Vector and Affine Algebra

- Difference of points

$$
\left(x_{1}, 1\right)-\left(x_{0}, 1\right)=\left(x_{1}-x_{0}, 0\right)
$$

- Affine combination of points

$$
(1-t)\left(x_{1}, 1\right)+t\left(x_{0}, 1\right)=\left((1-t) x_{1}+t x_{0}, 1\right)
$$

- Linear combinations of vectors

$$
a\left(v_{0}, 0\right)+b\left(v_{1}, 0\right)=\left(a v_{0}+b v_{1}, 0\right)
$$

Linear Transformations

Vector space \mathcal{V}

- Linear combinations of vectors in \mathcal{V} are in \mathcal{V}
- For $\vec{u}, \vec{v} \in \mathcal{V}$
$-\vec{u}+\vec{v} \in \mathcal{V}$
$-\alpha \vec{u} \in \mathcal{V}$ for any scalar α
- In general, $\sum_{i} \alpha_{i} \vec{u}_{i} \in \mathcal{V}$ for any scalars α_{i}
- Linear transformations
- Let $\mathbf{T}: \mathcal{V}_{0} \mapsto \mathcal{V}_{1}$, where \mathcal{V}_{0} and \mathcal{V}_{1} are vector spaces
- Then \mathbf{T} is linear iff
* $\mathbf{T}(\vec{u}+\vec{v})=\mathbf{T}(\vec{u})+\mathbf{T}(\vec{v})$
* $\mathbf{T}(\alpha \vec{u})=\alpha \mathbf{T}(\vec{u})$
* In general, $\mathbf{T}\left(\sum_{i} \alpha_{i} \vec{u}_{i}\right)=\sum_{i} \alpha_{i} \mathbf{T}\left(\vec{u}_{i}\right)$

Example of linear tranformation for vectors

$$
u=\alpha_{1} u_{1}+\alpha_{2} u_{2}
$$

$T(u)=w$
$=T\left(\alpha_{1} u_{1}+\alpha_{2} u_{2}\right)$
$=T\left(\alpha_{1} u_{1}\right)+T\left(\alpha_{2} u_{2}\right)$
$=\alpha_{1} T\left(u_{1}\right)+\alpha_{2} T\left(u_{2}\right)$

Affine Transformations

Affine space $\mathcal{A}=(\mathcal{V}, \mathcal{P})$

- For $\vec{u} \in \mathcal{V}$ and $P \in \mathcal{P}$

$$
P+\vec{u} \in \mathcal{P}
$$

- Define point subtraction:
- For $P, Q \in \mathcal{P}$ and $\vec{u} \in \mathcal{V}$, if $P+\vec{u}=Q$, then $Q-P \equiv \vec{u}$
- So in general we have $\sum_{i} \alpha_{i} P_{i}$ is a vector iff $\sum_{i} \alpha_{i}=0$
- Define point blending:
- For $P, P_{1}, P_{2} \in \mathcal{P}$ and scalar α, if $P=P_{1}+\alpha\left(P_{2}-P_{1}\right)$ then $P \equiv(1-\alpha) P_{1}+$ αP_{2}
- This can also be written $P \equiv \alpha_{1} P_{1}+\alpha_{2} P_{2}$ where $\alpha_{1}+\alpha_{2}=1$
- So in general we have $\sum_{i} \alpha_{i} P_{i}$ is a point iff $\sum_{i} \alpha_{i}=1$
- Geometrically, we have $\frac{\left|P-P_{0}\right|}{\left|P-P_{1}\right|}=\frac{d_{1}}{d_{2}}$ or $P=\frac{d_{1} P_{1}+d_{2} P_{2}}{d_{1}+d_{2}}$
- Vectors can always be combined linearly $\sum_{i} \alpha_{i} \vec{u}_{i}$
- Points can be combined linearly $\sum_{i} \alpha_{i} P_{i}$ iff
- The coefficients sum to 1 , giving a point ("affine combination")
- The coefficients sum to 0 , giving a vector ("vector combination")
- Example affine combination:

