DEFN-SK: An Extension of
the Boyer-M oor e Theorem Prover
to Handle First-Order Quantifiers

* %% DRAFT***

Matt Kaufmann

Technical Report #43 May, 1989

Computational Logic Inc.
1717 W. 6th St. Suite 290
Austin, Texas 78703
(512) 322-9951

This research was supported in part by ONR Contract
NO00014-88-C-0454. The views and conclusions contained in
this document are those of the author and should not be
interpreted as representing the official policies, either expressed
or implied, of Computational Logic, Inc., the Office of Naval
Research or the U.S. Government.

1. Introduction

The successful use of the Boyer-Maoore Theorem Prover to proof-check a diverse variety of theoremsis
well-documented in Boyer and Moore's book [1]. Nevertheless, there are occasions when their quantifier-free
logic is awkward or inadequate because of its lack of explicit quantification. Actually, the current "NQTHM"
logic does have a version of bounded quantification, but that notion involves a somewhat tricky concept of
evaluation, similar in flavor to the Lisp EVAL construct. What's more, that logic is considerably weaker than

full first-order logic.t

The DEFN-SK event is simply an interface from first-order logic into the Boyer-Moore logic. It

introduces a new function symbol which abbreviates afirst-order formula. For example, the event

(defn-sk arb-1g-p (n)
(forall x (existsy
(and (lessp x vy)

(P ny)))

causes the prover to add the following two rewrite rules to its database (each of them called ARB-LG-P, by the

way):
(I MPLIES (AND (LESSP (X N) Y)
(PNY))
(ARB-LG P N))
(I MPLIES (NOT (AND (LESSP X (Y N X))

(PN(YNX)))
(NOT (ARB-LG P N)))

Actualy, the second of these rules may be easier to read in the contrapositive,
(1 MPLI ES (ARB-LG P N)
(AND (LESSP X (Y N X))
(PN(YNX))) .
However, this latter version will not necessarily be at al usable as a rewrite rule in general; consider for

examplethe situationwhen (p n y) isreplaced by an | F term in the original DEFN-SK formula.

The following section (Section 2) carefully documents the new DEFN-SK event. That is followed in
Section 3 by a brief discussion of a notion of normalization that we employ to alow simple first-order
reasoning during processing of a DEFN-SK event. Soundness is addressed in Section 4. We conclude in

Section 5 with brief descriptions of three successful experiments employing DEFN-SK.

1For logicians, let us point out that all integer functions definable in the NQTHM logic are easily seen to be recursive in the halting
problem, hence definable with at most two alternations of quantifiers.

There are also severa appendices for the sections that we feel may be of less general interest. The first
appendix documents a macro DEFN-FO built on top of DEFN-SK which does some first-order simplification
(normalization). The second appendix lays out our Skolemization algorithm and proves its correctness. We
follow this with Appendix C, which extends the soundness proof in[2]. The remaining appendices contain the

lists of events summarized in Section 5.

Acknowledgements. 1'd like to thank my colleagues at Computational Logic for useful conversations
and suggestions during the course of this work. | especially thank Bob Boyer for useful suggestions for the

implementation and J Moore for a code review.

2. Documentation

This note introduces a new NQTHM event, DEFN-SK, together with a corresponding extension to the
Boyer-Moore Computational Logic. The "SK" is in honor of Thoralf Skolem, for whom the various
Skolemization algorithms are named. All of these algorithms have the property that they take a first-order
formula and return an "appropriate” term (without quantifiers). This notion of "appropriate” is a rather slippery
one, and we will treat it with care. The important thing for us here is that Skolemization gives us a way to
"interpret” first-order formulas in a slight extension of the quantifier-free "computational logic" of Boyer and

Moore [1], with minimal changes to the NQTHM theorem-prover.

Of course, we want the output of our Skolemization procedure to provide terms which are helpful when
we attempt to reason about them. It might be tempting then to write a Skolemizer which is "smart" in some
ways. However, a basic design decision here is to provide a rather basic Skolemization procedure, but to allow
a mildly "smart" normalization process. Then "smart" Skolemizations are obtained by replacing the input
formula by a "better" formula? which the normalizer shows is equivalent to the input formula, and then this
"better" formulaisthe one that is (routinely) Skolemized. Nevertheless, we want our Skolemizer to avoid some
obvious pitfalls; such considerations are discussed in Appendix B, together with the actual Skolemization

algorithm.

For this section, however, we confine ourselves to specifying the following: the officia and extended

2The FORMULA directive (hint) described below is the interface, and the DEFN-FO facility described in Appendix A can be used to
generate this directive.

syntax for formulas (Subsection 2.1), Skolemization’s main properties (2.2), normalization (2.3)3, and the

DEFN-SK event (2.4). We closein Subsection 2.5 with some remarks.

2.1 Formulas

Fix ahistory. A (first-order) formula is either a Boyer-Moore term (with respect to the given history), a
propositional combination of formulas, or a quantification of a formula. A propositional combination of
formulas is any expression of the form (NOT x), (AND x y),(OR x y),(IMPLIES x y),or (I F t
X y),wherex andy areformulas and u isaterm. A quantification of aformulais any expression of the form

(FORALL v x) or (EXI STS v x),wherev isavariable and x isaformula

In analogy to (and extending) the extended syntax for terms as described in[1], i.e. the syntax that the
user may type in, we extend the syntax for formulas to an extended syntax for formulas as follows. First, any
term in the extended syntax for terms is in the extended syntax for formulas. Next, it is a permissible
abbreviation to give AND and OR more than two arguments. It is also acceptabletowrite (Q (v, ... Vv,)
x) , where Qis FORALL or EXI STS and n is a non-negative integer, as an abbreviation for (Q v; (Q v,

(Qv, x) .. .)) .4 Finaly, (I FF x y) abbreviates (AND (I MPLIES x y) (IMPLIES vy
x)) andifuisnotateemthen (I F u x y) abbreviates(AND (1 MPLIES u x) (1 MPLIES (NOT u)

y)).

We will feel free to use familiar notions about formulas, such as the notion of free variable. Such notions

are explained in any logic textbook; see for example [3].

2.2 Skolemization in Brief

For now let us discuss Skolemization in an abstract framework. We defer to Appendix B the presentation
of the particular Skolemization algorithm that we use. Let F be a set of function symbols and let @ be a
first-order sentence (i.e. formula without free variables), al of whose function symbols are contained in F. Let
W be a quantifier-free formula (i.e. term) with universal closure® ' . Then is said to be a Skolemization of ¢

with respect to F if for any set S of first-order sentences, all of whose function symbols are included in F, (1)

3See Section 3 for our normalization algorithm
4Inparticular, (Q () x) abbreviatesx.

SRecall that the universal closure of aformulay is a formula (FORALL (vy .-+ v) W) where(v, ... v) isanenumeration
of the free variables of .

the extension of S by the sentence [¢@ - ('] is a conservative extension® of S and (2) the sentence
[V - ¢« isatheoremof S If we don't mention F, then it is taken to be the union of the set of function
symbols in ¢ together with those of the current history. The function symbols of { which do not occur in F are
called the Skolem functions of Y. The variables occurring in Y which are not free in @ are called the Skolem

variables introduced into (.

Consider for example the formula (FORALL x (EXISTS y (p X Yy))). It's easy to see that
(p x (f x)) isa Skolemization of this formula in the sense above, as long as f does not occur in that

formulaor in the current history.

We need one more property of Skolemization (a rather obscure one) for the proof in Appendix C. That
property is called the "Skolemization Extension Lemma" in that appendix, and since we expect that most

readers will not be interested in reading that proof, we say no more here.

2.3 Specification of Normalization

We also present here a notion of normalization in an abstract framework. We take normalization to be
any function on the set of first-order formulas which has the property that every formulais logically equivalent
to its normalization. We defer to Section 3 the description of our particular notion of normalization. For now

let us simply note that we push in quantifiers wherever possible and drop irrelevant quantifiers.

For example, the normalization of (EXI STS X (FORALL Y (IMPLIES (P X 2) (P Y 2))))
is(I MPLIES (FORALL X (P X 2)) (FORALL Y (P Y 2))). Theideais that one imagines first
pushing the quantifier on X past the implication, which is legal since Y is not free in the first argument of
| MPLI ES, and then pushing the quantifier (FORALL X) past the resulting implication, which islegal since X
is not free in the conclusion (second argument) of that implication. Notice that it's much easier to see that the
resulting ("normalized") sentence is a theorem than that the original sentence is a theorem. That’'s why we've
implemented a notion of normalization. Note that in fact a smart enough procedure, such as the one in[4],
would immediately recognize the result as a theorem. We choose however to keep our procedure, as described

in Section 3 below, very simple.

6See Section 4 for areview of the notion of conservative extension.

2.4 New event: Defining first-order notions

(formal section)

Let ¢ be afirst-order formula with respect to a given history h whose free variables are contained among
theset{v,, ..., v,},wherev,.., v aredistinct variables. Letg be afunction symbol of arity n which

isnew for h. Suppose that sk isa Skolemization of the first-order sentence
(FORALL (v, ... v)) (IFF (g v, ... v)) @)

with respect to a set of function symbols which contains g together with all function symbols of h. Then it is

permitted to add sk as an axiom to extend h.

(manual section)

General Form: (DEFN-SK name args form & optional directives)
Example Form: (DEFN-SK BAR (Z)
(EXISTS X (FORALL Y (IMPLIES(PX Z) (PY 2))))
((FORMULA (IMPLIES (FORALL X (P X Z))
(FORALL Y (PY 2)))
(PREFIX SK-)))

Here f or mis a first-order formula (in the syntax described above), as is the argument to the FORMULA
directive (if supplied), and ar gs isalist of distinct variables which includes all free variables of f or m If the
FORMULA directive is supplied, then that formula and f or mmust have normalizations (as specified in the
subsection above) which are the same, up to renaming of bound variables. Let args be (arg,

arg,), letu be (nane arg; ... arg,), and let body be f or munless a FORMULA directive is

supplied, in which case body isthat formula. Consider the following first-order sentence:
(*) (FORALL (arg, arg, ... arg,) (IFF u body))

whereargs is(arg,; ... arg,). The effect of this event is to add as an axiom a Skolemization of this
sentence, with respect to the result of adding nane to the set of function symbols of the current history. In fact
this axiom is added as a pair of rewrite rules, one having conclusion of u and the other having conclusion of
(NOT u) . Moreover, the entire axiom becomes the formula associated with nane’, so that it may be referred
toin, for example, a USE hint of a PROVE-LEMMA. If aPREFIX hint is supplied, then the indicated prefix is
tacked on to the front of the name of each Skolem function generated. A similar SUFFIX hint is alowed; in

fact, PREFIX and SUFFIX hints may be used together. Finally, nane isgiven aBoolean type set.

"i.e., the result of evaluating (FORMULA- OF ' nane)

2.5 Further remarks

Consider the example above. In that case, the formula associated to BAR for the purpose of USE hintsis
the conjunction of the following two formulas, each of which is made into a rewrite rule named BAR. (Notice
that the second of these is written as the contrapositive of what one might have otherwise expected, in order to

put it in aform guaranteed appropriate for arewrite rule.)

