
1

A Formal Object-Oriented Analysis for Software Reliability:
Design for Verification

Natasha Sharygina
Robotics Research Group

The Univ. of Texas at Austin
Austin, TX, 78712

natali@mail.utexas.edu

James C. Browne
Computer Science Department
The Univ. Of Texas at Austin

Austin, TX, 78712
browne@cs.utexas.edu

Robert P. Kurshan
Bell Laboratories

600 Mountain Ave.
Murray Hill, NJ, 07974
k@research.bell-labs.com

Abstract. This paper and a companion paper [32] together define, present and apply a
methodology for integration of formal verification by automata-based model-checking into a
commercially supported object-oriented software development process. This paper defines
and illustrates a set of design rules for OOA models with executable semantics, which lead
to automata models with tractable state spaces. The design rules yield OOA models with
functionally structured designs similar to those of hardware systems, which have enabled
successful application of model-checking to verification of hardware systems. The design
rules are incorporated into an extended object-oriented development process for software
systems. The methodology, including the design rules was applied to a NASA robot control
software. The complex robot control system was decomposed into several functional
subsystems. Evaluation by model checking of one control intensive subsystem was
performed. Results including identification of significant errors in the original robotic control
system are demonstrated.

1. Introduction

Problem Statement. Software systems used for control of modern devices are typically both
complex and concurrent. Object-oriented development methods are commonly employed to reduce the
complexity of these software systems. Object-oriented development systems still largely depend on
conventional testing to validate correctness of system behaviors. But validation of system behaviors by
conventional testing is simply not adequate to attain the needed reliability since complete testing of
systems of any degree of complexity is impossible.

Formal verification of system behavior through model checking [2], on the other hand, formally
verifies that a given system satisfies a desired behavioral property through exhaustive search of ALL
states reachable by the system. Model checking has been widely and successfully applied to verification
of the properties of hardware systems. It is natural to consider application of model checking to formal
verification of software systems. Application of model checking to software systems, has, however,
been much less successful. (Section 5 on Related Work gives an overview of some of the past and
current research on the application of model checking to software systems.) To apply model checking
to software systems the software systems must be translated from programming or specification
languages to representations to which model checking can be applied. The resulting representation for
model checking must have a tractable state space if model checking is to be successful. Translation of
software systems designed by conventional development processes and even by object-oriented
development processes to representations to which model checking can be applied have generally
resulted in very large interconnected state spaces.

A principal result reported in this paper is a set of design rules (Section 3) for development of
object-oriented software systems which when translated to representations to which model checking
can be applied, yield manageable state spaces. These design rules are the critical initial step in the
methodology for integration of formal verification by model checking into object-oriented development
processes defined in a companion paper [32].

Approach. The validity and usefulness of design rules and the effectiveness of the integration of
formal verification into object-oriented software development can be evaluated only in the context of
their application.

This paper reports a case study in re-engineering the control subsystem for a robotics software
system to attain high reliability. This case study motivates and demonstrates the design rules for

2

“design for verifiability” and the application of formal verification by model testing to a substantial
software system.

The robot control subsystem was originally implemented by a conventional development process
in a procedural object-oriented programming language (C++) generally following the Booch
methodology. A four-step process to obtain a reliable system was planned.
1. The control subsystem was to be re-implemented as an executable specification in the form of an

OOA model (in the S-M methodology) which was to be designed for testability.
2. This executable specification in the form of an OOA model was to be validated as thoroughly as

possible by testing.
3. Model checking was then to be applied to OOA model which had been validated by testing to

insure predictable behavior for all possible states of the system.
4. The control software was then to be generated by compilation of the validated and verified OOA

model.
 Commercially supported software systems are available for construction, validation and

compilation of the OOA model (Steps 1., 2. and 4.). Model checking was to be accomplished by
translation to S/R using the translator reported in [32] and application of the COSPAN [11] model
checker.

 The control subsystem was redesigned as an executable specification in the form of a Shlaer-
Mellor (S-M) [30] (or xUML) OOA model. The OOA model consists of an object (class) model in
which classes and their relationships are specified. A class is specified as a set of attributes, which are
confined to simple types and a behavior model. The behavior model is specified as a state machine,
one state machine for each active class. The state machines are simple Moore state machines. The
actions associated with each state are specified in an action language. More detailed information on
the xUML OOA models can be found in Section 2, in the companion paper [32] and in [30]. This
executable specification can be tested and validated by execution of the OOA model. Testing is greatly
simplified since the attributes are simple types and the behavior is state machine specified. Such an
OOA model can be viewed as being designed for testability. This executable specification can also be
translated by a code generation system to C++ code. A commercially supported software system,
SES/Objectbench [29] was used in this step.
 OOA models with executable semantics are representations of software system, which should be
amenable to model-based verification techniques. An OOA model represents the program at a higher
level of abstraction than a conventional programming language. The OOA model partitions the
system into well-defined classes. But, attempts to apply model checking to these apparently highly
modular OOA models designed for testability led to intractably large state spaces for the robot control
system model. The cause for this problem is suggested by examining hardware systems. In hardware,
the “calling” module and “called” module are separated spatially and communicate through a clean
interface and a specified protocol. This “spatial modularity” supports divide-and-conquer analytical
techniques, as each module can be analyzed in isolation. This is essential for model-checking. The
design rules of OOA methods do not enforce the logical equivalent of “spatial modularity” in software.
For example, accessor and mutator methods cause coupling of the states of instances of different
classes. The logical equivalent of “spatial modularity” for software is the strong form of name space
modularity where the name spaces modules are rigorously disjoint and all interactions among modules
are across specified interfaces and follow specified protocols. “Spatial modularity” (strong name
space modularity) is consistent with the intent of the OOA approaches of conceptual encapsulation but
it is not explicitly considered in most OO design methods. We introduce a set of design rules that
constrain the syntactic structure of OOA models to conform to “spatial modularity.” The systems
become spatially modular (in the hardware sense when system elements can be analyzed in isolation)
and support existing verification techniques developed for hardware systems.

 We applied the design for verifiability rules to a further redesign of the robot controller system.
The results are encouraging – we were able to apply the partitioned development, model checking,
assume/guarantee reasoning, slicing, abstraction techniques[9],[10],[11] developed for hardware
systems to our software system. This powerful combination of techniques helped us to break the
computational complexity barrier to the application of verification by model checking to OOA models
of software systems.

