EWDB8&4a - O

The Distributed Snapshot of K.M.Chandy and L. Lamport

We consider a distributed system of the form of a strongly connected,
finite, directed graph, of which each vertex is @ machine and each edge a
uni-directional first-in-first-out buffer of sufficient capacity. (Strongly

cannected means that there is a directed path from any vertex to any vertex. )

A distributed caomputation consists of a succession of so-called "atomic
actions"; each atomic action is performed by one of the machines: it changes
the state of that machine, accepts at most one message per input buffer of that
machine, and sends at most one message per output buffer of that machirne. The
buffers have no clairvoyance, i.e. a messege can only be accepted after it

has been sent.

For a message-accepting action to take place, the messages in question
must have arrived; arrival of messages, however, only enables an atomic action
to take place and never forces it to take place. E£ach message in a buffer will
eventually be sccepted by the machine to which this buffer leads, (The friendly
daemon that resolves each machine's nondeterminacy so as to ensure the implied

fairness is not considered part of the system.)

Between any two successive atomic actions the state of the distributed
camputation is determined by (i) the state of each machine, and (ii) the

string of messages contained in each buffer.

A so-called "stable predicate" is such that, if it holds in some state,
it will hold in all passihble later states. If it holds, we say that "stability"
has been reached. The purpose of the distributed snapshot algarithm of K.M,
Chandy and L.Lamport is tp collect such state informaticn that, on account of

it, stabilitiy can be detected.

The distributed snapshot algorithm is superposed upon the distributed

algorithm such that, while the distributed algorithm evolves from state SO



EWDBed4a - 1

to state 51, it collects the description of a so-called "snapshot state" 5SS
with the properties that --though there need mot have been a single moment at
which it occurred-- 555 is a state that is possible after SO and 51 is
a state that is possihle after SS5 . Hence, if stability has been reached
in S0, 5SS satisfies the stable predicate; conversely, if 5535 satisfies

the stable predicate, stability has been reached in 51 .

In our first description of the snapshot algorithm each machine, each
atomic action, and each message is either white or red. Each atomic action
gets the colour of the machine that performs it, each message gets the colour
of the action that sends it. In state SO , all machines and all messages
are white. As part of the execution of the snapshot algorithm each machine
turns from white to red once, i.e. each machine's individual history is a
sequence of white actions, followed by a sequence of red actions. So, even-
tually, all machines and all actions are red. From the onwards, no white
messages are sent; since all white messages in the buffers will be accepted
in due time, eventually all messages in the buffers are red as well. State

51 is a state in which all machines and all messages are red,

For the time being by magic --about which more later-— , the moments at
which machines turn red are chosen in such a way that no red message is accepted
in a white action, We note at this stage that such a choice of moments is
possible: if, for instance, all machines turned red simultanecusly, each
machine would be red before the first red message entered the system and,

hence, no red message would be accepted by a white machine.

The snapshot state S55 consists af
(i) for each machine its state at the moment of its transition from white
to red, and
(ii) for each buffer the string of white messages accepted from it in red

actions,

Uur purpose is to show the existence af an equivalent computation —-

i.e. equivalent with respect to the distributed computation and with respect



EwWD864a -~ 2

to the snapshot algorithm-- with its snapshot state as one of its intermediate
states, i.e. with S50 as initial state, with 535 as intermediate state, and
with 51 as final state. From thet existence follows what had to be shown,
viz, that 955 is a possible state after S0 and that 51 4is a possible
state after 555 .

The equivaelent alternative cansists of all the white actions in their
original order, followed by all the red actions in their originmal order. To
show its equivalence to the original distributed computation we observe that
two successive atomic actions from different machines commute unless the first
one sends a message that is accepted hy the second one. From this it follows
that a red action and a subsequent white one commute: from their colours we
firstly deduce that such two actions are performed by different machines, and
secondly deduce that, messages produced by the first one being red, the first
one does not send a message accepted by the second. By interchanging them
we derive a computation that with respect to the distiributed algorithm is
equivalent to the one before the interchange; colours of actions and messages
having been left as they were, the property that no red message is accepted
in a white action still holds and the snapshot algeorithm, being defined in

terms of colours, yields the same snapshot state.

