
1

The Mechanical Verification of
Distributed Systems

J. M. Crawford
D. M. Goldschlag

Technical Report #7 July 1987

Computational Logic, Inc.

1717 West Sixth Street

Suite 290

Austin, Texas 78703

Computational Logic Inc.

1717 W. 6th St. Suite 290

Austin, Texas 78703

(512) 322-9951

2

Acknowledgements

At the University of Texas at Austin, Crawford’s work was supported in part by Grant ARO DAAG 29-84-

k-0060. Goldschlag’s work was supported in part at the University of Texas by NSF Grant DCR81-22039 and

at Computational Logic, Inc., by the Defense Advanced Research Projects Agency, ARPA Orders 6082 and

9151. The views and conclusions contained in this document are those of the authors and should not be

interpreted as representing the official policies, either expressed or implied, of Computational Logic, Inc., the

Defense Advanced Research Projects Agency or the U.S. Government.

1

Chapter 1

INTRODUCTION

This paper describes a theory for the mechanical verification of distributed systems which has been

implemented on the Boyer-Moore theorem prover [1] [2]. The Boyer-Moore Logic, the language of the

theorem prover, is a quantifier free version of predicate calculus, with recursion. Our theory has been used to

mechanically prove safety and liveness properties for a solution to the N-processor mutual exclusion problem.

It defines a novel characterization of fairness and demonstrates the use of an operational semantics to derive

proof rules.

1.1 The Transition System Model

Our model of distributed systems is a transition system model. A transition system consists of a set of system

states, and a set of mappings from system states to system states called processes. A process is selected and

applied to some initial state, producing a new state. This is repeated, generating a sequence of system states,

called a system computation, and a sequence of process names, called a trace. If every process name appears

infinitely often in the trace, the trace is said to be (weakly) fair.

The behavior of the transition system model can be abstractly characterized by meta-theorems called proof

rules. These proof rules are used to prove safety and liveness properties. Safety properties state that a bad

property is never introduced into the system; liveness properties state that a good property will eventually hold.

In order to prove a property about a transition system, one must prove that the property holds for all fair traces.

The fairness of traces is critically important for proving liveness properties.

Implicit in the transition system model is the assumption that the execution of a distributed system can be

modeled by interleaving atomic transitions. An atomic transition executed concurrently with other events

produces the same result it would have produced if executed in isolation. Furthermore, the transition system

model assumes that processes are scheduled fairly. Thus, the domain of the transition system model is those

distributed systems which satisfy the assumptions of atomicity and fairness.

2

1.2 The Boyer-Moore Logic and its Theorem Prover

The Boyer-More Logic is a quantifier free version of predicate calculus with recursion. All formulas are

implicitly universally quantified. Recursive functions are allowed, provided that one can prove that they

terminate. The syntax of the logic is similar to Pure Lisp. Since we use the Boyer-Moore Logic in this paper,

we now present informal definitions for several common Boyer-Moore functions.

• The term (Add1 X)’s value is the number one greater than X.

• List makes a list out of its arguments; e.g., the term (List X Y) is a list containing two elements, X
and Y.

• Car extracts the first element of a list; hence (Car (List X Y) is X.

• Cdr returns everything in the list but the first element; hence (Cdr (List X Y)) is (List Y).

• Cons inserts its first argument into a list which is its second argument.

• Multiple Car’s and Cdr’s may be combined into a single function by putting the appropriate
sequence of a’s and d’s between C ⋅ ⋅ ⋅ R (e.g., (Cadr X) = (Car (Cdr X)).

• (If X Y Z) is a test. If X is false, then the If returns Z; otherwise, the value is Y.

• (Numberp X) returns true if X is a number; otherwise, it returns false.

• (Zerop X) returns true if X is 0 or is not a number; otherwise, it returns false.

• (Fix X) returns X if X is a number; otherwise, it returns 0.

• (Lessp X Y) returns true if X is numerically less than Y; otherwise, it returns false.

• Constants preceded by a single apostrophe: (e.g., the constant P is ’P).

Other functions will be defined when they are used in the text. The Boyer-Moore theorem prover allows one to

define functions in the Boyer-Moore Logic, and to prove theorems about those functions. The theorem prover

will not validate theorems which it cannot prove from previous theorems and definitions. Thus, proofs on a

mechanical theorem prover are more reliable than hand proofs, and guarantee a standard level of formality.

1.3 Our Theory

We describe fair traces by a function which takes a process name and a position in the trace and returns the next

position in the trace where that process name occurs. Such functions, which we call Next-Clock functions,

correspond to fair traces. In our theory we consider an arbitrary Next-Clock function; therefore all results are

valid for all fair traces.

We define a function that, for the arbitrary Next-Clock function and any set of processes, simulates the system

computation. This function and the processes are defined in the Boyer-Moore Logic. This function is an

operational semantics for distributed systems. From this operational semantics, we derive several general

3

theorems which hold for any set of processes and facilitate the proofs of safety and liveness properties. We call

these general theorems proof rules because they are similar to the proof rules taken as axioms in other

theories [3] [4]. In the case study, we define a set of processes that solves the mutual exclusion problem, and

mechanically verify that solution using the proof rules.

4

Chapter 2

THE MODEL

2.1 Next-Clock

We now define the set of Next-Clock functions, and examine their relationship to fair sequences.

2.1.1 Notation

First some notation describing sequences:

Definition 1: An (infinite) total sequence with alphabet A is a mapping from the non-negative
integers to the set A.

Definition 2: An (infinite) partial sequence with alphabet A is a partial mapping from the non-
negative integers to the set A.

Definition 3: For a sequence T let

• T denote the i’th element of the sequence (the first element is T).i 0

• T:i denote the first i elements of T.

• <e> denote the singleton sequence with element e.

• ; denote sequence concatenation.

Definition 4: A sequence T is fair to R iff (∀ p: p ∈ R : (∀ i: i ≥ 0: (∃ j: j ≥ i: T =p)))j

If T is fair to R then each element of R appears infinitely often in T.

2.1.2 The Next-Clock Function

We will now formally introduce the Next-Clock functions and prove their close relationship to fair sequences.

The relationship holds for sequences with any alphabet but it may be helpful to think of sequences of processes

(traces of distributed systems).

Let U denote a countably infinite set and I denote the integers. A Next-Clock function is a mapping:

Next-Clock : U × I → I (1)

such that for all p, q ∈ U and i ∈ I:

5

Next-Clock(p, i) ≥ i (2)

Next-Clock(p, i) = Next-Clock(q, i) → p=q (3)

Next-Clock(p,i) > i → Next-Clock(p,i+1) = Next-Clock(p,i) (4)

Next-Clock(p, i) may be viewed as the next time at or after time i at which process p is scheduled. (2) states that

Next-Clock(p, i) is not before i. (3) implies that only one process is scheduled at a given time. (4) requires that

processes are not rescheduled (e.g., if Next-Clock(p, 1) = 3 then Next-Clock(p, 2) = 3).

Next-Clock functions are idempotent on their second argument.

Next-Clock(p, i) = Next-Clock(p, Next-Clock(p, i)) (5)

The proof of this, from equations (2)-(4), is by upward induction on i.

2.1.3 Next Clock Functions and Fair Sequences

A Next-Clock function defines a sequence.

Definition 5: The sequence T corresponding to a Next-Clock function NC is:

T = p iff NC(p,i)=i.i

We know from equation (3) that there is at most one p such that NC(p,i) = i so T is well defined. However,

since there may be an i such that (∀ p :: NC(p, i) ≠ i), T is a partial sequence. Partial sequences can be made

total by reindexing. Reindexing is accomplished by restriction:

Definition 6: The restriction of sequence V to alphabet A is V/A:

i := 0;
j := 0;
while TRUE do

if (V ∈ A) then (V/A) := V ;i j i
j := j + 1;

i := i + 1;

The reindexing of T is T\U. We can also restrict a sequence to a total sequence with a smaller alphabet. If A ⊆

U then T/A is a total trace with alphabet A.

Now consider the set of all Next-Clock functions and the set of all fair sequences. They are related by the

following theorem:

Theorem 7: NEXT-CLOCK THEOREM: A sequence T with alphabet A ⊆ U is fair to A iff it is the
restriction to A of a sequence corresponding to a Next-Clock function.

6

This theorem is actually quite intuitive. Fairness in a process sequence corresponds to the idea that every

process in the system is still "alive." Thus, every process eventually appears again in the sequence. A

Next-Clock function is intuitively a skolemization of exactly when this next appearance will be.

This theorem is important because it shows that our definition of Next-Clock is appropriate for characterizing

fair traces. Also, the proof shows that Next-Clock functions exist; hence, the definition of Next-Clock is

consistent.

The proof of this theorem is quite intuitive. In a sequence fair to alphabet A every element appears infinitely

often; Next-Clock is a skolemization of the next appearance.

In the proof that follows, alphabet A is implicitly quantified over all subsets of U. A Next-Clock function, NC,

is implicitly quantified over all Next-Clock functions

We will first show that any restriction to A of a sequence corresponding to a Next-Clock function is fair to A;

and then show that any sequence fair to its alphabet A is the restriction to A of a sequence corresponding to

some Next-Clock function.

Theorem 8: The sequence T corresponding to a Next-Clock function NC is fair to U.

Proof: Observe that for any NC
the corresponding T is fair to U
= { def of fairness (4)}
(∀ p: p ∈ U (∀ i: i ≠ 0 : (∃ j: j ≥ i: T =p)))j
Observe for all p, i

let j = NC(p,i) (j ≥ i by (2))
→ {(5)}
j = NC(p, NC(p,i))
=> { def j}
j = NC(p, j)
=> {def correspondence (definition 5)}
T.j = p

Then we must show that the restriction of T to A yields a sequence fair to A.

Theorem 9: T fair to U → T/A fair to A.

Proof: Requires two sublemmas.

Lemma (i): Any sequence fair to U is fair to A.
Proof: immediate from definition (4).

Lemma (ii): For any sequence V, V fair to A →
V/A fair to A.
Proof: First we construct the function elem(A,V,i)
which returns the number of elements of A occurring

7

in V with index less than i:

Definition 10:

elem(A,V,0) = 0
elem(A,V,i+1) = 1 + elem(A, V, i) if V ∈ Ai

elem(A, V, i) otherwise

One can then show by induction on i that:

V ∈ A → V = V/A (6)i i elem(A, V, i)

Thus V/A is fair to A by definition (4).

Now, T is fair to U
→ {lemma (i)}
T is fair to A
→ {lemma (ii)}
T/A is fair to A.

Thus, any restriction to A of a sequence corresponding to a Next-Clock function is fair to A.

For the other part of the iff, for any sequence V, fair to its alphabet A, we construct a Next-Clock function NC

which corresponds to a sequence which when restricted to A yields V.

We begin by constructing a sequence T from V which is fair to U but which, when restricted to A (the alphabet

of V), yields V. Let W be a sequence fair to U/A. (U/A is the set difference of U and A.)

T = V ||| W (7)

Definition 11: ||| is the sequence interleaving operator:

(S1 ||| S2) = S1 if i eveni i div 2
S2 if i oddi-1 div 2

div is integer division.

It remains to show that such a W exists:

Theorem 12:

For any countably infinite set C there exists a sequence
fair to C.

Proof: If C is countably infinite then so is C × C. Let e
be an enumeration of C × C. We can view e as a sequence
with alphabet C × C. Let W be the sequence of the first
components of e. Since every possible pair (c1, c2) with
c1 ∈ C, c2 ∈ C must occur in e thus every first element
must appear infinitely often in e and thus in W.

8

T is fair to U by:

Theorem 13:

If S1 is fair to A1 and S2 is fair to A2 then (S1 ||| S2)
is fair to (A1 ∪ A2).

Proof: by definition of fairness (definition 4) and
interleaving (definition 11).

We show that the restriction of T to A yields V.

Theorem 14: T/A = V

Proof: We will need one lemma:
Lemma (iii): elem(A, (V ||| W), i) = i div 2.
Proof: If i is even then by the definition of |||,
(V ||| W) = V .i i div 2
Thus, (V ||| W) ∈ A (since A is the alphabet of V).i
Similarly if i is odd, (V ||| W) ¬in" A. Thus, byi
induction on i, elem(A, (V ||| W), i) = i div 2.

Observe for any i
(T/A)i
= {equation (7)}
((V ||| W)/A)i
= {let j = 2i and by Lemma (iii)}
((V ||| W)/A)elem(A, (V ||| W), j)
= {equation (6) since even j → (V ||| W) ∈ A}j
(V ||| W)j
= {definition of j}
(V ||| W)2i
= {definition 11}
Vi

Finally we construct from T a Next-Clock function NC which corresponds to T.

NC(p, i) = (Min j: j ≥ i: T = p) (8)j

Min is the minimum function.

NC is a Next-Clock function. (2) is immediate from the restriction j ≥ i. (3) is just:

NC(p,i) = NC(q,i)
→ {def of NC (8)}
(MIN j: j ≥ i: T = p) = (MIN j: j ≥ i: T = q)j j
→ {def of Min}
(∃ k:: (T = p) ∧ (T = q))k k
→
p = q

Finally (4) follows from the observation that for any predicate w:

9

(Min j: j ≥ i: w(j)) > i) →
(Min j: j ≥ i: w(j)) = (Min j: j ≥ i+1: w(j))

We complete the proof by:

Theorem 15: NC corresponds to T.

Proof: Let Z be the sequence corresponding to NC by (5).
Observe for any i
Zi
= {definition 5 with p = T }i
T iff NC(T , i) = ii i
= {def of NC (equation 8)}
T iff (Min j: j ≥ i: T = T) = ii j i
= {def of Min}
Ti

Q.E.D.

2.1.4 Interpretation of Next Clock

If we take U to be a set of process names then a Next-Clock function is a description of a fair trace. One should

consider Next-Clock to be an arbitrary Next-Clock function. Hence, it describes an arbitrary fair trace. We can

identify points of interest in this trace. Let P and Q be distinct process names. For instance, the first time at or

after Clock that process P is scheduled is:

(Next-Clock P Clock) (9)

However, the first time after Clock that process P is scheduled is:

(Next-Clock P (Add1 Clock)) (10)

The Add1 is necessary to ensure that Next-Clock does not return Clock, if indeed the process is scheduled at

Clock. Using these two techniques, the term describing the second time at or after Clock that process P is

scheduled is:

(Next-Clock P (11)
(Add1 (Next-Clock P Clock)))

The Add1 on the inner Next-Clock is required for reasons similar to those given in equation (10). Other, more

complicated manipulations of Next-Clock are possible. We conclude with two more examples here. The

earliest time at or after Clock such that either process P or Q is scheduled is:

(Min (Next-Clock P Clock) (12)
(Next-Clock Q Clock))

10

Min is the minimum function. No matter which Next-Clock value is returned, the other process is not scheduled

in the interval between Clock and that value. The earliest time at or after Clock such that both P and Q have

been scheduled is:

(Max (Next-Clock P Clock) (13)
(Next-Clock Q Clock))

Max is the maximum function. The proof that this equation (13) is equal to the more complicated, but perhaps

more obvious, formula is left to the reader:

(Min (Next-Clock P (14)
(Next-Clock Q Clock))

(Next-Clock Q
(Next-Clock P Clock)))

Given these examples, it should be clear it is possible to determine the clock value associated with any point in

the computation. In fact, it is often necessary to write functions that compute these clock values during the

course of a liveness proof.

2.2 The Operational Semantics

In this section, we develop an operational semantics for distributed systems.

Recall that a system computation is a sequence of system states:

S = S , S , S , . . . (15)0 1 2

Each subsequent S is the result of the transition effected on S by the process executed at i. This process mayi+1 i

be identified using the Next-Clock function. For any set of processes, Process-List, and any value Clock,

Choose-Fairly collects all the processes that Next-Clock maps to that same value of Clock (notice, however, that

the resulting set has at most one element). Formally:

Definition 16: (Choose-Fairly Process-List Clock) =

(If (Listp Process-List)
(If (Equal (Fix Clock) (Next-Clock (Car Process-List)

Clock))
(Cons (Car Process-List)

(Choose-Fairly (Cdr Process-List) Clock))
(Choose-Fairly (Cdr Process-List) Clock))

Nil)

Choose-Fairly identifies the process description scheduled at a particular clock value. Given any initial state,

the system state at the end of an interval is computed by applying the process chosen by Choose-Fairly at the

11

beginning of that interval to the initial state, and repeating with the new state and the rest of the interval. This is

done by the function Int (mnemonic for Interpreter), for a set of processes Process-List, an interval from Clock

to Max-Clock, and an initial state System-State:

Definition 17: (Int Process-List Clock Max-Clock System-State) =

(If (Lessp Clock Max-Clock)
(Int Process-List

(Add1 Clock)
Max-Clock
(Single-Step (Choose-Fairly Process-List

Clock)
Process-List
Clock
System-State))

System-State)

Single-Step is a function which applies a single process (its first argument) to the system state and returns the

new state. If no process is scheduled, then Single-Step returns the unchanged system state:

Definition 18: (Single-Step Process-Description Process-List Clock System-State) =

(If (Listp Process-Description)
(Apply$ (Caar Process-Description)

(List (Cadar Process-Description)
(Family-Size (Caar Process-Description)

Process-List)
(Fix Clock)
System-State))

System-State)

Single-Step checks the process description. Since Choose-Fairly returns Nil (the empty list) when no process is

scheduled, the false branch of the If simply returns the system state; this is the identity transition. When a

process is scheduled, however, the value returned is the function application of that process on several

arguments. For now, we simply claim that the Apply$ does that function application. When we describe the

process specification, we will explain Single-Step more completely.

Using Int, we can generate the infinite computation by varying only Max-Clock (and keeping the other

arguments constant):

S = (Int Process-List 0 0 Initial-State), (16)
(Int Process-List 0 1 Initial-State), . . .

Furthermore, we can identify the final system state associated with any interval of the computation using:

(Int Process-List Clock Max-Clock System-State) (17)

12

Each argument is then instantiated appropriately. For example, if we want to identify the system state following

the next run of process P, we instantiate Max-Clock with (Add1 (Next-Clock P Clock)).

Since Next-Clock is an arbitrary Next-Clock function, theorems about Int are valid for all Next-Clock functions.

The trace generated by Choose-Fairly is a partial trace with alphabet Process-List. Since Single-Step treats

undefined indices as the identity transition, this trace generates a system computation equivalent to the system

computation that would be generated from this trace were it restricted to Process-List (albeit with repeated

states).

This restricted trace is the restriction to Process-List of the trace corresponding to Next-Clock. Thus, by the

Next-Clock Theorem (7), theorems about Int are valid for all and only fair traces.

2.3 The Process List

The first argument to Int is the process list. The process list is a set describing the processes in the system. This

section defines the process list and its syntax, and identifies the requirements and constraints that influenced its

design.

Definition 19: A process description is an identifier for a single process.

Definition 20: A process list is a set of process descriptions.

Definition 21: An indexed process is a single process in an array of processes.

Using indexed processes, one specification may define an arbitrarily large number of processes, each of which

differ only by an index.

The process list design must meet certain criteria. Each process description in the process list must have the

same format. This format must be sufficiently general to allow for indexed processes. Furthermore, we wish to

describe the process list which contains an identifier for each process in the system (the linear representation)

more abstractly (by a non-linear representation). We must then have functions that map from a non-linear

representation to a linear one. Finally, the representations of the two levels must provide a simple methodology

for lifting proofs about the behavior of single processes to proofs about the behavior of the entire system.

13

2.3.1 The Non-Linear Representation

We begin by describing the non-linear representation. The processes in a distributed system are sufficiently

described by a set of families of processes, each family having a name and a size. The name of a family is the

name of the function specifying the behavior of processes in that family. The size corresponds to the number of

instances of processes in that family. A family size of N will correspond to indices from 0 to N-1. This

representation is called a system description, and is represented by a list of lists, where each sublist has two

elements: the family name and the family size. As an example, a system consisting of only one family, named

P, with family size one, would have the following system description:

(List (List ’P 1)) (18)

2.3.2 The Linear Representation

The linear representation of a system description is a process list. The process list is a set of process

descriptions each of which is a list of two elements: the name of the family that the process belongs to, and that

process’s index. For example, the process list corresponding to the system description given in equation (18) is:

(List (List ’P 0)) (19)

The system description specifies only one process, with family name P and index zero. As another example

consider a system description of two families, P and Q, with family sizes m and n, respectively. The system

description is:

(List (List ’P m) (20)
(List ’Q n))

The corresponding process list is:

(List (List ’P 0) ⋅ ⋅ ⋅ (List ’P m-1) (21)
(List ’Q 0) ⋅ ⋅ ⋅ (List ’Q n-1))

Of course, any permutation of the previous list is suitable. This two level representation is convenient because

it provides Int with the linear process list it expects, while giving the user the ability to describe systems in a

concise manner. Furthermore, although in these examples this method is used to describe singly subscripted

processes, this method is easily generalized to multi-subscripted processes.

14

2.3.3 The Technical Advantage

At a more technical level, however, this standard two level representation provides another advantage. We first

define the function that builds a process list for a single family:

Definition 22: (Make-Family Family-Name Current-Index) =

(If (Zerop Current-Index)
Nil
(Cons (List Family-Name (Sub1 Current-Index))

(Make-Family Family-Name
(Sub1 Current-Index))))

Make-Family, given a family name, Family-Name and an index, Current-Index, generates a list of elements of

the form (List Family-Name i) for all i between 0 and Current-Index - 1.

Using Make-Family, we define the function that maps between system descriptions and process lists:

Definition 23: (Make-Process-List System-Description) =

(If (Listp System-Description)
(Append (Make-Family (Caar System-Description)

(Cadar System-Description))
(Make-Process-List (Cdr System-Description)))

Nil)

For all family name, family size pairs, Make-Process-List generates the corresponding process lists and appends

all of the lists together.

When process lists are formed from system descriptions using the function Make-Process-List, we can specify

necessary and sufficient conditions for process descriptions to be elements of the process list. This is expressed

in the following theorem:

Theorem 24:

(Implies (Setp (Family-Names System-Description))
(Equal (Member Process-Description

(Make-Process-List
System-Description))

(And (Numberp (Cadr Process-Description))
(Lessp (Cadr Process-Description)

(Declared-Family-Size
(Car Process-Description)
System-Description))

(Member (Car Process-Description)
(Family-Names
System-Description))

(Equal (Length Process-Description)
2)

(Equal (Cddr Process-Description)
Nil))))

15

Declared-Family-Size is the function that returns the family size of its first argument as specified in the system

description (its second argument). This theorem states that if a system description contains no repeated

families, then every process description in the corresponding process list must have several characteristics.

Furthermore, every process description with those characteristics is in the process list. These characteristics are

an abstract characterization of valid process descriptions. Using these characteristics, the behavior of every

instance of a family can be described by a theorem stating the behavior of a single instance with an arbitrary

index (less than that family’s family size). This theorem, in conjunction with the proof rules, is the interface

between process level properties and system level properties.

2.4 Specification of Processes

Each family has a specification. The specification is a function in the Boyer-Moore Logic. The specification of

a process is the specification of its family with the process’s index and family size instantiated. Every family

specification takes four arguments:

1. Index: The instance of the process.

2. Family Size: The family size.

3. Clock: The clock in Int. Since it varies from transition to transition, it may be used to model non-
determinism.

4. System State: The state of the system.

Given these arguments, each specification specifies the resulting system state.

2.4.1 An Example Specification

As an example, consider the specification of a family of processes which copy messages from one channel to

another. At each transition, a process should read a message from its left channel, and send that message on its

right channel. The name of the family should be Copy.

Definition 25: (Copy Index Family-Size Clock System-State) =

(If (Channel-Emptyp (Cons ’Left Index) System-State)
System-State
(Send (Get-Head (Cons ’Left Index) System-State)

(Cons ’Right Index)
(Receive (Cons ’Left Index) System-State)))

Send and Receive are the appropriate list functions to model channels; Get-Head returns the first message in a

channel; Channel-Emptyp tests whether the channel is empty. Each process has its own left and right channel:

the name of the left channel is (Cons ’Left Index) (the Index’th left channel); the name of the right channel is

(Cons ’Right Index) (the Index’th right channel). If the left channel is empty, Copy returns the original system

16

state. If not, Copy returns the system state altered by sending the message from the head of the left channel

upon the right channel, and shortening the left channel.

There are several important points in this example. First, this definition of Copy does not depend upon the

value of Family-Size. This is because its copying is independent of the number of other indexed Copy

processes. Second, Copy does not use its Clock argument, because it is deterministic.

Third, the Boyer-Moore Logic defines no notion of channels; we assume that channels are satisfactorily

modeled by lists, where receive operations shorten the list, and send operations append messages to the end of

the list. The definitions of Channel-Emptyp, Get-Head, Send, and Receive are simply definitions satisfying that

model.

Finally, we make no claim that processes ought to be specified or be implemented in a functional language.

The only claim we make is that it is convenient to prove properties about functional specifications. These

functional specifications may be translated into more efficient ones; conversely, specifications in other notations

may be translated to their functional equivalents.

2.4.2 Interaction with Single-Step

All specifications have the same argument list because Single-Step’s interface with a process is static. Hence,

all the information that any process may need is in the argument list, even though many specifications may not

need all the arguments. Let us now examine Single-Step again, in the context of the Copy specification.

(Single-Step Process-Description (22)
Process-List Clock System-State)

=
(If (Listp Process-Description)

(Apply$ (Caar Process-Description)
(List (Cadar Process-Description)

(Family-Size (Caar Process-Description)
Process-List)

(Fix Clock)
System-State))

System-State)

Family-Size is the analog of Declared-Family-Size for process lists. It returns the number of instances of a

particular family (its first argument) in the process list (its second argument).

Let us suppose that Process-Description is a list containing the process description of the zero’th instance of the

Copy family defined above (just like Choose-Fairly would return). That is, Process-Description is:

17

(List (List ’Copy 0)) (23)

Let us further assume that the family size of Copy is N. Single-Step then returns the value of the Apply$.

Instantiating the Apply$ yields:

(Apply$ ’Copy (24)
(List 0

N
(Fix Clock)
System-State))

Informally, this Apply$ is equivalent to a function call of Copy on the elements of the list that is the second

1argument to Apply$. The arguments are used in order. So the Apply$ becomes:

(Copy 0 N (Fix Clock) System-State) (25)

This is the expected call to Copy. As an aside, Copy may be used to specify a minimum channel delay, to

prevent instantaneous channel communication.