 The major contribution of this work in addition to the development of a set of design rules for
construction of OOA models to which verification by model checking can be practically applied is
demonstration of the advantages of using the integrated OOA and model-checking methodology for

3

development of software systems over conventional development methods. Secondary contributions of
the work presented here include (i) demonstration of the fact that verification can be used not only as a
post facto check on the quality of design specifications but also to influence design decisions and (ii)
discovery of serious logic errors in the test-case software.

 Summary of Content. Section 2 describes the OOA models and the model checkers used in this
research and describes how they are integrated. Section 3 gives the design rules for development of
verifiable OOA models. Section 4 describes the case study for the robot control system. Section 5
discusses related work and Section 6 gives conclusions and depicts the directions of the future work.

 2. Integration of Model Checking with OO Development

 This paper defines, describes and applies the OOA design step in a methodology which integrates
model checking into object-oriented software development. The other steps in this methodology are
defined and described in a companion paper [32]. Model checking is applied to Shlaer-Mellor OOA
models [29] which have executable semantics specified as state/event machines rather than as
programs in conventional programming languages. An automata-based approach to model checking
is used. The OOA models are automatically translated to automaton model. Predicates over the
behavior of the OOA models are mapped to predicates over the automaton models and evaluated by
model checker.
 Use of OOA models with executable semantics is moving into the mainstream of OO software
development. The Object Management Group (OMG) [25] has adopted a standard action language
for the Unified Modeling Language (UML) [27]. This action language and S-M OOA semantics
represented in UML notation define an executable subset of UML (xUML). The OOA representation
used in this research is the S-M OOA as implemented by the capture and validation environment
SES/Objectbench (OB) [29]. We are, on the recommendation of Steve Mellor, [private
communication] referring to the OOA model we use as xUML.
 COSPAN [11], an automated computer-aided verification system, has been chosen for model
checking. The semantic model of COSPAN is founded on ω-automata (automata over infinite words).
The input language for COSPAN, is S/R, a declarative (non-procedural), data-flow automata-
language. The formalization algorithms of the xUML notation are implemented in the Objectbench-
SR translator [32]. SES/Objectbench CodeGeneis system [28] is used to generate a turnkey translation
of the OOA models built in Objectbench into executable code.

 2.1 xUML Notation

 We utilize a subset of xUML notation suitable for modeling objects, subsystems, their static
structure, and their dynamic behavior. Static structure diagrams capture conceptual entities as
classes with semantics defined by attributes. Object information diagrams (OID) describe the classes
and relationships that hold between the classes. They graphically represent a design architecture for
an application domain and give an abstract description of tasks performed by cooperating objects.
Subsystem relationship diagrams situate the application domain in relation to its scope, limits,
relationships with other domains and main actors involved (scenarios). Its objective is to provide a
general overview of the entire domain and situate it in the organization context. The collaboration
diagram is used for graphical representation of the signals sent from one class to another. This
representation provides a summary of asynchronous communication between state/event models in
the system. The state transition diagram graphically represents a state/event model of an object.

 The state/event model is a set of Moore state machines that consists of a fixed number of
concurrently executing finite state machines. Each state of each machine is defined to have an action
and a state transition table. The execution of an action occurs after receiving the signal or event. A
transition table is a list of signals, and “the next” states that are their result. Signals have an arbitrary
identifier, a target class, and associated data elements.
 Two types of concurrent model execution are supported by xUML: simultaneous and interleaved.
We utilize only the asynchronous interleaved execution model in the OOA models of this research.

4

 2.2 COSPAN, an Automaton-based Model Checking Tool

 COSPAN [11] allows symbolic analysis of the design model for user-defined behavioral traits.
Each such test of task performance constitutes a mathematical proof (or disproof), derived through the
symbolic analysis (not through execution or simulation). The semantic model of COSPAN is founded
on ω-automata [18]. The system to be verified is specified as an ω-automaton P, the task the system is
intended to perform is specified as an ω-automaton T, and verification consists of the automata
language containment test L(P) ⊂ L(T). P is typically given as the synchronous parallel composition
of component processes, specified as ω-automata. Asynchronous composition is modeled through
nondeterministic delay in the components.
 Language containment can be checked in COSPAN using either a symbolic (BDD-based)
algorithm or an explicit state-enumeration algorithm.
 Systems can be specified in COSPAN using the S/R language, which supports nondeterministic,
conditional (if-then-else) variable assignments; variables of type bounded integer, enumerated,
boolean, and pointer; arrays and records; and integer and bit-vector arithmetic. Modular hierarchy,
scoping, parallel and sequential execution, homomorphism declaration and general ω-automata
fairness are also available.

 2.3 xUML-to-S/R translation. The translation algorithms that map the asynchronous execution
of the xUML OOA models with synchronous parallel semantics of execution of automaton models are
reported in a companion paper [32]. The translator maps dynamic sets of classes instances to
bounded sets of class instances, maps variables with unbounded ranges to bounded ranges and maps
unbounded event queues to finite queues. Details are given in the companion paper.

3. Design for Verification

 An xUML OOA is a natural representation to which to apply model-based verification
techniques. The complexity level of the executable OOA models is far less than the procedural
language programs to which they are translated. In addition to the finite state representation provided
by the OOA techniques, the following features of the OOA methodology reduce the complexity of the
system at the design level:

• Abstraction of implementation details

 Executable OOA models enable validation and verification prior to implementation in procedural
languages. Objects (classes) at the OOA level are abstractions of entities in the implemented system.
Relationships between objects are represented as associations and not as pointers. OOA methods
offer constructs – signals in UML, for example – to express state transition without reference to the
internal states of objects. Separate specification of class models and behavior models separates
specification of data from control.

• Hierarchical system representation

 OOA methods provide means for construction of modular designs and support hierarchical
representation of the system. They allow software developers to decompose a system into sub-systems,
derive interfaces that summarize the behavior of each system, and then perform analysis, validation
and verification, using interfaces in place of the details of the sub-systems.

