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Abstract

An important problem is that of finding matching
pairs of records from heterogeneous databases, while
maintaining privacy of the database parties. As we have
shown in earlier work, distance metrics are a useful
tool for record-linkage in many domains, and thus se-
cure computation of distance metrics is quite important
for secure record-linkage. In this paper, we consider
the computation of a number of distance metrics in a
secure multiparty setting. Towards this goal, we pro-
pose a stochastic scalar product protocol that is prov-
ably consistent, and is also as secure as an underly-
ing set-intersection cryptographic protocol. We then
use our stochastic dot product protocol to perform se-
cure computation of some standard distance metrics like
TFIDF, SoftTFIDF and the Euclidean Distance Metric.
While asymptotically consistent, experiments show that
the stochastic estimates are quite close to the true values
after just 1000 samples. These secure distance compu-
tations can then be used to perform secure matching of
records.

1. Introduction

A common goal is to perform some data mining task
across multiple sets of data that are shared by several
parties, without having any party divulge its data to the
others. One technique for doing this is to randomize
each data record, while maintaining the overall utility
of the data for data-mining [2, 11]. Another technique
uses secure multiparty computation to perform the data-
mining task. Secure multiparty computation uses cryp-
tographic primitives such as pseudo-random generating
functions, homomorphic one-way encryption functions,
etc., to achieve privacy.
However, in many cases, the data shared by the dif-

ferent parties will be to some degree heterogeneous—for
instance, it might well be the case that two hospitals use
slightly different strings to describe the name and ad-
dress of the same patient. In this case, many proposed
secure multiparty protocols will not work. Indeed, find-
ing matching pairs of records accurately and efficiently
is difficult, even when all parties are willing to divulge
their data. Often called record linkage, this problem has
been extensively studied, particularly in statistics (e.g.,
[12, 27]), AI (e.g., [24, 3]), and the database community
(e.g., [15, 7, 20]).
One offshoot of prior work on record linkage has



been the development of a number of distance metrics
for strings which are useful for matching in many do-
mains [8, 9]. In this paper we consider computation of
these metrics in a secure multiparty setting. In particular
we consider a setting in which party R knows string r,
party S knows string s, and the goal is to compute the
distance between r and s without divulging additional
information.
In addition to performing secure record linkage, a

number of other plausible applications might use our se-
cure distance metrics as cryptographic primitives. One
example is performing near-neighbor searches against
a database: for instance, matching a DNA pattern to a
DNA pattern database, a fingerprint pattern to a finger-
print databases, or a patent application to a database of
documents. This is sometimes called the private infor-
mation matching problem [10].
Below, we first review related work in this area, and

then summarize the formal model we use for privacy.
We then describe three particular distance metrics—the
TFIDF metric [21], the SoftTFIDF [8, 9, 4] metric, and
Euclidean distance. We show that each of these dis-
tance metrics can be reduced to computing a secure dot-
product of two vectors. We then present a stochastic
sampling based method which securely approximates a
dot-product, and prove a consistency result for its cor-
rectness. Our dot-product protocol uses an intersection
protocol as an underlying cryptographic primitive. Fi-
nally, we present experiments evaluating the efficiency
and accuracy of our scalar product protocol. We con-
clude with a summary of our work.

2. Related Work

Secure two-party computation was first investigated
by Yao [28], and later work generalized it multi-party
computation [14, 5]. These works propose very gen-
eral results, yielding multi-party protocols for any prob-
abilistic function, but are very inefficient. More recent
work in privacy preserving data mining have proposed
efficient cryptographic solutions to several specialized
data-privacy problems. For instance, Kantarcioglu and
Clifton [17] describe algorithms for mining association
rules in horizontally partitioned data and Vaidya and
Clifton [25] develop analogous algorithms for vertically
partitioned data. Karr et al. [18, 19] provide extensions
for doing secure regressions for horizontally partitioned
data and Sanil et al. [22] for vertically partitioned data.
These latter approaches require non-standard aspects be-
cause of the interest in quantities such as residuals and
allow for statistically principled analyses.

Song et al. [23] describe a protocol to perform
searches on encrypted data. Du and Atallah [10, 26]
describe some approximate matching protocols which
are appropriate for certain distance metrics, but not all
of the metrics we consider here. They also describe se-
cure multi-party dot-product protocols (in the context of
larger constructions) but these are somewhat inefficient.
Ioannidis et al. [16] describe a protocol for computing a
dot-product; however, unlike our protocol, this method
does not have provable security guarantees. Finally, Co-
hen and Lewis [6] present a random sampling based al-
gorithm to identify the set of all vectors in a database
which have a high dot product with a given query vector
in sublinear time, but their algorithm does not carry over
to the provable security framework.