$$
P(t)=P_{0}+t\left(P_{1}-P_{0}\right)=(1-t) P_{0}+t P_{1}
$$

- This says any point on the line is an affine combination of the line segment's endpoints.
- Affine transformations
- Let $\mathbf{T}: \mathcal{A}_{0} \mapsto \mathcal{A}_{1}$ where \mathcal{A}_{0} and \mathcal{A}_{1} are affine spaces
- \mathbf{T} is said to be an affine transformation iff
* T maps vectors to vectors and points to points
* \mathbf{T} is a linear transformation on the vectors
* $\mathbf{T}(P+\vec{u})=\mathbf{T}(P)+\mathbf{T}(\vec{u})$
- Properties of affine transformations
* T preserves affine combinations:

$$
\mathbf{T}\left(\alpha_{0} P_{0}+\cdots+\alpha_{n} P_{n}\right)=\alpha_{0} \mathbf{T}\left(P_{0}\right)+\cdots+\alpha_{n} \mathbf{T}\left(P_{n}\right)
$$

where $\sum_{i} \alpha_{i}=0$ or $\sum_{i} \alpha_{i}=1$

* \mathbf{T} maps lines to lines:

$$
\mathbf{T}\left((1-t) P_{0}+t P_{1}\right)=(1-t) \mathbf{T}\left(P_{0}\right)+t \mathbf{T}\left(P_{1}\right)
$$

* \mathbf{T} is affine iff it preserves ratios of distance along a line:

$$
P=\frac{d_{0} P_{0}+d_{1} P_{1}}{d_{0}+d_{1}} \Rightarrow \mathbf{T}(P)=\frac{d_{0} \mathbf{T}\left(P_{0}\right)+d_{1} \mathbf{T}\left(P_{1}\right)}{d_{0}+d_{1}}
$$

* T maps parallel lines to parallel lines (can you prove this?)
- Example affine transformations
* Rigid body motions (translations, rotations)
* Scales, reflections
* Shears

Matrix Representation of Transformations

- Let \mathcal{A}_{0} and \mathcal{A}_{1} be affine spaces.

Let $\mathbf{T}: \mathcal{A}_{0} \mapsto \mathcal{A}_{1}$ be an affine transformation.
Let $F_{0}=\left(\vec{i}_{0}, \vec{j}_{0}, \mathcal{O}_{0}\right)$ be a frame for \mathcal{A}_{0}.
Let $F_{1}=\left(\vec{i}_{1}, \vec{j}_{1}, \mathcal{O}_{1}\right)$ be a frame for \mathcal{A}_{1}.

- Let $P=x \vec{i}_{0}+y \vec{j}_{0}+\mathcal{O}_{0}$ be a point in \mathcal{A}_{0}.

The coordinates of P relative to \mathcal{A}_{0} are $(x, y, 1)$.
This can also be represented in vector form as $P=\left[\begin{array}{lll}\vec{i}_{0} & \vec{j}_{0} & \mathcal{O}_{0}\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$

- What are the coordinates $\left(x^{\prime}, y^{\prime}, 1\right)$ of $\mathbf{T}(P)$ relative to F_{1} ?
- An affine transformation is characterized by the image of a frame in the domain.

$$
\begin{aligned}
\mathbf{T}(P) & =\mathbf{T}\left(x \vec{i}_{0}+y \vec{j}_{0}+\mathcal{O}_{0}\right) \\
& =x \mathbf{T}\left(\vec{i}_{0}\right)+y \mathbf{T}\left(\vec{j}_{0}\right)+\mathbf{T}\left(\mathcal{O}_{0}\right)
\end{aligned}
$$

- $\mathbf{T}\left(\vec{i}_{0}\right)$ must be a linear combination of \vec{i}_{1} and \vec{j}_{1}, say $\mathbf{T}\left(\vec{i}_{0}\right)=t_{1,1} \vec{i}_{1}+t_{2,1} \vec{j}_{1}$.
- Likewise $\mathbf{T}\left(\vec{j}_{0}\right)$ must be a linear combination of \vec{i}_{1} and \vec{j}_{1}, say $\mathbf{T}\left(\vec{j}_{0}\right)=t_{1,2} \vec{i}_{1}+t_{2,2} \vec{j}_{1}$.
- Finally $\mathbf{T}\left(\mathcal{O}_{0}\right)$ must be an affine combination of \vec{i}_{1}, \vec{j}_{1}, and \mathcal{O}_{1}, say $\mathbf{T}\left(\mathcal{O}_{0}\right)=t_{1,3} \vec{i}_{1}+t_{2,3} \vec{j}_{1}+\mathcal{O}_{1}$.
- Then by substitution we get