 3.1 “Temporal Modularity” Versus “Spatial Modularity”

 The design property which enables verification of hardware systems by model checking is
sometimes called “Spatial Modularity.” In hardware realized systems functionality is of necessity
partitioned into modules which are spatially disjoint. Interaction among these spatially disjoint
functional modules must take place across precisely defined interfaces and follow precisely defined
protocols. The spatial partitioning of hardware modules across well-defined static interfaces supports
the application of divide-and-conquer techniques, necessary to circumvent the generally infeasible

5

computation problem inherent in model-checking. Spatial modularity is also a important system
property for effective testing since strong partitioning makes testing much more effective. However,
one can at least partially test a system lacking in “spatial modularity” while verification by model-
checking is almost surely precluded for a poorly partitioned system.
 The logical equivalent of “spatial modularity” for software is the strong form of name space
modularity where the name spaces of all modules are disjoint and all interactions between functional
modules are across specified interfaces and follow specified protocols. “Spatial modularity” (strong
name space modularity) is consistent with the intent of the OOA approaches of conceptual
encapsulation but it is not explicitly considered in most OO design methods. We introduce a set of
design rules for OOA models that constrain the syntactic structure of OOA models to conform to
“spatial modularity.” The systems become spatially modular (in the hardware sense where system
elements can be analyzed in isolation) and support existing verification techniques developed for
hardware systems.

 “Spatial modularity” should not be confused with “temporal modularity” or “temporal locality.”
Temporal locality/modularity is realized when a system design results in the system executing in a
sequence of well-defined and bounded localities. Temporal modularity is intrinsic to software
systems. Temporal locality/modularity can and usually is realized by most procedural language
software systems. But temporal modularity does not imply “spacial modularity”. Although a block of
code may contain subroutines/functions/includes, and these indeed are "modules", they are "entered
and exited" in a temporal fashion that follows the flow defined by the program counter. There is no
clean interface between the "calling" program block, and a function it calls: the function may have
side effects all over the code (outside its boundaries). And although it may be that the function can be
analyzed in isolation, generally the block that calls a function cannot be analyzed without the
function. This limits the extent to which software can be broken up into pieces for analysis, and tends
to defeat the pursuit of divide-and-conquer methods.

 We developed a set of design rules and recommendations that describe the constraints of the
structural design. The rules require the given practice to be implemented without exception. The
recommendations are the practices that are to be followed unless other, more compelling, logical
design or structural design reasons dictate otherwise.

 These design rules for OOA models are similar to those given for development of truly object-
oriented programs in object-oriented procedural languages such as C++.

 3.2 Structural Design Rules

• Design rule 1: Access to attributes of one class by another class must be made through
 the event mechanism.

 The attributes of a class should be local to the class. Access to the values of a class instance should be
available only through the event mechanism. This precludes coupling of internal states of classes.

• Design rule 2: Attribute values which are shared by multiple classes should be defined in
 separate class and accessed only through the event mechanism.

 This design rule also avoids coupling of internal states of classes.

• Design rule 3: Logical entities declared within a component should be defined

 within that component

 For a component to be reusable and verifiable it must be reasonably self-contained. A component may
have dependencies on other components. But in order to avoid the situation when functionality of one
component can be changed by other components, however, any logical construct that a component
declares should be defined entirely within that component

� Design rule 4: Inheritance must be confined to extensions of supertypes. Modification of
 the behavior of supertypes (overriding of supertype methods) is prohibited.

6

 A semantically meaningful definition of subtyping, along the lines of Liskov’s [22]:

 “A type hierarchy is composed of subtypes and supertypes. The intuitive idea of a subtype
is one whose objects provide all the behavior of another type (the supertype) plus
something extra. What is wanted here is something like the following substitution
property: If for every object o1: S there is o2: T such that for all programs P defined in
terms of T, the behavior of P is unchanged when o1 is substituted for o2, then S is a
subtype of T”

Tools

Work products

Modeling

Static

Structure

Diagrams

Collaboration

Diagrams

State

Transition

Diagrams

Static model

Subsystem

Diagrams

Dynamic model

System

Requirements

ω automata

theories for

system

properties

S/R Design

Model

Desired

Properties

Specification

Design

Verification

Design

Analysis

OOA
Model

Automata

OOA model Formalization

And Translation

System

Source
Code

Code
Generation

Design
Rules

Design
Recommendations

Redesign

Manual process

Automated process

Design
Enforcement

Divide and
Conquer

Techniques

Simulator

Model
Checker

 Figure 1. The OOA-based model for the spatial development of software systems

 must be followed. This provides a means to infer results about subtype objects on the basis of
theorems proved about a supertype. Thus, once we have proved that S is a subtype of T, we do not
need to re-prove properties about programs P which rely on T, since by the intuitive definition these
can not be invalidated by instances of S.

• Recommendation: Package subsystems so as to minimize the linking to other subsystems

 A well-designed subsystem will usually contain a substantial proportion of components that do not
depend on any other subsystems. Subsystems are fundamentally open systems but for verification
must be closed with a definition of the environment in which they will execute. The naive
environment for properties stated in universal logics is the universal environment, which is capable of
invoking any sequence defined on the unit’s interface. A minimal number of links between
subsystems enables effective definition of the environment used to complete a subsystems definition
for verification.

7

 3.3 The OOA-based model for software development

 We defined an OOA-based model (Fig.1) for software development that reduces the complexity of
software systems at the design level. This model imposes the structural design rules on the software
system and supports the reuse of the existing model-checking techniques developed for hardware
verification. This model fulfills the need for a sound foundation in rigorous requirements modeling,
design analysis, formal verification, and automated code generation. It defines a systematic formal
OOA (FOOA) development process. It is a highly iterative software process that eliminates the
traditional distinction between software development and maintenance. Furthermore, we claim that
this iterative process serves as a development tool. A common conception is that verification is the
finale of the specification process – it either shows correctness or reveals problems to be fixed. In our
approach verification techniques interleave design and analysis. The complexity only gradually
increases as the specification evolves, and verification at early stages is more likely tractable. In
addition, analysis results can give fast feedback to designers to improve the cost-effectiveness of this
technique.

