B)

fx g ; (c)

Bfag
Cfyg

=
Il

b4
Il

please remember the left-associative juxtaposition: we could have written

((Cf)g)x=1(frx)g.

So much for Turner's description of combinatory logic. His notaetional
conventions have the (putential) technical advantage that each formula can be
represented by a binary tree with labels —--combinators or identifiers-- in

its leaves.

I found the fact that during the abstraction process combinators and
identifiers (for uariables) are treated on the same footing more cenfusing
than illuminating. As it stands, the abstraction process also defines how to
abstract a combinator from an expression; perhaps somewhat rashly I regard

this, however, as a rather meaningless facility.

EWD735 - 2

Note. MNot only some abstractions, but alse some applications should be regarded

as meaningless. I owe to [.5.5cholten the following very nasty example. From

def funny x = x x

we derive according to the rules
x x =511 x

hence
def funny = 5 I 1 .

How well-deserved the name "funny" is is demonstrated by applying it to itself

and reducing:

funny funny =5 I I (5 I I) =
1(s11)(1(s11)) =
SII(s1 I) = funny funny .

The expressian (funny funny) is endlessly reducible! (End of Note.)

I was also disturbed by the extreme asymmetry introduced by the combina=
tion of a) the placing of the combinators and b) the association to the left.

This is particularly noticeable in the fully bracketed form of rule (S):
((s £) g) x = {f x)} (g x) .

To the right we have two expressions, both containing the variable x . The
combinator S , though pertaining in a way to both, is placed as a prefix to
the left-hand one. My gut feeling --which of course may err-— tells me that

this is ugly.

Note. It could be argued that application is not only asymmetric --in general
"a b £ b a"— but that the two compunents are very different, being "functian"
and "argument" respectively. But two remarks are in order.

Firstly, the distinction between "function" and "argument" is not as
clear-cut as is often thought. With 2z standing for a complex number and
re(z) and im(z) standing for its real and imaginary parts respectively, we
could regard re and im as real functions defined on a complex domain. With
z as a record with two fields we would write z.re and z.im respectively,

i.e. a complex value can be regarded as a real function on the daomain {re, im}.

EWD735 - 3

Secondly, it is exactly combinatory logic that allows expressians for
a and b , such that "a b" and "b a" , though different, are extremely

meaningful. (See helow.) (End of Note.)

A third complaint only emerged when exercising it. While abstracting
and applying I found myself all the time adding and removing bracket pairs.
This is not to be wondered at: when we look at the S-rule in its fully
bracketed form, it is not clear at all, how the bracket pairs to the right

and to the left correspond with each other.

2o I set myself the goal of finding an equivalent notation to which the
above objections would not apply. Most of the exploratory work was done to-
gether with C.5.Scholten; the synthesis to be described below emerged on 8
April 1980 in a session of the Tuesday Afternoon Club, which screened the

manuscript for what follows a week later.

¥* *
*

In the following there is no such thing as association from the left,
and I shall introduce no redundant or optional bracket pairs. My starting

point is the set of fully bracketed expressions, satisfying the syntax

< exp > :1:= < identifier 3-1 (< Bxp > < exp >) .

I shall not introduce the need to abstract a variable from an expression
in which that variable does not occur. The formal definition for occurrence
is the following obvious one: with x and y standing for identifiers and

E, E', and E2 standing for expression, we define

X inE=4if E =y = x = vy
E = (E1 E2) = (x in E1) oz (x in E2)

| == |

fi o

We shall now define how to abstract an identifier x from an expression
E , provided x in E , We shall do so by defining abstraction from a more
general class than just expressions, viz. "terms". While expressions are built
from parentheses and identifiers only, terms may alse contain so-called com-
binstors; a term may also be empty. In the following coms stands for a

possibly empty sequence of combinators, and coms+ for a non-empty seguence

EWD735 - 4

of combinators. The syntax for terms is (see, however, correction on next page)
<< term > ::= < empty > | < exp >~I (< term > coms+ < term >) .