3. Security Model

We develop our protocols in the setting of semi-
honest or honest-but-curious behavior [13]. In this set-
ting, each party follows the protocol properly, except
that it may keep a record of all the intermediate compu-
tations and messages from the other party, and analyze
these to get more information. Thus, each party is not
malicious and does not alter its input. For example, in
a secure data-mining protocol, if one party maliciously
defines it’s input to be the empty database, the output
would be the result of applying the algorithm to the other
database alone, and this would result in loss of privacy.
We use the minimal necessary information sharing

paradigm [1] for our notion of privacy. Briefly, this en-
tails that no information other their own inputs and some
minimal additional information is revealed to the agents
in the process of executing the protocol.
Clearly, just as repeated use of exact matching can

be used to extract large amounts of information, re-
peated use of the secure distance protocol we present
can also lead to divulging large amounts of information
that could allow an intruder to penetrate individual data
bases in a fashion that would not occur in the absence of
the secure computation activities. In the present paper
we will not consider this issue, but merely present the
distance computation as a primitive.

4. Secure Distance Metric Protocols

In this section we shall describe three generally use-
ful distance metrics, formally state the problems of com-
puting the various distance metrics securely, and then
propose protocols for the same.



4.1. TFIDF Distance

Problem Statement:There are two parties R and S
with strings r and s respectively. Compute the TFIDF
distance (defined below) between the two documents
privately in the minimal information sharing paradigm.

The TFIDF distance is widely used in the infor-
mation retrieval community to compare documents
[21]. Subsequent experiments showed that it is also
useful for comparing shorter strings in data integration
[7].
To compute this distance metric, a string s is first bro-

ken into a set Ws of “tokens” (i.e., words). Each token
w in Ws is given a numeric weight weight(w, s). Fol-
lowing Salton [21], we use the formula

weight(w, s) = log(TFw,s + 1) · log(IDFw)

where TFw,s is the frequency of word w in s, N is the
size of the “corpus” (e.g., the set of all strings known to
either party), and IDFw is the inverse of the fraction of
strings in the corpus that contain w. Finally the distance
between the two words setsWr andWs is defined to be

TFIDF(Wr , Ws) =∑
w∈Wr∩Ws

weight(w, r) · weight(w, s)
√∑

w′∈Wr
weight(w′, r)2

√∑
w′∈Ws

weight(w′, s)2

Is it well known that TFIDF distance can also be com-
puted by computing the dot-product of two vectors V T r

and V Ts, where V Tr has dimensions corresponding to
the terms w, and the value for V Tr(w) is

V Tr(w) = weight ′(w, r) =
weight(w, r)√∑

w′∈Wr
weight(w′, r)2

The TFIDF distance between r and s is then V Tr ·
V Ts. Hence, if both parties can compute V Ts for a
string s, one could use a secure scalar product protocol
to obtain a secure TFIDF distance.
Notice that computing V Ts requires both parties to

know IDFw—in other words, they must share fre-
quency statistics over some common corpora for a com-
mon vocabulary. In our setting, we will assume this to be
the case. Alternatively, these frequency statistics might
be approximated using two corpora, each known only to
one party.

4.2. SoftTFIDF Distance

Problem Statement: Given agents R and S as
before, with strings r and s respectively, compute the
SoftTFIDF distance (defined below) between the two
documents.

SoftTFIDF [8, 9] is a “softer” version of TFIDF,
in which similar tokens are considered as well as
tokens in Ws ∩ Wr. Let sim be a secondary similarity
function that is suited to comparing tokens. (In previous
work [8], we achieved good results using the Jaro-
Winkler distance, an easily-computed heuristic distance
function, as sim ). We use a thresholded version sim ′

wherein similarity values less than a threshold θ are
taken as zero.
Let CLOSE(w ,S ) =maxv∈S sim ′(w, v). We define

SoftTFIDF(R, S) =
∑

w∈R

weight ′(w, R) · weight ′(CLOSE(w, S), S)

·sim′(w, CLOSE(w, S))

As weight(w, R) = 0 for w /∈ R, we can extend the
summand in the above equation to the whole vocabulary:

SoftTFIDF(R, S) =
∑

w∈V OCAB

weight ′(w, R) · weight ′(CLOSE(w, S), S)

·sim′(w, CLOSE(w, S))

Let V Tr, V Ts be vectors such that
V Tr(w) = weight ′(w, R), and
V Ts(w) = weight ′(CLOSE(w, S), S) ·
sim′(w, CLOSE(w, S)).

The SoftTFIDF distance between r and s is then
V Tr · V Ts. Thus, one could use a secure dot-product
protocol to compute the SoftTFIDF distance securely.

4.3. Euclidean Distance

Problem Statement: Given agents R and S as
before, with documents r and s respectively represented
as weighted feature vectors Vr and Vs respectively,
compute the Euclidean Distance between Vr and Vs

securely.

For vector Vr , replace each component ri with
three components r2

i ,−2ri,−1. For vector Vs, replace
each component si with three components 1, si, s2

i . The



dot product for these three components will then be
r2
i − 2siri − s2

i = (ri − si)2. Extending this idea a little
further, if x and y are arbitrary vectors,
∑

i(xi − xi)2 =
(
∑

i x2
i ,−2x1, . . . ,−2xn, 1) · (1, y1, . . . , yn,−

∑
i y2

i )

and thus the Euclidean distance between two fea-
ture vectors can also be expressed as a scalar product
of two vectors. Hence one could use the secure scalar
product protocol to obtain a secure Euclidean distance.