4. The robot controller software study1

 We examine a robotic software used for control of redundant robots (i.e. robots that have more

than six degrees of freedom). Redundant robots are
widely used for sophisticated tasks in uncertain and
dynamic environments in life-critical systems. An
essential feature for a redundant robot is that an infinite
number of robot’s joints displacements can lead to a
definite wrist (end-effector) position. Failure recovery is
one of the examples of redundancy resolution
applications: if one actuator fails, the controller locks
the faulty joint and the redundant joint continues
operating. The general task of the test-case software is to
move a robot arm along a specified path given physical
constraints (e.g. obstacles, joints angles and end-effector
position constraints). The specific task is to choose an
optimal arm configuration. This decision-making
problem is solved by applying performance criteria [17].
 The decision-making method is based on the local
explorations and the concept of a joint-level
perturbation. Perturbation at the joint level means
temporarily changing one or more of the joint angles
(joint angle – is the angle between two links forming
this joint) either clockwise or counterclockwise. This
project focuses on two different exploration strategies:
simple and factorial [17]. In the simple exploration we

displace one joint at a time and find how it effects the configuration of the robot arm (find all other
joint angles) for a given end-effector position. The other perturbation strategy is based on 2n factorial
search. A detail of a redundant robot executing the simple exploration strategy is shown in Figure 2,
with θ - being a joint angle, and δ - being a displacement.

 The original software, OSCAR [17], consisted of a set of robot control algorithms supported by
numerous robotic computational libraries, was developed using a conventional approach. To obtain a
reliable system we redesigned the control subsystem as an executable specification in the form of a
Shlaer-Mellor (or xUML) OOA model. An application domain perspective was used to facilitate the
development of families of software systems and to implement the interface with the existing robotic
computational libraries from within the OOA model. The subsequent sections present the results of
the robotic domain analysis and modeling, robotic domain architectural design, the OOA model
validation and verification results, and a target system development.

1 Refer to Appendix A for robotic terms

θ - δ

θ+δ

Initial Configuration
θ

Trial Configuration

x
y

z

Figure 2. A part of a redundant robot.
Note, there are infinite manipulator

configurations for a single end-effector
position. A “simple” exploration is

shown for one of the joints.

8

 4.1 Domain Analysis and Modeling

 The OOA model includes fifteen basic classes, including their variables and associations. This
executable model constitutes the formal representation of the robot controller system.
 Classes. In addition to tangible objects (Arm, Joint, End-Effector, PerformanceCriterion), incident
objects (Trial Configuration, SearchSpace, SimpleSearchSpace, FactorialSearchSpace),
specification objects (Fused Criterion), and role objects (Decision Tree, OSCAR_interface, Checker)
were derived [29].

consists of

defines position of

specifies

is a part of

R15

Computational
Subsystem

….

R1

R11

Follows to the
specified

R2

R5

R4

2 Kinematics

Inverse
Kinematics

1 OSCAR Library

R7

R6

Trajectory (TJ)
* TJ_ID
. position
. final_position
. EE_ID(R3)

TrajectoryPoint (TP)
*TP_ID
. TJ_ID (R4)
. point

R3

R9

R10

has

can have
different

can have a
number of

Is A

is a component of

requires

OSCAR Libraries
* OS_ID
. TC_ID (R10)
. status
* link-ID

R8

Forward
Kinematics

Arm (A)
* Arm_ID
. arm_status

is configured by

End-Effector (EF)
* EE_ID
. Current position
. Limit
. status
. end_position
. ee_reference

JointConfiguration (JC)
*JC_ID
. Joint_ID(R7)
. direction
. trial_angle
. type
. NoinSet
. TS_counter
. Status

Joint (J)
* Joint ID
. current_angle
. limit_Max
.. limit_Min
. EE_ID (R2)
. reference
. Arm_ID (R1)
 . DT_ID (R11)
. JointStatus

is interfaced with

TrialConfiguration (TC)
*TC_ID
. DT_ID(R8)
. configuration
. validSolutions
. SS_ID(R13)
. status
. LockConfiguraion
. TP_ID(R5)
. JC_ID(R6)

Is evaluated by
Decision Tree

Joint motion is
controlled by
Decision Tree

R13
Is a component
of Search Space

R14

Checker (Ch)
* Ch_ID
. counter
. recovery_status
. abort_var

is checked by

R16

Optimization Subsystem

R15

R14 =
R15+R16

3

Is A

R19

Performance
Criterion (PC)

* PC ID
. average value
. status
. FC_ID (R16)
. scale
. PC_name
.TS_ID (R15)

Kinetic energy
distortion Criterion

* PC ID (R19)
*Criteria name
.criterion value

System Compliance
Criterion

* PC ID (R19)
*Criteria name
.criterion value

Inertia Criterion
* PC ID (R19)
*Criteria name
.criterion value

Geometric Criterion
* PC ID (R19)
*Criteria name
.criterion value

Constraint Criterion
* PC ID (R19)
* Criteria name
. Error
. criterion value

R17

Performance
Monitoring

4 Decision
Making

DecisionTree (DT)
*DT_ID
. optimal_solution
. status R12

R13

R18

has

has

has

creates

Search
Space (SS)
* SS_ID
. SS_size
. DT ID (R12)

FactorialSearchSpace
(FSS)

* FSS_ID
. SS_ID (R17)
. condition

9

SimpleSearchSpace(SSS)
* SSS_ID
. SS_ID (R18)
. condition

9

Trial configuration is
characterized by

Fused Criterion (FC)
* FC ID
. PI
. TS_ID (R14)

Consists of a number of
trial configurations

Evaluates a trial configuration

R11
Controls motion of each joint

R8

Is used for
evaluation of a trial
configuration

 Figure 3a. OID for the Computational Subsystem
of the Multi-Criteria Optimal Control domain

 Figure 3b. OID for the Optimization Subsystem
 of the Multi-Criteria Optimal Control domain

 Attributes. The attributes of the JointConfiguration (JC) object are illustrated below. JC_ID is a key
attribute whose value uniquely distinguishes each instance of a JC object. Joint_ID is a referential
attribute, which represents formalization of the relationship R7 and is used to tie an instance of the
JC object to an instance of the Joint object (if we change the value of Joint_ID from 1 to 2 it means
that we are evaluating configuration of the second joint instead of the first one). Trial_angle, NoinSet
and TS_counter are descriptive attributes and they provide facts intrinsic to the JC object. For
example, trial_angle is used to keep the value of the joint angle that changes during exploration about
the base point. Status, type and direction attributes are so called naming attributes which provide
facts about the arbitrary labels carried by each instance of an object. The domain of the naming
attributes is specified by enumeration of all possible values that the attribute can take on. Status
represents status of the object instance, in other words the names of all states of the object’s state
machine. Attribute direction domain is {“+delta”, ”-delta”, “fact+delta”, ”fact-delta”}. Attribute Type
domain is {“simple”,”factorial”}.
 Associations. The executable model is defined using two types of the relationships: binary (those in
which objects of two different types participate) and higher-order supertype-subtype (those when

9

several objects have certain attributes in common which are placed in the supertype object). For
example, one-to-many binary Arm-Joint relationship states that a single instance of an Arm object
consists of many instances of a Joint object. An example of supertype-subtype relationships is a
PerformanceCriterion-ConstraintCriterion relationship. In this construct one real-world instance is
presented by the combination of an instance of the supertype and an instance of exactly one subtype.