$$
\begin{aligned}
\mathbf{T}(P) & =x\left(t_{1,1} \vec{i}_{1}+t_{2,1} \vec{j}_{1}\right)+y\left(t_{1,2} \vec{i}_{1}+t_{2,2} \vec{j}_{1}\right)+t_{1,3} \vec{i}_{1}+t_{2,3} \vec{j}_{1}+\mathcal{O}_{1} \\
& =\left[t_{1,1} \vec{i}_{1}+t_{2,1} \vec{j}_{1} \quad t_{1,2} \vec{i}_{1}+t_{2,2} \vec{j}_{1}\right] t_{1,3} \vec{i}_{1}+t_{2,3} \vec{j}_{1}+\mathcal{O}_{1}\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \\
& =\left[\vec{i}_{1} \vec{j}_{1} \mathcal{O}_{1}\right]\left[\begin{array}{ccc}
t_{1,1} & t_{1,2} & t_{1,3} \\
t_{2,1} & t_{2,2} & t_{2,3} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
\end{aligned}
$$

Using \mathbf{M}_{T} to denote the matrix, we see that $F_{0}=F_{1} \mathbf{M}_{T}$

- Let $\mathbf{T}(P)=P^{\prime}=x^{\prime} \vec{i}_{1}+y^{\prime} \vec{j}_{1}+\mathcal{O}_{1}$

In vector form this is

$$
\begin{aligned}
P^{\prime} & =\left[\begin{array}{lll}
\vec{i}_{1} & \vec{j}_{1} & \mathcal{O}_{1}
\end{array}\right]\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right] \\
& =\left[\vec{i}_{1} \vec{j}_{1} \mathcal{O}_{1}\right]\left[\begin{array}{ccc}
t_{1,1} & t_{1,2} & t_{1,3} \\
t_{2,1} & t_{2,2} & t_{2,3} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
\end{aligned}
$$

So we see that

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
t_{1,1} & t_{1,2} & t_{1,3} \\
t_{2,1} & t_{2,2} & t_{2,3} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

We can write this in shorthand $-\mathbf{p}^{\prime}=\mathbf{M}_{T} \mathbf{p}$

- \mathbf{M}_{T} is the matrix representation of \mathbf{T}
- The first column of \mathbf{M}_{T} represents $\mathbf{T}\left(\vec{i}_{0}\right)$
- The second column of \mathbf{M}_{T} represents $\mathbf{T}\left(\vec{j}_{0}\right)$
- The third column of \mathbf{M}_{T} represents $\mathbf{T}\left(\mathcal{O}_{0}\right)$
- Translation
- Points are transformed as $\left[\begin{array}{ll}x^{\prime} & y^{\prime} \\ 1\end{array}\right]^{T}=\left[\begin{array}{lll}x & y & 1\end{array}\right]^{T}+\left[\begin{array}{lll}\Delta x & \Delta y & 0\end{array}\right]^{T}$.
- Vectors don't change.
- Thus translation is affine but not linear.

If it were linear, we would have $\mathbf{T}(P+Q)=\mathbf{T}(P)+\mathbf{T}(Q)$, but point addition is undefined.