Note that each bracket pair always surrounds two terms, separated by a possibly
empty sequence of combinators, such that neither of the terms is empty or the
combinator sequence is non-empty. I shall not introduce the need to abstract
a variable from a term in which that variable does not occur; with furthermore

T, T™ , and T2 standing for terme, we define

¥ in T = if T = empty — false
JT=E-~xinE
[7= (7 coms+ T2) = (x in T1) oz {x in T2)
fi .
Provided x in T , "abstract x from T " --as usual denoted by "] —=
is defined by
[xJT=if xan T~ ' 0.
AT T = x - empty 1.
0 7= (T coms T2) - °.
if x in T — 3.
if x in T2 = ([x]T1 5 coms [x]T2) 4.
u non x in T2 - ([x]T1 C coms T2) 5.
fi 6.
[mon x in Tt = {x in 72} 7.
ifFT=(T1 x} = T1 8.
J 74 (T1 x) = (Tt B coms [x]T2) 9,
£i
fi
fi
fi .

Notes. The guard in line 8 is only true if coms is the empty seguence of
combinators and T2 = x . This line represents the only case in which an
original bracket pair disappears. No new bracket pairs are introduced; hence,
the resulting bracket pairs are a subset of the original ones. Line 8 describes

"abstraction by omission".

EWD735 - 5

Because in line 2 cowms = < empty > implies that neither T1 nor 712
is empty, line 4 represents the only possibility of generating a bracket pair
containing a single atom: (s) . Therefore, in line 8 T1 is not empty. {End

of NDtes.)

A reduction rule is applicable whenever we encounter a term of the form

((T1 coms+ T2) h) ;
in view of the rule of the absence of redundant parentheses this implies that
h is not the empty term. The nature of the reduction is determined by the

leading combinator of comst+

([TT h] coms [TZ h)
([T1 h] coms T2)
(T1 coms [T2 h])

((T1 S coms T2) h)
({T1 C coms T2) h)
({T1 B coms T2) h)

1l

where [T h] is short for

[Th]=if T=<empty >~h [T £ <empty > (T h) fi .
Like Turner I leave the verification that

[[x]T x] =T (Law of Abstraction)

as an exercise for the interested reader.

Note. We have already observed that in a term derived by abstraction from an
expression and of the form {T1 5 T2) both T! and T2 may be empty. If
it is of the form (T1 B T2), T1 will not be empty; if it is of the form
(T1 C TZ), T2 will not be empty. As a result, reduction will never lead

to a redundant bracket pair. (End of Nute.)

* *
*

Correction. The syntax for < term > as given previously is too restrictive:

according te it the above ((T? coms+ T2) h) is not 8 term! The syntax
< term > ::1= < empty >-| << exp >‘I (< term > coms < term >)

is too broad; it is acceptable provided we rule out from the last alternative
the forms (), (< term >-E), and (B << term >-) , or state the non-occurrence

of such terms as a theorem. See previous note,. (End of Eurrection.)

NB. See Appendix on page EWD735 - 8, etc.!!it!

EWD735 - 6

Of course the new notation doesn't rule out anomalies like funny.

We would have

def funny = (8) .

According to the new rules we find in a single reduction step ——the intermediate

stage with the square brackets has only been given for the sake of completeness--

((s)(s)) = ([G)](s)] = ({s)(s)) .

As another example we consider the function twice , given by

((twice f) x) = (f (f x)) , hence
(twice f) = (f B f} , hence
twice - (SB)

and similarly the functien thrice , given by

((thrice f) x) = (f (f (f x))) , hence
(thrice f) = (f B (f B f)) , hence
thrice = (58 (sB))

Now we consider and reduce as Tar as possible

((sB (5B)) twice)
(twice B (twice B twice))

((sB) B ((sB) B (5B)))

(thrice twice)

H

Hence

I

(((sm) B ((sB) B (sB))) f)
((sB) ((sB) (r B £)))
({sB) ((r B f) B (f B £)))

({refr)B(sBF))BrBFf)B(FBTF))) .

Hence (({thrice twice) f) x) = (F (f (s (r (s (F (r (F)DDDN))) dle. fB(X)

--where I placed the brackets in the traditional fashion!--

((thrice twice) f)

Il

As a final example, consider £ = ((* ((+x) y)) y)

I then derive without further intermediate results

[xJe = ((*B (+Cy)) Cy)
[yl[x]JE = ((* BB (+ BEL)) sC)

In Turmer's style we would have had E = * (+ x y) Voo

EWD735 - 7

In that case I had to derive
[xJE =c [x](* (+ x y)) v
C (B *(c [x](+x) y))y

C(B*(C+y))y .