 Robotic Decision-Support Domain Architecture. The application domain architecture was divided
into computational and optimization subsystems. These two principal functions can be thought of as
clusters, each representing a group of objects that are interconnected by many relationships. The input
for the optimization subsystem is one or more trial arm configurations from which the optimization
system will either select the best one or provide the computational system with suggestions on what
an optimal arm configuration should be.
 The computational subsystem (Fig. 3a) includes kinematics algorithms and interfaces to the
computational libraries of the OSCAR system. There are two methods for the computational system to
define a base point of the optimization search. The first method is to calculate an End_Effector (EE)
position given initial Joint (J) angles of all joints and, thus, find an initial arm configuration. The
second method depicts an EE position as a new base point from the Trajectory path specified by the
user.
 A collaboration diagram of the simplified Kinematics unit that we verified is represented in
Figure 7a. It displays the flow of signals of this functional unit in terms of a sequence of data or
control signals exchanged among the objects in the system. A transition is represented as an arrow
originating from a source object to a destination object.
 A robot arm consists of N joints and one end-effector. The end-effector is the last link of the
robot, used to accomplish a task. The end-effector may be holding a tool, or the end-effector itself
may be a tool. These physical entities are represented by the classes Arm, Joint, EndEffector in the
software design. For each joint we specify an angle (current_angle), representing a rotation of the
joint relative to its neighboring link. The end-effector position (Current_Position) is given as vector
of three coordinate positions and three orientation angles.
 The control algorithm starts with defining an initial end-effector position given the initial joint
angles. This is done by solving a forward kinematics problem [17]. The next step is to get a new end-
effector position from a predefined path. The system calculates the joint angles for this position,
providing the solution of the inverse kinematics problem [17] and configures the arm.
 At each of the steps described above, a number of physical constraints has to be satisfied. The
constraints include limits on the angles of joints. If a joint angle limit is not satisfied, a fault recovery
is performed. The faulty joint is locked within the limit value. Then, the value of the angle of another
joint is recalculated for the same end-effector position. If the end-effector position exceeds the limit,
the algorithm registers the undesired position, which serves as a flag to stop the execution. A Checker
class controls the joints that pass or fail the constraints check. If all the joints meet the constraints,
the Checker issues the command to move the end-effector to a new position. Otherwise it sends a
command to the Arm class indicating its invalid state.
 During the development of this software, one is mainly concerned with the satisfaction of the
reliability requirements. In the presented system the ultimate goal is to ensure that the end-effector is
moving only when the arm is indeed in a valid state.
 The optimization subsystem (Fig. 3b) implements the decision-making strategy by applying
decision-making techniques identifying a solution to the multi-criteria problem. It builds a
SearchSpace (SS), which generates sets of JointConfigurations (JC) around a base point supplied by
the computational subsystem. JC instances initiate creation of TrialConfiguration (TC) instances that
normalize a robot arm configuration for any perturbed joint. A DecisionTree (DT) selects the best TC
given a set of PerformanceCriteria (PC) and a number of physical constraints that are globally
defined by the user. The found solution serves as the next base point for another pattern of local
exploration. The search stops when no new solutions are found. The system returns control to the
computational subsystem which changes the position of the EE following the specified trajectory and
determines a new base point for the search.

10

 4.2 Compliance to the design rules

 During the construction of the robot control design we followed the design rules specified in
Section 3. The development of the robotic system, which structure is compliant with these rules,
required a process of refining and distilling the designs over several iterations.
 Rule 1: Target system requirements elicitation was performed using global data declaration. An API
has been implemented which enables a dialog with the robotic system engineer, presenting the user
with the optional features, available for selection for the target system.
 Rule 2: After the design system was completed and validated by simulation, a separate object that
contained all the global variables as its attributes was created and used during verification and code
generation.
 Rule 3: We enforced a rule that prohibited redefining shared variables outside of the scope of the

object where they were declared.
 Rule 4: The users of the developed
robotic framework are allowed to add
new elements to the developed
architecture. Specifically, new
performance criteria can be added to the
architecture. These additions are subtype
classes and, in order to satisfy the fourth
rule, it is required that they have a
semantic relationship with their
supertype classes. Other word,
inheritance is restricted to a purely

syntactic role: code reuse and sharing, and module importation.
 Recommendation (System decomposition): The robotic domain is represented as a collection of basic
robotics functional units, which provide an experimental framework for evaluation of the kinematics
and decision support algorithms. These functional components are depicted by dashed lines in Figure
4. Figure 5 specifies the generalization of these functional components. OSCAR Libraries (1) alone
can be used as an element base for the manual writing of robotics applications. OSCAR Libraries
combined with Kinematics (1+2) algorithms can lead to the automatic development of the robot
controllers. Controllers that have an ability to perform Performance Monitoring (1+2+3) can be
qualified as robotic intelligent controllers though an optimization problem would not be considered.
All four components (1+2+3+4) used together allow development of controllers, which can define
robot optimal configuration. As it can be seen in Figure 4 each functional unit contains a substantial
proportion of components that do not depend on other units.

 4.3 OOA Model Validation and Formal Verification

 The OOA model was validated by execution. Several serious error or defects in the original design
and in the original versions of the OOA model were identified and corrected. Space precludes us
from describing the validation process and its results. Details can be found in a Technical Report
[26]. The critical observation is that application of verification by model checking would have been
seriously compromised until these flaws were corrected.