(IMPLIES (IMPLIES (P X 2) (P (SK-Y 2) 2))
(BAR 2))

(IMPLIES (NOT (IMPLIES (P (SK-X 2) 2) (P Y 2)))
(NOT (BAR 2)))

This conjunction iswhat is supplied when BAR is given in a USE hint to PROVE-LEMMA.

We claim that it is a theorem of the new history that the application of name to ar gs is equivalent to
form That is, the formula (*) in the "formal section” above is a theorem of the new history. Why? Because
the new axiom provably yields (*) by the specification of Skolemization given in Subsection 2.2, and since this

new axiom is added to the new history, (*) follows.

One rather subtle point may be worth mentioning. The last point in the "manual section” above is that
nane is given a boolean type set. This reflects the fact that if one uses a term as a formula, then one is
"coercing" it to a Boolean value in the sense that it is viewed there as denoting a member of theset { T, F}.
More precisely, the point here is that function symbols defined by DEFN-SK are always given Boolean type

sets. For example, suppose we have
(DEFN-SK FOO (X Y) (PLUS X Y)) .

Then we can prove
(EQUAL (FOO X Y) T)

because PLUS never returns F.

3. Normalization

We have already specified normalization as any function which returns a first-order formula that is
logically equivalent to the given one. In[4] de Champeaux gives a rather elaborate "miniscoping” procedure
for first-order simplification. However, we confine ourselves to the simplest parts of this procedure. We omit

its proof of correctness (i.e. that it meets the above specification), which is routine.

Here is the algorithm. Let us define the negation of aformula @to be (NOT ¢) unless @ is of the form

(NOT), inwhich caseitis. We use this notion to maintain the invariant that there are no double negations
intheresulting formula. Let @ be an arbitrary formula; here then is how we normalize @.

e If @is(NOT), then return the negation of the result of normalizing .

« If @ is any other propositional combination of formulas, then return the application of the same
propositional operator to the result of normalizing all the arguments of that operator.

« Otherwise, if @isnot the application of a quantifier to aformula, return .

» Otherwise @isof theform (Q x) where Qis FORALL or EXI STS, and we return the result of
pushing Qinto the normalization p of Y, where:

We define the notion of pushing a quantifier (Q x) into aformulap asfollows. We will write Q* for the dual
of Qi.e. FORALL if Qis EXI STS and EXI STS if Qis FORALL. First we need an auxiliary notion. A tuple
(Q v, W) ,where QisFORALL or EXI STS, v isavariable, and Y isaformula, isdistributable if

s Yisof theform (I F u Y, ,) wherev does not occur in the term u; or

* Yisof theform (AND @, ,) and QisFORALL; or

* isof theform (OR y; W,) or (1 MPLIES y; W,) and QisEXI STS; or

s Yisof theform (C g; ¥,),C 0O {AND, OR | MPLI ES}, and it is not the case that v isfreein
both g, and Y,

Finally, then, here is the definition of the operation of pushing a quantifier (Q x) into aformulap.

« If thevariable x isnot freein p, return p.

» Otherwise, if p is of the form (NOT), there are two subcases. If (Q*, X, y) is distributable
(see definition above), then return the negation of the result of pushing (Q* x) intoy. Otherwise

return (Q x p).
» Otherwise, if (Q, X, p) isnhot distributable, thenreturn (Q x p) .

* Otherwise, if pisof theform (1 F u p; p,) thenlet p,” be the result of pushing (Q x) into
p; (fori =1,2),andreturn(1F u p;’ py’).

* Otherwise, if p isof theform (1 MPLI ES p; p,) thenletp,’ bethe result of pushing (Q* Xx)
into p; and let p,” betheresult of pushing (Q x) intop,, andreturn (1 MPLI ES p;” p,’).

* Otherwise p must be of the form (C p; p,) where CisANDor OR. Then let p; " be the result
of pushing (Q x) intop; (fori =1,2),andretun(C p;" p,").

Implementation note. In our implementation we have a translator which takes expressions typed by the
user (in the extended syntax for formulas) and returns a parse of that formula in the "officia syntax" (see
Subsection 2.1). Thistranslator has the property that it puts in formula nodes wherever possible. For example,
suppose that t; and t , are terms and consider the expression (AND t, t,). This expression may be
translated to (parsed as) either a formula or a term, and our trandator would parse this as a formula. We do
things this way so that the normalization procedure has the opportunity to dive into such an AND expression. As
an optimization for the Skolemizer, since the Skolemization of a quantifier-free formula is itself, we actually

re-parse such a formula as a term before going into Skolemization. We actually do this re-parse even before

comparing normalized formulas (from the body and the FORMULA hint) for equality (modulo renaming of

bound variables).

4. Soundness

In this section we state and prove theorems which demonstrate the soundness of our approach. It is
helpful to recall that DEFN-SK extends a history by adding at er min the (quantifier-free) logic. However, it
was shown above that the first-order formula (*) implicit in that DEFN-SK event is indeed a theorem of the

resulting history (when that history is viewed as a set of first-order formulas).

First, recall the following standard definition: aset S; of first-order sentences which containsaset S, isa
conservative extension of S, if any theorem provable from S; which is in the language (alphabet) of S, isin

fact already atheorem of S,.

The theorem below shows that adding DEFN-SK gives conservative extensions. It follows that
consistency is preserved by DEFN-SK, since conservative extensions preserve consistency: using the notation
of the definition above, if S, is a conservative extension of a consistent set S, then since F (false) is not a

theorem of S,, Fisnot atheorem of S, .

SOUNDNESS THEOREM FOR DEFN-SK8. Suppose we imbed the Boyer-Moore logic into a
traditional first-order logic, such as that of [3], turning the induction principle into a collection of axioms,
admitting existential quantifiers and the existential-quantifier introduction-rule. Then a DEFN-SK event, as

defined above, results in a conservative extension of the previous theory.

Proof. Suppose we extend a history h to a new history h' by adding a Skolemization of the first-order
sentence(FORALL (vl ... wvn) (IFF (g vl ... vn) body)),whereall freevariablesof body
areamong{v1, ..., vn} andg isanew function symbol (and the Skolemization is with respect to some
set containing g aong with all function symbols of h). Let h; be the history obtained by adding the above
first-order sentence to h, and let h, be the union of h; and h’. Then h, is aconservative extension of h sinceit’s
simply adefinitional extension (cf. [3]). And h, isa conservative extension of h; by our (abstract) definition of
Skolemization. So for any first-order sentence A in the language of h, if h" |- Athenh, |- A (since h,
extendsh’), henceh; | - A (by conservativity of h, over h,), henceh | - A (by conservativity of h; over h).

8Thisis analogous (even to its wording!) to a corresponding note about CONSTRAIN in [2].

The paper [2] contains an argument which shows the correctness of the implementation of the event
FUNCTIONALLY-INSTANTIATE. However, that argument assumes an underlying logic which does not
have DEFN-SK. In Appendix C we provide the main lemma required to extend the argumentsin [2] to the case

that the existing "starting point" logic does include DEFN-SK.

5. Examples

The purpose of this section is to demonstrate that our simple DEFN-SK interface from first-order logic
into the Boyer-Moore logic enables one to mechanically proof-check interesting theorems. We treat three

separate examples here. Complete proof scripts are in the final three appendices.

These proofs make heavy use of the induction capabilities of the Boyer-Moore prover. The main idea of

the DEFN-SK approach isto retain the current prover’s strengths while allowing first-order reasoning.

All of these examples introduce axioms using the CONSTRAIN mechanism reported in [2]. Appendix C
extends the proof in that paper to show conservativity of CONSTRAIN events even in the presence of DEFN-
SK events. The reader not familiar with [2] can view CONSTRAIN simply as a consistent way of adding

axioms. Thefirst subsection below says alittle more about CONSTRAIN.

All three examples made heavy use of the "proof-checker" enhancement (PC-NQTHM) of the Boyer-
Moore prover, as reported first in [5] and then extended in [6] to implement a notion of free variables. The
proofs especially used the macro command SK* documented in [6] to eliminate notions defined by DEFN-SK
by automatically applying the Skolem axioms and the BACKCHAIN macro command to provide appropriate
instantiations for the free variables introduced by SK*. However, in the first two examples we were able to
extract, usually without much difficulty, the requisite applications of the Skolem axioms so that we could create
USE hints for the PROVE-LEMMA events and eliminate the need for the proof-checker on the fina events
lists. Thus, the first two examples replay in the unadorned Boyer-Moore prover as extended by the functional
variables work (especially CONSTRAIN) reported in[2] together with DEFN-SK, but not extended by the
proof-checker. We hope to implement something akin to the proof-checker’s treatment of free variables, as
used in these proofs, in the Boyer-Moore prover someday; then the aforementioned USE hints should not, we

hope, be necessary.

10

5.1 Koenig'sTreeLemma.

Koenig's Tree Lemma states that every infinite, rooted, finitely-branching tree has an infinite branch.
Rather than explain these terms here, we will simply state the axiom in our formalization of Koenig's Tree
Lemma after providing some intuition. The proof (sequence of events) which is discussed here is included in

Appendix D.

Intuitively, we identify a node of such a tree with the sequence of positive integers which represents the
path from the root of the tree to that node. For example the node r 321 pictured below corresponds to the

sequence (3 2 1), sinceit’sthethird child of the second child of the first child of theroot r .

r121 r221 r321 rii2
Vol /
ril1 r21 ri2
\ /
rl r2
\ /

In particular, the empty sequence NI L represents the root of the tree. And the less-than relation is represented
by the notion of "terminal subsequence”, which (in the usual style of the Boyer-Moore logic) we define

recursively:

(defn subseq (sl s2)
;; slisaterminal subsequence (nthedr) of s2
(if (equal sl s2)
t
(if (nlistp s2)
f

(subseq sl (cdr s2)))))

Here then is the axiom which introduces an appropriate tree, by way of a predicate node- p. The predicate
subseq is defined so that (subseq s1 s2) holds for sequences s1 and s2 when s2 consists exactly of
the last n elements of s1, n being the length of s2. We enforce that the tree is finitely-branching by
introducing a function succar d ("Successors Cardinality") which, for a given node in the tree, returns the
number of immediate successors of that node. The CONSTRAIN mechanism guarantees consistency of the

axiom by requiring us to give example functions which make the axiom true. In this case the "witness alist”

((node-p all-ones)
(succard (lanbda (s) 1))
(s-n ones))

suggests that if (NODE- P S) holds exactly when S is a sequence of ones, SUCCARD aways returns 1 (i.e.
every node has exactly one successor), and S- N is the function ONES where (ONES N) is a sequence of N

ones, then the axiom holds. In fact the theorem-prover checks this.

