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Vector and Affine Algebra

• Difference of points

(x1, 1) − (x0, 1) = (x1 − x0, 0)

(x 0,1) (x 1

(x 1 0,0) x__

w

,1)
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• Affine combination of points

(1 − t)(x1, 1) + t(x0, 1) = ((1 − t)x1 + tx0, 1)

(x 0,1) (x 1,1)

(x 0,1) (x 1,1)(1 __ t) t+

w
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• Linear combinations of vectors

a(v0, 0) + b(v1, 0) = (av0 + bv1, 0)

(v 0,1) (v

w

,1)1

+(v 0,1) ,1)ba 1(v
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Linear Transformations

Vector space V

• Linear combinations of vectors in V are in V

• For ~u,~v ∈ V

– ~u + ~v ∈ V

– α~u ∈ V for any scalar α

– In general,
∑

i αi~ui ∈ V for any scalars αi

• Linear transformations

– Let T : V0 7→ V1, where V0 and V1 are vector spaces

– Then T is linear iff

∗ T(~u + ~v) = T(~u) + T(~v)

∗ T(α~u) = αT(~u)

∗ In general, T (
∑

i αi~ui) =
∑

i αiT (~ui)
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Example of linear tranformation for vectors
u = α1u1 + α2u2

2

1

u

u
u

T (u) = w

= T (α1u1 + α2u2)

= T (α1u1) + T (α2u2)

= α1T (u1) + α2T (u2)

 1

 2

w

w

w

The University of Texas at Austin 5



Department of Computer Sciences Graphics – Fall 2003 (Lecture 6)

Affine Transformations

Affine space A = (V,P)

• For ~u ∈ V and P ∈ P

P + ~u ∈ P

• Define point subtraction:

– For P, Q ∈ P and ~u ∈ V , if P + ~u = Q, then Q − P ≡ ~u

– So in general we have
∑

i αiPi is a vector iff
∑

i αi = 0

• Define point blending:

– For P, P1, P2 ∈ P and scalar α, if P = P1+α (P2 − P1) then P ≡ (1 − α) P1+

αP2

– This can also be written P ≡ α1P1 + α2P2 where α1 + α2 = 1

– So in general we have
∑

i αiPi is a point iff
∑

i αi = 1

• Geometrically, we have
|P−P0|

|P−P1|
=

d1
d2

or P =
d1P1+d2P2

d1+d2

• Vectors can always be combined linearly
∑

i αi~ui

• Points can be combined linearly
∑

i αiPi iff

– The coefficients sum to 1, giving a point (“affine combination”)

– The coefficients sum to 0, giving a vector (“vector combination”)
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– Example affine combination:

P (t) = P0 + t(P1 − P0) = (1 − t)P0 + tP1

1

2

1
3
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P
P

P P P

P

P P

P
– This says any point on the line is an affine combination of the line segment’s endpoints.

• Affine transformations

– Let T : A0 7→ A1 where A0 and A1 are affine spaces

– T is said to be an affine transformation iff

∗ T maps vectors to vectors and points to points

∗ T is a linear transformation on the vectors

∗ T(P + ~u) = T(P ) + T(~u)

– Properties of affine transformations

∗ T preserves affine combinations:

T(α0P0 + · · · + αnPn) = α0T(P0) + · · · + αnT(Pn)
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where
∑

i αi = 0 or
∑

i αi = 1

∗ T maps lines to lines:

T((1 − t)P0 + tP1) = (1 − t)T(P0) + tT(P1)

∗ T is affine iff it preserves ratios of distance along a line:

P =
d0P0 + d1P1

d0 + d1

⇒ T(P ) =
d0T(P0) + d1T(P1)

d0 + d1

∗ T maps parallel lines to parallel lines (can you prove this?)

– Example affine transformations

∗ Rigid body motions (translations, rotations)

∗ Scales, reflections

∗ Shears
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Matrix Representation of Transformations

• Let A0 and A1 be affine spaces.

Let T : A0 7→ A1 be an affine transformation.

Let F0 = (~i0,~j0,O0) be a frame for A0.

Let F1 = (~i1,~j1,O1) be a frame for A1.

• Let P = x~i0 + y~j0 + O0 be a point in A0.

The coordinates of P relative to A0 are (x, y, 1).