I

I

i

(Actually I had one intermediate step more.) Skipping the intermediate

steps T found

[v]lx]e

s{(BcB(B* (C+}))I , or fully bracketed ——almost fully, that is--

(s {((((8c) B) (%) (c+))1

* *
*

The difference between the two techniques is clearly that I propose to
attach strings of combinators to internal nodes of the parse tree; the other
convention expands the binary tree and stores the information of the strings
of combipators in the leaves thus created. 1 haven't learned ye£, how to
translate trees of the one type into trees of the other type. I cannot es-
cape the impressien that Curry's conventions for "tree expansion” are in some

sense more arbitrary than the cenventions I have explored here.

Another moral of the story is that "Currying" as introduced by Turner
is from a logical point of view no more thén another red herring. Why re-
place "x + y" first by "plug x y", when we can parse these formulae as
"“{x +) y" and "(2;55 x) y" ? The only justification is that [x](gigg x) =
plus is shorter than [x](x +) = (C I} + —-according to Curry/Turner—- or
(E +) ~~according to the conventions explored here-- : in short, no more than
a minor optimization if we assume that x is more frequently abstracted from

(x +) than + ,

I have the feeling that the above explorations should be continued.
NB. Appendix on the next pages!!!! (End of NB,)
Plataanstraat 5 23 April 1980

5671 AL NUENEN prof.dr.Edsger W.Dijkstra

The Netherlands Burroughs Research Fellow

EWD735 - 8
Appendix. (Written after the above had been read together with C.5.Scholten.)
A first remark is that we can simplify the abstraction process as

described on page EWDY35 - 4 by replacing the alternative construct on lines

8, 9, and 10 simply by (T1 B coms [x]TZ) . Cleaning things up we get

[x]T = if x in T - .0
if T = x - empty A
ﬂ T = (T1 coms T2) -

in T2 = {[x]T1 5 cams [x]T2)
in T2 = ([x]T1 € coms T2)
nan x in T{ and x in T2 - (Tt B coms [x]T2)

if x in T1 and

x

=
3
0
3
*

H x in T1 &n
I

From a theoretical point of view, this has two advantages. Firstly, the
bracket pairs in the resulting term are now the same bracket pairs that
occurred in the original term. Secondly, "abstraction by omission” has now
been confined to line 1 , and in (T1 coms T2) the constituent terms T1
and T2 are treated on equal footing., Linme 8 in the original version is
no more than saving symbols at the price of symmetry, and that is at this

level of discussion a doubtful procedure.

A more important remark is that my correction on page EWD735 ~ 5 was a
short-sighted patch. We should have defined the syntax for terms independently

of that for expression, viz,
< term > 1:= < empty > | < identifier >-[(< term > coms << term >-) .

This syntax does not rule out redundant bracket pairs., When we now define
"T is bealthy" to mean:

T is empty or

T is an identifier or

T is of the form (T1 coms TE) such that

o

(71 # empty or comg contains en S or a C) an

jul

(T2 # empty or coms contains an S or a B) an

T1 and T2 are both healthy

we canh observe to start with that each expression is a healthy term. Further-

EWD735 - 9

mare no healthy term contains a redundant bracket pair --either of the form

"()" or of the form "((...))"—= .

Furthermore --both in the original form of abstraction and in the
cleaned up ane-~-~ a healthy T implies {when defined) a healthy [x]T .
Furthermore , for healthy T and healthy, but non-empty h , [T h] as
defined on page EWDY3%5 - 5 is healthy. 1In short, neither abstraction nor

reduction ever introduces an unhealthy term!

Salvo errore et omissione, the above does the job. By the time that
we have discovered the significance --if any-- of our exercise, this text
has to be rewritten anyhow; hence I think that this rough "working document™

has reached the stage to be concluded. Besides that, I am tired.

* ¥*
*

At this stage it is very hard to formulate my acknowledgments. I am
indebted to D.A.Turner for his article, to Hamilton Richards for having drawn
my attention to it; I am greatly indebted to C.S5.Scholten for joining me in
my effort to understand combinatory logic in my way: his assistance in all
stages of the development has been invaluable; I am indebted to the members
of the Tuesday Afternoon Club for their help and criticism., The initiative
and the errors are mine.

(End of Appendix.)

[1] Turner, D.A., "A New Implementation Technique for Applicative Languages."

Software-~-Practice and Experience, Vol.9, 31-49 (1979).

Plataanstraat 5 6 May 1980
5671 AL NUENEN pref.dr.Edsger W.Dijkstra

The Netherlands Burroughs Research Fellow