11

(constrain koenig-intro (rewite)
;» Introduce the predicate node-p for the nodes of (i.e. finite paths
;; through) thetree. That is, node-p recognizes the legal paths.
(and
;; nil isthe root
(node-p nil)
;; node-p is a predicate
(or (truep (node-p s))
(fal sep (node-p s)))
;» the successors of s are determined by succard (Successors Cardinality)
(inmplies (node-p s)
(equal (node-p (cons n s))
;»nisin{l, ..., (succard s)}
(and (lessp 0 n)
(not (lessp (succard s) n)))))
(inmplies (and (node-p sl)
(subseq s sl))
(node-p s))
;; we stipulate that the tree isinfinite by saying that s-n is a one-one enumeration of nodes
(node-p (s-n n))

(inplies (and (nunmberp i) (nunberp j) (not (equal i j)))
(not (equal (s-ni) (s-nj))))
;; nodes are proper

(inmplies (not (plistp s))
(not (node-p s))))

((node-p all-ones)

(succard (lanbda (s) 1))

(s-n ones))

((di sabl e subseq)))

Our approach was to follow the natural proof in which one builds a branch through the tree "nonconstructively"
asfollows. Starting at the root, we maintain the invariant that the top node on the branch constructed so far has
infinitely many successors (not immediate successors, of course!) inthetree. So given the current top node, we
extend the branch by choosing an immediate successor which has infinitely many successors -- note that if each
immediate successor had only finitely many successors, then the given top node would have only finitely many

successors (since the tree is finitely-branching), which would violate the invariant.®

Hereisthe DEFN-SK event which formalizes the notion of "infinitely many successors':

(defn-sk inf (s)
;; saysthat s has arbitrarily high successors
(forall big-h (exists big-s
(and (subseq s big-s)
(node-p big-s)
(lessp big-h (length big-s))))))

This adds the Skolem axiom

SComment for logicians. It's well known that there are infinite, recursive, finitely-branching, rooted trees without infinite recursive
branches, and in fact this result relativizes to any oracle. This strongly suggests that there is no way to prove Koenig's Lemma in the
Boyer-Moore logic.

12

(AND (1 MPLIES (AND (SUBSEQ S BI G S)
(NODE-P BI G 9)
(LESSP (BIGH S) (LENGTH BIG S)))
(INF)
(IMPLIES (NOT (AND (SUBSEQ S (BIG S BIGH S))
(NODE-P (BIG S BIGH 9))
(LESSP Bl G- H
(LENGTH (BIG- S BIGH S)))))
(NOT (INF 9))))

An earlier approach used a dightly different CONSTRAIN axiom, where we assumed that there was a
function S- HEI GHT instead of S- N, where (S- HEI GHT N) was postulated to be a node of height N. After
completing that proof, and cleaning it up with the help of J Moore, we went about the task of using the
CONSTRAIN event shown above and then defining (with DEFN) a function S- HEI GHT which had the desired
property. This turned out to be a substantial portion of the total effort. Those events are near the front of

Appendix D and are clearly labeled.

Our methodology for reasoning about | NF was to introduce events INF-SUFF and INF-NECC (see the
appendix). We used the proof-checker [5] enhancement of the Boyer-Moore prover, as extended to support free
variables [6], to deal with the free variables introduced by backchaining with the Skolem axioms. A number of
events in the appendices have a comment like ";; done with help of proof-checker" to indicate that the first
proof was found using the proof-checker, including macro-commands to help with unification and
backchaining. However, the final list of events in Appendix D has been successfully run in the extension of

NQTHM by CONSTRAIN [2] and DEFN-SK. Thefinal theorem is asfollows:

(i mplies (nunberp n)
(and (node-p (k n))
(inmplies (not (lesspj i))
(subseq (k i) (kj)))
(equal (length (k n)) n)))

Let us make one last technical point, referring the reader to the eventsin Appendix D for details (since of

course the events speak for themselves!). A key to the proof is the following definition.
(defn all-big-h (s n)
(if (zerop n)
(addl (length s))
(plus (big-h (cons n s))
(all-big-h s (subl n)))))
This function returns a number that is bigger than (bi g-h (cons s i)) for all positivei < n andisaso
bigger than length of s. Here, Bl G- H comes from the definition (DEFN-SK) of | NF above; roughly, Bl G- His
a function which has the property that if there is a node of length at least (Bl G H S) which extends a given

node S, then there are nodes of arbitrarily large height extending S. When we are looking to extend a given

13

node S to a branch as in the proof outline above, the ideaisto usethe (| NF S) hypothesis (invariant) to find
an extension S1 of S of length at least (ALL- Bl G- H S) . We may then note that S1 extends some immediate
successor (NEXT S (SUCCARD S)) of S, and by definition of ALL- Bl G- H this node is high enough in the
treeto guarantee (1 NF (NEXT S (SUCCARD S))) .

5.2 Ramsey’s Theorem.

Recall that Ramsey’s Theorem for exponent 2 says the following. Let P be a partition of the 2-element
subsets of a given infinite set A into afinite number of pieces, say n pieces. (One can visualize here a space of
nodes where each pair of nodes is connected by an edge of one of n given colors) Then there is an infinite
subset H of A such that all pairs from Hlie in the same piece of the partition. (In terms of our graph picture, al

edges between pairs of nodes from H are of the same color.)

This theorem has a proof which is rather similar in flavor to the Koenig's lemma proof described in the
immediately preceding subsection. For simplicity we assume that the partition is on pairs of natural numbers,
and we call it P- NUM However, we immediately define an auxiliary function P which conceptually makes
sense for al pairs (by coercing them to numbers for P- NUM), and prove al our lemmas about P- NUM (This
circuitous route is partly an artifact of our original approach, which didn’t make the restriction to numbersin the
axiom.) Think of BOUND below as the number of "colors'; we are partitioning the pairs into the set {1, ...,

(bound)}.

(constrain p-numintro (rewite)
(implies (and (nunberp x) (nunberp y))
(and (lessp O (p-numx y))
(not (lessp (bound) (p-numx y
(equal (p-numx y) (p-numy Xx)
((p-num (lanmbda (x y) 1))
(bound (lanmbda () 2))))

)))
)))

(di sabl e p-numintro)

(defn p (x vy)
(p-num (fix x) (fix y)))

(prove-lenmma p-intro (rewite)

(and (lessp O (p x ¥y))
(not (lessp (bound) (p x vy)))

(equal (p xy) (py Xx)))
((use (p-numintro (x (fix x)) (y (fix y))))))

We follow a standard proof of this theorem, which goes as follows. One defines a notion of prehomogeneous
set, which says that for numbersi < j in such a set, the value of the partition on the pair {i,j} should
depend only on i . In order to formalize this notion we actually consider lists of pairs <i , c> whose first
component i is the number and whose second component ¢ is the intended color. The auxiliary function
PREHOM SEQ- 1 takes arguments a and x, where one may think of x as being alist of pairs<i , c> as above,

eachi beinglessthan a, where this function checks that ¢ isthe right color for the pair {i , a} .

14

(defn prehomseqg-1 (a x)
;» xisalist of pairs(i .), and this says that for each
;3 such pair, p(i,a) <-> c.
(if (listp x)
(and (equal (p (caar x) a) (cdar x))
(prehomseqg-1 a (cdr x)))

t))

(defn prehom seq (x)

;; alist of pairsin decreasing order, such that

5, if (. ?) isbefore (i . ¢) (and hence presumably i < j),

;; thenp(ij) <->c.

(if (listp x)

(if (listp (cdr x))
(and (lessp (car (cadr x)) (car (car x)))
(prehomseqg-1 (caar x) (cdr x))
(prehomseq (cdr x)))
t)
t))

Continuing with the proof: the idea now is to define an increasing sequence of natural numbers which forms a
prehomogeneous sequence. Each member i of this sequence is "colored” in the sense that the value of the
partition on any pair {i , j },wherej isasointhesequenceandi < j, dependsonly on the color associated
with i . But since there are only finitely many colors, one must appear infinitely often in this prehomogenous

sequence. Then the subsequence corresponding to that color forms the desired homogeneous set.

However, in order to construct the desired prehomogeneous sequence we need a stronger invariant than
prehomogeneity. That invariant is expressed by the first of two introductions of quantifiersin this proof, which

saysroughly that s has arbitrarily large extensions to a prehomogeneous sequence:

(defn-sk extensible (s)
;; sis alist of pairs (i . c), and extensible neans that there
;; are infinitely many a for which prehomseq-1(a,s) hol ds.
(forall above
(exi sts next
(and (1 essp above next)
(prehomseqg-1 next s)))))

The associated Skolem axiom is:

(AND (1 MPLIES (AND (LESSP (ABOVE S) NEXT)
(PREHOM SEQ 1 NEXT S))
(EXTENSI BLE S))
(I MPLIES (NOT (AND (LESSP ABOVE (NEXT ABOVE S))
(PREHOM SEQ 1 (NEXT ABOVE S) S)))
(NOT (EXTENSI BLE S))))

We omit here the definition of (RAMSEY- SEQ N) , which isastrictly decreasing prehomogeneous sequence of

length N. It givesriseto the definition of the prehomogeneous sequence that we are looking for:

(defn ramsey (n)
(car (car (ranmsey-seq (ransey-index n)))))

15

The other quantifier introduction is through an event which defines the notion of a "good color", i.e. one

which is the color associated with arbitrarily large members of the range of RAVSEY:

(def n-sk good-color-p (c)
;; says that arbitrarily large el enents of ransey-seq agree with c
(forall big
(exi sts good-c-i ndex
(and (I essp bi g good-c-index)
(equal c¢ (cdr (car (ranmsey-seq good-c-index))))))))

And hereisits Skolem axiom:

(AND
(I MPLIES (AND (LESSP (BIG C) GOCD- C- | NDEX)
(EQUAL C
(CDAR (RAMBEY- SEQ GOOD- C- | NDEX))))

(GOOD- COLOR-P Q)

(I MPLIES (NOT (AND (LESSP BI G (GOOD- C- | NDEX BI G C))
(EQUAL C
(CDAR (RAMBEY- SEQ (GOOD- G-I NDEX BIG C))))))
(NOT (GOOD- COLCR-P ©))))

We actually obtain a good color by defining a function GOOD- C- | NDEX- W T which is quite analogous to the
function ALL- Bl G- H in the preceding subsection (on Koenig's Lemma). The important lemma about this
function is the following. In fact we're interested in the special case where the variable bound equals the

constant (BOUND) . However, we state it this way so that the prover may prove it by induction on bound.

(prove-l emma | essp-bi g-good-c-index (rewite)
(implies (and (lessp 0 c)
(not (lessp bound c)))
(equal (lessp (big c) (good-c-index-wit bound))
t)))

This lemma, together with the Skolem axiom for GOOD- COLOR- P above, gives us a sufficiently large index
(GOOD- C- | NDEX-W T (BOUND)) to guarantee that the color (COLOR) defined by

(defn color ()
(cdar (ranmsey-seq (good-c-index-wit (bound)))))

appears infinitely often in the sequence represented by RAMSEY. The final theorems are as follows.

(prove-1l emma ransey-increasing nil
(implies (lesspi j)
(lessp (ransey i) (ramsey j))))

(prove-1l ema ransey-seq-hom
(rewrite)
(implies (and (nunberp i) (numberp j) (not (equal i j)))
(equal (p-num (ransey i) (ramsey j))
(color)))
((use (ransey-seq-hom| essp)
(ransey-seq-homlessp (i j) (j i)))))

16

5.3 Schroeder-Bernstein Theorem.

The Schroeder-Bernstein Theorem says that for any setsa and b, if there is a one-to-one function from a
to b and also a one-to-one function from b to a, then there is a one-to-one correspondence between a and b.
We followed the proof sketch given in Exercise 8 of Chapter 1 of [7]. The following axiom introduces our

assumptions.