2.4.3 Implementability

An algorithm is implementable if it may be realized upon a real machine. Hence, the implementability of a

specification is dependent upon both the algorithm and the target architecture. Given a specification and an

architecture, the notion of implementability may be split into two distinct questions:

• Are all the operations that the specification requires available on the target architecture? For
example, if the specification requires channel communication, does the architecture support
channels? The questions may be more involved: does the specification require shared memory?
Is the memory model appropriate for the specification available on the architecture?

• Are all of the transitions required by the specification guaranteed to be atomic on the target
architecture? The transition model of distributed systems requires that all transitions terminate
with the expected result even if other process are running concurrently. This is a reasonable
assumption because one can design specifications that do not require transitions which are not
atomic on the target architecture. For example, on a message based architecture, with only local
memory, it is reasonable to expect that a process may access its memory an arbitrary number of
times in any transition, since no other process may access that memory. On the other hand, it may
not be reasonable to expect that a process be able to send and receive an arbitrary number of
messages during a single transition, since the communication devices may be updated during the
transition.

Since the notion of implementability and the correctness of that implementation is quite a different matter from

proving properties of specifications within the transition model of distributed systems, we do not make any

1The actual definition of Apply$ is more complicated, but when its first argument is the name of a total function, this informal definition
is satisfactory.

18

attempt to formalize architectural limitations, or to prove that a specification is realizable on a particular

architecture. It is easy to devise a programming language only expressive enough to allow programs for a

particular architecture. If a specification may be translated into that programming language, then the

specification may be realized on that architecture.

2.5 Proof Rules

The operational semantics defined by Int is sufficient to prove safety and liveness properties for distributed

systems. However, such proofs are facilitated by proof rules. The proof rules we develop in this section offer

an abstract mechamism for verifying distributed systems. We have stated the proof rules in a version of the

Boyer-Moore logic which defines second order functions [2], and have mechanically verified their derivation

from the definition of Int.

2.5.1 Compositionality

The first proof rule states that Int is composable:

Theorem 26: Compositionality

(Implies (And (Not (Lessp Time Clock))
(Not (Lessp Max-Clock Time)))

(Equal (Int Process-List
Time
Max-Clock
(Int Process-List Clock

Time System-State))
(Int Process-List Clock

Max-Clock System-State)))

This theorem states that two adjacent intervals of the computation may be composed into one, using Int over the

larger interval.

2.5.2 Invariance

The second proof rule is used to prove invariants. Invariants are properties that are preserved by the system

throughout the computation. That is, if an invariant holds on the initial state, it will hold on all subsequent

states. For any property Q and process list Process-List, invariance theorems have the following form:

(Implies (Q System-State) (26)
(Q (Int Process-List

Clock
Max-Clock
System-State)))

Since Clock Max-Clock and System-State are universally quantified, such a theorem states that if Q holds on

System-State it will hold on every future point in the computation.

19

The invariance proof rule should have a consequent that looks like equation (26). The only interval of the

computation mentioned in the proof rule is Clock to Max-Clock. Therefore, the antecedent should state that Q

is preserved over every transition in that inverval. Each transition is effected by Single-Step on the current

system state when passed the process description chosen by Choose-Fairly. The antecedent is captured by the

following definition:

Definition 27: (Invariance-Over-Single-Step Process-List Clock Max-Clock System-State) =
2(∀ Time: Clock ≤ Time < Max-Clock:

(Implies (Q (Int Process-List
Clock
Time
System-State))

(Q (Single-Step (Choose-Fairly Process-List
Time)

Process-List
Time
(Int Process-List

Clock
Time
System-State)))))

Since System-State is the state at the beginning of the interval, the current system state at any Time in the

interval is:

(Int Process-List
Clock
Time
System-State)

Definition (27) says that every transition in the interval preserves Q. That is, if the current system state satisfies

Q, then the next system state also satisfies Q.

The invariance equation (26) and definition (27) are then combined to form the proof rule:

Theorem 28: Invariance Proof Rule

(Implies (Invariance-Over-Single-Step Process-List
Clock
Max-Clock
System-State)

(Implies (Q System-State)
(Q (Int Process-List

Clock
Max-Clock
System-State))))

To use this proof rule to prove invariance properties, one must prove theorems of the following form for each

family Family with family size Family-Size:

2Appendix I discusses the expression of embeded quantification in the Boyer-Moore Logic.

20

Theorem 29:

(Implies (And (Lessp Index Family-Size)
(Numberp Index)
(Q System-State))

(Q (Family Index
Family-Size
Clock
System-State)))

Such theorems state that every valid instance of a family preserves property Q. From such theorems one

appeals to the invariance proof rule to prove system level invariance properties (equation (26)).

2.5.3 Progress

A progress property states that if a property Q holds for some state then a property R will hold at a later state.

The basic progress proof rule uses the following scheme: assume a property Q is preserved by all processes

except for one key process and that key process changes a system state satisfying property Q to a system state

satisfying property R. Under this assumption, if the system starts in a state satisfying Q then it will satisfy R

right after the key process runs.

Assume that the key process’s name is P, the initial system state is System-State, and the initial clock is Clock.

Since Q is preserved by all processes but P, and P is not scheduled during the interval Clock to (Next-Clock P

Clock), Q is stable over that interval. Furthermore, P is scheduled at (Next-Clock P Clock), so, R will hold

subsequently. This is stated in the following scheme for progress proofs, given a process list Process-List and

process named P in that process list.

Theorem 30:

(Implies (Q System-State)
(R (Int Process-List

Clock
(Add1 (Next-Clock P Clock))
System-State)))

To run Int through (Next-Clock P Clock), it must be passed a Max-Clock that is one greater.

The actual progress proof rule is more general. It has the following antecedents:

• The property Q is stable over an interval.

• If the interval ends satisfying Q then the property R holds one step after the end of the interval.

The proof rule is:

21

Theorem 31: Progress Proof Rule

(Implies (And (Lessp Clock Max-Clock)
(Invariance-Over-Single-Step Process-List

Clock
(Sub1 Max-Clock)
System-State)

(Implies (Q (Int Process-List
Clock
(Sub1 Max-Clock)
System-State))

(R (Single-Step
(Choose-Fairly Process-List

(Sub1 Max-Clock))
Process-List
(Sub1 Max-Clock)
(Int Process-List

Clock
(Sub1 Max-Clock)
System-State)))))

(Implies (Q System-State)
(R (Int Process-List

Clock
Max-Clock
System-State))))

To use the proof rule to prove basic progress properties, one instantiates Max-Clock to the Add1 of Next-Clock

of the key process. A more complex progress property, in which any one of a set of key processes changes a

system state satisfying property Q to a system state satisfying property R, would be proved by instantiating

Max-Clock to the minimun of the Next-Clock’s of the key processes.

The invariance and progress proof rules allow one to prove properties about processes and automatically lift

those properties to system level properties.

22

Chapter 3

A CASE STUDY

In this section, we present a mechanically verified solution to the mutual exclusion problem. Since there are

many well known solutions to the mutual exclusion problem, we concentrate on specifying the problem in our

formalism, and on presenting the techniques that we used to mechanically verify its solution.

3.1 The Informal Specification

We define a process Me, which is a member of a ring of N similar processes connected by N channels. This

process has three states: Non-Critical, Wait, and Critical. Me non-deterministically changes from Non-Critical

to Wait. If Me is Waiting and has a token upon its left channel, it absorbs the token and becomes Critical for an

arbitrary, but finite, number of transitions. When Me leaves its Critical state, it releases a token upon its right

channel and becomes Non-Critical. If Me is Non-Critical and does not change to Wait, it copies a token from

its left to its right channel, if a token is available.

The system, consisting of N instances of Me, satisfies two properties:

• Mutual Exclusion: At most one process is Critical at any time.

• Liveness: Any Waiting process eventually becomes Critical.

This is the system specification. (References to simply specification refer to the specification of the process

Me.)

In this specification, we assume a message based architecture with only local memory. We further assume that

it is reasonable for a process to do as much as test its left channel, read from its left channel, and send on its

right channel during a single transition. If these assumptions are not appropriate for another architecture, then

the longer transitions may be split into a sequence of shorter ones. (Of course, the proofs would have to be

altered).

23

Figure 3-1: Transitions of Process Me

Figure 3-2: Ring of N instances of Me

24

3.2 The Formal Specification

We now present the formal specification for the process Me:

Definition 32: (Me Index Family-Size Clock System-State) =

(i) (If (Equal (Get-State (Cons ’Me Index) System-State)
’Non-Critical)

(ii) (If (Random-Boolean Clock)
(Update-State (Cons ’Me Index)

’Wait
System-State)

(iii) (If (Channel-Emptyp (Cons ’C Index)
System-State)

System-State
(Send ’Token

(Cons ’C (Add1-Mod Family-Size Index))
(Receive (Cons ’C Index)

System-State))))
(iv) (If (Equal (Get-State (Cons ’Me Index) System-State)

’Wait)
(v) (If (Channel-Emptyp (Cons ’C Index) System-State)

System-State
(Update-State (Cons ’Me Index)

(Random-Number Clock)
(Receive (Cons ’C Index)

System-State)))
(vi) (If (Zerop (Get-State (Cons ’Me Index)

System-State))
(Update-State (Cons ’Me Index) ’Non-Critical

(Send ’Token
(Cons ’C (Add1-Mod

Family-Size
Index))

System-State))
(Update-State (Cons ’Me Index)

(Sub1 (Get-State
(Cons ’Me Index)
System-State))

System-State))))

The argument list to Me is the process’s Index, the Family-Size (it is N), the Clock, and the System-State. Each

process identifies its own state within the system state by the name (Cons ’Me Index), and accesses its state by

(Get-State (Cons ’Me Index) System-State). In a similar manner, channels are named (Cons ’C Index). In this

system, the left channel of the Index’th instance of Me is (Cons ’C Index) and its right channel is (Cons ’C

(Add1-Mod Family-Size Index)) (add one modulo the family size). Update-State replaces the state identified by

its first argument, with its second argument.

The body of Me defines the process. The first If (i) tests whether the process is currently Non-Critical. If it is,

then a random boolean value is checked (ii) to see whether the process should Wait to become Critical. If the

25

random boolean value is true, the process’s state becomes Wait. If not, the process remains Non-Critical, and

sends a token from the left to the right channel, if (iii) there is a token on the left channel.

If the process is not Non-Critical, the If at (iv) tests whether the process is currently in its Wait state. If it is,

then if (v) the left channel is empty, the process remains in the Wait state. If the left channel is not empty, the

process receives a token (shortens the channel), and changes its state to a random number, signifying the

Critical state. This value is referred to as the critical counter.

If the process is neither Non-Critical nor Wait, then it is Critical. The If at (vi) tests whether the process has any

time left in its Critical state. If its critical counter is zero, then the process becomes Non-Critical and sends a

token upon its right channel. If its critical counter is greater than zero, then the process decrements its state (and

remains Critical).

The first obvious feature of this specification is that it does not manufacture tokens. That is, a process will

never add tokens to the system. A process becomes Critical by absorbing a token, and becomes Non-Critical

by releasing one. This arrangement is necessary to preserve mutual exclusion.

The second obvious features in this specification is that a token will move along the ring. No process, not even

a Critical one, will keep a token forever. This property is necessary for liveness proofs.

The subtle point in this specification is one that will not be checked by the system specification. In this

specification, the process changes from Non-Critical to Wait (ii) without inspecting its left channel (iii). If a

token on the left channel were passed to the right before (and in a separate transition from) the process’s change

to the Wait state, the process might never be able to enter its Wait state. Both strategies satisfy the system

specification; however, it is clear that a specification that can prohibit a process from entering its Wait state is

faulty.

The functions Random-Boolean and Random-Number used in the definition of Me provide a notation for

non-determinism necessary to complete the formalization the informal specification. Each of these functions is

defined as a function of one argument with respective ranges of boolean and non-negative integers. Since we

assume nothing about these function beyond these ranges, as long as each invocation of each of these functions

is presented with a different argument, the value of the function at any call is unknown. This is sufficient to

26

model non-determinism. Since the value of the Clock varies from transition to transition, the process uses that

value as the argument to Random-Boolean or Random-Number.

We specify that the system contains N instances of process Me by defining the system description.

Definition 33: (System-Description N) =

(List (List ’Me N))

That is, the system description specifies a single family named Me, with N instances. Whenever the system

description is needed in the proof, we use the term:

(System-Description N) (27)

Notice that the N (like all variables) is universally quantified: the proofs are valid for all N.

Before proceeding with the proof of the invariance and liveness properties for this system, we must first prove

three important properties about the system description. Three similar properties must be proved for every

system description so the proof rules and other theorems may be used automatically by the prover.

The family names in the system description are unique (Family-Names is the function that collects all the family

names in its first argument):

Theorem 34:

(Setp (Family-Names (System-Description N)))

For each family in the system description we prove a theorem of the following form (simplify the declared

family size):

Theorem 35:

(Declared-Family-Size ’Me (System-Description N))
=
(Fix N)

We simplify what membership in the family names means. For systems with more than one family, the

membership should rewrite to a disjunct of equalities:

Theorem 36:

(Equal (Member Process-Name (Family-Names
(System-Description N)))

(Equal Process-Name ’Me))

27

3After these three theorems are proved, System-Description is disabled (its executable counterpart is disabled

also (equation (3))).

3.3 The Specification and Proof of Invariance

The formal statement of mutual exclusion is:

Theorem 37:

(Implies (Mutual-Exclusionp N System-State)
(Mutual-Exclusionp
N (Int (Make-Process-List (System-Description N))

Clock
Max-Clock
System-State)))

The first argument to Int, (Make-Process-List (System-Description N)), is the process list containing the N

instances of process Me. Given the proper definition for Mutual-Exclusionp, this formula specifies mutual

exclusion for the system described above. It reads:

• If a system state satisfies mutual exclusion, then the system state at any subsequent point in the
computation also satisfies mutual exclusion.

Since Clock and Max-Clock are universally quantified, mutual exclusion is invariant over the entire system

computation (if it holds initially, it will hold forever). Hence, properties in this form are called invariance

properties.

3.3.1 The Proof of Invariance

The definition of Mutual-Exclusionp is:

Definition 38: (Mutual-Exclusionp N System-State) =

(Equal (Plus (Weight-Of-Channels N System-State)
(Weight-Of-Processes N System-State))

1)

Mutual exclusion is simply the property that the weight of the system is one. The weight of the system is the

sum of the weight of the processes and the weight of the channels. The weight of the processes is the number of

processes that are Critical; the weight of the channels is the sum of the lengths of the channels.

The invariance of Mutual-Exclusionp (37) is proved using the invariance proof rule (8). The theorems that the

3Disabling a definition discourages the theorem prover from expanding that definition.

28

invariance proof rule requires should state that mutual exclusion is stable over the single transition of each

process in the system. Since there is only one type of process (Me) in this system, this task is accomplished

with the following theorem:

Theorem 39:

(Implies (And (Lessp Index N)
(Numberp Index)
(Mutual-Exclusionp N

System-State))
(Mutual-Exclusionp N

(Me Index N
Clock
System-State)))

This theorem states that given any N, and any numeric Index less than N, if mutual exclusion holds on a system

state, then mutual exclusion will also hold on the system state produced by applying that instance of Me once.

This theorem captures the stability argument for all instances of Me, since those instances have indices ranging

from 0 to N-1.

This theorem is the only statement necessary to prove the system level invariance of (37).

To prove that mutual exclusion is stable over Me (39), we prove that the weight of the system equals the weight

of the system subsequent to a transition of Me. We do this by breaking the proof into two parts, based on the

value of N.

For N with values of zero or one, this property is true by inspection. The following theorem suffices:

Theorem 40:

(Implies (And (Not (Lessp 1 N))
(Numberp Index)
(Lessp Index N))

(Equal (Plus (Weight-Of-Channels N
(Me Index N

Clock
System-State))

(Weight-Of-Processes N
(Me Index N

Clock
System-State)))

(Plus (Weight-Of-Channels N System-State)
(Weight-Of-Processes N System-State))))

For values of N greater than one, we proceed a bit more slowly. For any transition, we split the system state

into two fragments with stable weights. The first fragment, called a triple, is composed of a process along with

29

its left and right channels. For all transitions of the Index’th instance of Me, the weight of its triple is stable.

This is evident by case analysis on that Me’s possible transitions: The left channel may be shortened, but then

Me either becomes Critical, or its right channel is extended. If Me changes state from Critical to Non-Critical,

then its right channel will be extended as well.

The proof that the weight of the triple is stable is done in one step:

Theorem 41:

(Implies (Lessp 1 N)
(Equal (Weight-Of-Triple Index N (Me Index

N
Clock
System-State))

(Weight-Of-Triple Index N System-State)))

The second fragment of the system is all processes and channels in the system that are not accounted for by the

triple. This fragment is not altered at all by a transition of the process in the triple. This is proved using the

next two non-interference theorems:

Theorem 42:

(Implies (And (Not (Equal I Index))
(Not (Equal I (Add1-Mod N Index))))

(Equal (Cdr (Assoc (Cons ’C I) (Me Index
N
Clock
System-State)))

(Cdr (Assoc (Cons ’C I) System-State))))

(Cdr of Assoc is equivalent to Get-State). That is, the value of all channels remains unchanged by a transition of

the Index’th instance of Me except for that process’s left and right channels. This is true because a process does

not interfere with any channel outside the triple. The next theorem is the analogous property for processes:

Theorem 43:

(Implies (Not (Equal I Index))
(Equal (Cdr (Assoc (Cons ’Me I) (Me Index

N
Clock
System-State)))

(Cdr (Assoc (Cons ’Me I) System-State))))

That is, the state of every other process is left unchanged by a transition of Me. This is true, because any

instance of Me only modifies its own local state.

Using these two non-interference theorems (42) and (43), we prove that the weight of the channels outside the

triple, and the weight of the processes outside the triple remain constant.

30

Given that result, we have proved that the weights of the triple, the rest of the processes, and the rest of the

channels are stable. Since the weight of the system (for N greater than one) is the sum of those three, it is stable

too. This is proved in the following theorem:

Theorem 44:

(Implies (And (Lessp 1 N)
(Numberp Index)
(Lessp Index N))

(Equal (Plus (Weight-Of-Channels N
(Me Index

N
Clock
System-State))

(Weight-Of-Processes N
(Me Index

N
Clock
System-State)))

(Plus (Weight-Of-Channels N System-State)
(Weight-Of-Processes N System-State))))

Using this result, and the one proved earlier for N less than two (40), we prove that mutual exclusion is stable

for a single transition of Me (39). This stability property implies the mutual exclusion invariance property (37),

by appeal to the invariance proof rule.

The mechanical proof of mutual exclusion required twenty-nine definitions, theorems, and other events.

3.3.2 Discussion of the Proof of Invariance

Proofs of invariance have two parts:

• One first proves that the invariant is stable for a single transition of every process in the system.
This is usually stated as a single theorem for each family (with the index restricted to the family
size). The difficulty of the process level invariance proof, is directly related to the complexity of
the processes’ transitions.

• One then lifts the process level invariant to the system level invariant. This is accomplished using
the invariance proof rule (28), and the theorem stating that Choose-Fairly returns only processes
that are members of the process list (20). This part of the proof is fully automated.

3.4 The Specification and Proof of Liveness

The formal statement of the liveness property is:

Theorem 45:

(Implies (And (Mutual-Exclusionp N System-State)
(Numberp Index)
(Lessp Index N)
(Process-Wait Index System-State))

(Process-Critical Index

31

(Int (Make-Process-List
(System-Description N))

Clock
(Clock-Of-Token-Moving-To-Critical

Index N Clock System-State)
System-State)))

Process-Wait tests whether the Index’th instance of Me is Waiting; Process-Critical tests whether the Index’th

instance of Me is Critical. This theorem can be read as follows:

• If mutual exclusion holds on the initial state, and an instance of Me is Waiting, then there exists a
time in the future when the state of that process is Critical.

3.4.1 The Proof of Liveness

The proof of this liveness property requires building the function Clock-Of-Token-Moving-To-Critical. The

general scheme is: identify transitions in the computation that must occur for the Waiting process to become

Critical. This sequence of transitions is easily translated to a composition of Next-Clock’s; the result is the time

at which the process becomes Critical.

The proof is divided into two parts. The first describes the movement of the token up to the left channel of the

Waiting process; this requires three progress properties. The second describes the interval during which a

Waiting process with a token on its left channel becomes Critical; this is one progress property. We will show,

in detail, the simpler second, part of the proof. Then we examine one of the properties from the first part of the

proof, and conclude by deriving the function Clock-Of-Token-Moving-To-Critical, which coordinates the

progress properties to identify the time at which the Waiting process becomes Critical.

The second part of the proof is simpler. It is a simple progress property stating that a Waiting process with a

full left channel will become Critical the very first time that it runs. Notice that many other processes may be

executed in the meantime. The statement of this progress property is:

Theorem 46: Progress Property Four

(Implies (And (Lessp Index N)
(Numberp Index))

(Implies (Left-Channel-Full-Process-Wait
Index
System-State)

(Process-Critical-With-Ticks
(Random-Number
(Next-Clock (List ’Me Index)

Clock))
Index
(Int (Make-Process-List

(System-Description N))

32

Clock
(Add1 (Next-Clock (List ’Me Index)

Clock))
System-State))))

Left-Channel-Full-Process-Wait tests whether the Index’th channel is full and the Index’th process is Waiting.

Process-Critical-With-Ticks tests whether the Index’th process is Critical with critical counter numerically

equal to its first argument. This theorem states: If the Index’th instance of Me is Waiting with a full left

channel, after the system executes until the first time that instance of Me runs, that instance of Me will be

Critical. Furthermore, its critical counter will have the value:

(Random-Number (Next-Clock (List ’Me Index) Clock)) (28)

There are a few important points in this theorem. First, the interval of the computation which Int must consider

is from Clock to (Add1 (Next-Clock (List ’Me Index) Clock)). The Next-Clock signifies the next time that the

Index’th instance of Me is scheduled. The Add1 is necessary because Int must compute the state up to and

including that final transition. However, the critical counter will have the value Random-Number returns when

it is passed the precise time at which that instance of Me runs. That time is (Next-Clock (List ’Me Index)

Clock).

This theorem is proved using the progress proof rule (31) and two other theorems. The first, the stability

theorem, states: the property that a particular instance of Me is Waiting and that its left channel is full, is

preserved over all transitions except the transition of that instance of Me. The second theorem states that if a

particular instance of Me is Waiting, its left channel is full, and that instance of Me runs, then it becomes

Critical (with a specific value on its critical counter). The stability theorem is:

Theorem 47:

(Implies (And (Not (Equal Cindex Index))
(Lessp Cindex N)
(Numberp Cindex)
(Lessp Index N)
(Numberp Index)
(Left-Channel-Full-Process-Wait Index

System-State))
(Left-Channel-Full-Process-Wait Index

(Me Cindex
N
Clock
System-State)))

This states that the property Left-Channel-Full-Process-Wait is stable across any transition of Me other than the

Index’th instance of Me. The key transition is identified with the following theorem:

33

Theorem 48:

(Implies (And (Numberp Index)
(Lessp Index N)
(Left-Channel-Full-Process-Wait Index

System-State))
(Process-Critical-With-Ticks (Random-Number Clock)

Index
(Me Index

N
Clock
System-State)))

This theorem states that if Left-Channel-Full-Process-Wait holds before that instance of Me runs, then

Process-Critical-With-Ticks will hold after that instance of Me runs. Furthermore, since Me is running at time

Clock, the critical counter will be (Random-Number Clock).

This proves progress property four. In a similar manner, we prove that given two distinct processes, one

Waiting and the other either Non-Critical with its left channel full, Wait with its left channel full, or Critical,

when the latter is finally executed it progresses appropriately, and the former process is still Waiting.

Assuming that the system state satisfies mutual exclusion, this scheme corresponds to progress properties one,

two, and three:

One process remains Waiting and the other:

1. Progresses from Non-Critical with left channel full to right channel full or to Wait with left channel full.

2. Progresses from Wait with left channel full to Critical.

3. Progresses from Critical to Critical or to right channel full.

Notice that one property, that of the Waiting process, is stable across all of the transitions. Also, each of the

progress statements describes a final state which is suitable to initiate another progress statement. For example,

(1) initiates (2) if the process becomes Wait. However, if the process passes the token to the right channel, (1)

initiates either (1) or (2) depending on the state of the adjacent process. (2) initiates (3). Finally, (3) initiates

(3), if the process remains Critical, or either (1) or (2) depending on whether the adjacent process is

Non-Critical or Wait.

Progress property three is typical and we discuss it here.

Theorem 49: Progress Property Three

34

(Implies (And (Lessp Index1 N)
(Numberp Index1)
(Lessp Index2 N)
(Numberp Index2)
(Not (Equal Index1 Index2)))

(Implies (Critical-Wait Ticks Index1 Index2 N
System-State)

(Critical-Or-Non-Critical-Wait
Ticks Index1 Index2 N
(Int (Make-Process-List

(System-Description N))
Clock
(Add1 (Next-Clock (List ’Me Index1)

Clock))
System-State))))

The function Critical-Wait is a predicate testing whether the Index1’th instance of Me is Critical with critical

counter set at Ticks; whether the Index2’th instance of Me is Waiting; and, whether the system state satisfies

mutual exclusion. All three of these properties are necessary preconditions to this progress proof.

The final value of the system state is generated by Int from Clock up to (and including) the time when the

Index1’th instance of, Me runs. That time is (Next-Clock (List ’Me Index1) Clock). That new system state

satisfies the predicate Critical-Or-Non-Critical-Wait, which tests:

• Whether the Index1’th instance of Me has critical counter Ticks-1, if Ticks is greater than zero.
Otherwise, tests whether that instance of Me’s right channel is full.

• Whether the Index2’th instance of Me is Waiting.

• Whether the system state satisfies mutual exclusion.

The reason that the predicate Critical-Or-Non-Critical-Wait cases on the value of Ticks is because a Critical

process cases on the value of its critical counter. If the value of its critical counter is greater than zero, the

process remains Critical; if the value is zero, the process will release a token on its right channel.