 Formal verification

 Verification properties. We checked a collection of correctness requirements specifying the
coordinated behavior of the robot control processes defined in the simplified version of the
Kinematics unit (Fig. 7a). We focused on the intensive robot control algorithms and examined an
instance of the robot functionality when the robot arm was moving only in the horizontal, i.e. x
direction. We abstracted the Trajectory, Trajectory point and JointConfiguration classes, used for
storage of the predefined trajectory paths and the possible arm configurations, used in the redundancy
resolution algorithms, respectively. The requirements were encoded in a query language of COSPAN.
We expressed all the formulae in terms of state predicates. We demonstrate here the properties that

1

Kinematics 2

OSCAR Library

3 Performance
Monitoring

4 Decision Making

M o re decis io n-
m aking
a lgo rith m s

1 M o re ba sic ro botic
co m puta tio na l o bjects

2 D yn am ics beh av io ra l
pa tterns

3
M o re criteria;
M o re fu sion a lg o rithm s

4

�

�

�

�

What to add to generalize?

Figure 5. Functional components layout of the robotic domain

11

did not hold during the verification. In our description we refer to the states appearing in the state
transition diagrams of the Arm, EndEffector classes. Figures 6 and Figure 7 schematically represent
the lifecycles of the Arm and End-Effector classes (some actions are omitted due to the space
limitations of the paper). The state transition diagram of each process consists of nodes, representing
states and their associated actions to be performed, and event arcs, which represent transitions
between states.

Idle

EE2: CheckLimits(EE_ID, solution)

//some actions are omitted
for (int i=0; i<6;i++){

if (Current_Position[i]>Limit[i]){
print “Limit is not satisfied”;
end_position=1;}
else{//actions are omitted
Generate TS1: CalculateTrialConfiguration(TS_ID,

“inverse_kinematics”, LockedJoint);}}

Generate EE3: Back to idle (EE_ID);

EE1: PositionEndEffector(EE_ID)

Generate TS1: CalculateTrialConfiguration(TS_ID,
“forward_kinematics”,

IdOfLockedJoint);

EE3: BacktoIdle(EE_ID)

EE6: MoveEndEffector(EE_ID)

EE5: back(EE_ID)

EE4:CheckConstriants(EE_ID
)

ee_reference=1;
//moving the robot arm in x direction
//some actions are omitted
Current_Position[0]=+x;
if(Current_position!=final_point)
Generate EE4;CheckConstrints(EE_ID);
Else
Generate EE5: back(EE_ID);

ee_reference=0;

FollowingDesired
Trajectory

InitialPositioning

Checking
Constaints

Figure 7. State Transition Diagram of the EndEffector
Object

Moving Joints

Valid Not_Valid

A1: Valid(Arm_ID)

Foreach Joint{Generate J1:
Configure(Joint.Joint_ID);}

A2:NotValidArmConfiguration(Arm_ID)

A3: toNotValidState9Arm_ID)

A4: toValidState(Arm_ID)

arm_status=1; arm_status=0;

 Figure 6. State

Transition Diagram of
the Arm Object

 We present here the description of the properties that did not hold during the verification of the
Kinematics unit. In this description we refer to the states and variables of the Arm, End-Effector and
Checker objects. For example, the state FollowingDesiredTrajectory appears in Figure 7.

1. Deadlock Freedom The model does not have deadlocks.

2. Always(ee_reference=1)

�
 (arm_status=1)

 at any point in the execution, if EndEffector process is in the FollowingDesiredTrajectory state
(ee_reference variable is equal to 1) than the Arm process is in the `’Valid” state (arm_status
variable is equal to 1).

 Or in terms of the Kinematics domain

 The end-effector is moving only when the arm is indeed in a valid state.

3. Eventually (abort_var = 1 Until (end_position = 1 AND (recovery_status =1 OR

couner=number_of_joints))

 In any execution of the program there is a state where a variable abort_var of the Checker

process is equal to 1 and it continues to be that way until either the end_position variable of the
EndEffector process is equal to 1 or both of the following are true: the Checker process variables
recovery_status is equal to 1 and the variable counter is equal to the number of active instances
of the Joint class.

 Or in terms of the Kinematics domain

12

 The program terminates when it either completes the task or violates the constraints
(end_position=1) or reaches the state where there is no solution for the fault recovery (when all
joints of the robot arm violate the joint limits).

 In order to reduce the complexity of the original design we had to abstract and restrict some

Figure 7a. Collaboration diagram of the

Kinematics unit

Figure 7b. Modified collaboration diagram
of the Kinematics unit

 calculations. In fact, in the OOA model the robot arm movement calculations are done through the
interface with the OSCAR libraries. During verification we abstracted the actual calculations and
replaced them with nondeteministic assignments of small natural numbers. Scaling of the object
attribute values has been enforced in order to avoid dealing with the rational numbers that were
widely used in the original code. Definitions of some parameters that were not related to the verified
property were abstracted.
 Verification results. The absence of the deadlocks in the model execution was checked. We
found that a deadlock existed. Analysis of the error track produced by COSPAN revealed that it was
due to an error in the fault recovery algorithm. The failure of the Property 3 that was aimed to check
if the system terminates properly confirmed that finding. The system did not terminate in the case
when there was no solution for the fault recovery. We will remind the reader that the fault recovery
procedure is activated in the robot control if one of the robot joints does not satisfy the specified
limits. In fact, if during the process of fault recovery some of the newly recalculated joint angles do
not satisfy the constraints in their turn, then another fault recovery procedure is called. Analysis of
the counterexample provided by COSPAN for Property 3 indicated that a mutual attempt was made
for several faulty joints to recompute the joint angles of other joints while not resolving the fault
situation. Specifically, we considered a simple example when the arm consisted of two joints.
Property 3 failed since in this example requests originated from Joint1 and Joint2 to recompute the
angles of these joints continued indefinitely: when Joint1 did not respect the limit then the fault
recovery was called and Joint1 was locked with the angle limit value. The Joint2 angle was being
recalculated for the original end-effector position. In a situation when a new angle of Joint2 did not
satisfy its limit then another fault recovery procedure was called, which attempted to find a new angle
for Joint1 while Joint2 angle was locked. The exhaustive search provided by COSPAN exposed the
situation when there was no resolutions that satisfied the limit for Joint1 and the fault recovery was
called again. This was also a confirmation of the above deadlock situation.
 Another error was found during verification of Property 2 indicated a problem of coordination
between the Arm and EndEffector processes. The original design assumed a sequential execution
pattern. In fact, it was expected that the Arm.status variable of the Arm process would be repeatedly
updated before the EndEffector would switch to the FollowingDesiredTrajectory state, where the

13

EndEffector.status variable changes its value from 0 to 1. A concurrent interaction between the
processes led to the situation where the update of the EndEffector.status variable precedes the change
of the Arm.status value. This was the reason for the demonstrated property to fail.
 The errors found by model checking were not discovered either during the conventional testing
performed by the developers of the original code or during the validation by simulation of the
formalized design. In order to correct these errors a redesign of both the original system and the OOA
model was required. Figure 7b reflects the changes made. We introduced a new class called
Recovery, whose functionality provides a correct resolution of the fault recovery situation described
above. Additionally we added several exchanges of messages between the processes Arm and Joint in
order to fix the coordination problem reported earlier.