(constrain fa-and-fb-are-one-one (rewite)

(and

;; faisone-to-one

(inmplies (and (a x) (ay) (not (equal x vy)))
(not (equal (fa x) (fay))))

;; fbisone-to-one

(inmplies (and (b x) (b y) (not (equal x vy)))
(not (equal (fb x) (fb y))))

;; theimage of faon aiscontained inb

(implies (a x) (b (fa x)))

;; theimage of fb on bis contained ina

(implies (b x) (a (fb x)))

(or (truep (a x)) (falsep (a x)))

(or (truep (b x)) (falsep (b x))))

;; let faand fb be the identity function and let a and b be the universe

((fa id)

(fbid)

(a (lanbda (x) t)) (b (lanmbda (x) t))))

Hereistheideaof the proof. Imaginethat setsa and b and functionsf a and f b are given as above:

Now imagine that we take the images of a and b under f a and f b, respectively. These images represent the
inner boxes above. Let uswrite a0 and b0 to denote a and b, respectively, and let al and b1 be the respective

images.

17

-->fa ---->

We can of course repeat this picture as many times as we like, letting a(i +1) betheimageof b(i) underf b
and b(i +1) betheimage of a(i) under fa. Let a* be the intersection of the setsa(i) and let * be the

intersection of the setsb(i) .

-->fa ---->
| | | |
IRNEEEEEEREPEPEEE | IRNEEEEEEREREPEEE |
IR REEEEREREE | IR EEEEERERE |
I I |1 B
IRV NNV
T BT
|- a2 | | 1 o--- b2 |
IRREEEEE al ----- | IRREEEEE bl ----- |
| | | |
-------- a0 -------- e 10

<--- fb <--

We might say that apointina(i) iscircledbyi . Let usdefinethe A- LEVEL of apoint x in a to be that i
such that x belongstoa(i) but nottoa(i +1),i.e.thati suchthat x iscircled by i but not by i +1. Define
analogous notions for b. Then a one-to-one correspondence may be constructed by mapping the even a-levels

and a* into b viaf a and by mapping the odd a-levelsinto b via theinverse of f b.

Here are events that represent the following ideas. They have been culled and edited from the event list
in the final appendix in order to focus the reader’ s attention on those that are the most interesting. The Skolem

axiom for each DEFN-SK event is placed in uppercase after that event for reference.
viaaaass . DEFINITIONS AND " SKOLEM' CONSEQUENCES ;55555505

(defn-sk in-fa-range (x)
(exists fa-1 (and (a fa-1)
(equal (fa fa-1) x))))

Skol em axi om
(AND (I MPLIES (AND (A FA-1) (EQUAL (FA FA-1) X))
(I N- FA- RANGE X))
(I MPLIES (NOT (AND (A (FA-1 X))
(EQUAL (FA (FA-1 X)) X)))
(NOT (I N-FA-RANGE X))))

(defn-sk in-fb-range (x)
(exists fb-1 (and (b fb-1)
(equal (fb fb-1) x))))

Skol em axi om
(AND (I MPLIES (AND (B FB-1) (EQUAL (FB FB-1) X))
(I N- FB- RANGE X))
(I'MPLIES (NOT (AND (B (FB-1 X))
(EQUAL (FB (FB-1 X)) X)))
(NOT (IN-FB-RANGE X))))

(defn circled (flg x n)
i If flgis 'a, returns t iff x isin a-n in the sense of Kunen's proof.
;; Simlarly for bif flgis not 'a.
(if (equal flg 'a)
(if (zerop n)
(a x)
(and (in-fb-range x)
(circled "b (fb-1 x) (subl n))))
(if (zerop n)
(b x)
(and (in-fa-range x)
(circled "a (fa-1 x) (subl n))))))

(defn-sk a-core (x)
introduced "inductively" so that the level will be tight
(and (a x)
(forall a-level
(inplies (and (nunberp a-level)
(circled "a x a-level))
(circled "a x (addl a-level))))))

Skol em axi om
(AND (I MPLIES (AND (A X)
(1 MPLI ES (AND (NUMBERP (A- LEVEL X))
(CIRCLED ' A X (A-LEVEL X)))
(CIRCLED ' A X (ADDL (A-LEVEL X)))))
(A-CORE X))
(1 MPLIES (NOT (AND (A X)
(1 MPLI ES (AND (NUMBERP A- LEVEL)
(CIRCLED ' A X A-LEVEL))
(CIRCLED ' A X (ADDL A-LEVEL)))))
(NOT (A-CORE X))))

LEMVA. A- CORE- NECC
;; the conclusion inplies the nore obvious consequence of a-core
(implies (not (circled "a x n))
(not (a-core x)))

LEMVA. A- CORE- SUFF
(implies (and (a x)
(implies (and (nunberp (a-level x))
(circled "a x (a-level x)))
(circled "a x (addl (a-level x)))))
(a-core x))

(defn-sk b-core (x)
;; introduced "inductively" so that the level will be tight
(and (b x)
(forall b-1level
(implies (and (nunberp b-1evel)
(circled 'b x b-level))
(circled "b x (addl b-level))))))

Skol em axi om
(AND (I MPLIES (AND (B X)
(1 MPLI ES (AND (NUMBERP (B-LEVEL X))
(CIRCLED ' B X (B-LEVEL X)))
(CIRCLED ' B X (ADDL (B-LEVEL X)))))
(B- CORE X))
(I MPLIES (NOT (AND (B X
(1 MPLI ES (AND (NUMBERP B- LEVEL)
(CIRCLED ' B X B-LEVEL))
(CIRCLED ' B X (ADDL B-LEVEL)))))
(NOT (B-CORE X))))

LEMVA. B- CORE- NECC
;; the conclusion inplies the nore obvious consequence of b-core
(inmplies (not (circled "b x n))
(not (b-core x)))

LEMVA. B- CORE- SUFF
(implies (and (b x)
(implies (and (nunberp (b-1level x))
(circled "b x (b-level Xx)))
(circled "b x (addl (b-level x)))))
(b-core x))

(defn parity (n)
(if (zerop n)
t

(not (parity (subl n)))))

(defn j (x)
;7 the isonorphism
(if (or (a-core x)
(parity (a-level x)))
(fa x)
(fb-1x)))

(defn j-1 (y)
;; the isonorphisms inverse
(if (or (b-corey)
(not (parity (b-level y))))
(fa-1vy)
(fb y)))

viaaaaaass MAIN LEMVAS ;55505055

LEMVA. B- CORE- FA
(inmplies (a x)
(iff (b-core (fa x)) (a-core x)))
LEMVA. Cl RCLED- MONOTONE
(inmplies (and (circled flg x j)
(not (lesspj i)))
(circled flg x i))
LEMVA. B-LEVEL-FA
(inmplies (and (a x) (not (a-core x)))
(equal (b-level (fa x))
(addl (a-level x))))

LEMVA. A- CORE- FB

(implies (b x)
(iff (a-core (fb x)) (b-core x)))

19

LEMVA. A-LEVEL-FB
(implies (and (b x) (not (b-core x)))
(equal (a-level (fb x))
(addl (b-level x))))

LEMVA. B-LEVEL-FB-1
(inmplies (and (a x)
(not (a-core x))
(in-fb-range x))
(equal (b-level (fb-1 x))
(subl (a-level x))))

LEMVA. B-CORE-FB-1
(inmplies (and (a x)
(not (a-core x))
(not (parity (a-level x))))
(not (b-core (fb-1 x))))

LEMA. J-1-J
(implies (a x)
(equal (j-1(j x)) X))
LEMVA. A-CORE-FA-1
(inmplies (in-fa-range y)
(iff (a-core (fa-1y)) (b-core vy)))

LEMVA. A-LEVEL-FA-1
(implies (and (b y)
(not (b-core y))
(in-fa-range y))
(equal (a-level (fa-1vy))
(subl (b-level y))))
LEMA. J-J-1
(implies (b y)
(equal (j (i-1Y)) ¥))
LEMVA. J-1S- ONE- ONE
(inmplies (and (a x1)
(a x2)
(not (equal x1 x2)))
(not (equal (j x1) (i x2))))

20

(defn-sk j-iso ni

(and

;;] maps ainto b
(forall x

(implies (a x)

(b (j x))))

;5] is one-one
(forall (x1 x2)

(inmplies (and (a x1)

(a x2)
(equal (j x1) (j x2)))
(equal x1 x2)))

;] is onto
(forall y (inplies (b y)

(exists x (and (a x)

(equal (j x) ¥))))))

((prefix j-iso-)))

Skol em axi om
(AND (I MPLIES (AND (I MPLIES (A (J-1SO-X))

(B (J (J-1S0-X))))
(I MPLIES (AND (A (J-1SO X1))
(A (J-1S0-X2))
(EQUAL (J (J-1SO-X1)) (J (JI-1S0X2))))
(EQUAL (J-1SO-X1) (J-1S0X2)))
(IMPLIES (B (J-1S0Y))
(AND (A X) (EQUAL (J X) (J-1S0-Y)))))
(J-150)
(IMPLIES (NOT (AND (IMPLIES (A X) (B (J X))
(I MPLIES (AND (A X1)
(A X2)
(EQUAL (J X1) (J X2)))
(EQUAL X1 X2))
(IMPLIES (B Y)
(AND (A (J-1SO-%-1Y))
(EQUAL (J (J-1SO-X-1Y)) Y))))
(NOT (J-150)))

LEMVA. J-1S- AN- | SOVORPHI SM

(j-is0)

21

22

Appendix A
The DEFN-FO mechanism

A convenient "pseudo-event” DEFN-FO is provided. Its syntax is exactly the same as DEFN-SK.
However, if no FORMULA hint is provided and if a"good" hint can be deduced, then that hint is added. So for

example, the example in the "manual section" (see Subsection 2.4) could be generated by:

(DEFN- FO BAR (2)
(EXI STS X
(FORALL Y (IMPLIES (P X 2) (P Y 2))))
((PREFI X SK-)))

Moreover, if the Lisp variable * ADD- SKOLEM PREFI XES* (which is initialy NI L) is set to anything other
than NI L and if no PREFIX hint is given to a DEFN-FO, then the hint (PREFI X <name>-) will be added
where <nane> is the name of the function being defined. The analogous situation applies for

* ADD- SKOLEM SUFFI XES* and (SUFFI X - <name>).

NOTE: DEFN-FO is just a convenient macro, not an event form suitable for an events file. When it
generates new hints, it prints out the new hints. The user is strongly encouraged to copy these hints into a
DEFN-SK form that he places into his events file (possibly with a remark that the hints were generated with
DEFN-FO).

23

Appendix B
Skolemization

This appendix is included primarily for completeness only, as our Skolemization agorithm is quite

standard. We do make afew comments on some choices that we have made, however.