5. Scalar Product Protocol

In this section, we shall describe a protocol for
computing the scalar product of two vectors securely.
We will make use of a secure intersection protocol as a
cryptographic primitive.

Problem Statement: Let there be two parties R
and S with real-valued vectors Vr and Vs respectively,
and let I denote some categories of information (spec-
ified below). Compute the scalar product of the two
vectors securely, i.e., without revealing any additional
information to either party except for the information
contained in I.

5.1. Steps of the Protocol

• Agent R computes and stores the normalization of
Vr with respect to the L1 norm. Let the normaliza-
tion factor be Zr =

∑
i Vr(i)

• Let the dimension of both vectors be k. For ctr =
1 to numSamples, agent R samples i ∈ {1 . . . k}
with probability Vr(i)/Zr. He then adds (ctr, i) to
his set Tr

• Similarly, Agent S computes and stores the nor-
malization of Vs with respect to the L1 norm, Let
the normalization factor be Zs =

∑
i Vs(i) Again,

for ctr = 1 to numSamples, agent S then samples
j ∈ {1 . . . k} with probability Vs(j)/Zs and adds
(ctr, j) to his set Ts.

• The agents follow the secure intersection proto-
col for computing the intersection of Tr and Ts,
vp = Tr ∩ Ts. This is then averaged, vp′ =
vp/numSamples.
The agents then multiply the answer with their re-
spective normalization constants to get the vector
product i.e. vp′′ = vp′ ∗ Zr ∗ Zs

• The categories of additional information I released
by this protocol is Zr,Zs as well as the information
I ′ released by the intersection protocol.

5.2. Proof of Correctness

While the intersection of the samples does not give
the exact scalar product, it is consistent as given by the
following lemma.
Lemma: E(vp′′) = Vr · Vs

Proof:
The size of the intersection of Tr and Ts is Tr ∩ Ts =∑numSamples

ctr=1 I((ctr, Tr(ctr)) == (ctr, Ts(ctr)))
where I is the indicator function.
Thus,

E(Tr ∩ Ts) =
numSamples∑

ctr=1

Pr(Tr(ctr) == Ts(ctr))

The probability of two individual sampled entities
matching is

Pr(Tr(ctr) = Ts(ctr)) =
k∑

i=1

((Vr(i)/Zr) ∗ (Vs(i)/Zs))

Thus,

E(Tr∩Ts) = numSamples ∗
k∑

i=1

(Vr(i)/Zr) ∗ (Vs(i)/Zs)

This gives:

E(vp′′) = numSamples ∗ Zr ∗ Zs ∗ E(vp)

=
k∑

i=1

(Vr(i) ∗ Vs(i))

which is the scalar product of Vr and Vs.

5.3. Proof of Security

Steps 1 to 3 in the protocol are private computations
by both parties. The only exchange of messages is in
Step 4, via the Set-Intersection protocol. Thus, given a
secure set-intersection protocol, the above scalar prod-
uct protocol is also secure.

6. Experiments

We performed some experiments to test the empiri-
cal convergence of the stochastic TFIDF and SoftTFIDF



estimates to their true values. Due to our consistency
result in Section 5.2, we do know that the stochastic
estimates will converge to their true values asymptoti-
cally. As the graphs show, they appear to converge to
the true values in about a thousand samples. We used the
Cora [7] dataset for our evaluation. It contains record-
strings with the fields author, title, date, and venue. We
ranked by distance all candidate pairs from the dataset.
We then computed the non-interpolated average preci-
sion of this ranking, which for a total of N pairs with
m correct matches is 1

m

∑N
r=1

c(i)δ(i)
i , where c(i) is the

number of correct pairs ranked before position i, and
δ(i) = 1 if the pair at rank i is correct and 0 otherwise.
In Figure 2, we compare the performances of the

vanilla distances, and the stochastic versions of the dis-
tances. We see that the precision values of the stochastic
distances approach that of the true distances in very few
samples.
In Figure 1, we compare the actual distance values

of the stochastic string distances and the true string dis-
tances for the following record-pair:

• ”harris drucker, robert schapire, and patrice simard.
7(4) boosting performance in neural networks. in-
ternational journal of pattern recognition and artifi-
cial intelligence, 1993. 705-719”

• ”harris d., robert s., and patrice s. 7(4) boosting
performance in neural networks. international jour-
nal of pattern recognition and artificial intelligence,
pages 705–719”

Again, we empirically observe near convergencewith
few samples.

7. Conclusions

We have proposed a stochastic scalar product proto-
col that is provably consistent, and is also as secure as an
underlying set-intersection cryptographic protocol. We
then use our stochastic dot product protocol to perform
secure computation of some standard distance metrics
like TFIDF, SoftTFIDF and the EuclideanDistanceMet-
ric. While asymptotically consistent, experiments show
that the stochastic estimates are quite close to the true
values after just 1000 samples. Such secure distance
computations can then be used towards the task of se-
cure matching of records. We also noted some issues re-
garding the vulnerability of the original separate secure
data bases as a result of the computation. Extensions to
more complex statistical calculations such as secure re-
gression calculations go beyond the methods we present
here.
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