This progress statement is proved using the same methodology that was used to prove progress property four

(46). First, Critical-Wait is shown to be stable for all transitions except for the Index1’th instance of Me; then

the key transition, that of the Index1’th instance of Me, is shown to change Critical-Wait into

Critical-Or-Non-Critical-Wait. The progress proof rule is used to lift these two results to progress property

three (49).

Progress property three is especially interesting because it can be used repeatedly by induction on Ticks. That

35

is, if Ticks is greater than zero, then Critical-Or-Non-Critical-Wait implies Critical-Wait using Ticks-1. Using

induction, the computations of Int may be composed until the process releases a token (and becomes

Non-Critical).

We identify this interval by defining the function Clock-Of-Critical-To-Non-Critical:

Definition 50: (Clock-Of-Critical-To-Non-Critical Index Clock Ticks) =

(If (Zerop Ticks)
(Add1 (Next-Clock (List ’Me Index) Clock))
(Add1 (Next-Clock (List ’Me Index)

(Clock-Of-Critical-To-Non-Critical
Index Clock
(Sub1 Ticks)))))

This function computes the time when a Critical instance of Me with critical counter Ticks releases a token

upon its right channel. The process must run Ticks+1 times. This is Ticks+1 composition of Next-Clock’s of

(List ’Me Index). The Add1 is necessary to push Next-Clock to the next time that the instance of Me runs;

otherwise the entire composition collapses to a single Next-Clock. This arrangement is fortunate in another

respect: the computation of Int up to and including a Max-Clock must be run until Max-Clock+1; hence the

result of Clock-Of-Critical-To-Non-Critical may be used directly in Int.

This is demonstrated in the following theorem:

Theorem 51:

(Implies (And (Numberp Index1)
(Lessp Index1 N)
(Numberp Index2)
(Lessp Index2 N)
(Not (Equal Index1 Index2))
(Critical-Wait Ticks Index1 Index2 N

System-State))
(Right-Channel-Full-Wait
Index1 Index2 N
(Int (Make-Process-List (System-Description N))

Clock
(Clock-Of-Critical-To-Non-Critical
Index1
Clock
Ticks)

System-State)))

That is, if Index1’th instance of Me is Critical with critical counter Ticks and the Index2’th instance of Me is

Waiting, and the system state satisfies mutual exclusion, then the new system state generated by Int from Clock

to (Clock-Of-Critical-To-Non-Critical Index1 Clock Ticks) will have the right channel of the Index1’th instance

36

of Me full, and the Index2’th instance of Me still Waiting. (51) identifies the time in the future that the Critical

instance of Me releases its token. The function Clock-Of-Critical-To-Non-Critical replaces an existentially

quantified time: (e.g., there exists Time, Time>Clock such that Right-Channel-Full-Wait holds).

Using Clock-Of-Critical-To-Non-Critical, and progress properties one and two, similar functions may be

defined for the intervals of Wait to Non-Critical and Non-Critical to Non-Critical. Furthermore, theorems

describing the effect of those functions (similar to (51)) are proved. These three clock functions and their

corresponding theorems supersede progress properties one, two, and three. These three clock functions are then

combined into a function which moves a token around the ring:

Definition 52: (Clock-Of-Token-Moving Index1 Index2 N Clock System-State) =

(i) (If (And (Numberp Index1)
(Lessp Index1 N)
(Numberp Index2)
(Lessp Index2 N))

(ii) (If (Equal Index1 Index2)
Clock

(iii) (If (Process-Non-Critical Index1 System-State)
(Clock-Of-Token-Moving
(Add1-Mod N Index1)
Index2
N
(Clock-Of-Non-Critical-To-Non-Critical

Index1 Clock)
(Int (Make-Process-List

(System-Description N))
Clock
(Clock-Of-Non-Critical-To-Non-Critical
Index1 Clock)

System-State))
(Clock-Of-Token-Moving
(Add1-Mod N Index1)
Index2
N
(Clock-Of-Wait-To-Non-Critical Index1 Clock)
(Int (Make-Process-List

(System-Description N))
Clock
(Clock-Of-Wait-To-Non-Critical

Index1 Clock)
System-State))))

Clock)

This function returns the time that the token, considered to be at the left channel of the Index1’th instance of

Me, will be at the left channel of the Index2’th instance of Me. The system state is assumed to satisfy mutual

exclusion. The If at (i) tests whether Index1 and Index2 are reasonable indices for this system. If they are, then

(ii) tests whether the token is already at the left channel of Index2. If it is, then Clock is returned. If the token

37

must move further along the ring, it is moved to the right channel and Clock-Of-Token-Moving is called

recursively.

The token is moved to the right channel by (iii). If the Index1’th instance of Me is Non-Critical, then the clock

necessary to move the token to the right channel is computed by Clock-Of-Non-Critical-To-Non-Critical. If

that instance of Me is Waiting, then the clock is computed by Clock-Of-Wait-To-Non-Critical. Notice, that that

instance of Me cannot be Critical, since, by assumption, the left channel is full, and mutual exclusion precludes

the presence of another token in the ring.

Each recursive call of Clock-Of-Token-Moving increments Index1 (modulo N) because the token has moved

along the ring. Clock is changed to reflect the time that the token will be at the new location. System-State is

changed to reflect the new system state. This is important: because many processes may execute during the

interval that the token moves from the left to the right channel of the Index1’th instance of Me, the state of other

processes may have changed. Therefore, Clock-Of-Token-Moving must keep track of the changing system state

during the recursive calls.

The semantics of Clock-Of-Token-Moving are more succinctly described in the following theorem:

Theorem 53:

(Implies (And (Numberp Index1)
(Lessp Index1 N)
(Numberp Index2)
(Lessp Index2 N)
(Full-Wait Index1 Index2 N System-State))

(Full-Wait Index2 Index2 N
(Int (Make-Process-List

(System-Description N))
Clock
(Clock-Of-Token-Moving
Index1
Index2
N
Clock
System-State)

System-State)))

The function Full-Wait tests whether its first argument is the index of a full channel; whether its second

argument is the index of a Waiting process; and whether the system state satisfies mutual exclusion. This

theorem states that if mutual exclusion holds, the Index1’th instance of Me has its left channel full, and the

Index2’th instance of Me is Waiting, then in the new system state, obtained by Int from Clock to

38

Clock-Of-Token-Moving from Index1 to Index2, the Index2’th instance of Me will still be Waiting, and its left

channel will be full. Thus, Clock-Of-Token-Moving computes the time at which the token has moved all the

way around the ring from a left channel to the left channel of the Waiting process.

The definition of Clock-Of-Token-Moving has system state as one of its arguments;

Clock-Of-Critical-To-Non-Critical does not. This is because the latter does not need to consider the system

state: the process in question must execute Ticks+1 times, no matter what other processes do. However,

Clock-Of-Token-Moving must dovetail the progress of the system computation with its computation of the final

clock value because the computation of that clock value depends on branches that the system computation may

take.

If the token is on the left channel of some Index1’th instance of Me, then using Clock-Of-Token-Moving it is a

simple matter to run Int until the token is on the left channel of the Waiting Index2’th instance of Me;

subsequently, that instance of Me is scheduled another time; at that point, that instance of Me will be Critical

(by progress property four). This is the time that the function Clock-Of-Token-Moving-To-Critical (in the

formal statement of the liveness property (45)) is supposed to compute.

However, the assumption that the token is at the left channel of some instance of Me need not be true: the token

may have been absorbed by a Critical process. If the Index1’th instance of Me is Critical, then the time when

the token is at the left channel of the Waiting Index2’th instance of Me is:

(Clock-Of-Token-Moving (29)
(Add1-Mod N Index1)
Index2
N
(Clock-Of-Critical-To-Non-Critical
Index1
Clock
(Get-State (Cons ’Me Index1)

System-State))
(Int (Make-Process-List (System-Description N))

Clock
(Clock-Of-Critical-To-Non-Critical
Index1
Clock
(Get-State (Cons ’Me Index1)

System-State))
System-State))

The token is released upon the right channel of the Index1’th instance of Me, using

Clock-Of-Critical-To-Non-Critical, and then Clock-Of-Token-Moving is used to move the token until the left

channel of Index2.

39

This idea is incorporated into the definition of Clock-Of-Token-Moving-To-Wait, which has the following

arguments:

(Clock-Of-Token-Moving-To-Wait Index N Clock System-State) (30)

Index is the index of the Waiting process. Clock-Of-Token-Moving-To-Wait searches the system for the token:

if the token is in a left channel, it uses Clock-Of-Token-Moving directly to move the token; if, instead, a process

is Critical, the formula in (29) is sufficient to move the token (where Index2 is instantiated by Index and Index1

is instantiated by the index of the Critical process).

Finally, Clock-Of-Token-Moving-To-Critical may be defined, using equation (30) and progress property four:

Definition 54: (Clock-Of-Token-Moving-To-Critical Index N Clock System-State) =

(If (And (Lessp Index N)
(Numberp Index))

(Add1 (Next-Clock (List ’Me Index)
(Clock-Of-Token-Moving-To-Wait
Index N Clock System-State)))

Clock)

For any valid Waiting instance of Me, Clock-Of-Token-Moving-To-Critical returns the first time that it runs

after the token is moved to its left channel. At that point, that instance of Me becomes Critical.

This definition satisfies the formal statement of liveness (45).

The mechanical proof of liveness required 144 definitions, theorems, and other events.

3.4.2 Discussion of the Proof of Liveness

Progress proofs have two parts:

• Show the initial predicate is stable except for the key transition.

• Show that the key transition changes the stable predicate to the desired one.

The progress proof rule and the theorem stating that Choose-Fairly returns every process but one (21), over the

interval in question, is used to lift these two theorems to the progress property.

Many progress proofs may be necessary to provide the foundation for the desired liveness result. The progress

statements must be sufficiently strong to imply the liveness property: for example, had these progress

statements not carried along the Waiting status of the final process, the final statement would be able to move

the token around the ring, but would not indicate that the Waiting process is still Waiting.

40

The liveness property is derived by the composition of various progress statements. Often, the functions that

compute future clock values must keep track of the changing system state, since the system computation may

branch.

3.5 Summary

The proofs of mutual exclusion and liveness presented here are similar to hand proofs that one would have

done. The key differences are in the level of detail, which is necessarily greater for a machine verified proof,

and in the definitions of the clock functions. Since the Boyer-Moore logic does not define quantifiers, the

future system state that satisfies the liveness property must be explicitly derived rather than simply shown to

exist. This system state is derived from Int using a computed clock that corresponds to the necessary sequence

of transitions. These transitions correspond to the effective transitions that one must demonstrate when proving

liveness properties in temporal logic.

41

Chapter 4

CONCLUSION

4.1 Comparison to Related Work

The transition system model of distributed systems has been used widely in the literature. Our theory is most

closely related to [4] [5] [6] and to Unity [3]. The proof rules which we mechanically derive from our

operational semantics are strongly influenced by those taken as axioms in Unity.

Our theory differs from previous work because our proofs are mechanically verified. Since the Boyer-Moore

Logic does not define quantification, a proof in our theory that a property Q leads to a property R must

explicitly construct, by a composition of Next-Clock’s, the time at which R holds. Previous transition system

work has been based on temporal logic and allows one to conclude that R will hold at some unknown future

time. However, this abstraction does not simplify verification, since proofs of liveness properties in temporal

logic must demonstrate a sequence of effective transitions [5] much like our composition of Next-Clock’s.

Lengauer’s work on concurrency is also mechanized on the Boyer-Moore prover. Given architectural

assumptions, it develops provably correct transformations that generate the optimum concurrent execution from

a sequential program [7]. It differs in approach from our work because it concentrates on proving that the

transformations are correct rather than proving properties directly about distributed systems.

4.2 Future Work

Our future research will be in three areas:

• Liveness proofs in our theory explicitly construct a composition of Next-Clock’s that specify when
the desired property occurs, rather than simply that it occurs. Thus, if one could place time
bounds on real machines’ scheduling strategies, one might be able to derive bounds on an
algorithm’s efficiency from its correctness proof.

• Distributed systems should be designed hierarchically. This strategy is aided when their
(mechanical) proofs are reusable. This reusability would allow, for example, the incorporation of
the proved solution to the mutual exclusion problem into a larger system.

42

• We are also investigating the application of our model to real time systems. Dropping equation
(3) from the definition of Next-Clock would allow multiple processes to be scheduled
simultaneously. Some assumptions must be made about the architecture when assigning
semantics to simultaneous execution. The new operational semantics should be designed so it
yields useful proof rules.

4.3 Summary

Our theory has demonstrated that mechanical proofs of distributed systems are possible. Furthermore, the

axiomatization of Next-Clock is interesting in its own right as a characterization of fairness. Finally, the

operational semantics defined in Int is conceptually simple, yet generates proof rules which may be used to

prove safety and liveness properties.

4.4 Acknowledgments

We would like to thank the many people who helped us during the course of this research and during the writing

of this paper. They include: Ken Calvert, Ernie Cohen, E. Allen Emerson, C.A.R. Hoare, Matt Kaufmann,

Chris Lengauer, J S. Moore, Randy Pollack, Mark Staskauskas, Tom Verhoeff, Michael Vose, and Matt

Wilding. We also thank the Institute for Computer Sciences and Computer Applications and its staff, at the

University of Texas at Austin, for providing an excellent working environment.

43

Appendix A

Expressing Embedded Quantification

,

In certain cases, it is possible to express embedded quantification in the Boyer-Moore Logic. Embedded

quantification can be expressed if one can construct a Boyer-Moore function which enumerates the range of the

quantification. In the case of our proof rules, Matt Kaufmann found a clever way to express the embedded

quantification of the invariance proof rule (28).

Our invariance proof rule contains within it the function Invariance-Over-Single-Step which has the general

form:

(∀ Time: Clock ≤ Time < Max-Clock: P(Clock, Time)) (31)

Notice that P is an abbreviation for the more complex implication in the definition of Invariance-Over-Single-

Step which involves the additional variables Process-List and System-State. These variables are hidden since

they play no role in the embedded quantification.

One could express (31) in the logic using a function which recursed over the interval Clock to Max-Clock and

returned true if P was true at every point. However, proving facts about it would require an induction.

A more clever solution is to observe that by predicate calculus (31) is equal to:

¬ (∃ Time: Clock ≤ Time < Max-Clock: ¬ P(Clock, Time)) (32)

One can then introduce a skolem function, Sk, which recurses through the interval Clock to Max-Clock and

4returns the Time, if any, at which ¬ P(Clock, Time) is true. One must insure that if there is no time in the

interval such that ¬ P(Clock, Time), then P of the value returned by Sk is true.> Then (32) is equal to:

¬ (¬ P(Clock, Sk(Clock, Max-Clock))) (33)

This is (of course):

P(Clock, Sk(Clock, Max-Clock)) (34)

4

44

The form (34) is convenient since if one can prove that P is true for any value of its second argument, then one

can prove that (34) is true without looking at the internals of Sk. We actually express the antecedent of the

invariance proof rule (8) in the form of (34) and use the proof rule by essentially showing that P is true for any

value of its second argument (the actual invariance proof rule contains various complicating details-see (8)).

45

Appendix B

Utilities

This file contains lemmas and definitions that we find useful in the rest of the proof.

Several Useful Induction Schemes.

Three hypothesis: all possible permutations of at most one CDR on each of two arguments.

Definition 1: (CDR-ON-BOTH X Y) =

(IF (LISTP X)
(IF (LISTP Y)

(AND (CDR-ON-BOTH (CDR X) Y)
(CDR-ON-BOTH X (CDR Y))
(CDR-ON-BOTH (CDR X) (CDR Y)))

T)
T)

((LESSP (PLUS (COUNT X) (COUNT Y))))

The standard Integer induction.

Definition 2: (INTEGER-INDUCTION-SCHEME-1 N) =

(IF (ZEROP N)
T
(INTEGER-INDUCTION-SCHEME-1 (SUB1 N)))

Downward induction from M.

Definition 3: (INTEGER-INDUCTION-SCHEME-2 N M) =

(IF (LESSP N M)
(INTEGER-INDUCTION-SCHEME-2 (ADD1 N) M)
T)

((LESSP (DIFFERENCE M N)))

Three hypothesis: all possible permutations of at most one SUB1 on each of two arguments.

Definition 4: (SUB1-ON-BOTH N M) =

(IF (ZEROP N)
T
(IF (ZEROP M)

T
(AND (SUB1-ON-BOTH (SUB1 N) M)

(SUB1-ON-BOTH N (SUB1 M))

46

(SUB1-ON-BOTH (SUB1 N) (SUB1 M)))))

((LESSP (PLUS N M)))

Returns the Length of the List. Length is not defined in NQTHM.

Definition 5: (LENGTH L) =

(IF (LISTP L)
(ADD1 (LENGTH (CDR L)))
0)

Is the final CDR of the list NIL?

Definition 6: (PROPER-LISTP L) =

(IF (LISTP L)
(PROPER-LISTP (CDR L))
(EQUAL L NIL))

Returns T if SET contains no duplicate elements.

Definition 7: (SETP SET) =

(IF (LISTP SET)
(IF (MEMBER (CAR SET) (CDR SET))

F
(SETP (CDR SET)))

T)

Returns T if the intersection of X and Y is empty.

Definition 8: (DISJOINTP X Y) =

(IF (LISTP X)
(AND (NOT (MEMBER (CAR X) Y))

(DISJOINTP (CDR X) Y))
T)

This is a useful lemma, simplifying the term.

Theorem 9: ABOUT-LENGTH-AND-APPEND (REWRITE)

(EQUAL (LENGTH (APPEND X Y))
(PLUS (LENGTH X)

(LENGTH Y)))

This forces case analysis.

47

Theorem 10: ABOUT-MEMBER-APPEND (REWRITE)

(EQUAL (MEMBER X (APPEND Y Z))
(OR (MEMBER X Y)

(MEMBER X Z)))

This forces case analysis.

Theorem 11: ABOUT-DISJOINTP-APPEND (REWRITE)

(EQUAL (DISJOINTP X (APPEND Y Z))
(AND (DISJOINTP X Y)

(DISJOINTP X Z)))

This forces case analysis.

Theorem 12: SETP-UNION-DISJOINT-SETS (REWRITE)

(EQUAL (SETP (APPEND X Y))
(AND (DISJOINTP X Y)

(SETP X)
(SETP Y)))

Disjoint is commutative. The Induction scheme is interesting.

Theorem 13: DISJOINTP-IS-COMMUTATIVE (REWRITE)

(EQUAL (DISJOINTP X Y)
(DISJOINTP Y X))

((INDUCT (CDR-ON-BOTH X Y)))

This is a terrible rewrite rule. It is used only when the proof rules are invoked.

Theorem 14: EQUAL-LISTS-OF-LENGTH-TWO (REWRITE)

(IMPLIES (AND (EQUAL (LENGTH L1) 2)
(EQUAL (LENGTH L2) 2))

(EQUAL (EQUAL L1 L2)
(AND (EQUAL (CAR L1) (CAR L2))

(EQUAL (CADR L1) (CADR L2))
(EQUAL (CDDR L1) (CDDR L2)))))

(DISABLE EQUAL-LISTS-OF-LENGTH-TWO) (1)

Replace the previous value associated with Target-Name with New-Value. If Target-Name is not found in

Assoc-List, then add the pair at the end of the list.

Definition 15: (UPDATE-ASSOC TARGET-NAME NEW-VALUE ASSOC-LIST) =

48

(IF (LISTP ASSOC-LIST)
(IF (EQUAL (CAAR ASSOC-LIST)

TARGET-NAME)
(CONS (CONS TARGET-NAME NEW-VALUE)

(CDR ASSOC-LIST))
(CONS (CAR ASSOC-LIST)

(UPDATE-ASSOC TARGET-NAME
NEW-VALUE
(CDR ASSOC-LIST))))

(LIST (CONS TARGET-NAME NEW-VALUE)))

This lemma simplifies multiple Assoc and Update-Assoc combinations. Its current form is due to Matt

Kaufmann.

Theorem 16: SIMPLIFY-ASSOC (REWRITE)

(EQUAL (ASSOC NAME-1 (UPDATE-ASSOC NAME-2 VALUE ALIST))
(IF (EQUAL NAME-1 NAME-2)

(CONS NAME-1 VALUE)
(ASSOC NAME-1 ALIST)))

Defines the Add1 Modulo function. The ring size is first because it reads better.

Definition 17: (ADD1-MOD N X) =

(IF (LESSP (ADD1 X) N)
(ADD1 X)
0)

Defines the Sub1 Modulo function. The ring size is first because it reads better.

Definition 18: (SUB1-MOD N X) =

(IF (OR (ZEROP X)
(LESSP N X))

(SUB1 N)
(SUB1 X))

The following lemmas are only used if Add1-Mod and Sub1-Mod are disabled. They are useful in a few proofs,

where the enabled Add1-Mod and Sub1-Mod cause a great deal of case analysis. These lemmas do not attempt

to replace the definitions of Add1-Mod and Sub1-Mod.

Theorem 19: ADD1-MOD-SUB1-MOD-SIMP (REWRITE)

(EQUAL (ADD1-MOD N (SUB1-MOD N I))
(IF (LESSP I N)

(FIX I)
0))

Theorem 20: SUB1-MOD-ADD1-MOD-SIMP (REWRITE)

49

(EQUAL (SUB1-MOD N (ADD1-MOD N I))
(IF (LESSP I N)

(FIX I)
(SUB1 N)))

Theorem 21: ADD1-MOD-LESSP (REWRITE)

(EQUAL (LESSP (ADD1-MOD N I) N)
(LESSP 0 N))

Theorem 22: SUB1-MOD-LESSP (REWRITE)

(EQUAL (LESSP (SUB1-MOD N I) N)
(LESSP 0 N))

The next two lemmas are not as strong as they could be, but they are strong enough for our purposes. Stronger

ones would cause the case analysis these were designed to prevent.

Theorem 23: ADD1-MOD-EQUAL (REWRITE)

(IMPLIES (LESSP 1 N)
(NOT (EQUAL (ADD1-MOD N I) I)))

Theorem 24: SUB1-MOD-EQUAL (REWRITE)

(IMPLIES (LESSP 1 N)
(NOT (EQUAL (SUB1-MOD N I) I)))

50

Appendix C

The Scheduler

This files defines the Fair Scheduler. It is composed of two functions: Next-Clock and Choose-Fairly.

Next-Clock functions correspond to Fair Traces. We define the Next-Clock functions now, and the

correspondece, subsequently.

Declare Next-Clock to be a total function of two arguments.

Definition 1:

(DCL NEXT-CLOCK (PROCESS-DESCRIPTION CLOCK))

Theorem 2:

(ADD-AXIOM NEXT-CLOCK-IS-SUBRP (REWRITE)
(SUBRP ’NEXT-CLOCK))

These two lines ought to be consequences of the previous Add-Axiom event.

(PUT1 ’NEXT-CLOCK *1*T ’SUBRP) (1)
(PUT1 ’NEXT-CLOCK ’((NEXT-CLOCK . T)) ’TOTALP-LST)

The following five axioms define the set of functions that Next-Clock represents.

Next-Clock’s first argument is any element of the Boyer-Moore universe its second is a number (or coerced to a

number).

Axiom 1: Time makes no sense if it is not ordered. We choose the natural numbers.

Theorem 3:

(ADD-AXIOM NUMBERP-NEXT-CLOCK (REWRITE)
(NUMBERP (NEXT-CLOCK PROCESS-DESCRIPTION

CLOCK)))

Axiom 2: For convenience, we fix the second argument.

Theorem 4:

(ADD-AXIOM NEXT-CLOCK-FIXES-CLOCK (REWRITE)
(IMPLIES (NOT (NUMBERP CLOCK))

(EQUAL (NEXT-CLOCK PROCESS-DESCRIPTION

51

CLOCK)
(NEXT-CLOCK PROCESS-DESCRIPTION

0))))

Axiom 3: Next-Clock always returns a clock value that is at least the current clock value.

Theorem 5:

(ADD-AXIOM NEXT-CLOCK-AT-LEAST-CLOCK (REWRITE)
(NOT (LESSP (NEXT-CLOCK PROCESS-DESCRIPTION

CLOCK)
CLOCK)))

Axiom 4: Next-Clock never maps two processes to the same clock value.

Theorem 6:

(ADD-AXIOM NEXT-CLOCK-IS-ONE-TO-ONE-BASIC ()
(IMPLIES (EQUAL (NEXT-CLOCK PROCESS-DESCRIPTION-1

CLOCK)
(NEXT-CLOCK PROCESS-DESCRIPTION-2

CLOCK))
(EQUAL PROCESS-DESCRIPTION-1

PROCESS-DESCRIPTION-2)))

Axiom 5: The clock argument may be incremented without changing Next-Clock’s value, provided it is not

incremented past (Next-Clock Process-Description Clock).

Theorem 7:

(ADD-AXIOM NEXT-CLOCK-IS-HONEST-BASIC ()
(IMPLIES (LESSP CLOCK

(NEXT-CLOCK PROCESS-DESCRIPTION
CLOCK))

(EQUAL (NEXT-CLOCK PROCESS-DESCRIPTION
CLOCK)

(NEXT-CLOCK PROCESS-DESCRIPTION
(ADD1 CLOCK)))))

Derived Properties of Next-Clock.

Indution for the interval [Clock, (Next-Clock Process-Description Clock)].

Definition 8: (NEXT-CLOCK-IS-HONEST-INDUCTION-HINT PROCESS-DESCRIPTION
CLOCK TIME) =

(IF (OR (NOT (LESSP CLOCK TIME))
(LESSP (NEXT-CLOCK PROCESS-DESCRIPTION

CLOCK)
TIME))

52

0
(NEXT-CLOCK-IS-HONEST-INDUCTION-HINT
PROCESS-DESCRIPTION CLOCK (SUB1 TIME)))

This is an extension of Axiom 5. Not only can Clock be incremented within the interval, any Time in the

interval can be chosen.

Theorem 9: NEXT-CLOCK-IS-HONEST ()

(IMPLIES (AND (NOT (LESSP TIME CLOCK))
(NOT (LESSP (NEXT-CLOCK PROCESS-DESCRIPTION

CLOCK)
TIME)))

(EQUAL (EQUAL (NEXT-CLOCK PROCESS-DESCRIPTION
CLOCK)

(NEXT-CLOCK PROCESS-DESCRIPTION
TIME))

T))

((USE (NEXT-CLOCK-IS-HONEST-BASIC (CLOCK (SUB1 TIME))))
(INDUCT (NEXT-CLOCK-IS-HONEST-INDUCTION-HINT

PROCESS-DESCRIPTION CLOCK TIME)))

Next-Clock is Idempotent in its second argument.