The Algorithm

Fix ahistory. We present Skolemization as a function which takes arguments

« aformula@

* aboolean parity

« aset F of function names, each associated with an arity
* aset Vof variables

and returns aterm. Typicaly F will contain al function symbols of ¢ and of the current history, while V will
contain al free variables of @. When the parity is T we generally call the resulting term a Skolemization of the
given formula. The definition is by recursion along the structure of formulas.

« If isaterm, then return @.
« If @is(Q x) where QisFORALL or EXI STS, then there are two subcases.

+ If Qis FORALL and parity istrue or if Qis EXI STS and parity is false, then let v be a
variable not in the set V, and return the result of Skolemizing Y/ { <x, v>} with the same
parity and F but with V replaced by V O { v} .

* Otherwise, let f n be any function symbol which does not belong to F. Let u be the term
(fn xq; ... X,),where(x; ... X,) isanenumeration of all free variablesin ¢.
Then we add f n (with arity n) to F, leave V and parity unchanged, and Skolemize the
result of substituting u for x in Y. As usual, it may be necessary to rename bound
variablesin | in order to substitute correctly; we omit details.

«If @is (NOT), then return the negation of the result of Skolemizing | with respect to the
opposite parity, and with F and V unchanged.

» Otherwise, @ must be of the form (C ¢ 0), where Cis OR, AND, or | MPLI ES, or of the form
(I'F u ¢ 8). Therearetwo subcases.

+ Suppose that parity is true and the connective is AND or | F, or that parity is false and the
connective is OR or | MPLI ES. Let ' be the Skolemization of { with respect to the
given parity (but negated if the connective is | MPLI ES), V, and F. Let p’ be the
Skolemization of p with respect to parity, V, and the union of F with the set of function
symbols of) (each associated with arity). Thenreturn (C ' p') (except for thel F
case, inwhichcasereturn (1 F u ' p’)).

+ Otherwise, the result is the same as in the first case, except that when we Skolemize p, we
replace V by the union of V with the set of the variables occurring in g’ .

Correctness

24

We present here a proof of the specification of Skolemization stated in Subsection 2.2. Actualy, we
break the property into its two halves, one for conservativity and one for provability in the converse direction.
The actual theorems that we prove are siightly more general, in that they apply to formulas with free variables
and to either parity; this seems necessary for the inductive proofs. First we state an easy but helpful lemma.
We omit its proof, which is a simple proof by induction on the structure of the given formula. It captures the

ideathat the variablesin V are "protected” from use as Skolem variables.

LEMMA 1. Let sk be a Skolemization of ¢ with respect to V, F, and parity, where V contains all free

variables of ¢. Then novariablein V both occursin sk and isnot freein @. -|

PROPOSITION 1 (Skolemization is strong enough). Let ¢ be a formula, let F be a set of function
symbols, let V be a set of variables which includes all free variables of ¢, and let parity be true or false. Let sk
be the Skolemization of ¢ with respect to F, V, and parity, and let (v, ... v,) bean enumeration of the

variables occurring in sk which are not members of V (equivalently, not freein ¢, by Lemmal). Then:

(i) If parity istrue, then| - (I MPLIES (FORALL (v, ... Vv,) sk) @;

(i) If parity isfalse, then| - (I MPLIES @ (EXISTS (v, ... v,) sk)).

Proof. We induct on the structure of the formula@. If @isaterm, then sk equals ¢ and we're done.

Next suppose that @ is (Q X) where Qis FORALL or EXI STS. There are severa subcases. First
suppose that Qis FORALL and parity is true. (The next subcase would be where Qis EXI STS and parity is
false; but that is similar to the current case, and is therefore left to the reader.) Then by definition there is a
variable v not in the set V such that sk is the result of Skolemizing W/ { <x, v>} with respect to the same true

parity and same set F, but with V replaced by V O { v} . By the inductive hypothesis, we have
(1) |- (IMPLIES (FORALL (v, ... v,) sk) W/ {<x,v>})

where (v, ... v,) isanenumeration of the variables occurring in sk which are not freein g/ { <x, v>}.
Notice that none of these variablesisv (unless x does not occur free in |, an easy case which we leave to the

reader). Therefore (1) implies
|- (I MPLIES (FORALL (v Vi vn) sk) (FORALL v y/{<x,v>}))

which (by afamiliar renaming argument from predicate logic) implies

25

[- (IMPLIES (FORALL (v v, ... V) sk) @

as desired.

For the remaining quantifier cases, let u be aterm of the form (fn x; ... Xx,),where(x; ...
Xp,) isanenumeration of all free variablesin @, and where f n is a function symbol which does not belong to F.
Then sk is a Skolemization of the result of substituting such a term u for x in), where renaming of bound
variables is done in Y as required so that the familiar properties of substitution hold, and where the
Skolemization is with respect to same V and parity, but where we add f n (with arity n) to F. Let us consider
the case where parity is false and hence @ is (FORALL x) ; the other case is similar. By the inductive

hypothesis, we know
(2) |- (IMPLIES @ (EXISTS (v, ... v.) sk))

where " is the result of substituting u for x in g (as indicated above) and where (v, ... v,) isan
enumeration of the variables occurring in sk which are not free in ' , or eguivaently, not free in @. The
conclusion then follows from the observation that by a familiar rule of predicate logic, we have

|- (1 MPLIES (FORALL x)).

It remains only to consider the various propositional subcases. The case where @is(NOT () iseasy and
left to the reader. So ¢ must be of theform (C ¢ 6) , where Cis AND, OR, or | MPLI ES, or of the form (| F
u Y 6). Consder for example the case that parity is true and that @ is (AND {; W,) . Let sk; bethe

appropriate Skolemization of Y, (i = 1,2). By theinductive hypothesis, we have

(3) |- (IMPLIES (FORALL (v, ... v_) sk,) @)

(4) |- (IMPLIES (FORALL (w, ... w) sk,))

where (v, ... V) isanenumeration of the variables occurring in sk, which are notinVand (w; ...
W,) is an enumeration of the variables occurring in sk, which are not in V. Let (y; ... Yy) bean
enumerationof (v ... v) O(w ... w). Itthenfollowsfrom (3) and (4) and predicate logic that

(5) |- (IMPLIES (FORALL (y, ... y,)

(AND sk, sk,))
(AND U, U,))
which is what we wanted to prove. The case that @is (OR g,) issimilar; but we need to know that the
sets{v, ... v ad{w ... w} aedigointin order to obtain the analogue of (5) from (3) and (4).
However, the definition of Skolemization guarantees this. Each remaining propositional cases is similar to

either the AND or OR case with true parity. -|

26

Let us turn now to the property of Skolemization which is complementary to the one just proved. For
convenience, let us say that a formula p with universal closure p’ conservatively extends a set h of sentences if
h O {p’'} is a conservative extension of h, i.e. if every theorem of this union which is in the language of h is

already atheorem of h. The following lemmaisthe key to Proposition 2 below.

LEMMA 2. Let (EXISTS v {) beaformulaandlet (v, ... v,) beanenumeration of its free
variables. Let f n be afunction symbol which does not occur in agiven set h of sentencesor in . Let p bethe
result of substituting theterm (fn v, ... v,) forv iny, renaming bound variables as necessary to that the
substitution is acceptable in the wusua sense of predicate calculus. Then the formulas

(IMPLIES (EXISTS v) p) and(I MPLIES p (FORALL v W)) each conservatively extend h.

Proof sketch. First let us note that an arbitrary model of h can be expanded to a model of the universal
closureof (I MPLIES (EXISTS v) p) (respectively, of (I MPLIES p (FORALL v ¢))). One
simply interprets the new function symbol f n so that for any assignment of valuesto {v,, ..., V.},
whenever there exists a value for v which makes true (respectively false, for the second case) under that
assignment, the application (interpretation) of f n to those values should make Y true (respectively false). That
there are no new theorems in the extension of h by that universal closure now follows easily from the
completeness theorem. For suppose that @ is a sentence in the language of h which is not provablein h. Then
there isamode of h which satisfies (NOT @) . As we described above, there is an interpretation of f n which
gives an expansion of this model satisfying the universal closure of (1 MPLIES (EXISTS v) p)
(respectively, of (I MPLIES p (FORALL v))). Sincethat model still satisfies (NOT) , @is still not

atheorem of the extension of h by that same universal closure. -|

PROPOSITION 2 (conservativity of Skolemization). Assume the hypotheses of Proposition 1, except
replace the hypothesis about V with a hypothesis that F includes all function symbols of the current history h
and the formula @.1% Then:

(i) If parity istrue, then (1 MPLI ES ¢ (FORALL (v, ... v,) sk)) conservatively extendsh.

(i) If parity isfalse, then (I MPLI ES (EXI STS (v, ... v,) sk) @) . conservatively extendsh.

10 the implementation we also check that all function symbols occurring in g arein h.

27

Proof. We follow the structure in the proof of Proposition 1. Specifically, as with Proposition 1, we

induct on the structure of the formula ¢, noting that the base case where @isatermistrivial.

Next suppose that @ is (Q x) where Qis FORALL or EXI STS. There are several subcases. First
suppose that Qis FORALL and parity is true. (The next subcase would be where Qis EXI STS and parity is
false; but that is similar to the current case, and is therefore left to the reader.) Then by definition there is a
variable v not in the set V such that sk is the result of Skolemizing Y/ { <x, v>} with respect to the same true
parity and same set F, but with V replaced by V O { v} . By the inductive hypothesis, the following formula

conservatively extends h:
(6) (I MPLIES @/ {<x,v>} (FORALL (v, ... v_) sk))

where (v, ... v,) isanenumeration of the variables occurring in sk which are not free in g/ { <x, v>}.
Notice that none of these variablesisv (unless x does not occur free in |, an easy case which we leave to the

reader). Therefore the universal closure of (6) impliesthe universal closure of
(IMPLIES (FORALL v W/ {<x,v>}) (FORALL (v v, ... v) sk))

which (by afamiliar renaming argument from predicate logic) implies
(IMPLIES @ (FORALL (v v, ... V) sk))

and hence this formula conservatively extends h as well, as desired.

There are two remaining quantifier cases. Let us consider the case where parity is false and hence @ is
(FORALL x U); the other case is similar. Let u be aterm of the form (fn x; ... x,), where (x;
Xp,) isan enumeration of all free variablesin ¢, and where f n is a function symbol which does not occur
in the current history, in F, or in ¢. Then sk is a Skolemization of the result of substituting such aterm u for x
in Y, where renaming of bound variablesis donein Y as required (so that the familiar properties of substitution
hold), and where the Skolemization is with respect to same V and parity, but where we add f n (with arity n) to

F. By Lemma 2, the following formula conservatively extends h:
(7) (IMPLIES ¢ ¢

where ' isthe result of substituting u for x in Y. By applying the inductive hypothesis, replacing h with its

extension by the universal closure of (7), we find that the formula
(8) (IMPLIES (EXISTS (v, ... v,) sk) @)

conservatively extends the result of adding the universal closure of (7) to h. By transitivity of conservative

extension, the conservativity of (7) and (8) yields conservativity of

28

(IMPLIES (EXISTS (v, ... v,) sk) @)

as desired.