 4.4 Robotic System Engineering

When validation and verification of the analysis model was completed, the architecture was
automatically compiled into C++ programming language (therefore, creating sets of C++ templates).
These templates were compiled into object code and linked together to form an executable model.

Given the target system specifications, the developed architecture, and the target system
configuration parameters, an instance of the target robotic system was composed. Source code that
supports the implementation of the developed architecture can be found at
www.robotics.utexas.edu/rrg/organization/dual_arm/research/ROOA/.

5. Related Research

The focus of this project is integration of formal verification by model checking into a
commercially supported object-oriented development process based on a subset of UML. The focus of
this paper is design and development of OOA models to which model checking can be applied and a
case study in the application of model checking to OOA models to a non-trivial software system.

Lilius and Paltor [20] describe a tool (vUML) for application of model checking to UML models
via translation to Promela and application of SPIN [31]. No applications of the tool are given and
design of OOA models to generate manageable state spaces is not discussed.

Previous work on application of model checking to software systems has mainly been either to
software systems written in procedural languages or to abstract models extracted from programs in
procedural languages. Feaver [14, 15] targets software systems written in C while [1], [2], and [3]
focus on applying model checking on SDL programs. Havelund and Pressburger [13] apply model
checking to Java programs. Corbett, et.al [6] extract finite state machines from Java programs to
which to apply model checking.

Model-checking has been also applied to verification of concurrently executing state/event
machines. Lind-Nielsen, et al [21] applied SMV [23] for verification of hardware systems
represented by VisualState state machines. Dependency analysis was used to decompose a large but
naturally spatially modular systems. Chan, et.al. [7] verified a complex aircraft collision software.
They reported that their ad hoc solutions for the manual system partitioning frequently caused invalid
results. None approaches the issues of the system redesign prior to model-checking.
 Design guidelines for constructing testable and maintainable programs in object-oriented
procedural languages have been proposed and discussed by a number researchers [19]. Moors [24]
has proposed similar design criteria for communication protocols. However, there is no an effort
known to us that would address a problem of developing the OOA design rules that support resolution
of the state-explosion problem at the design level.

Finally there has been a great deal of research on formalization of object-oriented models and
languages. This research is largely concerned with integration and application of verification based
on theorem proving rather than model checking. There follow a few representative citations.
Hubmann [16] gives a formal foundation of SSADM, the Syntropy method based on Z and
statecharts. Dodani and Rupp enhance [8] the Fusion method by formal specifications written in
COLD[12], Lano[19] presents a formal approach to object-oriented software development based on
Z++ and VDM++. Formal semantics for interaction diagram using algebraic specification with
rewriting logic is given in [33].

14

6. Conclusions and Future Research

This paper gives a feasibility demonstration for the application of verification by model checking
to a substantial control intensive application developed in a commercially supported and widely used
object-oriented development process. The results of the demonstration are highly encouraging.
Verification of significant behavioral properties of the robot control subsystem were carried out. The
importance of verification to OOA model design and development has been shown. Design rules
leading to xUML OOA models to which verification by model checking have been proposed and
applied.

 Future work includes the following:
• Development of a complete set of rigorous rules that would be used as a part of the OOA

methodology supporting practical application of model-checking;
• Introduction of a mechanism that enables a designer to reason about verifiable properties and

automatically extract them from the OOA design specification for translation to SR COSPAN;
• Complete verification of the robot controller software:

• Integration of real-time constraint into the OOA system description and it verification.
• Collaboration with the development team for the translation system to extend it to cover

additional features of the xUML and to optimize the translation process to further reduce the
state space of the automaton models.

• Implementation of design techniques that facilitate the model checking:
• We propose to support slicing by abstraction of parts of the control flow that are not related

to a property to be verified at the design level.
• We suggest a technique of labeling some parts of state machines that are not related to the

verified property in order to support event/states encapsulation performed by the model
checker. The labels would be interpreted by the translator and could support the translator
algorithms for:
• encapsulation of events interaction that does not effect the property;
• substitution of a number of events that are not related to the property that is to be

verified by an abstract event that when implemented will give rise to many events being
sent to the same block.

• We plan to support an assume-guarantee style model checking to reason about correctness
properties of software units. We propose to construct an environment model to close a system for
verification using state/event machines (in contrast of using LTL and CTL specification [9]).
This would allows the designer not only to generate all possible combinations of environmental
behaviors but also to set up the priorities for some threads of control (and if needed to exclude
those which are less important from the verification process) in regard to the property to be
verified. This environment model is to be automatically translated as an assumption into syntax
accepted by a model checker.

References

[1] Bounimova, E., Levin, V., Basbugoglu, O., and Inan, K., 1996, A Verification Engine for SDL Spec. Of
Comm. Protocols, Proc. of the First Symposium on Computer Networks, Istanbul, Turkey, pp. 16-25.

[2] Bozga, M., Fernandez, J., Ghirvu, L., Graf, S., Krimm, J., Mounier, M., Sifakis, J., 1999, IF: An
Intermediate Representation for SDL and its Applications. Proc. of the SDL Forum, Montreal, Canada.

[3] Bosnacki, D., Damm, D., Holenderski, L.,and Sidorova, N., 2000, Model checking SDL with Spin, Proc.
of the Tools and Algorithms for the Construction and Analysis of Systems, Berlin, Germany.