This can also be represented in vector form as P =
[

~i0 ~j0 O0

]





x

y

1
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• What are the coordinates (x′, y′, 1) of T(P ) relative to F1?

– An affine transformation is characterized by the image of a frame in the domain.

T(P ) = T(x~i0 + y~j0 + O0)

= xT(~i0) + yT(~j0) + T(O0)

– T(~i0) must be a linear combination of~i1 and ~j1,

say T(~i0) = t1,1
~i1 + t2,1

~j1.

– Likewise T(~j0) must be a linear combination of~i1 and ~j1,

say T(~j0) = t1,2
~i1 + t2,2

~j1.

– Finally T(O0) must be an affine combination of~i1,
~j1, and O1, say T(O0) = t1,3

~i1 + t2,3
~j1 + O1.
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– Then by substitution we get

T(P ) = x(t1,1
~i1 + t2,1

~j1) + y(t1,2
~i1 + t2,2

~j1) + t1,3
~i1 + t2,3

~j1 + O1

=
[

t1,1
~i1 + t2,1

~j1 t1,2
~i1 + t2,2

~j1

]

t1,3
~i1 + t2,3

~j1 + O1





x

y

1





=
[

~i1 ~j1 O1

]





t1,1 t1,2 t1,3

t2,1 t2,2 t2,3

0 0 1









x

y

1





Using MT to denote the matrix, we see that F0 = F1MT

• Let T(P ) = P ′ = x′~i1 + y′~j1 + O1
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In vector form this is

P
′

=
[

~i1 ~j1 O1

]





x′

y′

1





=
[

~i1 ~j1 O1

]





t1,1 t1,2 t1,3

t2,1 t2,2 t2,3

0 0 1









x

y

1





So we see that




x′

y′

1



 =





t1,1 t1,2 t1,3

t2,1 t2,2 t2,3

0 0 1









x

y

1





We can write this in shorthand – p′ = MTp

• MT is the matrix representation of T

– The first column of MT represents T(~i0)

– The second column of MT represents T(~j0)

– The third column of MT represents T(O0)
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• Translation

– Points are transformed as
[

x′ y′ 1
]T

= [x y 1]
T

+ [∆x ∆y 0]
T
.

– Vectors don’t change.

– Thus translation is affine but not linear.

If it were linear, we would have T(P + Q) = T(P ) + T(Q), but point addition is

undefined.

– Translation can be applied to sums of vectors and vector-point sums.

– Matrix formulation:





x′

y′

1



 =





1 0 ∆x

0 1 ∆y

0 0 1









x

y

1



 =





x + ∆x

y + ∆y

1









x′

y′

0



 =





1 0 ∆x

0 1 ∆y

0 0 1









x

y

0



 =





x

y

0





– Shorthand for the above matrix: T (∆x, ∆y)
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• Scale

– Linear transform — applies equally to points and vectors

– Points transform as
[

x′ y′ 1
]T

= [xSx ySy 1]
T
.

– Vectors transform as
[

x′ y′ 0
]T

= [xSx ySy 0]
T
.

– Matrix formulation:





x′

y′

1



 =





Sx 0 0

0 Sy 0

0 0 1









x

y

1



 =





xSx

ySy

1









x′

y′

0



 =





Sx 0 0

0 Sy 0

0 0 1









x

y

0



 =





xSx

ySy

0





– Shorthand for the above matrix: S(Sx, Sy)

– Note that this is origin sensitive.

– How do you do reflections?
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• Rotate

– Linear transform — applies equally to points and vectors

– Points transform as
[

x′ y′ 1
]T

= [x cos(θ) − y sin(θ) x sin(θ) + y cos(θ) 1]
T
.

– Vectors transform as
[

x′ y′ 0
]T

= [x cos(θ) − y sin(θ) x sin(θ) + y cos(θ) 0]
T
.

– Matrix formulation:





x′

y′

1



 =





cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1









x

y

1



 =





x cos(θ) − y sin(θ)

x sin(θ) + y cos(θ)

1









x′

y′

0



 =





cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1









x

y

0



 =





x cos(θ) − y sin(θ)

x sin(θ) + y cos(θ)

0





– Shorthand for the above matrix: R(θ)

– Note that this is origin sensitive.
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• Shear

– Linear transform — applies equally to points and vectors

– Points transform as
[

x′ y′ 1
]T

= [x + αy, y + βx, 1]
T
.