It remains only to consider the various propositional subcases. The case where @is(NOT () iseasy and
|left to the reader. The other cases are all similar, so let us do the case that parity istrue and that @is (AND),
y,) . Letsk; bethe Skolemization of Y, (i =1,2), both with respect to the given set V of variables and with
parity true, but where we use F for sk ; but the union of F with the set of function symbols (with arity) in sk,

to obtain sk,. By theinductive hypothesis, we have conservativity of
(9) (IMPLIES g, (FORALL (v, ... v,) sk,))

over h, and then conservativity of

(10) (IMPLIES @, (FORALL (w, ... w) sk,))
over the extension of h by the universal closure of (9), where (v, ... v) isanenumeration of the variables
occurring in sk, which are not freein gy and (w; ... w,) isan enumeration of the variables occurring in

sk, which are not free in y,. (Notice that in order to apply the inductive hypothesis for the case of (10), we
use the fact that the Skolemization of s, iswith respect to a set of function symbols which includes all function
symbols of formula(9).) Let(z, ... z,) beanenumerationof (v, ... v) O(w ... w,). The
result now follows from the observation that the following formula is a consequence of (9) and (10) by

predicate logic:

(I MPLIES (AND , W,)
(FORALL (z, ... z})
(AND sk, sk,)))

The remaining propositional cases are similar, so we omit them. -|

Remarks on choices

This section contains a summary of remarks made in [8]; indeed, some of the text here is taken directly

from that reference. However, we occasionally refer the reader to [8] for a more complete discussion.

Remark 1. Let'skeep Skolem terms small!

Suppose that one introduces a predicate ¢ of no arguments as follows:
(11) @ = (EXISTS x (I MPLIES (p x) (FORALL y (p v¥))))

A Skolemization of formula (11) isthe following, where sk- x and sk- y are the Skolem functions introduced:

29

(and (inplies (inplies (p x) (p (sk-y)))
(0]
(inplies (not (inplies (p (sk-x)) (p y)))
(not @))

Thus, to prove @, it sufficesto find an x such that we can prove
(IMPLIES (p x) (p (sk-y)))

and of course, instantiating x to be (sk-y) doesthetrick.

But a perhaps common approach to Skolemization is, roughly speaking, is to let the Skolem functions
depend on all the "governing” quantified variables that have been encountered as one dives into the formula.

With that approach one would instead get the following Skolemization:;
(AND (I MPLIES (I MPLIES (p x) (p (sk-y x)))

®
(1 MPLI ES (NOT (IMPLIES (p (sk-x)) (p ¥)))
(NOT @)
Unfortunately it now seems difficult to prove @ using the first conjunct (in a ssimple rewriting approach, at any
rate -- as Bob Boyer points out, resolution knocks it off in 3 unit resolutions!), since if one instantiates this

formula by substituting (sk-y x) for x, one obtains
(IMPLIES (I MPLIES (p (sk-y x)) (p (sk-y (sk-y x))))

9
which isn't helpful. The desirability of minimality of the set of Skolem variables is formalized in the first

section of [8].
Remark 2. Pushing quantifiers inward.

Having asserted that we want the new function symbols to depend on as few variables as possible, we
now ask: how are we to accomplish this? The design decision outlined in the introduction to Section 2 suggests

that one method is to push quantifiersinward. The examplein Subsection 2.4 ("manual section™),
(BAR Z) = (EXISTS x (FORALL v (IMPLIES (p x 2) (P VY 2))))

would Skolemize with the Skolem function for y depending on x and z

(AND (I MPLIES (I MPLIES (p x z) (p (sk-y x z) 2z2))
(bar z))
(I'MPLIES (NOT (I MPLIES (p (sk-x z) z) (pYy 2)))
(NOT (bar z)))) .

However, asin the previous example, the first conjunct is not quite sufficient to prove (bar z) "naturaly”. If

instead we move quantifiers inward and observe

30

(BAR Z) = (IMPLIES (FORALL x (p x z)) (FORALL Y (p VY 2)))

we obtain instead a "better" Skolemization from the point of view of allowing atrivial derivation of (bar z):
(AND (I MPLIES (I MPLIES (p x z) (p (sk-y z) z))
(BAR 2))
(I MPLIES (NOT (IMPLIES (p (sk-x z) z) (py 2)))
(NOT (bar 2))))
For, now (bar z) isclear by instantiating x to (sk-y z) in the first conjunct above. The moral of this
story is: "smart" Skolemizations can be obtained by being smart about where the quantifiers are placed before

going into Skolemization. But that’s not quite our entire story......

Remark 3. Outside-in vs. inside-out.

At one point we were tempted to Skolemize "inside-out" instead of "outside-in", in the following sense.
Suppose that one wants to Skolemize, for example, (FORALL x (EXISTS y (p X Yy))). Theagorithm
presented in this appendix works "outside-in" by stripping off the (FORALL x) and calling the Skolemizer on
(EXISTS y (p X Yy)),whichinturn givesus aresult of theform (p x (f x)). However, we might
imagine a different, "inside-out" version, which saysfirst that (EXI STS y (p x y)) Skolemizesto (p X
(f x)) andhence(FORALL x (EXISTS y (p X y))) Skolemizesto this same thing.

However, here is an example which shows that the "inside-out" method can lead to a more cumbersome
result than the "outside-in" method. (That's too bad, because an "inside-out" approach would be simpler since
one would never be performing the delicate operation of substituting into quantified formulas.) Consider the

formula
(EXISTSy (FORALL z (EXISTSwW (py z W))))

The ("outside-in") algorithm presented in this appendix yields a Skolemization of (p (sk-y) z (sk-w

z)) . However, the "inside-out" method would produce a result as shown by the following "trace":
>> (EXISTS y (FORALL z (EXISTSwW (py z W))))

>> (FORALL z (EXISTS W (py z wW)))
>> (EXISTSw (py z W)
<< (pyz(sk-wy 2))

<< (py z (sk-wy 2))

<< (p (sk-y) z (sk-w (sk-y) z))

Now of course one might argue that wis "governed" only by z, not by y. However, Remark 1 above shows the

31

danger of using such a"governs' notion. Perhaps someone can tell us a way to do "inside-out" Skolemization
which avoids the ugliness demonstrated above and yet avoids excess free variables (as discussed in Remark 1
above). In the meantime, we'll continue to use an "outside-in" method, since it seems to suffer no deficiences

for our purposes.

32

Appendix C
Extending the soundness proof of [2]

This appendix is rather tedious and technical. Its purpose is to extend the argument given in[2] to the
case where DEFN-SK is included in the underlying logic. Specificaly, the notion of the obvious extension of

an extensible functional substitution and history is defined and shown to have the following property:

Theorem [2]. The obvious extension of an extensible functional substitution and history is itself

extensible.

The problem is that this theorem was proved in [2] for alogic not including DEFN-SK. Below we extend
the notion of obvious extension so that this theorem remains true in the context of DEFN-SK. It is then routine
to check that the argumentsin [2] all extend to the logic with DEFN-SK. (One need only change all references
to "DEFN or CONSTRAIN" to references to "DEFN-SK or DEFN or CONSTRAIN")) In particular, the

following theorem holdsin for the version of the logic which has DEFN-SK:

Lemma. Justification of Functional Instantiation with Extension (adapted from [2]).

Suppose
hisahistory,
f s isatolerable functional substitution,
p isaproof of t hmwith respect to h,
no variablefreeinf s occursinp,
and<h, fs>isextensible, and, furthermore,
for each DEFN or CONSTRAIN or DEFN-SK of h whose instance under f s
is not atheorem under f s, none of the function symbols introduced
by the DEFN or CONSTRAIN or DEFN-SK isancestral int hm
Thent hm f s isatheorem in a DEFN/CONSTRAIN/DEFN-SK extension of h.

We will prove the theorem above; the justification lemma immediately above then follows from that theorem
just asit doesin[2]. That is, we need to extend the notion of obvious extension from [2] to the case where the
existing logic includes DEFN-SK, so that the obvious extension of an extensible functional substitution and
history is itself extensible. We omit all definitions from the following exposition; in fact, we gear it to those
who have aready read through [2]. In particular, we assume that the reader has read through the DEFN and
CONSTRAIN cases of the definition of obvious extension. The truth is that we include this argument for

completeness only; if anyone reads this the author would be interested to know it!

(c) Suppose that the event is a DEFN-SK with axiom ax, where ax is a Skolemization of a first-order

formula @ of the form

33

(#) (FORALL (X, ... x) (IFF (f x, ... x 6])

(where 8 may be from the formula hint or the body of the DEFN-SK). We will find an extension FS' * of FS,
with the same free variables as FS and domain extended only by function symbols introduced with ax, together
with a DEFN-SK event, such that ax\ FS' ’ is an instance of the axiom added by this new event. Moreover,

this new axiom will not mention any free variable of FS’ ’ ; hence the result will remain extensible.

The proof will follow from the following lemma. For afirst-order formula ¢ and afunctional substitution
FS, we write @\ FS to denote the result of substituting FS into ¢ in the most obvious way possible, i.e. passing
through the quantifiers (without worrying about renaming bound variables) and connectives. (The

Skolemization algorithm that we use is given in Appendix B.)

Skolemization Extension Lemma. Let @ be afirst-order formula and let FS be a functional substitution
with free variables z, ..., z,, such that none of these occur bound in @. Let sk be a Skolemization of @ with
respect to aset V of variables which contains all free variables of @ and a set F of function symbolsincluding all
those occurring in ¢, and parity true or false. Then thereis an extension FS' of FS to the Skolem functions of
sk, suchthat FS' has no free variables other than z, ..., z,,, and a Skolemization sk’ of @\ FS, with respect
tov0O{z,;, ..., z,} together with any extension of F which includes the domain of FS and the same

parity asfor sk, suchthat sk’ =sk\ FS' .

Deferring the proof of this lemma for a moment, let us show why it suffices. Let FS, be the result of
replacing each free occurrence of any a; in FS with a corresponding distinct variable a; * which is new for the
current history and for FS and does not occur in @ or ax. Then let FS; be the extension of FS, by the pair <f ,
(LAMBDA (x;" ... x) (f* x;3° ... x/ a* ... ag*))> wheref* isanew function
symbol and each x; ' is brand new. We may now apply the lemmato the original @ with sk = ax, FS = FS,
and variables{a;*, ..., a,*} and thusobtain an extension FS’ of FS; with free variables contained in
{a;*, ..., a,*},aswell asaSkolemization sk’ of @\ FS;, suchthat sk’ =sk\ FS' . Thatis, ax\ FS
=sk’, where sk’ isthe Skolem axiom for a new DEFN-SK event introducing the function f * with formal
parameters (x; ... X, a;* ... a,*) andbody 6\ FS; (with 6 from (#) above). Notice that no a;
occursin sk’ . Theonly reason we're not doneisthat FS' does not extend the original functional substitution,
but rather extends the result FS of replacing each free occurrence of any a; with a; *. However, if we let
FS' * bethe result of substituting into FS’ each occurrence of any a; * with a; , and let A* be the substitution

{<a;*, a; >}, then by the claim following this paragraph, ax\ FS’* = ax\ FS' / A*, which equals sk’ / A*.