- Translation can be applied to sums of vectors and vector-point sums.
- Matrix formulation:

$$
\begin{gathered}
{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & \Delta x \\
0 & 1 & \Delta y \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
x+\Delta x \\
y+\Delta y \\
1
\end{array}\right]} \\
{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
0
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & \Delta x \\
0 & 1 & \Delta y \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
0
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
0
\end{array}\right]}
\end{gathered}
$$

- Shorthand for the above matrix: $T(\Delta x, \Delta y)$

- Scale

- Linear transform - applies equally to points and vectors
- Points transform as $\left[\begin{array}{lll}x^{\prime} & y^{\prime} & 1\end{array}\right]^{T}=\left[\begin{array}{lll}x & S_{x} & y \\ S_{y} & 1\end{array}\right]^{T}$.
- Vectors transform as $\left[\begin{array}{lll}x^{\prime} & y^{\prime} & 0\end{array}\right]^{T}=\left[\begin{array}{lll}x & S_{x} & y S_{y}\end{array}\right]^{T}$.
- Matrix formulation:

$$
\begin{aligned}
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
S_{x} & 0 & 0 \\
0 & S_{y} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
x S_{x} \\
y S_{y} \\
1
\end{array}\right]} \\
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
0
\end{array}\right]=\left[\begin{array}{ccc}
S_{x} & 0 & 0 \\
0 & S_{y} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
0
\end{array}\right]=\left[\begin{array}{c}
x S_{x} \\
y S_{y} \\
0
\end{array}\right]}
\end{aligned}
$$

- Shorthand for the above matrix: $S\left(S_{x}, S_{y}\right)$
- Note that this is origin sensitive.
- How do you do reflections?
- Rotate
- Linear transform - applies equally to points and vectors
- Points transform as

$$
\left[x^{\prime} y^{\prime} 1\right]^{T}=[x \cos (\theta)-y \sin (\theta) x \sin (\theta)+y \cos (\theta) 1]^{T}
$$

- Vectors transform as

$$
\left[x^{\prime} y^{\prime} 0\right]^{T}=[x \cos (\theta)-y \sin (\theta) x \sin (\theta)+y \cos (\theta) 0]^{T}
$$

- Matrix formulation:

$$
\begin{aligned}
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
x \cos (\theta)-y \sin (\theta) \\
x \sin (\theta)+y \cos (\theta) \\
1
\end{array}\right]} \\
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
0
\end{array}\right]=\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
0
\end{array}\right]=\left[\begin{array}{c}
x \cos (\theta)-y \sin (\theta) \\
x \sin (\theta)+y \cos (\theta) \\
0
\end{array}\right]}
\end{aligned}
$$

- Shorthand for the above matrix: $R(\theta)$
- Note that this is origin sensitive.
- Shear
- Linear transform - applies equally to points and vectors
- Points transform as $\left[\begin{array}{ll}x^{\prime} & y^{\prime}\end{array}\right]^{T}=[x+\alpha y, y+\beta x, 1]^{T}$.
- Vectors transform as $\left[\begin{array}{lll}x^{\prime} & y^{\prime} & 0\end{array}\right]^{T}=\left[\begin{array}{lll}x+\alpha y, y+\beta x, & 0\end{array}\right]^{T}$.
- Matrix formulation:

$$
\begin{aligned}
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lll}
1 & \alpha & 0 \\
\beta & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
x+\alpha y \\
y+\beta x \\
1
\end{array}\right]} \\
& {\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
0
\end{array}\right]=\left[\begin{array}{lll}
1 & \alpha & 0 \\
\beta & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
0
\end{array}\right]=\left[\begin{array}{c}
x+\alpha y \\
y+\beta x \\
0
\end{array}\right]}
\end{aligned}
$$

- Shorthand for the above matrix: $\operatorname{Sh}(\alpha, \beta)$
- Composition of Transformations
- Now we have some basic transformations, how do we create and represent arbitrary affine transformations?
- We can derive an arbitrary affine transform as a sequence of basic transformations, then compose the transformations
- Example - scaling about an arbitrary point $\left[x_{c} y_{c} 1\right]^{T}$

1. Translate $\left[\begin{array}{lll}x_{c} & y_{c} & 1\end{array}\right]^{T}$ to $\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]\left(T\left(-x_{c},-y_{c}\right)\right)$
2. Scale $\left[\begin{array}{lll}x^{\prime} & y^{\prime} & 1\end{array}\right]^{T}=S\left(S_{x}, S_{y}\right)\left[\begin{array}{ll}x & y\end{array} 1\right]^{T}$
3. Translate $\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]^{T}$ back to $\left[x_{c} y_{c} 1\right]\left(T\left(x_{c}, y_{c}\right)\right)$