Theorem 10: NEXT-CLOCK-IS-IDEMPOTENT (REWRITE)

(EQUAL (NEXT-CLOCK PROCESS-DESCRIPTION
(NEXT-CLOCK PROCESS-DESCRIPTION CLOCK))

(NEXT-CLOCK PROCESS-DESCRIPTION CLOCK))

((USE (NEXT-CLOCK-IS-HONEST
(CLOCK CLOCK)
(TIME (NEXT-CLOCK PROCESS-DESCRIPTION CLOCK)))))

This is an ugly statement that given two distinct process descriptions, and any two clock values, Next-Clock

will never map the processes to the same time.

Theorem 11: NEXT-CLOCK-IS-ONE-TO-ONE (REWRITE)

(EQUAL (EQUAL (NEXT-CLOCK PROCESS-DESCRIPTION-1
CLOCK-1)

(NEXT-CLOCK PROCESS-DESCRIPTION-2
CLOCK-2))

(AND (EQUAL PROCESS-DESCRIPTION-1
PROCESS-DESCRIPTION-2)

(NOT (LESSP (NEXT-CLOCK PROCESS-DESCRIPTION-1
CLOCK-1)

CLOCK-2))
(NOT (LESSP (NEXT-CLOCK PROCESS-DESCRIPTION-2

CLOCK-2)
CLOCK-1))))

53

((USE (NEXT-CLOCK-IS-HONEST
(PROCESS-DESCRIPTION PROCESS-DESCRIPTION-1)
(CLOCK CLOCK-1)
(TIME CLOCK-2))

(NEXT-CLOCK-IS-HONEST
(PROCESS-DESCRIPTION PROCESS-DESCRIPTION-2)
(CLOCK CLOCK-2) (TIME CLOCK-1))

(NEXT-CLOCK-IS-ONE-TO-ONE-BASIC (CLOCK CLOCK-1))
(NEXT-CLOCK-IS-ONE-TO-ONE-BASIC (CLOCK CLOCK-2))))

The next two lemmas are necessary to prove the third.

Theorem 12: NEXT-CLOCK-LESSPS-1 ()

(IMPLIES (LESSP (NEXT-CLOCK PROCESS-DESCRIPTION CLOCK-1)
CLOCK-2)

(LESSP (NEXT-CLOCK PROCESS-DESCRIPTION
CLOCK-1)

(NEXT-CLOCK PROCESS-DESCRIPTION
CLOCK-2)))

Theorem 13: NEXT-CLOCK-LESSPS-2 ()

(IMPLIES (LESSP (NEXT-CLOCK PROCESS-DESCRIPTION CLOCK-1)
(NEXT-CLOCK PROCESS-DESCRIPTION CLOCK-2))

(LESSP (NEXT-CLOCK PROCESS-DESCRIPTION CLOCK-1)
CLOCK-2))

((DISABLE NEXT-CLOCK-IS-ONE-TO-ONE)
(USE (NEXT-CLOCK-IS-HONEST (CLOCK CLOCK-1)

(TIME CLOCK-2))
(NEXT-CLOCK-IS-HONEST (CLOCK CLOCK-2)

(TIME CLOCK-1))))

Identify distinct intervals of [Clock, (Next-Clock Process-Description Clock)].

Theorem 14: NEXT-CLOCK-LESSPS (REWRITE)

(EQUAL (LESSP (NEXT-CLOCK PROCESS-DESCRIPTION CLOCK-1)
(NEXT-CLOCK PROCESS-DESCRIPTION CLOCK-2))

(LESSP (NEXT-CLOCK PROCESS-DESCRIPTION CLOCK-1)
CLOCK-2))

((USE (NEXT-CLOCK-LESSPS-1)
(NEXT-CLOCK-LESSPS-2)))

Choose-Fairly defines the correspondence between Next-Clock and a fair trace. Given a set of processes and a

clock, it returns the one that is scheduled at that clock.

Choose-Fairly returns a list of the processes (contained in Process-List) that are scheduled at Clock. From the

54

definition of Next-Clock, we know that this list contains at most one distinct process. However, that is a

property of Next-Clock, and should not be enforced by Choose-Fairly. For convenience (just like in Next-

Clock), Choose-Fairly fixes the Clock argument.

Definition 15: (CHOOSE-FAIRLY PROCESS-LIST CLOCK) =

(IF (LISTP PROCESS-LIST)
(IF (EQUAL (FIX CLOCK) (NEXT-CLOCK (CAR PROCESS-LIST)

CLOCK))
(CONS (CAR PROCESS-LIST)

(CHOOSE-FAIRLY (CDR PROCESS-LIST) CLOCK))
(CHOOSE-FAIRLY (CDR PROCESS-LIST) CLOCK))

NIL)

Theorem 16: CHOOSE-FAIRLY-FIXES-CLOCK (REWRITE)

(IMPLIES (NOT (NUMBERP CLOCK))
(EQUAL (CHOOSE-FAIRLY PROCESS-LIST CLOCK)

(CHOOSE-FAIRLY PROCESS-LIST 0)))

Choose-Fairly will not invent a process.

Theorem 17: CHOOSE-FAIRLY-RETURNS-VALID-PROCESS-DESCRIPTION (REWRITE)

(OR (EQUAL (CHOOSE-FAIRLY PROCESS-LIST CLOCK)
NIL)

(MEMBER (CAR (CHOOSE-FAIRLY PROCESS-LIST CLOCK))
PROCESS-LIST))

This is the important property of Choose-Fairly. Choose-Fairly correctly identifies the process scheduled at

Clock. We are only concerned about the case when Process-List is a set.

Theorem 18: CHOOSE-FAIRLY-RETURNS-CORRECT-PROCESS-DESCRIPTION (REWRITE)

(IMPLIES (SETP PROCESS-LIST)
(EQUAL (CHOOSE-FAIRLY

PROCESS-LIST
(NEXT-CLOCK PROCESS-DESCRIPTION CLOCK))

(IF (MEMBER PROCESS-DESCRIPTION
PROCESS-LIST)

(LIST PROCESS-DESCRIPTION)
NIL)))

In the interval [Clock, (Next-Clock Process-Description Clock)), Next-Clock never schedules Process-

Description, so Choose-Fairly will never find it.

Theorem 19: CHOOSE-FAIRLY-NEVER-RETURNS-PROCESS-IN-INTERVAL (REWRITE)

(IMPLIES (AND (NOT (LESSP TIME CLOCK))
(LESSP TIME (NEXT-CLOCK PROCESS-DESCRIPTION

CLOCK)))
(EQUAL (EQUAL (CHOOSE-FAIRLY PROCESS-LIST TIME)

55

(LIST PROCESS-DESCRIPTION))
F))

((DISABLE NEXT-CLOCK-IS-ONE-TO-ONE)
(USE (NEXT-CLOCK-IS-HONEST)))

The next two lemmas are used in conjuction with the proof rules. The are used to instruct the prover which

processes in the process list may be scheduled during an interval of a particular form. The naming scheme for

these lemmas is: Choose-Fairly-Returns-Member-0 says that every process (all but 0) may be scheduled in the

interval. This is useful for open intervals. Choose-Fairly-Returns-Member-1 says that every process but one

(subtract one) is scheduled in the interval. This is useful when the right end of the interval is open and is of the

form (Next-Clock Process-Description Clock). Process-Description is not scheduled in that open interval.

More complicated interval may be discussed. Certain ones may prevent two processes from being scheduled.

Depending on the progress proof, one may need to prove additional lemmas here. We have found these to be

sufficient in our example.

This lemma is used in conjunction with the Invariance Proof rule to prove Invariance properties. It says that for

an arbitrary Clock, Choose-Fairly schedules nothing, or schedules a member of the Process-List. This is

suitable for Invariance Properties, since any process may be scheduled.

Theorem 20: CHOOSE-FAIRLY-RETURNS-MEMBER-0 ()

(IMPLIES (SETP PROCESS-LIST)
(OR (EQUAL (CHOOSE-FAIRLY PROCESS-LIST CLOCK)

NIL)
(MEMBER (CAR (CHOOSE-FAIRLY PROCESS-LIST

CLOCK))
PROCESS-LIST)))

This lemma is used in conjunction with the Progress Proof rule to prove progress properties. It says that over

the interval [Clock, (Next-Clock Process-Description Clock)) every process but Process-Description may be

scheduled. This is appropriate for the Stable interval in a progress proof, since the Key process is not scheduled

during that interval.

Theorem 21: CHOOSE-FAIRLY-RETURNS-MEMBER-1 ()

(IMPLIES (AND (SETP PROCESS-LIST)
(NOT (LESSP TIME CLOCK))
(LESSP TIME (NEXT-CLOCK PROCESS-DESCRIPTION

CLOCK)))
(OR (EQUAL (CHOOSE-FAIRLY PROCESS-LIST TIME)

56

NIL)
(AND (MEMBER (CAR (CHOOSE-FAIRLY PROCESS-LIST

TIME))
PROCESS-LIST)

(NOT (EQUAL (CAR (CHOOSE-FAIRLY
PROCESS-LIST TIME))

PROCESS-DESCRIPTION)))))

57

Appendix D

The Process List

This file defines our scheme for defining systems. This included the System Description and the Process List.

The family size of a family in the process list is the number of occurences of instances of that family in the

process list.

Definition 1: (FAMILY-SIZE FAMILY-NAME PROCESS-LIST) =

(IF (LISTP PROCESS-LIST)
(IF (EQUAL FAMILY-NAME

(CAAR PROCESS-LIST))
(ADD1 (FAMILY-SIZE FAMILY-NAME

(CDR PROCESS-LIST)))
(FAMILY-SIZE FAMILY-NAME (CDR PROCESS-LIST)))

0)

Returns a family (a list of instances of that family). The top-most call is of the form: (Make-Family family-

name family-size)

Definition 2: (MAKE-FAMILY FAMILY-NAME CURRENT-INDEX) =

(IF (ZEROP CURRENT-INDEX)
NIL
(CONS (LIST FAMILY-NAME (SUB1 CURRENT-INDEX))

(MAKE-FAMILY FAMILY-NAME
(SUB1 CURRENT-INDEX))))

Builds the Process List corresponding to the System Description.

Definition 3: (MAKE-PROCESS-LIST SYSTEM-DESCRIPTION) =

(IF (LISTP SYSTEM-DESCRIPTION)
(APPEND (MAKE-FAMILY (CAAR SYSTEM-DESCRIPTION)

(CADAR SYSTEM-DESCRIPTION))
(MAKE-PROCESS-LIST (CDR SYSTEM-DESCRIPTION)))

NIL)

An abbreviation for determining the size of a family from the system description. Each element of the system

description is (List Family-Name Family-Size).

Definition 4: (DECLARED-FAMILY-SIZE FAMILY-NAME SYSTEM-DESCRIPTION) =

(FIX (CADR (ASSOC FAMILY-NAME SYSTEM-DESCRIPTION)))

Returns a list of all the family names in the system description.

58

Definition 5: (FAMILY-NAMES SYSTEM-DESCRIPTION) =

(IF (LISTP SYSTEM-DESCRIPTION)
(CONS (CAAR SYSTEM-DESCRIPTION)

(FAMILY-NAMES (CDR SYSTEM-DESCRIPTION)))
NIL)

Simplify family-size of append. This is very much like About-Length-And-Append.

Theorem 6: ABOUT-APPEND-AND-FAMILY-SIZE (REWRITE)

(EQUAL (FAMILY-SIZE FAMILY-NAME (APPEND L1 L2))
(PLUS (FAMILY-SIZE FAMILY-NAME L1)

(FAMILY-SIZE FAMILY-NAME L2)))

Simplify Family-Size of Make-Family.

Theorem 7: FAMILY-SIZE-OF-MAKE-FAMILY (REWRITE)

(EQUAL (FAMILY-SIZE FAMILY-NAME1
(MAKE-FAMILY FAMILY-NAME2 FAMILY-SIZE))

(IF (EQUAL FAMILY-NAME1 FAMILY-NAME2)
(FIX FAMILY-SIZE)
0))

This induction scheme is only needed once. The prover will not choose the correct one.

Definition 8:
(MAKE-PROCESS-LIST-RETURNS-CORRECT-FAMILY-SIZE-INDUCTION-SCHEME
SYSTEM-DESCRIPTION FAMILY-NAME) =

(IF (LISTP SYSTEM-DESCRIPTION)
(IF (EQUAL FAMILY-NAME (CAAR SYSTEM-DESCRIPTION))

T
(MAKE-PROCESS-LIST-RETURNS-CORRECT-

FAMILY-SIZE-INDUCTION-SCHEME
(CDR SYSTEM-DESCRIPTION) FAMILY-NAME))

T)

If the system description is properly constructed (no duplicate families) then the family size generated by

Make-Process-List is correct.

Theorem 9: MAKE-PROCESS-LIST-RETURNS-CORRECT-FAMILY-SIZE (REWRITE)

(IMPLIES (SETP (FAMILY-NAMES SYSTEM-DESCRIPTION))
(EQUAL (FAMILY-SIZE FAMILY-NAME

(MAKE-PROCESS-LIST
SYSTEM-DESCRIPTION))

(DECLARED-FAMILY-SIZE FAMILY-NAME
SYSTEM-DESCRIPTION)))

((INDUCT (MAKE-PROCESS-LIST-RETURNS-CORRECT-
FAMILY-SIZE-INDUCTION-SCHEME

59

SYSTEM-DESCRIPTION FAMILY-NAME)))

Define the necessary and sufficient conditions for membership in a family.

Theorem 10: CORRECT-PROCESS-DESCRIPTION-MEMBER-MAKE-FAMILY (REWRITE)

(IFF (MEMBER PROCESS-DESCRIPTION
(MAKE-FAMILY FAMILY-NAME FAMILY-SIZE))

(AND (NUMBERP (CADR PROCESS-DESCRIPTION))
(LESSP (CADR PROCESS-DESCRIPTION)

FAMILY-SIZE)
(EQUAL (CAR PROCESS-DESCRIPTION)

FAMILY-NAME)
(EQUAL (LENGTH PROCESS-DESCRIPTION)

2)
(EQUAL (CDDR PROCESS-DESCRIPTION)

NIL)))

Defines the necessary and sufficient conditions for membership in the process list. This lemma is very

important. It allows the translation from membership in a process list to distinct process names and indices.

This allows the mechanization of the proof rules. The hypothesis of Setp is essential: otherwise Declared-

Family-Size might not work properly. In any case, all System-Descriptions should satisfy the hypothesis. IFF

is not suitable in place of Equal! (I don’t know why.)

Theorem 11: CORRECT-PROCESS-DESCRIPTION-MEMBER-MAKE-PROCESS-LIST
(REWRITE)

(IMPLIES (SETP (FAMILY-NAMES SYSTEM-DESCRIPTION))
(EQUAL (MEMBER PROCESS-DESCRIPTION

(MAKE-PROCESS-LIST
SYSTEM-DESCRIPTION))

(AND (NUMBERP (CADR PROCESS-DESCRIPTION))
(LESSP (CADR PROCESS-DESCRIPTION)

(DECLARED-FAMILY-SIZE
(CAR PROCESS-DESCRIPTION)
SYSTEM-DESCRIPTION))

(MEMBER (CAR PROCESS-DESCRIPTION)
(FAMILY-NAMES
SYSTEM-DESCRIPTION))

(EQUAL (LENGTH PROCESS-DESCRIPTION) 2)
(EQUAL (CDDR PROCESS-DESCRIPTION)

NIL))))

Many of our lemmas require that the process list be a set. (See the Choose-Fairly lemma.) The third lemma

here says that can be determined from the system description.

Theorem 12: DISJOINT-FAMILIES (REWRITE)

(EQUAL (DISJOINTP (MAKE-FAMILY FAMILY-NAME-1 FAMILY-SIZE-1)
(MAKE-FAMILY FAMILY-NAME-2 FAMILY-SIZE-2))

60

(OR (NOT (EQUAL FAMILY-NAME-1 FAMILY-NAME-2))
(ZEROP FAMILY-SIZE-1)
(ZEROP FAMILY-SIZE-2)))

((INDUCT (SUB1-ON-BOTH FAMILY-SIZE-1 FAMILY-SIZE-2)))

Theorem 13: DISJOINT-FAMILY-NAMES (REWRITE)

(IMPLIES (AND (SETP (FAMILY-NAMES SYSTEM-DESCRIPTION))
(NOT (MEMBER FAMILY-NAME

(FAMILY-NAMES
SYSTEM-DESCRIPTION))))

(DISJOINTP (MAKE-FAMILY FAMILY-NAME FAMILY-SIZE)
(MAKE-PROCESS-LIST
SYSTEM-DESCRIPTION)))

This cannot be made into an equality without much trouble. (One would have to check family sizes.)

Theorem 14: SETP-MAKE-PROCESS-LIST (REWRITE)

(IMPLIES (SETP (FAMILY-NAMES SYSTEM-DESCRIPTION))
(SETP (MAKE-PROCESS-LIST SYSTEM-DESCRIPTION)))

Finally, the following four functions are disabled. For every system, only three sets of lemmas need to be

proved about the system description. See the example in the definition of the system containing N instances of

Me.

(DISABLE DECLARED-FAMILY-SIZE) (1)
(DISABLE FAMILY-SIZE)
(DISABLE FAMILY-NAMES)
(DISABLE MAKE-PROCESS-LIST)

61

Appendix E

The Interpreter

This file defines an Operational Semantics for Distributed Systems.

Single-Step takes a list containing the description of the process to be run and returns the resultant state. The

CAAR of Process-Description is the family name of the process and the CADAR is that process’s index.

Single-Step fixes the Clock for convenience (like Next-Clock and Choose-Fairly) otherwise, every lemma

would need a precondition of (Numberp Clock).

Definition 1: (SINGLE-STEP PROCESS-DESCRIPTION PROCESS-LIST CLOCK SYSTEM-
STATE) =

(IF (LISTP PROCESS-DESCRIPTION)
(APPLY$ (CAAR PROCESS-DESCRIPTION)

(LIST (CADAR PROCESS-DESCRIPTION)
(FAMILY-SIZE (CAAR PROCESS-DESCRIPTION)

PROCESS-LIST)
(FIX CLOCK)
SYSTEM-STATE))

SYSTEM-STATE)

Update System-State from Clock to Max-Clock. Int is a mnemonic for Interpreter.

Definition 2: (INT PROCESS-LIST CLOCK MAX-CLOCK SYSTEM-STATE) =

(IF (LESSP CLOCK MAX-CLOCK)
(INT PROCESS-LIST

(ADD1 CLOCK)
MAX-CLOCK
(SINGLE-STEP (CHOOSE-FAIRLY PROCESS-LIST

CLOCK)
PROCESS-LIST
CLOCK
SYSTEM-STATE))

SYSTEM-STATE)

((LESSP (DIFFERENCE MAX-CLOCK CLOCK)))

This lemma is useful when Single-Step is disabled (for example when proving the proof rules).

Theorem 3: SINGLE-STEP-FIXES-CLOCK (REWRITE)

(IMPLIES (NOT (NUMBERP CLOCK))
(EQUAL (SINGLE-STEP PROCESS-DESCRIPTION

PROCESS-LIST
CLOCK
SYSTEM-STATE)

(SINGLE-STEP PROCESS-DESCRIPTION

62

PROCESS-LIST
0
SYSTEM-STATE)))

(DISABLE SINGLE-STEP-FIXES-CLOCK) (1)

63

Appendix F

The Proof Rules

This file contains the Proof Rules, derived from Int, that we use when proving properties of distributed systems.

Int may be composed.

Theorem 1: COMPOSITIONALITY-OF-INT (REWRITE)

(IMPLIES (AND (NOT (LESSP TIME CLOCK))
(NOT (LESSP MAX-CLOCK TIME)))

(EQUAL (INT PROCESS-LIST
TIME
MAX-CLOCK
(INT PROCESS-LIST

CLOCK
TIME
SYSTEM-STATE))

(INT PROCESS-LIST
CLOCK
MAX-CLOCK
SYSTEM-STATE)))

((DISABLE SINGLE-STEP)
(ENABLE SINGLE-STEP-FIXES-CLOCK))

Int is ineffectual on empty intervals.

Theorem 2: SIMPLIFY-INT (REWRITE)

(IMPLIES (NOT (LESSP CLOCK MAX-CLOCK))
(EQUAL (INT PROCESS-LIST

CLOCK
MAX-CLOCK
SYSTEM-STATE)

SYSTEM-STATE))

Single-Step of Int really means run Int one step further.

Theorem 3: SIMPLIFY-SINGLE-STEP-OF-INT (REWRITE)

(IMPLIES (LESSP CLOCK MAX-CLOCK)
(EQUAL (SINGLE-STEP (CHOOSE-FAIRLY

PROCESS-LIST
(SUB1 MAX-CLOCK))

PROCESS-LIST
(SUB1 MAX-CLOCK)
(INT PROCESS-LIST

CLOCK
(SUB1 MAX-CLOCK)
SYSTEM-STATE))

(INT PROCESS-LIST

64

CLOCK
MAX-CLOCK
SYSTEM-STATE)))

((DISABLE SINGLE-STEP)
(ENABLE SINGLE-STEP-FIXES-CLOCK))

Bad-State is a skolem function that returns the Clock associated with the first system state between Clock and

Max-Clock that does not satisfy the Invariant. If no such state exists, return a Clock greater than or equal to

Max-Clock. By not satisfiying the Invariant, we mean, that the Invariant holds on the system state at Clock, and

the Invariant does not hold on the next system state, derived from the system state by the Single-Step of the

process chosen by Choose-Fairly at Clock.

Definition 4: (BAD-STATE INVARIANT CODE PROCESS-LIST CLOCK MAX-CLOCK
SYSTEM-STATE) =

(IF (LESSP CLOCK MAX-CLOCK)
(IF (NOT

(IMPLIES
(APPLY$ INVARIANT

(APPEND CODE (LIST SYSTEM-STATE)))
(APPLY$ INVARIANT

(APPEND CODE
(LIST (SINGLE-STEP

(CHOOSE-FAIRLY
PROCESS-LIST CLOCK)

PROCESS-LIST
CLOCK
SYSTEM-STATE))))))

CLOCK
(BAD-STATE INVARIANT

CODE
PROCESS-LIST
(ADD1 CLOCK)
MAX-CLOCK
(SINGLE-STEP (CHOOSE-FAIRLY

PROCESS-LIST CLOCK)
PROCESS-LIST
CLOCK
SYSTEM-STATE)))

CLOCK)

((LESSP (DIFFERENCE MAX-CLOCK CLOCK)))

When will Bad-State return the first clock?

Theorem 5: ABOUT-BAD-STATE-1 (REWRITE)

(IMPLIES (AND (LESSP CLOCK MAX-CLOCK)
(NOT (IMPLIES

(APPLY$ INVARIANT
(APPEND CODE

65

(LIST SYSTEM-STATE)))
(APPLY$
INVARIANT
(APPEND CODE

(LIST (SINGLE-STEP
(CHOOSE-FAIRLY
PROCESS-LIST
CLOCK)

PROCESS-LIST
CLOCK
SYSTEM-STATE)))))))

(EQUAL (BAD-STATE INVARIANT
CODE
PROCESS-LIST
CLOCK
MAX-CLOCK
SYSTEM-STATE)

CLOCK))

Bad-State always returns a value greater than or equal to Clock.

Theorem 6: ABOUT-BAD-STATE-2 (REWRITE)

(NOT (LESSP (BAD-STATE INVARIANT
CODE
PROCESS-LIST
CLOCK
MAX-CLOCK
SYSTEM-STATE)

CLOCK))

((DISABLE SINGLE-STEP)
(ENABLE SINGLE-STEP-FIXES-CLOCK))

Using Bad-State, Invariance-Over-Single-Step defines what is necessary for the Invariant to be stable over the

interval [Clock, Max-Clock).

Definition 7: (INVARIANCE-OVER-SINGLE-STEP INVARIANT CODE PROCESS-LIST
CLOCK MAX-CLOCK SYSTEM-STATE) =

(IMPLIES (AND (LESSP (BAD-STATE INVARIANT
CODE
PROCESS-LIST
CLOCK
MAX-CLOCK
SYSTEM-STATE)

MAX-CLOCK)
(APPLY$ INVARIANT

(APPEND
CODE
(LIST
(INT PROCESS-LIST

CLOCK
(BAD-STATE INVARIANT

66

CODE
PROCESS-LIST
CLOCK
MAX-CLOCK
SYSTEM-STATE)

SYSTEM-STATE)))))
(APPLY$ INVARIANT

(APPEND
CODE
(LIST (SINGLE-STEP

(CHOOSE-FAIRLY
PROCESS-LIST
(BAD-STATE INVARIANT

CODE
PROCESS-LIST
CLOCK
MAX-CLOCK
SYSTEM-STATE))

PROCESS-LIST
(BAD-STATE INVARIANT

CODE
PROCESS-LIST
CLOCK
MAX-CLOCK
SYSTEM-STATE)

(INT PROCESS-LIST
CLOCK
(BAD-STATE INVARIANT

CODE
PROCESS-LIST
CLOCK
MAX-CLOCK
SYSTEM-STATE)

SYSTEM-STATE))))))

This is really a stablitiy rather than an interval proof rule.

Theorem 8: INVARIANCE (REWRITE)

(IMPLIES (INVARIANCE-OVER-SINGLE-STEP INVARIANT
CODE
PROCESS-LIST
CLOCK
MAX-CLOCK
SYSTEM-STATE)

(EQUAL (IMPLIES (APPLY$ INVARIANT
(APPEND
CODE
(LIST SYSTEM-STATE)))

(APPLY$ INVARIANT
(APPEND
CODE
(LIST
(INT PROCESS-LIST

CLOCK
MAX-CLOCK

67

SYSTEM-STATE)))))
T))

((DISABLE SINGLE-STEP)
(ENABLE SINGLE-STEP-FIXES-CLOCK)
(INDUCT (BAD-STATE INVARIANT CODE PROCESS-LIST

CLOCK MAX-CLOCK SYSTEM-STATE)))

The Progress Proof Rule. If the Intermediate-Property is stable over [Clock, Max-Clock-1), and the final

transition causes the Final-Property to hold, then we have demonstrated progress from the Intermediate-

Property to the Final-Property, over that interval.