[4] Clarke, E., and Emerson, E., 1982, Design and Verification of Synchronization Skeletons for Branching
Time Temporal Logic, Pr. of Log. of programs Workshop, Yorktown, NY, Springer LNCS 131, pp. 52-71.

[6] Corbett, J., Dwyer, M., Hatcliff, J., Laubach, S., Pasareanu, C., 2000, Bandera: Extracting finite-state
models for Java source code, Proceedings of 22nd ICSE.

[7] Chan, W., Anderson, R., Beame, P., Burns, S., Modugno, F., Notkin, D., Reese, J., 1998, Model Checking
Large Software Specifications, Proceedings of IEEE Transaction on Software Engineering, pp. 498-519.

[8] Dodani, M., and Ropp, R., 1995, Integrating Formal Methods with Object-Oriented Methodologies. In
Martin Wirsing, editor, ICSE-17 Workshop on Formal Methods Applicaiton in SE Practice, pp. 212-219.

[9] Dwyer, M., and Pasareanu, C., 1998, Filter-based model checking container implementations, In
Proceedings of the 6th ACM SIGSOFT.

15

[10] Granberg, O., and Long, D., Model Checking and modular verification, ACM Transactions on Program
languages and Systems, V. 16, pp. 843-872

[11] Hardin R., Har’El, Z., and Kurshan, R.P., 1996, COSPAN, Proc., CAV’96, LNCS, Vol. 1102, pp. 423-427.
[12] Hans, B., Jonkers, 1989, An Introduction to COLD-K. In Martin Wirsing and Johannes A. Bergstra,

Algebratic Methods: Theory, Tools and Applications, v.394 of lect. Notes on Comp.Science, pp.139-206.
[13] Havelund, K., and Pressburger, T., 2000, Model Checking Java Programs Using Java PathFinder, Int.

Journ. on Soft. Tools for Techn. Transf. (STTT) 2(4), 1998, 4’th SPIN workshop.
[14] Holzmann, G., and Smith, M., 2000, Feaver: Automating software feature verification, Bell Labs

Technical Journal, Vol. 5, 2, pp. 72-87.
[15] Holzmann, G., and Smith, M., 1999, A Practical Method for Verifying Event-Driven Software,

Proceedings of the 21st ICSE, p. 597-607.
[16] Hubman H., 1994, Formal Foundations for Pragmatic Software Engineering Methods. In Bernd Wolfinger,

editor, Innovationen bei Rechen- und Kommunikationssystemen, pp.1-50.
[17] Kapoor, C., and Tesar, D., 1996, “A Reusable Operational Software Arch. for Adv. Robotics (OSCAR)”,

Un.of Texas at Austin, Rep.to DOE, Grant No. DE-FG01 94EW37966 and NASA Grant No. NAG 9-809.
[18] Kurshan, R., 1994, Computer-Aided Verification of Coordinating Processes – The Automata-Theoretic

Approach, Princeton University Press, Princeton, NJ.
[19] Lano, K., 1997, Formal Object-Oriented Development, Springer.
[20] Lilis, J., and Porres, I., 1999, vUML: a tool for Verifying UML Models, Proceedings of ASEC, Fl.
[21] Lind-Nielsen, J, Andersen H., R., etc., Verification of large State/Event Systems using Compositionality

and Depenedency Analysis, Proceedings of TACAS’98, Portugal.
[22] Liskov, B., Data Abstraction and Hierarchy, 1987, Proceedings of OOPSLA conference.
[23] McMillan, K. Symbolic Model Checking, 1993, Kluwer.
[24] Moors, T., 1998, Protocol Organs: Modularity should reflect function, not timing, Proc. OPENARCH98,

pp. 91-100.
[25] Object Management Group (OMG), 2000, Action Semantic for theUML, OMG.
[26] Sharygina, N., and Browne, J., 1999, Automated Rob. Decision Support Software Reverse Engineering,

Tech. Rep., The Univ. Of Texas at Austin, Robotics Research Croup.
[27] Rumbaugh, J., Jacobson, I and Booch, G, 1999, The Unified Modeling Language Reference Manual,

Object Technology Series, Addison-Wesley.
[28] SES Inc., CodeGenesis User Reference Manual.
[29] SES Inc., ObjectBench Technical Reference.
[30] Shlaer, S., and Mellor, S., 1992, Object Lifecycles: Modeling the World in States, Prentice-Hall, NJ.
[31] The Spin Model Checker, IEEE Trans. on Software Engineering, Vol. 23, No. 5, May 1997, pp. 279-295.
[32] Xie, F., Levin, V., and Browne, J., 2000, “Integrating model checking into object-oriented software

development process”, submitted to FASE2001, copy available from browne@cs.utexas.edu
[33] Wirsing, M., Knapp, A., 1996, A formal approach to Object-Oriented Software Engineering, In José

Meseguer, editor, Proc. 1st Int. Wsh. Rewriting Logic and Its Applications, volume 4 of Electr. Notes
Theo. Comp. Sci., pages 321-359. Elsevier.

Appendix A: Summary of basic robotics definitions used in the paper

Degrees of Freedom (DOF) is the number of independent position variables which would have to be specified in
order to locate all parts of the mechanism.
End-effector is the robot’s last link. The robor uses the end-effector to accomplish a task. The end-effector may
be holding a tool, or the end-effector itself may be a tool.
Forward kinematics problem is the determination of the position and orientation of the end-effector given the
joints parameters.
Constraint is a restriction that limits the value of a dependent or independent variable. Inequality constraints
limit the robot’s joint travel (joint limits), joint speeds (speed limits), and torques (torque limits).
Inverse kinematics problem is to find the robot’s joint states given position and orientation state values for the
robot’s end-effector.
Performance criterion is a measure based on kinematic and dynamic models of the robot useful for evaluating
the state of the robot.
Redundant robot is a robot with more independent joints than equality constraints on the placement of the end-
effector.
Redundancy resolution is a decision making problem of finding the trajectory u(t) ∈ U for a given trajectory xe(t)
in the task space such that u(t)
- solves the corresponding Inverse Kinematics problem, i.e., there is φ(t) ⊆ u(t) for which f(φ (t)) = xe(t) for t

∈ [t0, tf];
- enhances the robot’s performance through optimization of a set of performance criteria;
- satisfies the robot’s configuration limits and end-effector constraints.