- The sequence of transformation steps is $T\left(-x_{c},-y_{c}\right) \circ S\left(S_{x}, S_{y}\right) \circ T\left(x_{c}, y_{c}\right)$
- In matrix form this is

$$
\begin{aligned}
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right] } & =\left[\begin{array}{lll}
1 & 0 & x_{c} \\
0 & 1 & y_{c} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
S_{x} & 0 & 0 \\
0 & S_{y} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & -x_{c} \\
0 & 1 & -y_{c} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
S_{x} & 0 & x_{c}\left(1-S_{x}\right) \\
0 & S_{y} & y_{c}\left(1-S_{y}\right) \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
\end{aligned}
$$

- Note that the matrices are arranged from right to left in the order of the steps.
- The order is important (why)?
- Three Dimensional Transformations
- A point is $\mathbf{p}=\left[\begin{array}{llll}x & y & z & 1\end{array}\right]$, a vector $\vec{v}=\left[\begin{array}{lll}x & y & z\end{array}\right]$
- Translation:

$$
T(\Delta x, \Delta y, \Delta z)=\left[\begin{array}{cccc}
1 & 0 & 0 & \Delta x \\
0 & 1 & 0 & \Delta y \\
0 & 0 & 1 & \Delta z \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- Scale:

$$
S\left(S_{x}, S_{y}, S_{z}\right)=\left[\begin{array}{cccc}
S_{x} & 0 & 0 & 0 \\
0 & S_{y} & 0 & 0 \\
0 & 0 & S_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- Rotation:

$$
R_{z}(\Theta)=\left[\begin{array}{cccc}
\cos (\theta) & -\sin (\theta) & 0 & 0 \\
\sin (\theta) & \cos (\theta) & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Extra: Example of Invariance of Projective Transformation, The Cross Ratio

Definition:

$$
\begin{gathered}
x=\frac{C A}{C B} / \frac{D A}{D B} \\
\frac{C A}{C B} / \frac{D A}{D B}=\frac{C^{\prime} A^{\prime}}{C^{\prime} B^{\prime}} / \frac{D^{\prime} A^{\prime}}{D^{\prime} B^{\prime}}
\end{gathered}
$$

$$
\begin{aligned}
& \text { area } O C A=\frac{1}{2} h \cdot C A=\frac{1}{2} O A \cdot O C \sin \angle C O A \\
& \text { area } O C B=\frac{1}{2} h \cdot C B=\frac{1}{2} O B \cdot O C \sin \angle C O B \\
& \text { area } O D A=\frac{1}{2} h \cdot D A=\frac{1}{2} O A \cdot O D \sin \angle D O A \\
& \text { area } O D B=\frac{1}{2} h \cdot D B=\frac{1}{2} O B \cdot O D \sin \angle D O B
\end{aligned}
$$

Hence

$$
\begin{aligned}
\frac{C A}{C B} / \frac{D A}{D B}=\frac{C A}{C B} \cdot \frac{D B}{D A} & =\frac{O A \cdot O C \sin \angle C O A}{O B \cdot O C \sin \angle C O B} \cdot \frac{O B \cdot O D \sin \angle D O B}{O A \cdot O D \sin \angle D O A} \\
& =\frac{\sin \angle C O A}{\sin \angle C O B} \cdot \frac{\sin \angle D O B}{\sin \angle D O A}
\end{aligned}
$$

Invariance of cross-ratio under parallel projection

Sign of cross-ratio

$$
\begin{aligned}
(A B C D)=\frac{C A}{C B} / \frac{D A}{D B} & =\frac{x_{3}-x_{1}}{x_{3}-x_{2}} / \frac{x_{4}-x_{1}}{x_{4}-x_{2}} \\
& =\frac{x_{3}-x_{1}}{x_{3}-x_{2}} \cdot \frac{x_{4}-x_{2}}{x_{4}-x_{1}}
\end{aligned}
$$

Cross-ratio in terms of coordinates.

Reading Assignment and News

Chapter 4 pages 181-201, of Recommended Text.
Please also track the News section of the Course Web Pages for the most recent Announcements related to this course.
(http://www.cs.utexas.edu/users/bajaj/graphics23/cs354/)