Theorem 9: GENERAL-PROGRESS (REWRITE)

(IMPLIES (AND (LESSP CLOCK MAX-CLOCK)
(INVARIANCE-OVER-SINGLE-STEP
INTERMEDIATE-PROPERTY
I-CODE
PROCESS-LIST
CLOCK
(SUB1 MAX-CLOCK)
SYSTEM-STATE)

(IMPLIES (APPLY$
INTERMEDIATE-PROPERTY
(APPEND I-CODE

(LIST (INT PROCESS-LIST
CLOCK
(SUB1 MAX-CLOCK)
SYSTEM-STATE))))

(APPLY$
FINAL-PROPERTY
(APPEND
F-CODE
(LIST
(SINGLE-STEP
(CHOOSE-FAIRLY
PROCESS-LIST
(SUB1 MAX-CLOCK))

PROCESS-LIST
(SUB1 MAX-CLOCK)
(INT PROCESS-LIST

CLOCK
(SUB1 MAX-CLOCK)
SYSTEM-STATE)))))))

(EQUAL
(IMPLIES (APPLY$ INTERMEDIATE-PROPERTY

(APPEND I-CODE
(LIST
SYSTEM-STATE)))

(APPLY$
FINAL-PROPERTY
(APPEND
F-CODE
(LIST (INT PROCESS-LIST

68

CLOCK
MAX-CLOCK
SYSTEM-STATE)))))

T))

((DISABLE SINGLE-STEP INVARIANCE-OVER-SINGLE-STEP
INVARIANCE)

(ENABLE SINGLE-STEP-FIXES-CLOCK)
(USE (INVARIANCE (INVARIANT INTERMEDIATE-PROPERTY)

(CODE I-CODE)
(CLOCK CLOCK)
(MAX-CLOCK (SUB1 MAX-CLOCK))
(PROCESS-LIST PROCESS-LIST))))

Int is now disabled, since the semantics that we need from it are provided by these Proof Rules. However, we

make no claim that these proof rules completely define Int.

(DISABLE INT) (1)

69

Appendix G

State Accessors

This file defines functions that are useful, when a process accesses the system state.

Return the Name that a process uses to access its locals in the system state.

Definition 1: (PROCESS-NAME PROCESS-DESCRIPTION) =

(CONS (CAR PROCESS-DESCRIPTION)
(CADR PROCESS-DESCRIPTION))

Replace the state associated with Process-Name in System-State with New-Process-State. (Update-State is a

better name than Update-Assoc).

Definition 2: (UPDATE-STATE PROCESS-NAME NEW-PROCESS-STATE SYSTEM-STATE) =

(UPDATE-ASSOC PROCESS-NAME
NEW-PROCESS-STATE
SYSTEM-STATE)

Returns the current state of process Process-Name. This function is also commonly used for channels.

Definition 3: (GET-STATE PROCESS-NAME SYSTEM-STATE) =

(CDR (ASSOC PROCESS-NAME SYSTEM-STATE))

Now, define the channel communication functions. Channels are FIFO queues, modeled by lists.

The channel is empty if its value is not a list.

Definition 4: (CHANNEL-EMPTYP CHANNEL-NAME SYSTEM-STATE) =

(NLISTP (CDR (ASSOC CHANNEL-NAME SYSTEM-STATE)))

Always return the Car of the channel (when the channel is not empty, that is the first message on the channel).

Use Channel-Emptyp to see whether there is a message in the channel.

Definition 5: (GET-HEAD CHANNEL-NAME SYSTEM-STATE) =

(CADR (ASSOC CHANNEL-NAME SYSTEM-STATE))

Add the message to the the end of the specified channel.

70

Definition 6: (SEND MESSAGE CHANNEL-NAME SYSTEM-STATE) =

(UPDATE-ASSOC CHANNEL-NAME
(APPEND (CDR (ASSOC CHANNEL-NAME

SYSTEM-STATE))
(LIST MESSAGE))

SYSTEM-STATE)

Shorten the specified channel.

Definition 7: (RECEIVE CHANNEL-NAME SYSTEM-STATE) =

(UPDATE-ASSOC CHANNEL-NAME
(CDDR (ASSOC CHANNEL-NAME SYSTEM-STATE))
SYSTEM-STATE)

71

Appendix H

Defintion of Me

This file defines the system of processes that solves the N-Processor Mutual Exclusion problem.

A Non-Deterministic Boolean function.

Definition 1:

(DCL RANDOM-BOOLEAN (CODE))

Random-Boolean is total. This should do it, but doesn’t.

Theorem 2:

(ADD-AXIOM RANDOM-BOOLEAN-IS-SUBRP (REWRITE)
(SUBRP ’RANDOM-BOOLEAN))

(PUT1 ’RANDOM-BOOLEAN *1*T ’SUBRP) (1)
(PUT1 ’RANDOM-BOOLEAN ’((RANDOM-BOOLEAN . T)) ’TOTALP-LST)

Theorem 3:

(ADD-AXIOM RANDOM-BOOLEAN-IS-BOOLEAN (REWRITE)
(OR (TRUEP (RANDOM-BOOLEAN CODE))

(FALSEP (RANDOM-BOOLEAN CODE))))

A "Random" Number function.

Definition 4:

(DCL RANDOM-NUMBER (CODE))

Random-Number is total. This should do it, but doesn’t.

Theorem 5:

(ADD-AXIOM RANDOM-NUMBER-IS-SUBRP (REWRITE)
(SUBRP ’RANDOM-NUMBER))

(PUT1 ’RANDOM-NUMBER *1*T ’SUBRP) (2)
(PUT1 ’RANDOM-NUMBER ’((RANDOM-NUMBER . T)) ’TOTALP-LST)

Theorem 6:

(ADD-AXIOM RANDOM-NUMBER-IS-NUMBERP (REWRITE)
(NUMBERP (RANDOM-NUMBER CODE)))

72

Define a process ME of three states: Non-Critical, Wait, and Critical (not Non-Critical or Wait ; usually a

number.). The process moves from Non-Critical to Wait nondeterministically. Otherwise, it passes a message

from its incoming to its outgoing channel. The process moves from Wait to Critical upon receipt of a message

on its distinguished incoming channel. Upon each transition in a Critical state, the process decrements its

counter. If it is zero, the process goes to its Non-Critical state and sends a token its outgoing channel.

Definition 7: (ME INDEX FAMILY-SIZE CLOCK SYSTEM-STATE) =

(IF (EQUAL (GET-STATE (CONS ’ME INDEX) SYSTEM-STATE)
’NON-CRITICAL)

(IF (RANDOM-BOOLEAN CLOCK)
(UPDATE-STATE (CONS ’ME INDEX)

’WAIT
SYSTEM-STATE)

(IF (CHANNEL-EMPTYP (CONS ’C INDEX) SYSTEM-STATE)
SYSTEM-STATE
(SEND ’TOKEN

(CONS ’C (ADD1-MOD FAMILY-SIZE INDEX))
(RECEIVE (CONS ’C INDEX)

SYSTEM-STATE))))
(IF (EQUAL (GET-STATE (CONS ’ME INDEX) SYSTEM-STATE)

’WAIT)
(IF (CHANNEL-EMPTYP (CONS ’C INDEX) SYSTEM-STATE)

SYSTEM-STATE
(UPDATE-STATE (CONS ’ME INDEX)

(RANDOM-NUMBER CLOCK)
(RECEIVE (CONS ’C INDEX)

SYSTEM-STATE)))
(IF (ZEROP (GET-STATE (CONS ’ME INDEX)

SYSTEM-STATE))
(UPDATE-STATE
(CONS ’ME INDEX) ’NON-CRITICAL
(SEND ’TOKEN

(CONS ’C (ADD1-MOD FAMILY-SIZE INDEX))
SYSTEM-STATE))

(UPDATE-STATE
(CONS ’ME INDEX)
(SUB1 (GET-STATE (CONS ’ME INDEX)

SYSTEM-STATE))
SYSTEM-STATE))))

The system contains N instances of Me.

Definition 8: (SYSTEM-DESCRIPTION N) =

(LIST (LIST ’ME N))

Three sets of lemmas that are needed for mechanication.

The family names in the system description are a set.

73

Theorem 9: SETP-FAMILY-NAMES-SYSTEM-DESCRIPTION (REWRITE)

(SETP (FAMILY-NAMES (SYSTEM-DESCRIPTION N)))

((ENABLE FAMILY-NAMES))

For each process, simplify the declared family size. This system has only one process, Me.

Theorem 10: DECLARED-FAMILY-SIZE-OF-ME-IS-N (REWRITE)

(EQUAL (DECLARED-FAMILY-SIZE ’ME (SYSTEM-DESCRIPTION N))
(FIX N))

((ENABLE DECLARED-FAMILY-SIZE))

Provide necessary and sufficient conditions for membership in the family-names. With more than one family,

the second argument is a disjunct of equalities.

Theorem 11: MEMBER-FAMILY-NAMES-OF-SYSTEM-DESCRIPTION (REWRITE)

(EQUAL (MEMBER PROCESS-NAME
(FAMILY-NAMES (SYSTEM-DESCRIPTION N)))

(EQUAL PROCESS-NAME ’ME))

((ENABLE FAMILY-NAMES))

System-Description is then disabled as its executable counterpart.

(DISABLE SYSTEM-DESCRIPTION) (3)
(DISABLE *1*SYSTEM-DESCRIPTION)

74

Appendix I

The Proof of Invariance

Proof of Invariance.

Prove that "at most one process is Critical" is invariant.

First prove that the weight of the system is stable across any transition of Me. This proof is done in two parts:

for ring sizes of 0 and 1, and for larger ring sizes. First, larger ring sizes. Split ring into two pieces, an arbitrary

process and its left and right channels, and the rest of the ring. Show that each is stable for a transition of that

arbitrary process. Second, prove stability by case analysis for ring sizes of 0 and 1.

The weight of a process is one if it is Critical.

Definition 1: (WEIGHT-OF-PROCESS INDEX SYSTEM-STATE) =

(IF (OR (EQUAL (GET-STATE (CONS ’ME INDEX) SYSTEM-STATE)
’NON-CRITICAL)

(EQUAL (GET-STATE (CONS ’ME INDEX) SYSTEM-STATE)
’WAIT))

0
1)

The weight of the Index’ed processes Left and Right channels.

Definition 2: (WEIGHT-OF-DOUBLE INDEX N SYSTEM-STATE) =

(PLUS (LENGTH (GET-STATE (CONS ’C INDEX) SYSTEM-STATE))
(LENGTH (GET-STATE (CONS ’C (ADD1-MOD N INDEX))

SYSTEM-STATE)))

The weight of the process and its surrounding channels.

Definition 3: (WEIGHT-OF-TRIPLE INDEX N SYSTEM-STATE) =

(PLUS (WEIGHT-OF-DOUBLE INDEX N SYSTEM-STATE)
(WEIGHT-OF-PROCESS INDEX SYSTEM-STATE))

Prove, by case analysis that the weight of the triple is stable for a single transition of the process at the center of

the triple.

Theorem 4: WEIGHT-OF-TRIPLE-INVARIANT-OVER-ME (REWRITE)

(IMPLIES (LESSP 1 N)

75

(EQUAL (WEIGHT-OF-TRIPLE INDEX N (ME INDEX
N
CLOCK
SYSTEM-STATE))

(WEIGHT-OF-TRIPLE INDEX N SYSTEM-STATE)))

The non-interference property for channels outside of the triple.

Theorem 5: ME-DOES-NOT-TOUCH-CHANNEL (REWRITE)

(IMPLIES (AND (NOT (EQUAL I INDEX))
(NOT (EQUAL I (ADD1-MOD N INDEX))))

(EQUAL (CDR (ASSOC (CONS ’C I)
(ME INDEX

N
CLOCK
SYSTEM-STATE)))

(CDR (ASSOC (CONS ’C I) SYSTEM-STATE))))

The non-interfence property for local states outside of the triple.

Theorem 6: ME-DOES-NOT-TOUCH-LOCAL (REWRITE)

(IMPLIES (NOT (EQUAL I INDEX))
(EQUAL (CDR (ASSOC (CONS ’ME I)

(ME INDEX
N
CLOCK
SYSTEM-STATE)))

(CDR (ASSOC (CONS ’ME I) SYSTEM-STATE))))

The weight of all the channels outside of the triple.

Definition 7: (WEIGHT-OF-REST-OF-CHANNELS RECURSE INDEX N SYSTEM-STATE) =

(IF (ZEROP RECURSE)
0
(IF (EQUAL INDEX (SUB1 RECURSE))

(WEIGHT-OF-REST-OF-CHANNELS
(SUB1 RECURSE) INDEX N SYSTEM-STATE)

(IF (EQUAL (ADD1-MOD N INDEX) (SUB1 RECURSE))
(WEIGHT-OF-REST-OF-CHANNELS
(SUB1 RECURSE) INDEX N SYSTEM-STATE)

(PLUS (LENGTH (GET-STATE
(CONS ’C (SUB1 RECURSE))
SYSTEM-STATE))

(WEIGHT-OF-REST-OF-CHANNELS
(SUB1 RECURSE) INDEX N
SYSTEM-STATE)))))

The weight of all the processes except for the Index’ed process.

76

Definition 8: (WEIGHT-OF-REST-OF-PROCESSES N INDEX SYSTEM-STATE) =

(IF (ZEROP N)
0
(IF (EQUAL INDEX (SUB1 N))

(WEIGHT-OF-REST-OF-PROCESSES
(SUB1 N) INDEX SYSTEM-STATE)

(PLUS (WEIGHT-OF-PROCESS (SUB1 N) SYSTEM-STATE)
(WEIGHT-OF-REST-OF-PROCESSES
(SUB1 N)
INDEX SYSTEM-STATE))))

Proved by the non-interfence over channels property.

Theorem 9: WEIGHT-OF-REST-OF-CHANNELS-INVARIANT-OVER-ME (REWRITE)

(EQUAL (WEIGHT-OF-REST-OF-CHANNELS RECURSE INDEX N
(ME INDEX

N
CLOCK
SYSTEM-STATE))

(WEIGHT-OF-REST-OF-CHANNELS
RECURSE INDEX N SYSTEM-STATE))

((DISABLE ADD1-MOD ME))

Proved by the non-interference over local states property.

Theorem 10: WEIGHT-OF-REST-OF-PROCESSES-INVARIANT-OVER-ME (REWRITE)

(EQUAL (WEIGHT-OF-REST-OF-PROCESSES RECURSE INDEX
(ME INDEX

N
CLOCK
SYSTEM-STATE))

(WEIGHT-OF-REST-OF-PROCESSES
RECURSE INDEX SYSTEM-STATE))

((DISABLE ADD1-MOD ME))

The weight of all the channels.

Definition 11: (WEIGHT-OF-CHANNELS N SYSTEM-STATE) =

(IF (ZEROP N)
0
(PLUS (LENGTH (GET-STATE (CONS ’C (SUB1 N))

SYSTEM-STATE))
(WEIGHT-OF-CHANNELS
(SUB1 N) SYSTEM-STATE)))

The weight of all the processes.

77

Definition 12: (WEIGHT-OF-PROCESSES N SYSTEM-STATE) =

(IF (ZEROP N)
0
(PLUS (WEIGHT-OF-PROCESS

(SUB1 N) SYSTEM-STATE)
(WEIGHT-OF-PROCESSES
(SUB1 N) SYSTEM-STATE)))

The weight of the system is the sum of the weight of the triple and the weight of the rest of the channels and

processes. To do this by induction requires a more general theorem.

Theorem 13: WEIGHT-OF-SYSTEM-STATE-IS-SUM-GENERAL ()

(IMPLIES (AND (NOT (LESSP N RECURSE))
(NUMBERP INDEX)
(LESSP INDEX N))

(EQUAL (PLUS (WEIGHT-OF-CHANNELS
RECURSE SYSTEM-STATE)

(WEIGHT-OF-PROCESSES
RECURSE SYSTEM-STATE))

(IF (ZEROP RECURSE)
0

(IF (EQUAL RECURSE 1)
(PLUS (LENGTH (CDR (ASSOC (CONS ’C 0)

SYSTEM-STATE)))
(WEIGHT-OF-PROCESS 0 SYSTEM-STATE))

(PLUS (WEIGHT-OF-REST-OF-PROCESSES
RECURSE INDEX SYSTEM-STATE)

(WEIGHT-OF-REST-OF-CHANNELS
RECURSE INDEX N SYSTEM-STATE)

(IF (EQUAL INDEX (SUB1 N))
(IF (LESSP INDEX RECURSE)

(WEIGHT-OF-TRIPLE INDEX N SYSTEM-STATE)
(LENGTH (CDR (ASSOC (CONS ’C 0)

SYSTEM-STATE))))
(IF (LESSP (ADD1 INDEX) RECURSE)

(WEIGHT-OF-TRIPLE INDEX N SYSTEM-STATE)
(IF (EQUAL (ADD1 INDEX) RECURSE)

(PLUS (WEIGHT-OF-PROCESS INDEX SYSTEM-STATE)
(LENGTH (CDR (ASSOC (CONS ’C INDEX)

SYSTEM-STATE))))
0))))))))

((DISABLE WEIGHT-OF-PROCESS)
(INDUCT (INTEGER-INDUCTION-SCHEME-1 RECURSE)))

Simply that the weight of the channels and processes is the sum of the stable parts: the triple, the rest of

channels, and the rest of processes.

Theorem 14: WEIGHT-OF-SYSTEM-STATE-IS-SUM-OF-REST-AND-TRIPLE (REWRITE)

(IMPLIES (AND (LESSP 1 N)
(NUMBERP INDEX)

78

(LESSP INDEX N))
(EQUAL (PLUS (WEIGHT-OF-CHANNELS N SYSTEM-STATE)

(WEIGHT-OF-PROCESSES N SYSTEM-STATE))
(PLUS (WEIGHT-OF-TRIPLE

INDEX N SYSTEM-STATE)
(WEIGHT-OF-REST-OF-CHANNELS
N INDEX N SYSTEM-STATE)

(WEIGHT-OF-REST-OF-PROCESSES
N INDEX SYSTEM-STATE))))

((DISABLE WEIGHT-OF-TRIPLE)
(USE (WEIGHT-OF-SYSTEM-STATE-IS-SUM-GENERAL

(INDEX INDEX) (RECURSE N) (N N))))

The stability result for larger ring sizes (greater than 1).

Theorem 15: WEIGHT-OF-SYSTEM-STATE-INVARIANT-OVER-ME-N>1 ()

(IMPLIES (AND (LESSP 1 N)
(NUMBERP INDEX)
(LESSP INDEX N))

(EQUAL (PLUS (WEIGHT-OF-CHANNELS N
(ME INDEX

N
CLOCK
SYSTEM-STATE))

(WEIGHT-OF-PROCESSES N
(ME INDEX

N
CLOCK

SYSTEM-STATE)))
(PLUS (WEIGHT-OF-CHANNELS N SYSTEM-STATE)

(WEIGHT-OF-PROCESSES N SYSTEM-STATE))))

((DISABLE ME WEIGHT-OF-TRIPLE))

(DISABLE WEIGHT-OF-SYSTEM-STATE-IS-SUM-OF-REST-AND-TRIPLE) (1)
(DISABLE WEIGHT-OF-TRIPLE-INVARIANT-OVER-ME)
(DISABLE WEIGHT-OF-REST-OF-CHANNELS-INVARIANT-OVER-ME)
(DISABLE WEIGHT-OF-REST-OF-PROCESSES-INVARIANT-OVER-ME)

Prove by case analysis the stability result for ring size 1. The previous technique cannot be used, since the left

and right channels are the same.

Theorem 16: WEIGHT-OF-SYSTEM-STATE-INVARIANT-OVER-ME-N=1 (REWRITE)

(EQUAL (PLUS (WEIGHT-OF-CHANNELS 1 (ME 0
1
CLOCK
SYSTEM-STATE))

(WEIGHT-OF-PROCESSES 1 (ME 0
1
CLOCK

79

SYSTEM-STATE)))
(PLUS (WEIGHT-OF-CHANNELS 1 SYSTEM-STATE)

(WEIGHT-OF-PROCESSES 1 SYSTEM-STATE)))

((USE (WEIGHT-OF-PROCESSES (N 1)
(SYSTEM-STATE
(ME 0 1

CLOCK
SYSTEM-STATE)))

(WEIGHT-OF-CHANNELS (N 1)
(SYSTEM-STATE
(ME 0 1

CLOCK
SYSTEM-STATE)))

(WEIGHT-OF-PROCESSES (N 1)
(SYSTEM-STATE SYSTEM-STATE))

(WEIGHT-OF-CHANNELS (N 1)
(SYSTEM-STATE SYSTEM-STATE))))

Show that if N is less that or equal to 1 and there exists an Index less that it, the N is 1 and the Index is 0.

Theorem 17: ABOUT-LESSP-LESSP-COMBINATION ()

(EQUAL (AND (NOT (LESSP 1 N))
(NUMBERP INDEX)
(LESSP INDEX N))

(AND (EQUAL N 1)
(EQUAL INDEX 0)))

For N=1, true by case anayis (done earlier). For N=0, no index exists.

Theorem 18: WEIGHT-OF-SYSTEM-STATE-INVARIANT-OVER-ME-N<2 ()

(IMPLIES (AND (NOT (LESSP 1 N))
(NUMBERP INDEX)
(LESSP INDEX N))

(EQUAL (PLUS (WEIGHT-OF-CHANNELS
N
(ME INDEX N

CLOCK
SYSTEM-STATE))

(WEIGHT-OF-PROCESSES
N
(ME INDEX N

CLOCK
SYSTEM-STATE)))

(PLUS (WEIGHT-OF-CHANNELS
N SYSTEM-STATE)

(WEIGHT-OF-PROCESSES
N SYSTEM-STATE))))

((DISABLE ME)
(USE (ABOUT-LESSP-LESSP-COMBINATION)))

80

(DISABLE WEIGHT-OF-SYSTEM-STATE-INVARIANT-OVER-ME-N=1) (2)

Combining the two proofs (for large and small ring sizes) yields stability over the ring, for all ring sizes.

Theorem 19: WEIGHT-OF-SYSTEM-STATE-INVARIANT-OVER-ME (REWRITE)

(IMPLIES (AND (NUMBERP INDEX)
(LESSP INDEX N))

(EQUAL (PLUS (WEIGHT-OF-CHANNELS
N
(ME INDEX N

CLOCK
SYSTEM-STATE))

(WEIGHT-OF-PROCESSES
N
(ME INDEX N

CLOCK
SYSTEM-STATE)))

(PLUS (WEIGHT-OF-CHANNELS
N SYSTEM-STATE)

(WEIGHT-OF-PROCESSES
N SYSTEM-STATE))))

((DISABLE ME)
(USE (WEIGHT-OF-SYSTEM-STATE-INVARIANT-OVER-ME-N>1)

(WEIGHT-OF-SYSTEM-STATE-INVARIANT-OVER-ME-N<2)))

Now prove that mutual exclusion is invariant. Mutual Exclusion is the property that the weight of the system is

always one.

Is the weight of the system one?

Definition 20: (MUTUAL-EXCLUSIONP N SYSTEM-STATE) =

(EQUAL (PLUS (WEIGHT-OF-CHANNELS N SYSTEM-STATE)
(WEIGHT-OF-PROCESSES N SYSTEM-STATE))

1)

Prove the process level invariance of Mutual-Exclusionp. Because the weight of the system is stable, mutual

exclusion certainly is.

Theorem 21: MUTUAL-EXCLUSION-INVARIANT-OVER-ME (REWRITE)

(IMPLIES (AND (LESSP INDEX N)
(NUMBERP INDEX)
(MUTUAL-EXCLUSIONP N

SYSTEM-STATE))
(MUTUAL-EXCLUSIONP N

(ME INDEX N
CLOCK

81

SYSTEM-STATE)))

((DISABLE ME))

Using the process level invariance, prove the system level invariance.

Theorem 22: MUTUAL-EXCLUSION-IS-INVARIANT (REWRITE)

(IMPLIES (MUTUAL-EXCLUSIONP N
SYSTEM-STATE)

(MUTUAL-EXCLUSIONP N
(INT (MAKE-PROCESS-LIST

(SYSTEM-DESCRIPTION N))
CLOCK
MAX-CLOCK
SYSTEM-STATE)))

((DISABLE ME MUTUAL-EXCLUSIONP)
Disable the family specifications (Me), and the
predicate that is being proved invariant.
Use the Invariance Proof Rule, by instantiating
appropriately.
(USE (INVARIANCE

(INVARIANT ’MUTUAL-EXCLUSIONP)
(CODE (LIST N))
(PROCESS-LIST (MAKE-PROCESS-LIST

(SYSTEM-DESCRIPTION N)))
(SYSTEM-STATE SYSTEM-STATE)
(CLOCK CLOCK)
(MAX-CLOCK MAX-CLOCK))

Use the Choose-Fairly-Returns-Member-0 theorem
since every process can be run in an arbitrary interval.
Instantiate Clock with the skolemized bad value.

(CHOOSE-FAIRLY-RETURNS-MEMBER-0
(PROCESS-LIST (MAKE-PROCESS-LIST

(SYSTEM-DESCRIPTION N)))
(CLOCK (BAD-STATE ’MUTUAL-EXCLUSIONP

(LIST N)
(MAKE-PROCESS-LIST
(SYSTEM-DESCRIPTION N))

CLOCK
MAX-CLOCK
SYSTEM-STATE)))))

82

Appendix J

The Proof of Liveness

The Proof of Liveness.

Prove that every Waiting process eventually becomes Critical.

First, some consequences of mutual exclusion. Three theorems: A Waiting process with an empty left channel

stays Waiting, over the next transition, no matter what that transition is. One full channel precludes any other

full channels. One Critical process precludes any full channels.

Definition 1: (WEIGHT-REFLECTS-INDUCTION-SCHEME INDEX N) =

(IF (ZEROP N)
T
(IF (LESSP INDEX N)

(IF (EQUAL INDEX (SUB1 N))
T
(WEIGHT-REFLECTS-INDUCTION-SCHEME
INDEX (SUB1 N)))

T))

The weight of all the processes is at the least weight of any single process.