Such an interchange, however, reduces the number of "inversions™ by 1
(an inversion being a pair of differently coloured actions such that the red
one tekes place before the white one). Hence a finite number of such inter-~
changes yields the equivalent alternative in which all white actions precede
all the red ones. And here all machines can turn red between the last white
and the first red action; the system state at that moment is evidently the

state yielded by the snapshot algorithm.

* ¥

We now turn our attention to two details of implementation. Firstly,
we have to implement the "magic" that sees to it that each machine turns red
at an appropriate mament. Secondly, we have to see to it that each machine

can record the proper string of messages for each of its input buffers.



EWDBtds - 3

Let us begin with the last requirement. A red machine has to record for
each of its input buffers the string of accepted messages up to and including
the last white message. We are not allowed to translate that into "up to and
excluding the first red message" sinece that red message need not exist, There-
fore: instead of colouring the messages, we extend the repertoire of messages
with a special one, caelled the "marker", with the convention that on each
buffer the messages —-if any-- that precede the marker are deemed white and
the messages --if any-- that follow the marker are deemed red; like the
other messages, the markers participate in the first-in-first-out regime of
the buffers, and, upon turning red, each machine sends over each of its output

buffers a marker before sending anything else over that output buffer.

The markers can also be used to implement the magic. Since each red
message is preceded by a marker, machines turn red in time if they do so
upon accepting their first marker while still white. The snapshot algorithm
is initiated by (at least) one machine turning red (and, accordingly, sending
a marker over each of its output buffers). Since each machine is reachable
via a path from the initiator(s), and each message sent is eventually accepted,
all machines will turn red in due time, Since each machine turns red once,
each buffer carries precisely one marker. Hence, in each machine it is known
when collection of the local snapshot information has been completed, viz.
when over each of its input buffers a marker has been accepted. The local
snapshot information can then be sent to a central point --probably the only
initiator-- where it can be subjected to the test whether the snapshot state

satisfies the stable predicate,

The above algorithm is a creation of K.Mani Chandy of the University of

Texas (Austin) and Leslie tamport of SRI International (Menlo Park); the former

of the two told it to me on the 1st of July 1983, Being otherwise engaged
during July and August, I returned to it in September. Several sessions of
the Tuesday Afternoon Club were devoied to it; first we reconstructed the

algorithm, and then we experimented with verious ways of reasoning about it.

The contributions of C.5.Scholten in the laier stages of those experiments are



EwDBE4a - 4

gratefully acknowledged. No one else, however, can be blamed for any short-

coming of the above text, which was written in S53o Paulo, BHrasil,

It can be argued that we have been overspecific by viewing the original
distributed algorithm as a linear sequence of atomic actions in time: no one
cares about the relative order of actions that might take place concurrently.
Yet I believe the linearization respeonsible for the fact that we could carry
out the argument without the introduction of subscripts or any other nomen-
clature to distinguish between the machines. The linearization plays a role
very similar to the choice of an otherwise arhitrary conrdinate system in

analytical geometry.
In comparison to earlier distributed algorithms for the detectien of
termination, the snepshot algorithm described above is very beautiful in the

sengse that 1t is applicable independently of the specific stable predicate.

Additional Remark. 1In the above we have shown that if no red message is ac-

cepted in a white action, the individual speeds can be adjusted so as to let
all colour transitions of the machines take place simultaneously. The condi-
tion is sharp: if a red message is accepted in a white action, its serder

turns red intrinsically prior to its acceptor. (End of Additional Remark.)

Plataanstraat 5 : 7 november 1983
5671 AL NUENEN prof.dr.Edsger W.Dijkstra

The Netherlands Burroughs Research Fellow