34

(In order to apply that claim, we need to know that no a; * isin the scope of aLAMBDA in FS' where a; is
bound. Thisis clear for FS; since each a; * was introduced only for free occurrences of a; , and hence is true
without loss of generality for FS' as well, by renaming bound variables in the pairs belonging to FS' and not
to FS; . Actualy we also need to know that no a; * isabound variable of FS’ , which is also true without loss
of generality by renaming.) Therefore ax\ FS' ' is an instance of the axiom added by the new DEFN-SK

event. Alsonoticethat FS'* hasno free variablesother thana,, ..., a,, andnoneof these occursinsk’ .

We promised just above to state and prove aclaim, and here it is. Supposet isaterm, FS; and FS, are
functional substitutions and s is a substitution such that FS, is {<f, (LAMBDA vars (u/s))>:
<f, (LAMBDA vars u)> 0O FS;}. Assume furthermore that no variable occurring in t belongs to the

domain of s, that no variable in the domain of s isabound variablein FS;, and that

(**) foreach (LAMBDA vars u) asabove, itisthe casethat for every
variablev inthedomain of s which occursinu, s(v) contains
no occurrence of avariable which belongstovars.

Thent\ FS, =t\ FS;/'s. The proof is of course by structural inductionont . If t isavariable then the result

is clear since by hypothesis, t isnotinthedomainofs. Ift is(f t, ... t) wheref isnotinthedomain
of FS, then the claim is clear by the inductive hypothesis. Finally supposethatt is(f t, ... t) where
the pair <f, (LAMBDA (x; ... X,) Uu)>belongsto FS;. Then t\FS, = u/s/{<x;,t;\FS,>} =

u/ (s 0O {<x;,t;\FS,>}), by (**) and the fact that no x; is in the domain of s. On the other hand,
t\FS)/s=u/{<x;,t;\FS;} >/ s =u/ (<x;,t;\FS;/s> 0O s). Therefore we conclude by applying the

inductive hypothesis.

It remains then only to prove the Skolemization Extension Lemma, which we do by structural induction
on the formula @. Actually, we prove a dlightly stronger result. The stronger version says that, moreover, the

Skolem variables introduced into sk’ areidentical to the Skolem variables introduced into sk.

If @isquantifier-free then we may take sk’ tobe@\ FSand FS' tobeFS.

Next suppose that @ is (OR @; @,), and write sk as (OR sk; sk,) where sk, and sk, are
(respectively) Skolemizations of @, and @,. (The other propositional cases are similar so we'll omit them.) By
the inductive hypothesis we may find extensions FS; and FS, of FS to the Skolem functions of sk, and sk,

and corresponding Skolemizations sk’ and sk,” of @\ FS and @,\ FS (respectively) such that sk,’ =

35

sk,\FS; and sk,” = sk,\ FS,, where the respective Skolem variables are the same as for sk, and sk..
Since the Skolem functions introduced by sk, and sk, are digoint, FS; [0 FS, isafunction; cal it FS' . Let
sk’ =(OR sk;" sk,"). Thensk’ isaSkolemization of @\ FS (here we use the strengthening to guarantee

that the Skolem variables are digjoint where they should be) and sk’ =sk\ FS’ .

Consider next the case that @ is (EXI STS v P) or (FORALL v P), with a parity that requires any
Skolemization sk of @to be a Skolemization of P/ { <v, v’ >} for an appropriate variablev’ (which may bev
itself). By the inductive hypothesis we may choose an extension FS’' of FS to the Skolem functions of sk and
aSkolemization sk’ of P/ { <v, v’ >}\ FS (same parity) such that sk’ =sk\ FS' . ButP/ {<v, v’ >}\ FS=
P\ FS/ {<v, v’ >} by the Commutativity Lemmain [2], since by hypothesisv is not any of the z; . Therefore
sk’ is a Skolemization of @\ FS. (Notice also that the additiona condition about having the same Skolem

variables aso holds, by the inductive hypothesis.)

Finally consider the case that @is (EXI STS v P) or (FORALL v P), with aparity that requires any
Skolemization sk of @ to be a Skolemization of P/ {<v, (g v; ... v,)>}, where g is a new Skolem
functionand (v, ... v,) isanenumeration of the free variables of . Let FS* be FS [{ <g, (LAMBDA
(Vi -+ V) (g% w ... wq))>},where(w1 wq) isalist of the free variables of ¢\ FS which
we know (by alemma with a simple inductive proof, which we omit) is contained inthe set {v,, ..., V,,
z;, ... z,},andg* isanew function symbol. By the inductive hypothesis, there is an extension FS' of

FS* to the Skolem functions of sk other than g (having no extra free variables), together with a corresponding

Skolemizationsk’ of P/ {<v, (g v; ... Vv,)>}\FS*, suchthatsk’ =sk\FS' . Butasinthe previous
casg, P/ {<v,(g v; ... V)>}\FS* =P\FS*/{<v, (g v; ... V|)>},whichin turnisthe same
asP\FS/<v, (g v, ... Vv,)>sinceg doesnot occur in P. Therefore sk’ is a Skolemization of @\FS, as

required. -|

36

Appendix D
Koenig'sLemma EventsList

The following events go through in a version of NQTHM extended by the functional variables work

[2] and DEFN-SK. All text on aline following a semicolon ‘;’ isacomment.
;7 Al this initial stuff is just to get the CONSTRAIN bel ow accept ed

(defn ones (n)
;; alist of n ones
(if (zerop n)
ni
(cons 1 (ones (subl n)))))
(defn all-ones (s)
;; all are ones
(if (listp s)
(and (equal (car s) 1)
(all-ones (cdr s)))
(equal s nil)))

(defn length (s)

(if (listp s)
(addl (length (cdr s)))
0))

(defn subseq (sl s2)
;; sl is a terminal subsequence (nthcdr) of s2
(if (equal sl s2)
t

(if (nlistp s2)
f

(subseq sl (cdr s2)))))

(prove-1l emma subseqg-all-ones (rewite)
(inmplies (and (all-ones sl)
(subseq s2 sl))
(all-ones s2)))

(defn plistp (s)
(if (listp s)
(plistp (cdr s))
(equal s nil)))

(prove-lemm plistp-all-ones (rewite)
(inmplies (all-ones s)
(plistp s)))

(prove-lemma all-ones-ones (rewite)
(all-ones (ones n)))

(prove-l emma ones-is-injective (rewite)
(implies (and (nunberp i) (nunmberp j) (not (equal i j)))
(not (equal (ones i) (ones j))))
((induct (lesspi j))))

37

(constrain koenig-intro (rewite)
;7 Introduce the predicate node-p for the nodes of (i.e. finite paths
;; through) the tree. That is, node-p recognizes the |egal paths
(and
;o nil is the root
(node-p nil)
;; node-p is a predicate
(or (truep (node-p s))
(fal sep (node-p s)))
;; the successors of s are deternined by succard (Successors Cardinality)
(inmplies (node-p s)
(equal (node-p (cons n s))
;; nisin {1, ..., (succard s)}
(and (lessp 0 n)
(not (lessp (succard s) n)))))
(implies (and (node-p sl1)
(subseq s sl))
(node-p s))
;; we stipulate that the tree is infinite by saying that s-n is a one-one
;5 enuneration of nodes
(node-p (s-n n))
(inmplies (and (nunberp i) (nunmberp j) (not (equal i j)))
(not (equal (s-n i) (s-nj))))
nodes are proper
(inmplies (not (plistp s))
(not (node-p s))))
((node-p all-ones)
(succard (lanmbda (s) 1))
(s-n ones))
((di sabl e subseq)))

7 We want to define a function s-height which returns an el enent of a given height.
;7 The next several events culmnate in the follow ng | emma

;7 (prove-lemu | engt h-s-height (rewite)
- (equal (length (s-height n)) (fix n)))

(defn succ-aux (s n)
(if (zerop n)
ni
(cons (cons n s) (succ-aux s (subl n)))))

(defn successors (s)
(succ-aux s (succard s)))

(defn successors-list (ss)
given a list ss of nodes, returns a list of all successor
;; to all elenents in ss
(if (listp ss)
(append (successors (car ss))
(successors-list (cdr ss)))
nil))
(defn level (n)
(if (zerop n)
(list nil)
(successors-list (level (subl n)))))

(defn init-tree (n)

level <= n
(if (zerop n)
(list nil)

(append (Il evel n)
(init-tree (subl n)))))

38

(defn renmovel (a x)
., renmove the first occurrence of a fromthe list x

(if (listp x)
(if (equal a (car x))
(cdr x)

(cons (car x)
(renovel a (cdr x))))

X))

(prove-lemm | ength-renmovel (rewite)
(inmplies (nmenber a x)
(lessp (length (rempvel a x))
(length x))))

(defn first-non-nmenber-index (i Xx)
;; returns index sone (s-nj) (j >=1i) not in the set x
(if (menmber (s-n i) x)
(first-non-nenber-index (addl i) (renopvel (s-n i) X))
i)
((lessp (length x))))
(defn nthedr (n s)
(if (zerop n)
s
(nthedr (subl n) (cdr s))))

(defn s-height (n)
;; should return a node of height n
(nthcdr (difference (length (s-n (first-non-nenber-index O (init-tree n)))) n)
(s-n (first-non-nmenber-index O (init-tree n)))))

(prove-l emm nthcdr-subseq (rewite)
(implies (not (lessp (length s) n))
(subseq (nthcdr n s) s)))

(prove-1l emma node-p-nthcdr (rewite)
(inmplies (and (node-p s)
(not (lessp (length s) n)))
(node-p (nthecdr n s))))

(prove-lemm | essp-difference-1 (rewite)
(equal (lessp x (difference x n)) f))

(prove-1l ema node-p-s-height (rewite)
(node-p (s-height n)))

(prove-lemma | ength-nthcdr (rewite)
(equal (length (nthcdr n s))
(difference (length s) n)))

(prove-lemma first-non-nenber-index-lessp (rewite)
(not (lessp (first-non-menber-index i x) i)))

(prove-lemma s-n-first-non-nmenber-index-not-equal (rewite)
(implies (nunberp i)
(not (equal (s-n (first-non-menber-index (addl i)
(removel (s-n i) Xx)))

(s-ni)))))

(prove-1 emma nmenber-renovel (rewite)
(inmplies (not (equal a b))
(equal (menber a (renovel b x))
(menmber a x))))

(prove-lemma s-n-first-non-nmenber-index (rewite)
(implies (nunberp i)
(not (menber (s-n (first-non-nmenber-index i x))

x))))

(prove-1l emma nmenber-append (rewite)
(equal (menber a (append x y))
(or (nenber a x) (nenber avy))))

(prove-1l emma nmenber-cons-succ-aux (rewite)
(equal (menber (cons z v) (succ-aux v n))
(and (lessp 0 z) (not (lessp n z))))
((induct (succ-aux v n))))

(prove-1l emma node-p-cons-1emma ()
(inmplies (not (node-p s))
(not (node-p (cons n s)))))