Theorem 2: WEIGHT-OF-PROCESSES-REFLECTS-WEIGHT-OF-COMPONENTS (REWRITE)

(IMPLIES (AND (NUMBERP INDEX)
(LESSP INDEX N))

(NOT (LESSP (WEIGHT-OF-PROCESSES N SYSTEM-STATE)
(WEIGHT-OF-PROCESS INDEX SYSTEM-STATE))))

((DISABLE WEIGHT-OF-PROCESS)
(INDUCT (WEIGHT-REFLECTS-INDUCTION-SCHEME INDEX N)))

The weight of all the channels is at least the weight of any single channel.

Theorem 3: WEIGHT-OF-CHANNELS-REFLECTS-WEIGHT-OF-COMPONENTS (REWRITE)

(IMPLIES (AND (NUMBERP INDEX)
(LESSP INDEX N))

(NOT (LESSP (WEIGHT-OF-CHANNELS N SYSTEM-STATE)
(LENGTH (CDR (ASSOC (CONS ’C INDEX)

SYSTEM-STATE))))))

((INDUCT (WEIGHT-REFLECTS-INDUCTION-SCHEME INDEX N)))

Theorem 4: ABOUT-WEIGHT-OF-REST-OF-CHANNELS (REWRITE)

(IMPLIES (AND (EQUAL (WEIGHT-OF-CHANNELS N SYSTEM-STATE)

83

1)
(NUMBERP INDEX)
(LESSP INDEX N)
(LESSP 0 (LENGTH (CDR (ASSOC (CONS ’C INDEX)

SYSTEM-STATE)))))
(EQUAL (WEIGHT-OF-CHANNELS INDEX SYSTEM-STATE)

0))

((INDUCT (WEIGHT-REFLECTS-INDUCTION-SCHEME INDEX N)))

Theorem 5: ONE-CHANNEL-FULL-ALL-OTHERS-EMPTY-1 ()

(IMPLIES (AND (EQUAL (WEIGHT-OF-CHANNELS N SYSTEM-STATE)
1)

(NUMBERP I)
(LESSP I N)
(LESSP 0 (LENGTH (CDR (ASSOC (CONS ’C I)

SYSTEM-STATE))))
(NUMBERP J)
(LESSP J N)
(LESSP I J))

(EQUAL (LENGTH (CDR (ASSOC (CONS ’C J)
SYSTEM-STATE)))

0))

Theorem 6: ONE-CHANNEL-FULL-ALL-OTHERS-EMPTY-2 (REWRITE)

(IMPLIES (AND (EQUAL (WEIGHT-OF-CHANNELS N SYSTEM-STATE)
1)

(NUMBERP I)
(LESSP I N)
(LESSP 0 (LENGTH (CDR (ASSOC (CONS ’C I)

SYSTEM-STATE))))
(NUMBERP J)
(LESSP J N)
(NOT (EQUAL I J)))

(EQUAL (LENGTH (CDR (ASSOC (CONS ’C J)
SYSTEM-STATE)))

0))

((DISABLE ABOUT-WEIGHT-OF-REST-OF-CHANNELS)
(USE (ONE-CHANNEL-FULL-ALL-OTHERS-EMPTY-1

(I I) (J J) (N N) (SYSTEM-STATE SYSTEM-STATE))
(ONE-CHANNEL-FULL-ALL-OTHERS-EMPTY-1
(I J) (J I) (N N) (SYSTEM-STATE SYSTEM-STATE))))

This is a hack around the linear arithmetic package. It ought to recognize this immediately.

Theorem 7: ABOUT-PLUS-0 (REWRITE)

(IMPLIES (ZEROP Y)
(EQUAL (PLUS X Y)

(FIX X)))

84

Since the weight of the system is the weight of two things, and the weight of the system equals 1, either

component must be one, and the other zero.

Theorem 8: ABOUT-PLUS-EQUALS-ONE (REWRITE)

(EQUAL (EQUAL (PLUS X Y)
1)

(OR (AND (EQUAL X 1)
(ZEROP Y))

(AND (ZEROP X)
(EQUAL Y 1))))

If one channel is full, every other is empty.

Theorem 9: ONE-CHANNEL-FULL-ALL-OTHERS-EMPTY (REWRITE)

(IMPLIES (AND (MUTUAL-EXCLUSIONP N SYSTEM-STATE)
(NUMBERP I)
(LESSP I N)
(LESSP 0 (LENGTH (CDR (ASSOC (CONS ’C I)

SYSTEM-STATE))))
(NUMBERP J)
(LESSP J N)
(NOT (EQUAL I J)))

(EQUAL (LENGTH (CDR (ASSOC (CONS ’C J)
SYSTEM-STATE)))

0))

If one process is Critical, all channels are empty.

Theorem 10: ONE-PROCESS-CRITICAL-ALL-CHANNELS-EMPTY (REWRITE)

(IMPLIES (AND (MUTUAL-EXCLUSIONP N SYSTEM-STATE)
(NUMBERP I)
(LESSP I N)
(EQUAL (WEIGHT-OF-PROCESS I SYSTEM-STATE)

1)
(NUMBERP J)
(LESSP J N))

(EQUAL (LENGTH (CDR (ASSOC (CONS ’C J)
SYSTEM-STATE)))

0))

A bad rewrite rule. It will be disabled soon.

Theorem 11: NOT-LISTPS-HAVE-ZERO-LENGTH (REWRITE)

(EQUAL (EQUAL (LENGTH L) 0)
(NOT (LISTP L)))

A Waiting process with an empty channel remains waiting.

85

Theorem 12: PROCESS-WAIT-WITH-EMPTY-LEFT-STAYS-WAIT (REWRITE)

(IMPLIES (AND (NUMBERP INDEX)
(LESSP INDEX N)
(NUMBERP CINDEX)
(LESSP CINDEX N)
(EQUAL (LENGTH (CDR (ASSOC (CONS ’C INDEX)

SYSTEM-STATE)))
0)

(EQUAL (CDR (ASSOC (CONS ’ME INDEX)
SYSTEM-STATE))

’WAIT))
(EQUAL (CDR (ASSOC (CONS ’ME INDEX)

(ME CINDEX
N
CLOCK
SYSTEM-STATE)))

’WAIT))

((USE (ME-DOES-NOT-TOUCH-LOCAL (I INDEX) (INDEX CINDEX))))

(DISABLE NOT-LISTPS-HAVE-ZERO-LENGTH) (1)
(DISABLE ABOUT-PLUS-EQUALS-ONE)
(DISABLE ABOUT-PLUS-0)
(DISABLE ONE-CHANNEL-FULL-ALL-OTHERS-EMPTY-2)
(DISABLE ABOUT-WEIGHT-OF-REST-OF-CHANNELS)

Some basic abbreviation to describe channels and processes. Some predicates with which we prove progress

statements.

Is the Index’th channel full?

Definition 13: (LEFT-CHANNEL-FULL INDEX SYSTEM-STATE) =

(LESSP 0 (LENGTH (GET-STATE (CONS ’C INDEX)
SYSTEM-STATE)))

Is the Index’th+1 Mod N channel full?

Definition 14: (RIGHT-CHANNEL-FULL INDEX N SYSTEM-STATE) =

(LESSP 0 (LENGTH (GET-STATE (CONS ’C (ADD1-MOD N INDEX))
SYSTEM-STATE)))

Is the Index’th process Non-Critical?

Definition 15: (PROCESS-NON-CRITICAL INDEX SYSTEM-STATE) =

(EQUAL (GET-STATE (CONS ’ME INDEX)
SYSTEM-STATE)

’NON-CRITICAL)

86

Is the Index’th process Waiting?

Definition 16: (PROCESS-WAIT INDEX SYSTEM-STATE) =

(EQUAL (GET-STATE (CONS ’ME INDEX)
SYSTEM-STATE)

’WAIT)

Is the Index’th process Critical?

Definition 17: (PROCESS-CRITICAL INDEX SYSTEM-STATE) =

(EQUAL (WEIGHT-OF-PROCESS INDEX SYSTEM-STATE)
1)

Is the Index’th process Critical and have a critical counter numerically equal to Ticks?

Definition 18: (PROCESS-CRITICAL-WITH-TICKS TICKS INDEX SYSTEM-STATE) =

(AND (PROCESS-CRITICAL INDEX SYSTEM-STATE)
(EQUAL (FIX (GET-STATE (CONS ’ME INDEX)

SYSTEM-STATE))
(FIX TICKS)))

Is the Index1’th channel full, the Index1’th process Non-Critical, and the Index2’th process Waiting, and the

system satisfiying mutual exclusion?

Definition 19: (LEFT-FULL-NON-CRITICAL-WAIT INDEX1 INDEX2 N SYSTEM-STATE) =

(AND (MUTUAL-EXCLUSIONP N SYSTEM-STATE)
(LEFT-CHANNEL-FULL INDEX1 SYSTEM-STATE)
(PROCESS-NON-CRITICAL INDEX1 SYSTEM-STATE)
(PROCESS-WAIT INDEX2 SYSTEM-STATE))

We now prove four progress statements. For each progress statement, prove that some property is Stable over

an interval contaning everything but a specific transition then prove that that Key transition produces the final

property.

Progress Statement #1.

Theorem 20: LEFT-FULL-NON-CRITICAL-WAIT-IS-STABLE-1 (REWRITE)

(IMPLIES (AND (NOT (EQUAL CINDEX INDEX1))
(NUMBERP CINDEX)
(LESSP CINDEX N)
(NUMBERP INDEX1)
(LESSP INDEX1 N)
(NUMBERP INDEX2)
(LESSP INDEX2 N)
(LEFT-FULL-NON-CRITICAL-WAIT INDEX1 INDEX2 N

87

SYSTEM-STATE))
(LEFT-CHANNEL-FULL INDEX1

(ME CINDEX
N
CLOCK
SYSTEM-STATE)))

Theorem 21: LEFT-FULL-NON-CRITICAL-WAIT-IS-STABLE-2 (REWRITE)

(IMPLIES (AND (NOT (EQUAL CINDEX INDEX1))
(NUMBERP CINDEX)
(LESSP CINDEX N)
(NUMBERP INDEX1)
(LESSP INDEX1 N)
(NUMBERP INDEX2)
(LESSP INDEX2 N)
(LEFT-FULL-NON-CRITICAL-WAIT INDEX1 INDEX2 N

SYSTEM-STATE))
(PROCESS-NON-CRITICAL INDEX1

(ME CINDEX
N
CLOCK
SYSTEM-STATE)))

((DISABLE ME))

Theorem 22: LEFT-FULL-NON-CRITICAL-WAIT-IS-STABLE-3 (REWRITE)

(IMPLIES (AND (NOT (EQUAL CINDEX INDEX1))
(LESSP INDEX1 N)
(NUMBERP INDEX1)
(LESSP CINDEX N)
(NUMBERP CINDEX)
(LESSP INDEX2 N)
(NUMBERP INDEX2)
(LEFT-FULL-NON-CRITICAL-WAIT INDEX1 INDEX2 N

SYSTEM-STATE))
(PROCESS-WAIT INDEX2
(ME CINDEX

N
CLOCK
SYSTEM-STATE)))

((DISABLE ME MUTUAL-EXCLUSIONP)
(USE (ONE-CHANNEL-FULL-ALL-OTHERS-EMPTY

(I INDEX1) (J INDEX2))))

Theorem 23: LEFT-FULL-NON-CRITICAL-WAIT-IS-STABLE (REWRITE)

(IMPLIES (AND (NOT (EQUAL CINDEX INDEX1))
(NUMBERP CINDEX)
(LESSP CINDEX N)
(NUMBERP INDEX1)
(LESSP INDEX1 N)
(NUMBERP INDEX2)
(LESSP INDEX2 N)
(LEFT-FULL-NON-CRITICAL-WAIT INDEX1 INDEX2 N

SYSTEM-STATE))

88

(LEFT-FULL-NON-CRITICAL-WAIT INDEX1 INDEX2 N
(ME CINDEX

N
CLOCK
SYSTEM-STATE)))

((DISABLE ME MUTUAL-EXCLUSIONP PROCESS-WAIT
LEFT-CHANNEL-FULL PROCESS-NON-CRITICAL))

(DISABLE LEFT-FULL-NON-CRITICAL-WAIT-IS-STABLE-3) (2)
(DISABLE LEFT-FULL-NON-CRITICAL-WAIT-IS-STABLE-2)
(DISABLE LEFT-FULL-NON-CRITICAL-WAIT-IS-STABLE-1)

Based on Boolean, did the Index1’th process change to Non-Critical or Wait? If Non-Critical, was the token

passed to the right channel? Is the Index2’th process still Waiting?

Definition 24: (NON-CRITICAL-OR-WAIT-WAIT BOOLEAN INDEX1 INDEX2 N SYSTEM-
STATE) =

(AND (MUTUAL-EXCLUSIONP N SYSTEM-STATE)
(PROCESS-WAIT INDEX2 SYSTEM-STATE)
(IF BOOLEAN

(AND (LEFT-CHANNEL-FULL INDEX1 SYSTEM-STATE)
(PROCESS-WAIT INDEX1 SYSTEM-STATE))

(AND (RIGHT-CHANNEL-FULL INDEX1 N SYSTEM-STATE)
(PROCESS-NON-CRITICAL
INDEX1 SYSTEM-STATE))))

Theorem 25: LEFT-FULL-NON-CRITICAL-WAIT-TO-NON-CRITICAL-OR-WAIT-WAIT-1
(REWRITE)

(IMPLIES (AND (NUMBERP INDEX1)
(LESSP INDEX1 N)
(NUMBERP INDEX2)
(LESSP INDEX2 N)
(LEFT-FULL-NON-CRITICAL-WAIT
INDEX1 INDEX2 N SYSTEM-STATE)

(RANDOM-BOOLEAN CLOCK))
(AND (LEFT-CHANNEL-FULL INDEX1

(ME INDEX1
N
CLOCK
SYSTEM-STATE))

(PROCESS-WAIT INDEX1
(ME INDEX1

N
CLOCK
SYSTEM-STATE))))

((DISABLE MUTUAL-EXCLUSIONP))

Theorem 26: LEFT-FULL-NON-CRITICAL-WAIT-TO-NON-CRITICAL-OR-WAIT-WAIT-2
(REWRITE)

(IMPLIES (AND (NUMBERP INDEX1)

89

(LESSP INDEX1 N)
(NUMBERP INDEX2)
(LESSP INDEX2 N)
(NOT (EQUAL INDEX1 INDEX2))
(LEFT-FULL-NON-CRITICAL-WAIT
INDEX1 INDEX2 N SYSTEM-STATE)

(NOT (RANDOM-BOOLEAN CLOCK)))
(AND (RIGHT-CHANNEL-FULL INDEX1 N

(ME INDEX1
N
CLOCK
SYSTEM-STATE))

(PROCESS-NON-CRITICAL INDEX1
(ME INDEX1

N
CLOCK
SYSTEM-STATE))))

((DISABLE MUTUAL-EXCLUSIONP))

Theorem 27: LEFT-FULL-NON-CRITICAL-WAIT-TO-NON-CRITICAL-OR-WAIT-WAIT
(REWRITE)

(IMPLIES (AND (NUMBERP INDEX1)
(LESSP INDEX1 N)
(NUMBERP INDEX2)
(LESSP INDEX2 N)
(NOT (EQUAL INDEX1 INDEX2))
(LEFT-FULL-NON-CRITICAL-WAIT
INDEX1 INDEX2 N SYSTEM-STATE))

(NON-CRITICAL-OR-WAIT-WAIT (RANDOM-BOOLEAN CLOCK)
INDEX1 INDEX2 N
(ME INDEX1

N
CLOCK
SYSTEM-STATE)))

((DISABLE ME PROCESS-NON-CRITICAL LEFT-CHANNEL-FULL
RIGHT-CHANNEL-FULL MUTUAL-EXCLUSIONP))

(DISABLE LEFT-FULL-NON-CRITICAL-WAIT- (3)
TO-NON-CRITICAL-OR-WAIT-WAIT-2)
(DISABLE LEFT-FULL-NON-CRITICAL-WAIT-
TO-NON-CRITICAL-OR-WAIT-WAIT-1)

This progress statement says that a Non-Critical process with a full left channel will eventually become Wait

with a full left channel, or pass a token to its right channel. Throughout this interval, some other process will

remain Waiting.

Theorem 28: UNTIL-NON-CRITICAL-OR-WAIT-WAIT (REWRITE)

(IMPLIES (AND (NUMBERP INDEX1)
(LESSP INDEX1 N)
(NUMBERP INDEX2)

90

(LESSP INDEX2 N)
(NOT (EQUAL INDEX1 INDEX2))

Flag is here, because we wish to use this lemma when
the first argument to Non-Critical-Or-Wait-Wait is
T or F, and not some Random-Boolean.

(EQUAL FLAG (RANDOM-BOOLEAN
(NEXT-CLOCK (LIST ’ME INDEX1)

CLOCK))))
(IMPLIES (LEFT-FULL-NON-CRITICAL-WAIT

INDEX1 INDEX2 N
SYSTEM-STATE)

(NON-CRITICAL-OR-WAIT-WAIT
FLAG INDEX1 INDEX2 N
(INT (MAKE-PROCESS-LIST

(SYSTEM-DESCRIPTION N))
CLOCK
(ADD1 (NEXT-CLOCK

(LIST ’ME INDEX1)
CLOCK))

SYSTEM-STATE))))

((DISABLE ME LEFT-FULL-NON-CRITICAL-WAIT
NON-CRITICAL-OR-WAIT-WAIT)

Disable the family specifications (Me) and every predicate
used in the theorem. Enable the rewrite rule
Equal-Lists-Of-Length-Two.
(ENABLE EQUAL-LISTS-OF-LENGTH-TWO)
Use the General-Progress Proof Rule, by instantiating
appropriately.
(USE (GENERAL-PROGRESS

(INTERMEDIATE-PROPERTY ’LEFT-FULL-NON-CRITICAL-WAIT)
(FINAL-PROPERTY ’NON-CRITICAL-OR-WAIT-WAIT)
(I-CODE (LIST INDEX1 INDEX2 N))
(F-CODE (LIST (RANDOM-BOOLEAN

(NEXT-CLOCK (LIST ’ME INDEX1)
CLOCK))

INDEX1
INDEX2
N))

(CLOCK CLOCK)
(MAX-CLOCK (ADD1 (NEXT-CLOCK (LIST ’ME INDEX1)

CLOCK)))
(PROCESS-LIST (MAKE-PROCESS-LIST

(SYSTEM-DESCRIPTION N))))
Use the Choose-Fairly-Returns-Member-1 theorem,
since every process but one will one during the
stable interval.
Instantiate Clock with the skolemized bad value.

(CHOOSE-FAIRLY-RETURNS-MEMBER-1
(CLOCK CLOCK)
(TIME (BAD-STATE ’LEFT-FULL-NON-CRITICAL-WAIT

(LIST INDEX1 INDEX2 N)
(MAKE-PROCESS-LIST
(SYSTEM-DESCRIPTION N))

CLOCK
(NEXT-CLOCK
(LIST ’ME INDEX1)

91

CLOCK)
SYSTEM-STATE))

(PROCESS-DESCRIPTION (LIST ’ME INDEX1))
(PROCESS-LIST (MAKE-PROCESS-LIST

(SYSTEM-DESCRIPTION N))))))

(DISABLE LEFT-FULL-NON-CRITICAL-WAIT- (4)
TO-NON-CRITICAL-OR-WAIT-WAIT)
(DISABLE LEFT-FULL-NON-CRITICAL-WAIT-IS-STABLE)

Is the Index1’th channel full, the Index1’th process Waiting, the Index2’th process Waiting, and the system

satisfiying mutual exclusion?

Definition 29: (LEFT-FULL-WAIT-WAIT INDEX1 INDEX2 N SYSTEM-STATE) =

(AND (MUTUAL-EXCLUSIONP N SYSTEM-STATE)
(LEFT-CHANNEL-FULL INDEX1 SYSTEM-STATE)
(PROCESS-WAIT INDEX1 SYSTEM-STATE)
(PROCESS-WAIT INDEX2 SYSTEM-STATE))

Theorem 30: LEFT-FULL-WAIT-WAIT-IS-STABLE-1 (REWRITE)

(IMPLIES (AND (NOT (EQUAL CINDEX INDEX1))
(NUMBERP CINDEX)
(LESSP CINDEX N)
(NUMBERP INDEX1)
(LESSP INDEX1 N)
(NUMBERP INDEX2)
(LESSP INDEX2 N)
(LEFT-FULL-WAIT-WAIT INDEX1 INDEX2 N

SYSTEM-STATE))
(AND (LEFT-CHANNEL-FULL INDEX1

(ME CINDEX
N
CLOCK
SYSTEM-STATE))

(PROCESS-WAIT INDEX1
(ME CINDEX

N
CLOCK
SYSTEM-STATE))))

((DISABLE MUTUAL-EXCLUSIONP))

Theorem 31: LEFT-FULL-WAIT-WAIT-IS-STABLE-2 (REWRITE)

(IMPLIES (AND (NOT (EQUAL CINDEX INDEX1))
(NUMBERP CINDEX)
(LESSP CINDEX N)
(NUMBERP INDEX1)
(LESSP INDEX1 N)
(NUMBERP INDEX2)
(LESSP INDEX2 N)
(LEFT-FULL-WAIT-WAIT INDEX1 INDEX2 N

SYSTEM-STATE))

92

(PROCESS-WAIT INDEX2
(ME CINDEX

N
CLOCK
SYSTEM-STATE)))

((DISABLE ME MUTUAL-EXCLUSIONP)
(USE (ONE-CHANNEL-FULL-ALL-OTHERS-EMPTY

(I INDEX1) (J INDEX2))))

Theorem 32: LEFT-FULL-WAIT-WAIT-IS-STABLE (REWRITE)

(IMPLIES (AND (NOT (EQUAL CINDEX INDEX1))
(NUMBERP CINDEX)
(LESSP CINDEX N)
(NUMBERP INDEX1)
(LESSP INDEX1 N)
(NUMBERP INDEX2)
(LESSP INDEX2 N)
(LEFT-FULL-WAIT-WAIT INDEX1 INDEX2 N

SYSTEM-STATE))
(LEFT-FULL-WAIT-WAIT INDEX1 INDEX2 N

(ME CINDEX
N
CLOCK
SYSTEM-STATE)))

((DISABLE ME MUTUAL-EXCLUSIONP
PROCESS-WAIT LEFT-CHANNEL-FULL))

(DISABLE LEFT-FULL-WAIT-WAIT-IS-STABLE-2) (5)
(DISABLE LEFT-FULL-WAIT-WAIT-IS-STABLE-1)

Is the Index2’th process Waiting, and the Index1’th process critical with critical counter Ticks, while the system

is in mutual exclusion?

Definition 33: (CRITICAL-WAIT TICKS INDEX1 INDEX2 N SYSTEM-STATE) =

(AND (MUTUAL-EXCLUSIONP N SYSTEM-STATE)
(PROCESS-WAIT INDEX2 SYSTEM-STATE)
(PROCESS-CRITICAL-WITH-TICKS
TICKS INDEX1 SYSTEM-STATE))

Theorem 34: LEFT-FULL-WAIT-WAIT-TO-CRITICAL-WAIT-1 (REWRITE)

(IMPLIES (AND (NUMBERP INDEX1)
(LESSP INDEX1 N)
(NUMBERP INDEX2)
(LESSP INDEX2 N)
(NOT (EQUAL INDEX1 INDEX2))
(LEFT-FULL-WAIT-WAIT INDEX1 INDEX2 N

SYSTEM-STATE))
(PROCESS-WAIT INDEX2
(ME INDEX1

N

93

CLOCK
SYSTEM-STATE)))

((DISABLE ME MUTUAL-EXCLUSIONP))

Theorem 35: LEFT-FULL-WAIT-WAIT-TO-CRITICAL-WAIT-2 (REWRITE)

(IMPLIES (AND (NUMBERP INDEX1)
(LESSP INDEX1 N)
(NUMBERP INDEX2)
(LESSP INDEX2 N)
(NOT (EQUAL INDEX1 INDEX2))
(LEFT-FULL-WAIT-WAIT INDEX1 INDEX2 N

SYSTEM-STATE))
(PROCESS-CRITICAL-WITH-TICKS
(RANDOM-NUMBER CLOCK) INDEX1
(ME INDEX1

N
CLOCK
SYSTEM-STATE)))

((DISABLE MUTUAL-EXCLUSIONP))

Theorem 36: LEFT-FULL-WAIT-WAIT-TO-CRITICAL-WAIT (REWRITE)

(IMPLIES (AND (NUMBERP INDEX1)
(LESSP INDEX1 N)
(NUMBERP INDEX2)
(LESSP INDEX2 N)
(NOT (EQUAL INDEX1 INDEX2))
(LEFT-FULL-WAIT-WAIT INDEX1 INDEX2 N

SYSTEM-STATE))
(CRITICAL-WAIT (RANDOM-NUMBER CLOCK)

INDEX1
INDEX2
N
(ME INDEX1

N
CLOCK
SYSTEM-STATE)))

((DISABLE MUTUAL-EXCLUSIONP PROCESS-WAIT
PROCESS-CRITICAL-WITH-TICKS ME))

(DISABLE LEFT-FULL-WAIT-WAIT-TO-CRITICAL-WAIT-2) (6)
(DISABLE LEFT-FULL-WAIT-WAIT-TO-CRITICAL-WAIT-1)

The progress statement says that a Waiting process with a full left channel, will become Critical, with a

particular critical counter, upon its first transition. Throughout the interval, some other process will remain

Waiting.