– Vectors transform as
[

x′ y′ 0
]T

= [x + αy, y + βx, 0]
T
.

– Matrix formulation:





x′

y′

1



 =





1 α 0

β 1 0

0 0 1









x

y

1



 =





x + αy

y + βx

1









x′

y′

0



 =





1 α 0

β 1 0

0 0 1









x

y

0



 =





x + αy

y + βx

0





– Shorthand for the above matrix: Sh(α, β)

The University of Texas at Austin 16



Department of Computer Sciences Graphics – Fall 2003 (Lecture 6)

• Composition of Transformations

– Now we have some basic transformations, how do we create and represent arbitrary

affine transformations?

– We can derive an arbitrary affine transform as a sequence of basic transformations,

then compose the transformations

– Example — scaling about an arbitrary point [xc yc 1]
T

1. Translate [xc yc 1]
T

to [0 0 1] (T (−xc,−yc))

2. Scale
[

x′ y′ 1
]T

= S(Sx, Sy) [x y 1]
T

3. Translate [0 0 1]
T

back to [xc yc 1] (T (xc, yc))

– The sequence of transformation steps is

T (−xc,−yc) ◦ S(Sx, Sy) ◦ T (xc, yc)
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– In matrix form this is





x′

y′

1



 =





1 0 xc

0 1 yc

0 0 1









Sx 0 0

0 Sy 0

0 0 1









1 0 −xc

0 1 −yc

0 0 1









x

y

1





=





Sx 0 xc(1 − Sx)

0 Sy yc(1 − Sy)

0 0 1









x

y

1





– Note that the matrices are arranged from right to left in the order of the steps.

– The order is important (why)?
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• Three Dimensional Transformations

– A point is p = [x y z 1], a vector ~v = [x y z 0]

– Translation:

T (∆x, ∆y, ∆z) =









1 0 0 ∆x

0 1 0 ∆y

0 0 1 ∆z

0 0 0 1









– Scale:

S(Sx, Sy, Sz) =









Sx 0 0 0

0 Sy 0 0

0 0 Sz 0

0 0 0 1









– Rotation:

Rz(Θ) =









cos(θ) − sin(θ) 0 0

sin(θ) cos(θ) 0 0

0 0 1 0

0 0 0 1









The University of Texas at Austin 19



Department of Computer Sciences Graphics – Fall 2003 (Lecture 6)

Extra: Example of Invariance of Projective Transformation, The Cross

Ratio

Definition:

O

C�

B�

A�

A��

B��

C

B

A

l

l��

l�
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A B C D

x =
CA

CB

/

DA

DB

CA

CB

/

DA

DB
=

C ′A′

C ′B′

/

D′A′

D′B′
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area OCA =
1

2
h · CA =

1

2
OA · OC sin 6 COA

area OCB =
1

2
h · CB =

1

2
OB · OC sin 6 COB

area ODA =
1

2
h · DA =

1

2
OA · OD sin 6 DOA

area ODB =
1

2
h · DB =

1

2
OB · OD sin 6 DOB

Hence

CA

CB

/

DA

DB
=

CA

CB
·

DB

DA
=

OA · OC sin 6 COA

OB · OC sin 6 COB
·

OB · OD sin 6 DOB

OA · OD sin 6 DOA

=
sin 6 COA

sin 6 COB
·
sin 6 DOB

sin 6 DOA
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O

A B C D

A�

B�

C�
D�

h

Invariance of cross-ratio under central projection
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A

B
C

D

A
B

C
D

’

’

’
’

8

Invariance of cross-ratio under parallel projection
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(ABCD) > 0

-r r r r

A B C D

(ABCD) < 0
-r r r r

A B C D

Sign of cross-ratio

(ABCD) =
CA

CB

/

DA

DB
=

x3 − x1

x3 − x2

/

x4 − x1

x4 − x2

=
x3 − x1

x3 − x2

·
x4 − x2

x4 − x1
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-r r r r r x
0 A B C D

x1 -

x2 -

x3 -

x4 -

Cross-ratio in terms of coordinates.
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Reading Assignment and News

Chapter 4 pages 181 - 201, of Recommended Text.

Please also track the News section of the Course Web Pages for the most recent

Announcements related to this course.

(http://www.cs.utexas.edu/users/bajaj/graphics23/cs354/)
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