Theorem 37: UNTIL-CRITICAL-WAIT (REWRITE)

(IMPLIES (AND (LESSP INDEX1 N)
(NUMBERP INDEX1)

94

(LESSP INDEX2 N)
(NUMBERP INDEX2)
(NOT (EQUAL INDEX1 INDEX2)))

(IMPLIES (LEFT-FULL-WAIT-WAIT INDEX1 INDEX2 N
SYSTEM-STATE)

(CRITICAL-WAIT
(RANDOM-NUMBER
(NEXT-CLOCK (LIST ’ME INDEX1)

CLOCK))
INDEX1
INDEX2
N
(INT (MAKE-PROCESS-LIST

(SYSTEM-DESCRIPTION N))
CLOCK
(ADD1 (NEXT-CLOCK (LIST ’ME INDEX1)

CLOCK))
SYSTEM-STATE))))

((DISABLE ME LEFT-FULL-WAIT-WAIT CRITICAL-WAIT)
(ENABLE EQUAL-LISTS-OF-LENGTH-TWO)
(USE (GENERAL-PROGRESS

(INTERMEDIATE-PROPERTY ’LEFT-FULL-WAIT-WAIT)
(FINAL-PROPERTY ’CRITICAL-WAIT)
(I-CODE (LIST INDEX1 INDEX2 N))
(F-CODE (LIST (RANDOM-NUMBER

(NEXT-CLOCK (LIST ’ME INDEX1)
CLOCK))

INDEX1
INDEX2
N))

(CLOCK CLOCK)
(MAX-CLOCK (ADD1 (NEXT-CLOCK (LIST ’ME INDEX1)

CLOCK)))
(PROCESS-LIST (MAKE-PROCESS-LIST

(SYSTEM-DESCRIPTION N))))
(CHOOSE-FAIRLY-RETURNS-MEMBER-1
(CLOCK CLOCK)
(TIME (BAD-STATE ’LEFT-FULL-WAIT-WAIT

(LIST INDEX1 INDEX2 N)
(MAKE-PROCESS-LIST
(SYSTEM-DESCRIPTION N))

CLOCK
(NEXT-CLOCK (LIST ’ME INDEX1)

CLOCK)
SYSTEM-STATE))

(PROCESS-DESCRIPTION (LIST ’ME INDEX1))
(PROCESS-LIST (MAKE-PROCESS-LIST

(SYSTEM-DESCRIPTION N))))))

(DISABLE LEFT-FULL-WAIT-WAIT-TO-CRITICAL-WAIT) (7)
(DISABLE LEFT-FULL-WAIT-WAIT-IS-STABLE)

Theorem 38: CRITICAL-WAIT-IS-STABLE-1 (REWRITE)

(IMPLIES (AND (NOT (EQUAL CINDEX INDEX1))
(NUMBERP CINDEX)

95

(LESSP CINDEX N)
(NUMBERP INDEX1)
(LESSP INDEX1 N)
(NUMBERP INDEX2)
(LESSP INDEX2 N)
(CRITICAL-WAIT TICKS INDEX1 INDEX2 N

SYSTEM-STATE))
(PROCESS-WAIT INDEX2
(ME CINDEX

N
CLOCK
SYSTEM-STATE)))

((DISABLE ME MUTUAL-EXCLUSIONP)
(USE (ONE-PROCESS-CRITICAL-ALL-CHANNELS-EMPTY

(I INDEX1) (J INDEX2))))

Theorem 39: CRITICAL-WAIT-IS-STABLE-2 (REWRITE)

(IMPLIES (AND (NOT (EQUAL CINDEX INDEX1))
(NUMBERP CINDEX)
(LESSP CINDEX N)
(NUMBERP INDEX1)
(LESSP INDEX1 N)
(NUMBERP INDEX2)
(LESSP INDEX2 N)
(CRITICAL-WAIT TICKS INDEX1 INDEX2 N

SYSTEM-STATE))
(PROCESS-CRITICAL-WITH-TICKS TICKS INDEX1

(ME CINDEX
N
CLOCK
SYSTEM-STATE)))

I cannot figure out why the rewriter will not use Critical-Wait-is-Stable-1. Break-Lemma seems to reveal that

the proper substitution was found!

Theorem 40: CRITICAL-WAIT-IS-STABLE (REWRITE)

(IMPLIES (AND (NOT (EQUAL CINDEX INDEX1))
(NUMBERP CINDEX)
(LESSP CINDEX N)
(NUMBERP INDEX1)
(LESSP INDEX1 N)
(NUMBERP INDEX2)
(LESSP INDEX2 N)
(CRITICAL-WAIT TICKS INDEX1 INDEX2 N

SYSTEM-STATE))
(CRITICAL-WAIT TICKS INDEX1 INDEX2 N

(ME CINDEX
N
CLOCK
SYSTEM-STATE)))

((DISABLE ME PROCESS-WAIT

96

PROCESS-CRITICAL-WITH-TICKS MUTUAL-EXCLUSIONP)
(USE (CRITICAL-WAIT-IS-STABLE-1)))

(DISABLE CRITICAL-WAIT-IS-STABLE-2) (8)
(DISABLE CRITICAL-WAIT-IS-STABLE-1)

Did the Index’th process follow the correct transition, given that it was Critical with Ticks on its critical counter

Definition 41: (CRITICAL-OR-NON-CRITICAL TICKS INDEX N SYSTEM-STATE) =

(IF (ZEROP TICKS)
(RIGHT-CHANNEL-FULL INDEX N

SYSTEM-STATE)
(PROCESS-CRITICAL-WITH-TICKS (SUB1 TICKS) INDEX

SYSTEM-STATE))

Does Critical-Or-Non-Critical hold, along with mutual exclusion, and the Index2’th process Waiting?

Definition 42: (CRITICAL-OR-NON-CRITICAL-WAIT TICKS INDEX1 INDEX2 N SYSTEM-
STATE) =

(AND (MUTUAL-EXCLUSIONP N SYSTEM-STATE)
(PROCESS-WAIT INDEX2 SYSTEM-STATE)
(CRITICAL-OR-NON-CRITICAL TICKS INDEX1 N

SYSTEM-STATE))

Theorem 43: CRITICAL-WAIT-TO-CRITICAL-OR-NON-CRITICAL-WAIT-1 (REWRITE)

(IMPLIES (AND (NUMBERP INDEX1)
(LESSP INDEX1 N)
(NUMBERP INDEX2)
(LESSP INDEX2 N)
(NOT (EQUAL INDEX1 INDEX2))
(CRITICAL-WAIT TICKS INDEX1 INDEX2 N

SYSTEM-STATE))
(PROCESS-WAIT INDEX2
(ME INDEX1

N
CLOCK
SYSTEM-STATE)))

((DISABLE ME MUTUAL-EXCLUSIONP))

Theorem 44: CRITICAL-WAIT-TO-CRITICAL-OR-NON-CRITICAL-WAIT-2 (REWRITE)

(IMPLIES (AND (NUMBERP INDEX1)
(LESSP INDEX1 N)
(NUMBERP INDEX2)
(LESSP INDEX2 N)
(NOT (EQUAL INDEX1 INDEX2))
(CRITICAL-WAIT TICKS INDEX1 INDEX2 N

SYSTEM-STATE))
(CRITICAL-OR-NON-CRITICAL TICKS INDEX1 N

(ME INDEX1
N

97

CLOCK
SYSTEM-STATE)))

((DISABLE MUTUAL-EXCLUSIONP))

Theorem 45: CRITICAL-WAIT-TO-CRITICAL-OR-NON-CRITICAL-WAIT (REWRITE)

(IMPLIES (AND (NUMBERP INDEX1)
(LESSP INDEX1 N)
(NUMBERP INDEX2)
(LESSP INDEX2 N)
(NOT (EQUAL INDEX1 INDEX2))
(CRITICAL-WAIT TICKS INDEX1 INDEX2 N

SYSTEM-STATE))
(CRITICAL-OR-NON-CRITICAL-WAIT
TICKS INDEX1 INDEX2 N
(ME INDEX1

N
CLOCK
SYSTEM-STATE)))

((DISABLE PROCESS-CRITICAL-WITH-TICKS
CRITICAL-OR-NON-CRITICAL
ME PROCESS-WAIT
MUTUAL-EXCLUSIONP)

(USE (CRITICAL-WAIT-TO-CRITICAL-OR-NON-CRITICAL-WAIT-1)))

(DISABLE CRITICAL-WAIT-TO-CRITICAL-OR-NON-CRITICAL-WAIT-2) (9)
(DISABLE CRITICAL-WAIT-TO-CRITICAL-OR-NON-CRITICAL-WAIT-1)

This progress statements says that a Critical process will either remain Critical, when it finally runs, or will

release a token upon its right channel. Throughout the interval, some other process will remain Waiting.

Theorem 46: UNTIL-CRITICAL-OR-NON-CRITICAL-WAIT (REWRITE)

(IMPLIES (AND (LESSP INDEX1 N)
(NUMBERP INDEX1)
(LESSP INDEX2 N)
(NUMBERP INDEX2)
(NOT (EQUAL INDEX1 INDEX2)))

(IMPLIES (CRITICAL-WAIT
TICKS INDEX1 INDEX2 N
SYSTEM-STATE)

(CRITICAL-OR-NON-CRITICAL-WAIT
TICKS INDEX1 INDEX2 N
(INT (MAKE-PROCESS-LIST

(SYSTEM-DESCRIPTION N))
CLOCK
(ADD1 (NEXT-CLOCK

(LIST ’ME INDEX1)
CLOCK))

SYSTEM-STATE))))

((DISABLE ME CRITICAL-WAIT CRITICAL-OR-NON-CRITICAL-WAIT)
(ENABLE EQUAL-LISTS-OF-LENGTH-TWO)

98

(USE (GENERAL-PROGRESS
(INTERMEDIATE-PROPERTY ’CRITICAL-WAIT)
(FINAL-PROPERTY ’CRITICAL-OR-NON-CRITICAL-WAIT)
(I-CODE (LIST TICKS INDEX1 INDEX2 N))
(F-CODE (LIST TICKS INDEX1 INDEX2 N))
(CLOCK CLOCK)
(MAX-CLOCK (ADD1 (NEXT-CLOCK

(LIST ’ME INDEX1)
CLOCK)))

(PROCESS-LIST (MAKE-PROCESS-LIST
(SYSTEM-DESCRIPTION N))))

(CHOOSE-FAIRLY-RETURNS-MEMBER-1
(CLOCK CLOCK)
(TIME (BAD-STATE ’CRITICAL-WAIT

(LIST TICKS INDEX1 INDEX2 N)
(MAKE-PROCESS-LIST
(SYSTEM-DESCRIPTION N))

CLOCK
(NEXT-CLOCK (LIST ’ME INDEX1)

CLOCK)
SYSTEM-STATE))

(PROCESS-DESCRIPTION (LIST ’ME INDEX1))
(PROCESS-LIST (MAKE-PROCESS-LIST

(SYSTEM-DESCRIPTION N))))))

(DISABLE CRITICAL-WAIT-TO-CRITICAL-OR-NON-CRITICAL-WAIT) (10)
(DISABLE CRITICAL-WAIT-IS-STABLE)

Definition 47: (LEFT-CHANNEL-FULL-PROCESS-WAIT INDEX SYSTEM-STATE) =

(AND (LEFT-CHANNEL-FULL INDEX SYSTEM-STATE)
(PROCESS-WAIT INDEX SYSTEM-STATE))

Theorem 48: LEFT-CHANNEL-FULL-PROCESS-WAIT-IS-STABLE (REWRITE)

(IMPLIES (AND (NOT (EQUAL CINDEX INDEX))
(LESSP CINDEX N)
(NUMBERP CINDEX)
(LESSP INDEX N)
(NUMBERP INDEX)
(LEFT-CHANNEL-FULL-PROCESS-WAIT
INDEX
SYSTEM-STATE))

(LEFT-CHANNEL-FULL-PROCESS-WAIT
INDEX
(ME CINDEX

N
CLOCK
SYSTEM-STATE)))

Theorem 49: LEFT-CHANNEL-FULL-PROCESS-WAIT-TO-PROCESS-CRITICAL (REWRITE)

(IMPLIES (AND (NUMBERP INDEX)
(LESSP INDEX N)
(LEFT-CHANNEL-FULL-PROCESS-WAIT
INDEX
SYSTEM-STATE))

(PROCESS-CRITICAL-WITH-TICKS (RANDOM-NUMBER CLOCK)

99

INDEX
(ME INDEX

N
CLOCK
SYSTEM-STATE)))

This is the simplest progress statement. It says that a Waiting process with a full left channel will become

Critical when it finally runs.

Theorem 50: UNTIL-PROCESS-CRITICAL (REWRITE)

(IMPLIES (AND (LESSP INDEX N)
(NUMBERP INDEX))

(IMPLIES (LEFT-CHANNEL-FULL-PROCESS-WAIT
INDEX
SYSTEM-STATE)

(PROCESS-CRITICAL-WITH-TICKS
(RANDOM-NUMBER (NEXT-CLOCK

(LIST ’ME INDEX)
CLOCK))

INDEX
(INT (MAKE-PROCESS-LIST

(SYSTEM-DESCRIPTION N))
CLOCK
(ADD1 (NEXT-CLOCK

(LIST ’ME INDEX) CLOCK))
SYSTEM-STATE))))

((DISABLE ME LEFT-CHANNEL-FULL-PROCESS-WAIT
PROCESS-CRITICAL-WITH-TICKS)

(ENABLE EQUAL-LISTS-OF-LENGTH-TWO)
(USE (GENERAL-PROGRESS

(INTERMEDIATE-PROPERTY
’LEFT-CHANNEL-FULL-PROCESS-WAIT)

(FINAL-PROPERTY ’PROCESS-CRITICAL-WITH-TICKS)
(I-CODE (LIST INDEX))
(F-CODE (LIST (RANDOM-NUMBER

(NEXT-CLOCK (LIST ’ME INDEX)
CLOCK))

INDEX))
(CLOCK CLOCK)
(MAX-CLOCK (ADD1 (NEXT-CLOCK

(LIST ’ME INDEX) CLOCK)))
(PROCESS-LIST (MAKE-PROCESS-LIST

(SYSTEM-DESCRIPTION N))))
(CHOOSE-FAIRLY-RETURNS-MEMBER-1
(CLOCK CLOCK)
(TIME (BAD-STATE ’LEFT-CHANNEL-FULL-PROCESS-WAIT

(LIST INDEX)
(MAKE-PROCESS-LIST
(SYSTEM-DESCRIPTION N))

CLOCK
(NEXT-CLOCK (LIST ’ME INDEX)

CLOCK)
SYSTEM-STATE))

100

(PROCESS-DESCRIPTION (LIST ’ME INDEX))
(PROCESS-LIST (MAKE-PROCESS-LIST

(SYSTEM-DESCRIPTION N))))))

(DISABLE LEFT-CHANNEL-FULL-PROCESS-WAIT-TO-PROCESS-CRITICAL) (11)
(DISABLE LEFT-CHANNEL-FULL-PROCESS-WAIT-IS-STABLE)

We have proved four progress statement. We now combine them by moving the token along the ring to the

Waiting processes left channel, and then, using the fourth progres statement, have the Waiting process become

Critical.

We build the clock function that "predicts" the time when the Waiting process becomes Critical.

The Clock at which a Critical process releases a token on its right channel. The process must run Ticks+1

times.

Definition 51: (CLOCK-OF-CRITICAL-TO-NON-CRITICAL INDEX CLOCK TICKS) =

(IF (ZEROP TICKS)
(ADD1 (NEXT-CLOCK (LIST ’ME INDEX) CLOCK))
(ADD1 (NEXT-CLOCK

(LIST ’ME INDEX)
(CLOCK-OF-CRITICAL-TO-NON-CRITICAL
INDEX CLOCK (SUB1 TICKS)))))

Theorem 52: CLOCK-OF-CRITICAL-TO-NON-CRITICAL-LARGER (REWRITE)

(LESSP CLOCK
(CLOCK-OF-CRITICAL-TO-NON-CRITICAL INDEX

CLOCK
TICKS))

Theorem 53: CLOCK-OF-CRITICAL-TO-NON-CRITICAL-CANNONICAL (REWRITE)

(IMPLIES (NOT (ZEROP TICKS))
(EQUAL (CLOCK-OF-CRITICAL-TO-NON-CRITICAL

INDEX
(ADD1 (NEXT-CLOCK (LIST ’ME INDEX)

CLOCK))
(SUB1 TICKS))

(CLOCK-OF-CRITICAL-TO-NON-CRITICAL
INDEX
CLOCK
TICKS)))

Theorem 54: CRITICAL-WAIT-IMPLIED-BY-CRITICAL-OR -NON-CRITICAL-WAIT-NOT-
ZERO-TICKS (REWRITE)

(IMPLIES (AND (NOT (ZEROP TICKS))
(CRITICAL-OR-NON-CRITICAL-WAIT
TICKS INDEX1 INDEX2 N

101

SYSTEM-STATE))
(CRITICAL-WAIT (SUB1 TICKS) INDEX1 INDEX2 N

SYSTEM-STATE))

Theorem 55: CRITICAL-WAIT-FIXES-TICKS (REWRITE)

(IMPLIES (NOT (NUMBERP TICKS))
(EQUAL (CRITICAL-WAIT TICKS INDEX1 INDEX2 N

SYSTEM-STATE)
(CRITICAL-WAIT 0 INDEX1 INDEX2 N

SYSTEM-STATE)))

Does mutual exclusion hold? Is the Index1’th right channel full? Is the Index2’th process Waiting?

Definition 56: (RIGHT-CHANNEL-FULL-WAIT INDEX1 INDEX2 N SYSTEM-STATE) =

(AND (MUTUAL-EXCLUSIONP N SYSTEM-STATE)
(RIGHT-CHANNEL-FULL INDEX1 N SYSTEM-STATE)
(PROCESS-WAIT INDEX2 SYSTEM-STATE))

Theorem 57: RIGHT-CHANNEL-FULL-WAIT-IMPLIED-BY-CRITICAL-OR -NON-CRITICAL-
WAIT-ZERO-TICKS (REWRITE)

(IMPLIES (AND (NUMBERP INDEX1)
(LESSP INDEX1 N)
(NUMBERP INDEX2)
(LESSP INDEX2 N)
(CRITICAL-OR-NON-CRITICAL-WAIT
0 INDEX1 INDEX2 N
SYSTEM-STATE))

(RIGHT-CHANNEL-FULL-WAIT INDEX1 INDEX2 N
SYSTEM-STATE))

Definition 58: (CRITICAL-TO-NON-CRITICAL-INDUCTION-SCHEME N INDEX CLOCK
TICKS SYSTEM-STATE) =

(IF (ZEROP TICKS)
T
(CRITICAL-TO-NON-CRITICAL-INDUCTION-SCHEME
N INDEX
(ADD1 (NEXT-CLOCK (LIST ’ME INDEX) CLOCK))
(SUB1 TICKS)
(INT (MAKE-PROCESS-LIST (SYSTEM-DESCRIPTION N))

CLOCK
(ADD1 (NEXT-CLOCK (LIST ’ME INDEX) CLOCK))
SYSTEM-STATE)))

This lemma proves that Clock-Of-Critical-To-Non-Critical works. It inducts on Ticks, using Until-Critical-Or-

Non-Critical-Wait progress statement repeatedly. Also, another Waiting process remains Waiting.

Theorem 59: CRITICAL-TO-NON-CRITICAL (REWRITE)

(IMPLIES (AND (NUMBERP INDEX1)
(LESSP INDEX1 N)
(NUMBERP INDEX2)

102

(LESSP INDEX2 N)
(NOT (EQUAL INDEX1 INDEX2))
(CRITICAL-WAIT TICKS INDEX1 INDEX2 N

SYSTEM-STATE))
(RIGHT-CHANNEL-FULL-WAIT
INDEX1 INDEX2 N
(INT (MAKE-PROCESS-LIST

(SYSTEM-DESCRIPTION N))
CLOCK
(CLOCK-OF-CRITICAL-TO-NON-CRITICAL
INDEX1
CLOCK
TICKS)

SYSTEM-STATE)))

((INDUCT (CRITICAL-TO-NON-CRITICAL-INDUCTION-SCHEME
N INDEX1 CLOCK TICKS SYSTEM-STATE))

(DISABLE CRITICAL-WAIT RIGHT-CHANNEL-FULL-WAIT
CRITICAL-OR-NON-CRITICAL-WAIT))

(DISABLE RIGHT-CHANNEL-FULL-WAIT-IMPLIED-BY- (12)
CRITICAL-OR-NON-CRITICAL-WAIT-ZERO-TICKS)
(DISABLE CRITICAL-WAIT-FIXES-TICKS)
(DISABLE CRITICAL-WAIT-IMPLIED-BY-CRITICAL-
OR-NON-CRITICAL-WAIT-NOT-ZERO-TICKS)
(DISABLE CLOCK-OF-CRITICAL-TO-NON-CRITICAL-CANNONICAL)

Now we can move the token from a Critical process to its right channel, and another process remains Waiting.

The Clock value when a Waiting process with a full left channel will release a token on its right channel.

Simply let it become Critical then use Clock-Of-Critical-To-Non-Critical.

Definition 60: (CLOCK-OF-WAIT-TO-NON-CRITICAL INDEX CLOCK) =

(CLOCK-OF-CRITICAL-TO-NON-CRITICAL
INDEX
(ADD1 (NEXT-CLOCK (LIST ’ME INDEX) CLOCK))
(RANDOM-NUMBER (NEXT-CLOCK (LIST ’ME INDEX) CLOCK)))

Prove that Clock-Of-Wait-To-Non-Critical-Works, and that another process remains Waiting during that

interval. Uses the progress statement Until-Critical-Wait.

Theorem 61: WAIT-TO-NON-CRITICAL (REWRITE)

(IMPLIES (AND (NUMBERP INDEX1)
(LESSP INDEX1 N)
(NUMBERP INDEX2)
(LESSP INDEX2 N)
(NOT (EQUAL INDEX1 INDEX2))
(LEFT-FULL-WAIT-WAIT INDEX1 INDEX2 N

SYSTEM-STATE))

103

(RIGHT-CHANNEL-FULL-WAIT
INDEX1 INDEX2 N
(INT (MAKE-PROCESS-LIST (SYSTEM-DESCRIPTION N))

CLOCK
(CLOCK-OF-WAIT-TO-NON-CRITICAL
INDEX1
CLOCK)

SYSTEM-STATE)))

((DISABLE LEFT-FULL-WAIT-WAIT RIGHT-CHANNEL-FULL-WAIT
CRITICAL-WAIT)

(USE (CRITICAL-TO-NON-CRITICAL
(CLOCK (ADD1 (NEXT-CLOCK (LIST ’ME INDEX1) CLOCK)))
(SYSTEM-STATE (INT (MAKE-PROCESS-LIST

(SYSTEM-DESCRIPTION N))
CLOCK
(ADD1 (NEXT-CLOCK

(LIST ’ME INDEX1)
CLOCK))

SYSTEM-STATE))
(TICKS (RANDOM-NUMBER

(NEXT-CLOCK (LIST ’ME INDEX1) CLOCK))))))

Theorem 62: CLOCK-OF-WAIT-TO-NON-CRITICAL-LARGER (REWRITE)

(LESSP CLOCK
(CLOCK-OF-WAIT-TO-NON-CRITICAL INDEX

CLOCK))

Now we can move the token from the left channel of a Waiting process to its right channel, while another

process remains Waiting.

Compute the Clock value that a Non-Critical with a full left channel will release a token upon its right channel.

Definition 63: (CLOCK-OF-NON-CRITICAL-TO-NON-CRITICAL INDEX CLOCK) =

(IF (RANDOM-BOOLEAN (NEXT-CLOCK (LIST ’ME INDEX) CLOCK))
(CLOCK-OF-WAIT-TO-NON-CRITICAL
INDEX (ADD1 (NEXT-CLOCK (LIST ’ME INDEX) CLOCK)))

(ADD1 (NEXT-CLOCK (LIST ’ME INDEX) CLOCK)))

Theorem 64: CLOCK-OF-NON-CRITICAL-TO-NON-CRITICAL-LARGER (REWRITE)

(LESSP CLOCK
(CLOCK-OF-NON-CRITICAL-TO-NON-CRITICAL INDEX

CLOCK))

Theorem 65: LEFT-FULL-WAIT-WAIT-IMPLIED-BY-NON-CRITICAL-OR-WAIT-WAIT
(REWRITE)

(IMPLIES (AND (NUMBERP INDEX1)
(LESSP INDEX1 N)
(NUMBERP INDEX2)
(LESSP INDEX2 N)
(NOT (EQUAL INDEX1 INDEX2))

104

(NON-CRITICAL-OR-WAIT-WAIT T INDEX1 INDEX2 N
SYSTEM-STATE))

(LEFT-FULL-WAIT-WAIT INDEX1 INDEX2 N
SYSTEM-STATE))

Theorem 66: RIGHT-CHANNEL-FULL-WAIT-IMPLIED-BY-NON-CRITICAL -OR-WAIT-
WAIT (REWRITE)

(IMPLIES (AND (LESSP INDEX1 N)
(NUMBERP INDEX1)
(NUMBERP INDEX2)
(LESSP INDEX2 N)
(NOT (EQUAL INDEX1 INDEX2))
(NON-CRITICAL-OR-WAIT-WAIT F INDEX1 INDEX2 N

SYSTEM-STATE))
(RIGHT-CHANNEL-FULL-WAIT INDEX1 INDEX2 N

SYSTEM-STATE))

Prove that Clock-Of-Non-Critical-To-Non-Critical works, and that another process remains Waiting in the

interval. Uses progress statement Until-Non-Critical-Or-Wait-Wait.

Theorem 67: NON-CRITICAL-TO-NON-CRITICAL (REWRITE)

(IMPLIES (AND (NUMBERP INDEX1)
(LESSP INDEX1 N)
(NUMBERP INDEX2)
(LESSP INDEX2 N)
(NOT (EQUAL INDEX1 INDEX2))
(LEFT-FULL-NON-CRITICAL-WAIT INDEX1 INDEX2 N

SYSTEM-STATE))
(RIGHT-CHANNEL-FULL-WAIT
INDEX1 INDEX2 N
(INT (MAKE-PROCESS-LIST

(SYSTEM-DESCRIPTION N))
CLOCK
(CLOCK-OF-NON-CRITICAL-TO-NON-CRITICAL
INDEX1 CLOCK)

SYSTEM-STATE)))

((DISABLE CLOCK-OF-WAIT-TO-NON-CRITICAL
LEFT-FULL-NON-CRITICAL-WAIT
RIGHT-CHANNEL-FULL-WAIT
LEFT-FULL-WAIT-WAIT
NON-CRITICAL-OR-WAIT-WAIT)

(USE (WAIT-TO-NON-CRITICAL
(CLOCK (ADD1 (NEXT-CLOCK (LIST ’ME INDEX1) CLOCK)))
(SYSTEM-STATE (INT (MAKE-PROCESS-LIST

(SYSTEM-DESCRIPTION N))
CLOCK
(ADD1 (NEXT-CLOCK

(LIST ’ME INDEX1)
CLOCK))

SYSTEM-STATE)))))

(DISABLE RIGHT-CHANNEL-FULL-WAIT-IMPLIED-BY (13)

105

-NON-CRITICAL-OR-WAIT-WAIT)

(DISABLE LEFT-FULL-WAIT-WAIT-IMPLIED-BY
-NON-CRITICAL-OR-WAIT-WAIT)

Now that we can move a token from a left channel to a right channel, we can move the token along the ring to

the Waiting process’s left channel.

Move the token from the Index1’th channel to the Index2’th channel Since the token is in the left channel, the

next process is either Waiting or Non-Critical.

Definition 68: (DEFN CLOCK-OF-TOKEN-MOVING INDEX1 INDEX2 N CLOCK SYSTEM-
STATE) =

(IF (AND (NUMBERP INDEX1)
(LESSP INDEX1 N)
(NUMBERP INDEX2)
(LESSP INDEX2 N))

(IF (EQUAL INDEX1 INDEX2)
CLOCK
(IF (PROCESS-NON-CRITICAL

INDEX1 SYSTEM-STATE)
(CLOCK-OF-TOKEN-MOVING
(ADD1-MOD N INDEX1)
INDEX2
N
(CLOCK-OF-NON-CRITICAL-TO-NON-CRITICAL
INDEX1 CLOCK)

(INT (MAKE-PROCESS-LIST
(SYSTEM-DESCRIPTION N))

CLOCK
(CLOCK-OF-NON-CRITICAL-TO-NON-CRITICAL
INDEX1 CLOCK)

SYSTEM-STATE))
(CLOCK-OF-TOKEN-MOVING
(ADD1-MOD N INDEX1)
INDEX2
N
(CLOCK-OF-WAIT-TO-NON-CRITICAL
INDEX1 CLOCK)

(INT (MAKE-PROCESS-LIST
(SYSTEM-DESCRIPTION N))

CLOCK
(CLOCK-OF-WAIT-TO-NON-CRITICAL
INDEX1 CLOCK)

SYSTEM-STATE))))
CLOCK)

((LESSP (DIFFERENCE (IF (LESSP INDEX2 INDEX1)
(PLUS INDEX2 N)
INDEX2)

INDEX1)))

106

Theorem 69: CLOCK-OF-TOKEN-MOVING-LARGER (REWRITE)

(NOT (LESSP (CLOCK-OF-TOKEN-MOVING INDEX1 INDEX2 N
CLOCK SYSTEM-STATE)

CLOCK))

Is the Index1’th left channel fulll, the Index2’th process Waiting, and the system satisfying mutual exclusion?

Definition 70: (FULL-WAIT INDEX1 INDEX2 N SYSTEM-STATE) =

(AND (MUTUAL-EXCLUSIONP N SYSTEM-STATE)
(LEFT-CHANNEL-FULL INDEX1 SYSTEM-STATE)
(PROCESS-WAIT INDEX2 SYSTEM-STATE))

Theorem 71: LEFT-FULL-NON-CRITICAL-WAIT-IMPLIED-BY (REWRITE)

(IMPLIES (AND (LESSP INDEX1 N)
(NUMBERP INDEX1)
(LESSP INDEX2 N)
(NUMBERP INDEX2)
(FULL-WAIT INDEX1 INDEX2 N SYSTEM-STATE)
(PROCESS-NON-CRITICAL INDEX1 SYSTEM-STATE))

(LEFT-FULL-NON-CRITICAL-WAIT INDEX1 INDEX2
N SYSTEM-STATE))

Theorem 72: LEFT-FULL-WAIT-WAIT-IMPLIED-BY (REWRITE)

(IMPLIES (AND (NUMBERP INDEX1)
(LESSP INDEX1 N)
(NUMBERP INDEX2)
(LESSP INDEX2 N)
(FULL-WAIT INDEX1 INDEX2 N SYSTEM-STATE)
(PROCESS-WAIT INDEX1 SYSTEM-STATE))

(LEFT-FULL-WAIT-WAIT INDEX1 INDEX2
N SYSTEM-STATE))

Theorem 73: PROCESS-IS-NON-CRITICAL-OR-WAIT ()

(IMPLIES (AND (MUTUAL-EXCLUSIONP N SYSTEM-STATE)
(NUMBERP INDEX)
(LESSP INDEX N)
(MUTUAL-EXCLUSIONP N SYSTEM-STATE)
(LEFT-CHANNEL-FULL INDEX SYSTEM-STATE))

(OR (PROCESS-WAIT INDEX SYSTEM-STATE)
(PROCESS-NON-CRITICAL INDEX SYSTEM-STATE)))

((ENABLE ABOUT-PLUS-EQUALS-ONE))

Theorem 74: PROCESS-WAIT-IMPLIED-BY (REWRITE)

(IMPLIES (AND (NUMBERP INDEX1)
(LESSP INDEX1 N)
(NOT (PROCESS-NON-CRITICAL

INDEX1 SYSTEM-STATE))
(FULL-WAIT INDEX1 INDEX2 N SYSTEM-STATE))

(PROCESS-WAIT INDEX1 SYSTEM-STATE))

((USE (PROCESS-IS-NON-CRITICAL-OR-WAIT (INDEX INDEX1))))

107

Theorem 75: FULL-WAIT-IMPLIED-BY (REWRITE)

(IMPLIES (AND (LESSP INDEX1 N)
(NUMBERP INDEX1)
(RIGHT-CHANNEL-FULL-WAIT (SUB1-MOD N INDEX1)

INDEX2 N
SYSTEM-STATE))

(FULL-WAIT INDEX1 INDEX2 N SYSTEM-STATE))

Clock-Of-Token-Moving moves the token from a left channel to the Waiting process’s left channel.

Theorem 76: CLOCK-OF-TOKEN-MOVING-WORKS-FROM-WAIT-OR-NON-CRITICAL
(REWRITE)

(IMPLIES (AND (NUMBERP INDEX1)
(LESSP INDEX1 N)
(NUMBERP INDEX2)
(LESSP INDEX2 N)
(FULL-WAIT INDEX1 INDEX2 N SYSTEM-STATE))

(FULL-WAIT INDEX2 INDEX2 N
(INT (MAKE-PROCESS-LIST

(SYSTEM-DESCRIPTION N))
CLOCK
(CLOCK-OF-TOKEN-MOVING
INDEX1 INDEX2
N
CLOCK
SYSTEM-STATE)

SYSTEM-STATE)))

((DISABLE ADD1-MOD SUB1-MOD
PROCESS-WAIT PROCESS-NON-CRITICAL
RIGHT-CHANNEL-FULL-WAIT
LEFT-FULL-NON-CRITICAL-WAIT
LEFT-FULL-WAIT-WAIT
FULL-WAIT
CLOCK-OF-NON-CRITICAL-TO-NON-CRITICAL
CLOCK-OF-WAIT-TO-NON-CRITICAL))

Theorem 77: NOT-EQUAL-IMPLIED-BY (REWRITE)

(IMPLIES (CRITICAL-WAIT TICKS INDEX1
INDEX2 N SYSTEM-STATE)

(NOT (EQUAL INDEX1 INDEX2)))

Now we can move a token from a left channel to a left channel. All that remains is to move a token from a

Critical process to a left channel.

By giving Clock-Of-Token-Moving the proper Clock argument, the token can be moved from a Critical process

to a Waiting process’s left channel.

Theorem 78: CLOCK-OF-TOKEN-MOVING-WORKS-FROM-CRITICAL (REWRITE)

108

(IMPLIES (AND (NUMBERP INDEX1)
(LESSP INDEX1 N)
(NUMBERP INDEX2)
(LESSP INDEX2 N)
(CRITICAL-WAIT TICKS INDEX1

INDEX2 N SYSTEM-STATE))
(FULL-WAIT
INDEX2 INDEX2 N
(INT (MAKE-PROCESS-LIST

(SYSTEM-DESCRIPTION N))
CLOCK
(CLOCK-OF-TOKEN-MOVING
(ADD1-MOD N INDEX1) INDEX2
N
(CLOCK-OF-CRITICAL-TO-NON-CRITICAL
INDEX1 CLOCK TICKS)

(INT (MAKE-PROCESS-LIST
(SYSTEM-DESCRIPTION N))

CLOCK
(CLOCK-OF-CRITICAL-TO-NON-CRITICAL
INDEX1 CLOCK TICKS)

SYSTEM-STATE))
SYSTEM-STATE)))

((DISABLE FULL-WAIT CRITICAL-WAIT ADD1-MOD SUB1-MOD)
(USE (CLOCK-OF-TOKEN-MOVING-WORKS-FROM-WAIT-OR-NON-CRITICAL

(INDEX1 (ADD1-MOD N INDEX1))
(INDEX2 INDEX2)
(CLOCK (CLOCK-OF-CRITICAL-TO-NON-CRITICAL

INDEX1 CLOCK TICKS))
(SYSTEM-STATE
(INT (MAKE-PROCESS-LIST

(SYSTEM-DESCRIPTION N))
CLOCK
(CLOCK-OF-CRITICAL-TO-NON-CRITICAL
INDEX1 CLOCK TICKS)

SYSTEM-STATE)))))

(DISABLE NOT-EQUAL-IMPLIED-BY) (14)
(DISABLE FULL-WAIT-IMPLIED-BY)
(DISABLE PROCESS-WAIT-IMPLIED-BY)
(DISABLE LEFT-FULL-WAIT-WAIT-IMPLIED-BY)
(DISABLE LEFT-FULL-NON-CRITICAL-WAIT-IMPLIED-BY)

Now we can tie loose ends together. Given a Waiting process, find the token in the ring, and compute the Clock

required to move the token to the Waiting process’s left channel.

If a process is Critical, return its Index. Else return F.

Definition 79: (FIND-TOKEN-IN-PROCESS N SYSTEM-STATE) =

(IF (ZEROP N)
F

109

(IF (EQUAL (WEIGHT-OF-PROCESS (SUB1 N) SYSTEM-STATE)
1)

(SUB1 N)
(FIND-TOKEN-IN-PROCESS (SUB1 N) SYSTEM-STATE)))

If a channel is full, returns its Index. Else return F.

Definition 80: (FIND-TOKEN-IN-CHANNEL N SYSTEM-STATE) =

(IF (ZEROP N)
F
(IF (LESSP 0

(LENGTH (GET-STATE (CONS ’C (SUB1 N))
SYSTEM-STATE)))

(SUB1 N)
(FIND-TOKEN-IN-CHANNEL (SUB1 N) SYSTEM-STATE)))

Theorem 81: PROCESS-CRITICAL-WITH-TICKS-EQUALS (REWRITE)

(EQUAL (PROCESS-CRITICAL-WITH-TICKS
(CDR (ASSOC (CONS ’ME INDEX)

SYSTEM-STATE))
INDEX SYSTEM-STATE)

(EQUAL (WEIGHT-OF-PROCESS INDEX SYSTEM-STATE)
1))

Prove that Find-Token-In... works (i.e., find the token). Prove that one and only one of Find-Token-In... is

non-F, and that one is numeric.

Theorem 82: FIND-TOKEN-IN-PROCESS-WORKS (REWRITE)

(IMPLIES (FIND-TOKEN-IN-PROCESS N SYSTEM-STATE)
(PROCESS-CRITICAL-WITH-TICKS
(CDR (ASSOC (CONS ’ME

(FIND-TOKEN-IN-PROCESS
N SYSTEM-STATE))

SYSTEM-STATE))
(FIND-TOKEN-IN-PROCESS N SYSTEM-STATE)
SYSTEM-STATE))

((DISABLE WEIGHT-OF-PROCESS))

Theorem 83: FIND-TOKEN-IN-CHANNEL-WORKS (REWRITE)

(IMPLIES (FIND-TOKEN-IN-CHANNEL N SYSTEM-STATE)
(LEFT-CHANNEL-FULL (FIND-TOKEN-IN-CHANNEL

N SYSTEM-STATE)
SYSTEM-STATE))

Theorem 84: FIND-TOKEN-IN-PROCESS-LESSP-N (REWRITE)

(EQUAL (LESSP (FIND-TOKEN-IN-PROCESS N SYSTEM-STATE) N)
(LESSP 0 N))

110

Theorem 85: FIND-TOKEN-IN-CHANNEL-LESSP-N (REWRITE)

(EQUAL (LESSP (FIND-TOKEN-IN-CHANNEL N SYSTEM-STATE) N)
(LESSP 0 N))

Theorem 86: FIND-TOKEN-IN-PROCESS-IMPLIED-BY (REWRITE)

(IMPLIES (AND (MUTUAL-EXCLUSIONP N SYSTEM-STATE)
(NOT (FIND-TOKEN-IN-CHANNEL N SYSTEM-STATE)))

(FIND-TOKEN-IN-PROCESS N SYSTEM-STATE))

Theorem 87: FIND-TOKEN-IN-PROCESS-NUMBERP-IMPLIED-BY (REWRITE)

(IMPLIES (AND (MUTUAL-EXCLUSIONP N SYSTEM-STATE)
(NOT (FIND-TOKEN-IN-CHANNEL N SYSTEM-STATE)))

(NUMBERP (FIND-TOKEN-IN-PROCESS N SYSTEM-STATE)))

The Clock of the token moving from where-ever it is to the Index’ed channel.

Definition 88: (CLOCK-OF-TOKEN-MOVING-TO-WAIT INDEX N CLOCK SYSTEM-STATE)
=

(IF (AND (LESSP INDEX N)
(NUMBERP INDEX))

(IF (FIND-TOKEN-IN-CHANNEL N SYSTEM-STATE)
(CLOCK-OF-TOKEN-MOVING
(FIND-TOKEN-IN-CHANNEL N SYSTEM-STATE)
INDEX N
CLOCK SYSTEM-STATE)

(CLOCK-OF-TOKEN-MOVING
(ADD1-MOD N (FIND-TOKEN-IN-PROCESS

N SYSTEM-STATE))
INDEX
N
(CLOCK-OF-CRITICAL-TO-NON-CRITICAL
(FIND-TOKEN-IN-PROCESS N SYSTEM-STATE)
CLOCK
(GET-STATE (CONS ’ME

(FIND-TOKEN-IN-PROCESS
N SYSTEM-STATE))

SYSTEM-STATE))
(INT (MAKE-PROCESS-LIST (SYSTEM-DESCRIPTION N))

CLOCK
(CLOCK-OF-CRITICAL-TO-NON-CRITICAL
(FIND-TOKEN-IN-PROCESS N SYSTEM-STATE)
CLOCK
(GET-STATE
(CONS ’ME

(FIND-TOKEN-IN-PROCESS
N SYSTEM-STATE))

SYSTEM-STATE))
SYSTEM-STATE)))

CLOCK)

Theorem 89: FULL-WAIT-IMPLIED-BY-1 (REWRITE)

(IMPLIES (AND (PROCESS-WAIT INDEX SYSTEM-STATE)

111

(MUTUAL-EXCLUSIONP N SYSTEM-STATE)
(FIND-TOKEN-IN-CHANNEL N SYSTEM-STATE))

(FULL-WAIT (FIND-TOKEN-IN-CHANNEL N SYSTEM-STATE)
INDEX N
SYSTEM-STATE))

Theorem 90: CRITICAL-WAIT-IMPLIED-BY (REWRITE)

(IMPLIES (AND (MUTUAL-EXCLUSIONP N SYSTEM-STATE)
(PROCESS-WAIT INDEX2 SYSTEM-STATE)
(PROCESS-CRITICAL-WITH-TICKS
(CDR (ASSOC (CONS ’ME INDEX1)

SYSTEM-STATE))
INDEX1 SYSTEM-STATE))

(CRITICAL-WAIT (CDR (ASSOC (CONS ’ME INDEX1)
SYSTEM-STATE))

INDEX1
INDEX2
N
SYSTEM-STATE))

((DISABLE PROCESS-WAIT
PROCESS-CRITICAL-WITH-TICKS
PROCESS-CRITICAL-WITH-TICKS-EQUALS
MUTUAL-EXCLUSIONP))

Clock-Of-Token-Moving-to-Wait does move the token to the left channel of the Waiting process.

Theorem 91: CLOCK-OF-TOKEN-MOVING-TO-WAIT-WORKS (REWRITE)

(IMPLIES (AND (MUTUAL-EXCLUSIONP N SYSTEM-STATE)
(NUMBERP INDEX)
(LESSP INDEX N)
(PROCESS-WAIT INDEX SYSTEM-STATE))

(FULL-WAIT INDEX INDEX N
(INT (MAKE-PROCESS-LIST

(SYSTEM-DESCRIPTION N))
CLOCK
(CLOCK-OF-TOKEN-MOVING-TO-WAIT
INDEX N CLOCK SYSTEM-STATE)

SYSTEM-STATE)))

((DISABLE FULL-WAIT PROCESS-WAIT
PROCESS-CRITICAL-WITH-TICKS CRITICAL-WAIT
PROCESS-CRITICAL-WITH-TICKS-EQUALS
MUTUAL-EXCLUSIONP
ADD1-MOD SUB1-MOD))

(DISABLE CRITICAL-WAIT-IMPLIED-BY) (15)
(DISABLE FULL-WAIT-IMPLIED-BY-1)
(DISABLE FIND-TOKEN-IN-PROCESS-NUMBERP-IMPLIED-BY)
(DISABLE FIND-TOKEN-IN-PROCESS-IMPLIED-BY)
(DISABLE FIND-TOKEN-IN-CHANNEL-LESSP-N)
(DISABLE FIND-TOKEN-IN-CHANNEL-WORKS)
(DISABLE FIND-TOKEN-IN-PROCESS-LESSP-N)
(DISABLE FIND-TOKEN-IN-PROCESS-WORKS)

112

(DISABLE PROCESS-CRITICAL-WITH-TICKS-EQUALS)

Theorem 92: CLOCK-OF-TOKEN-MOVING-TO-WAIT-LARGER (REWRITE)

(NOT (LESSP (CLOCK-OF-TOKEN-MOVING-TO-WAIT
INDEX N CLOCK SYSTEM-STATE)

CLOCK))

Once the token is moved to a Wating processes left channel, simply extend the interval until that process runs.

Definition 93: (CLOCK-OF-TOKEN-MOVING-TO-CRITICAL INDEX N CLOCK SYSTEM-
STATE) =

(IF (AND (LESSP INDEX N)
(NUMBERP INDEX))

(ADD1 (NEXT-CLOCK (LIST ’ME INDEX)
(CLOCK-OF-TOKEN-MOVING-TO-WAIT
INDEX N CLOCK SYSTEM-STATE)))

CLOCK)

Theorem 94: LEFT-CHANNEL-FULL-PROCESS-WAIT-IMPLIED-BY (REWRITE)

(IMPLIES (FULL-WAIT INDEX INDEX N
SYSTEM-STATE)

(LEFT-CHANNEL-FULL-PROCESS-WAIT INDEX
SYSTEM-STATE))

By progress statement Until-Critical, Clock-Of-Token-Moving-To-Critical computes the Clock when a Waiting

process becomes Critical.

Theorem 95: CLOCK-OF-TOKEN-MOVING-TO-CRITICAL-WORKS (REWRITE)

(IMPLIES (AND (MUTUAL-EXCLUSIONP N SYSTEM-STATE)
(NUMBERP INDEX)
(LESSP INDEX N)
(PROCESS-WAIT INDEX SYSTEM-STATE))

(PROCESS-CRITICAL-WITH-TICKS
(RANDOM-NUMBER
(SUB1 (CLOCK-OF-TOKEN-MOVING-TO-CRITICAL

INDEX N CLOCK SYSTEM-STATE)))
INDEX
(INT (MAKE-PROCESS-LIST (SYSTEM-DESCRIPTION N))

CLOCK
(CLOCK-OF-TOKEN-MOVING-TO-CRITICAL
INDEX N CLOCK SYSTEM-STATE)

SYSTEM-STATE)))

((DISABLE PROCESS-WAIT PROCESS-CRITICAL-WITH-TICKS
CLOCK-OF-TOKEN-MOVING-TO-WAIT
LEFT-CHANNEL-FULL-PROCESS-WAIT LEFT-FULL-WAIT-WAIT)

(USE (UNTIL-PROCESS-CRITICAL
(CLOCK (CLOCK-OF-TOKEN-MOVING-TO-WAIT

INDEX N CLOCK SYSTEM-STATE))
(SYSTEM-STATE (INT (MAKE-PROCESS-LIST

(SYSTEM-DESCRIPTION N))

113

CLOCK
(CLOCK-OF-TOKEN-MOVING-TO-WAIT
INDEX N CLOCK SYSTEM-STATE)

SYSTEM-STATE)))
(LEFT-CHANNEL-FULL-PROCESS-WAIT-IMPLIED-BY
(N N)
(INDEX INDEX)
(SYSTEM-STATE (INT (MAKE-PROCESS-LIST

(SYSTEM-DESCRIPTION N))
CLOCK
(CLOCK-OF-TOKEN-MOVING-TO-WAIT
INDEX N CLOCK SYSTEM-STATE)

SYSTEM-STATE)))))

Theorem 96: WEIGHT-OF-PROCESS-ONE-IMPLIED-BY (REWRITE)

(IMPLIES (PROCESS-CRITICAL-WITH-TICKS TICKS INDEX
SYSTEM-STATE)

(EQUAL (WEIGHT-OF-PROCESS INDEX SYSTEM-STATE)
1))

This version of Liveness is all that we want. We are not concerned with the value of the critical counter, as

specified in Clock-Of-Token-Moving-To-Critical-Works, just that the Waiting Process does become Critical.

Theorem 97: LIVENESS (REWRITE)

(IMPLIES (AND (MUTUAL-EXCLUSIONP N SYSTEM-STATE)
(NUMBERP INDEX)
(LESSP INDEX N)
(PROCESS-WAIT INDEX SYSTEM-STATE))

(PROCESS-CRITICAL
INDEX
(INT (MAKE-PROCESS-LIST (SYSTEM-DESCRIPTION N))

CLOCK
(CLOCK-OF-TOKEN-MOVING-TO-CRITICAL
INDEX N CLOCK SYSTEM-STATE)

SYSTEM-STATE)))

((DISABLE PROCESS-WAIT WEIGHT-OF-PROCESS
PROCESS-CRITICAL-WITH-TICKS
MUTUAL-EXCLUSIONP
CLOCK-OF-TOKEN-MOVING-TO-CRITICAL
CLOCK-OF-TOKEN-MOVING-TO-CRITICAL-WORKS)

(USE (CLOCK-OF-TOKEN-MOVING-TO-CRITICAL-WORKS)))

(DISABLE WEIGHT-OF-PROCESS-ONE-IMPLIED-BY) (16)

114

References

1. Boyer, R. S., Moore, J S., A Computational Logic, Academic Press, 1979.

2. Boyer, R. S., Moore, J S., ‘‘The Addition of Bounded Quantification and Partial Functions to A
Computational Logic and Its Theorem Prover’’, Tech. report ICSCA-CMP-52, Institute for Computer
Sciences and Computer Applications, January 1987.

3. Chandy, K. M., Misra, J., Parallel Program Design: A Foundation, To be published by Addison-
Wesley, 1987.

4. Manna, A., Pnueli, A., ‘‘How to cook a Temporal Proof System for your Pet Language’’, Proc. 10th
ACM POPL, ACM, 1983.

[5] Owicki, S., Lamport, L., ‘‘Proving Liveness Properties of Concurrent Programs’’, ACM TOPLAS
4,3, 1982, pp. 455-495.

6. Pnueli, A., Applications of Temporal Logic to the Specification and Verification of Reactive Systems: A
Survey of Current Trends. Current Trends in Concurrency. Overviews and Tutorials, Springer Verlag
LNCS 224, 1986, J.W. de Bakker, W.P. de Roever and G. Rozenberg eds.

7. Lengauer, C., Huang, C. H., ‘‘A Mechanically Certified Theorem About Optimal Concurrency of
Sorting Networks’’, Proc. 13th ACM POPL, ACM, 1986, pp. 307-317.

Table of Contents

Chapter 1. Introduction . 1

1.1. The Transition System Model . 1
1.2. The Boyer-Moore Logic and its Theorem Prover . 2
1.3. Our Theory . 2

Chapter 2. The Model . 4

2.1. Next-Clock . 4
2.1.1. Notation . 4
2.1.2. The Next-Clock Function . 4
2.1.3. Next Clock Functions and Fair Sequences . 5
2.1.4. Interpretation of Next Clock . 9

2.2. The Operational Semantics . 10
2.3. The Process List . 12

2.3.1. The Non-Linear Representation . 13
2.3.2. The Linear Representation . 13
2.3.3. The Technical Advantage . 14

2.4. Specification of Processes . 15
2.4.1. An Example Specification . 15
2.4.2. Interaction with Single-Step . 16
2.4.3. Implementability . 17

2.5. Proof Rules . 18
2.5.1. Compositionality . 18
2.5.2. Invariance . 18
2.5.3. Progress . 20

Chapter 3. A Case Study . 22

3.1. The Informal Specification . 22
3.2. The Formal Specification . 24
3.3. The Specification and Proof of Invariance . 27

3.3.1. The Proof of Invariance . 27
3.3.2. Discussion of the Proof of Invariance . 30

3.4. The Specification and Proof of Liveness . 30
3.4.1. The Proof of Liveness . 31
3.4.2. Discussion of the Proof of Liveness . 39

3.5. Summary . 40

Chapter 4. Conclusion . 41

4.1. Comparison to Related Work . 41
4.2. Future Work . 41
4.3. Summary . 42
4.4. Acknowledgments . 42

i

Appendix A. Expressing Embedded Quantification . 43

Appendix B. Utilities . 45

Appendix C. The Scheduler . 50

Appendix D. The Process List . 57

Appendix E. The Interpreter . 61

Appendix F. The Proof Rules . 63

Appendix G. State Accessors . 69

Appendix H. Defintion of Me . 71

Appendix I. The Proof of Invariance . 74

Appendix J. The Proof of Liveness . 82

ii

List of Figures

Figure 3-1: Transitions of Process Me 23
Figure 3-2: Ring of N instances of Me 23

iii

List of Tables

iv