(prove-1l emma node-p-cons (rewite)
(equal (node-p (cons n s))
(and (node-p s)
(lessp 0 n)
(not (lessp (succard s) n))))
((use (node-p-cons-lemm))))

(defn all-length-n (ss n)
(if (listp ss)
(and (equal (length (car ss)) n)
(all-length-n (cdr ss) n))

t))

(prove-lemm all-Ilength-n-append (rewite)
(equal (all-length-n (append ssl ss2) n)
(and (all-length-n ss1 n)

(all-length-n ss2 n))))
(prove-lemm all-Ilength-n-succ-aux (rewite)

(inmplies (equal (length s) n)
(all-length-n (succ-aux s k) (addl n))))

(prove-lemma all-1ength-n-successors-list (rewite)
(implies (all-length-n ss n)
(all-length-n (successors-list ss) (addl n))))

(prove-lemma length-0 (rewite)
(equal (equal (length s) 0)
(nlistp s)))

(def n menber-1evel -i nduction (s n)
(if (zerop n)
t
(menber -1 evel -induction (cdr s) (subl n))))

(prove-1l emma succ-aux-listp (rewite)
(implies (not (listp s))
(not (menber s (succ-aux z n)))))

(prove-1l emma successors-list-listp (rewite)

(inmplies (not (listp s))
(not (menber s (successors-list ss)))))

(prove-| ema menber - succ-aux ni
(inmplies (nmenber s (succ-aux x n))
(equal (cdr s) x)))

(prove-1l emma nmenber-successors-1list-successors-list-witness (rewite)
(equal (menber s (successors-list ss))
(and (nmenber (cdr s) ss)
(menmber s (successors (cdr s)))))
((use (menber-succ-aux (x (car ss)) (n (succard (car ss)))))
(induct (successors-list ss))))

(prove-1lemma nmenber-level (rewite)
(implies (and (nunberp n)
(node-p s))
(equal (menber s (level n))
(equal (length s) n)))
((induct (nenber-Ilevel-induction s n))))

(prove-lemma nmenber-init-tree (rewite)
(inmplies (node-p s)
(equal (menmber s (init-tree n))
(not (lessp n (length s))))))

(prove-1l emma | engt h-s-non-nenber-index (rewite)
(inmplies (nunberp i)
(lessp n
(length (s-n (first-non-nmenber-index
(init-tree n))))))
((use (s-n-first-non-menber-index (x (init-tree n))))
(di sabl e s-n-first-non-nmenber-index)))

(prove-lemma | ength-s-height (rewite)
(equal (length (s-height n)) (fix n)))

(di sabl e s-hei ght)

;7 End of s-height excursion.
;; Qur goal

;(prove-l emra konig-tree-| enma ni

; (and (node-p (k n))

; (inmplies (not (lesspj i))

; (subseq (k i) (k j)))

; (equal (length (k n)) (fix n))))

(defn-sk inf (s)
;; says that s has arbitrarily high successors
(forall big-h (exists big-s
(and (subseq s big-s)
(node-p big-s)
(lessp big-h (length big-s))))))

The following three events were generated nechanically. They are
;; useful especially for applying the Skol em axions for |NF inside the
;; proof-checker, via the nacro conmand SK*

(DI SABLE | NF)

(PROVE- LEMMA | NF- SUFF
(REVRI TE)
(I MPLIES (AND (SUBSEQ S BI G- S)
(NODE-P BI G S)
(LESSP (BIGH S) (LENGTH BIG S)))
(INF S))
((USE (INF))))

(PROVE- LEMVA | NF- NECC

(REVRI TE)

(IMPLIES (NOT (AND (SUBSEQ S (BIG-S BIGH S))
(NODE-P (BIGS BIGH 9))
(LESSP Bl G- H

(LENGTH (BIG S BIGH S)))))
(NOT (INF 9)))
((USE (INF))))

(defn next (s max)
;; picks a successor of s that has infinitely nany successors
;; if there is one
(if (zerop nax)
(cons 0 s) ;not a legal node --

;was O, but this is easier for length cal cul ations

(if (inf (cons max s))
(cons max s)
(next s (subl max)))))

40

;7 W want to show that NEXT gives us a successor with infinitely nany
;; successors

;I NF- 1 MPLI ES- | NF- NEXT:

;(inmplies (and (node-p s)

; (inf s))

; (inf (next s (succard s))))

; Note that if some successor of s has infinitely many successors, so
; does (NEXT S (SUCCARD S)). This is the |lemmn
;7 | NF- CONS- | MPLI ES- | NF- NEXT bel ow. But first note

(prove-lemma inf-inplies-node-p (rewite)
;; Done initially with proof-checker
(implies (inf s)

(node-p s))
((use (inf-necc))))

(prove-lemma not-inf-zerop (rewite)
(inmplies (zerop i)
(not (inf (cons i s))))
((use (inf-inplies-node-p (s (cons i s))))
(di sabl e inf-inplies-node-p)))

(prove-lemma inf-cons-inplies-inf-next (rewite)
(implies (and (node-p s)
(inf (cons i s))
(not (lessp ni)))
(inf (next s n)))
((induct (next s n))))

;; Qur goal nowis to apply this | emma by proving that
;7 (inf (cons i s)) for sone i <= (succard s)

(defn all-big-h (s n)
;; at least as big as (big-h (cons s i)) for all i <= n and is bigger than length of s
(if (zerop n)
(addl (length s))
(plus (big-h (cons n s))
(all-big-h s (subl n)))))

(prove-lemma all-big-h-length (rewite)
(lessp (length s)
(all-big-h s n)))

(prove-lemmn all-big-h-lessp (rewite)
(inmplies (and (lessp 0 i)
(not (lessp ni)))
(equal (lessp (big-h (cons i s))
(all-big-h s n))
t))
((induct (all-big-h s n))))

;; Here’s a function which tells us which way s first branches on its
;; way to extending to sl

(defn first-branch (s sl)
;; assunes s is a proper subsequence of sl
(if (equal s (cdr s1))
(car sl)
(if (nlistp s1)
0

(first-branch s (cdr s1)))))

(prove-l emma subseq-cons-first-branch (rewite)
(inmplies (and (subseq s x)
(not (equal s x)))
(subseq (cons (first-branch s x) s)

x)))

(prove-1l emm | ength-non-equal (rewite)
(inmplies (lessp (length x) (length y))
(equal (equal x vy) f)))

(prove-lemma first-branch-ok-for-succard (rewite)
(inmplies (and (subseq s big-s)
(node-p big-s)
(not (equal s big-s)))
(and (nunmberp (first-branch s big-s))
(lessp O (first-branch s big-s))
(not (lessp (succard s)
(first-branch s big-s))))))

(prove-lemm all-big-h-1essp-linear
(rewite)
(implies (and (lessp 0 i) (not (lessp (succard s) i)))
(lessp (big-h (cons i s))
(all-big-h s (succard s)))))

(di sabl e all-big-h-1essp)

(prove-lemma inf-inplies-inf-next (rewite)
(implies (and (node-p s) (inf s))
(inf (next s (succard s))))
((use (inf-suff (big-s (big-s (all-big-h s (succard s)) s))
(s (cons (first-branch s
(big-s (all-big-h s (succard s)) s))
s)))
(inf-necc (big-h (all-big-h s (succard s))) (s s))
(all-big-h-1essp-1linear
(i (first-branch s
(big-s (all-big-h s (succard s)) s)))))
(disable all-big-h-1essp-linear)))

(defn k (n)
;; picks out the path
(if (zerop n)
ni
(next (k (subl n)) (succard (k (subl n))))))
(prove-l emma subseqg-nil (rewite)
(equal (subseq nil x)

(plistp x))
((enabl e subseq)))

(prove-l ema node-p-inplies-plistp (rewite)
;; contrapositive of part of KOENI G | NTRG needed for proof of INF-NL
(implies (node-p s)
(plistp s)))

(prove-1emma inf-ni
;; done with hel p of proof-checker
(rewrite)
(inf nil)
((use (inf-suff
(big-s (s-height (addl (big-h nil))))
(s nil)))))

(di sabl e node-p-inplies-plistp)

(prove-lemua konig-tree-lemma-1 (rewite)
(inf (k n)))
(prove-lemma | ength-next (rewite)
(implies (inf x)
(equal (length (next s n))
(addl (length s)))))

(prove-lemma konig-tree-lemma-2 (rewite)
(equal (length (k n)) (fix n)))

(prove-1l emma subseqg-next (rewite)
(inmplies (subseq sl s2)
(subseq s1 (next s2 n))))

(prove-lemm konig-tree-lemma-3 (rewite)
(inmplies (not (lesspj i))
_ (subseq (k i) (kj)))
((induct (k j))))

(prove-1l emma konig-tree-|enma ni
(and (node-p (k n))
(inmplies (not (lesspj i))
(subseq (k i) (kj)))
(equal (length (k n)) (fix n))))

; or, if one prefers

(prove-1l emm koni g-tree-| emma-agai n ni
(implies (nunberp n)
(and (node-p (k n))
(inmplies (not (lesspj i))
(subseq (k i) (k j)))
(equal (length (k n)) n))))

43

Appendix E
Ramsey Theorem EventsList

The following events go through in a version of NQTHM extended by the functional variables work

[2] and DEFN-SK. All text on aline following a semicolon ‘;’ isacomment.

(constrain p-numintro (rewite)
(inmplies (and (nunmberp x) (nunberp y))
(and (lessp O (p-numx vy))
(not (lessp (bound) (p-numx vy
(equal (p-numx y) (p-numy Xx)
((p-num (lanmbda (x y) 1))
(bound (lanmbda () 2))))

(di sabl e p-numintro)

)))
)))

(defn p (x y)
(p-num (fix x) (fix y)))

(prove-lemm p-intro (rewite)
(and (lessp O (p x V¥))
(not (lessp (bound) (p X ¥)))
(equal (p xy) (py Xx)))
((use (p-numintro (x (fix x)) (y (fix y))))))

(di sabl e p)

(defn prehomseg-1 (a x)
X is alist of pairs (i . ¢), and this says that for each
;; such pair, p(i,a) <->c
(if (listp x)
(and (equal (p (caar x) a) (cdar x))
(prehomseqg-1 a (cdr x)))

t))

(defn prehomseq (x)
a list of pairs in decreasing order, such that

if (j . ?) is before (i . ¢) (and hence presumably i < j)
;o then p(i,j) <-> c.
(if (listp x)

(if (listp (cdr x))

(and (lessp (car (cadr x)) (car (car Xx)))
(prehom seqg-1 (caar x) (cdr x))
(prehomseq (cdr x)))

t)
t))

(defn-sk extensible (s)
sis alist of pairs (i . c), and extensible means that there
are infinitely many a for which prehomseqg-1(a,s) holds
(forall above
(exi sts next
(and (1 essp above next)
(prehomseqg-1 next s)))))

The following two | emmas are for the benefit of the proof-checker
macr o- conmand SK*

(prove-l emm extensible-suff (rewite)
(implies (and (| essp (above s) next)
(prehom seqg-1 next s))

(extensible s)))

(prove-1l emma extensible-necc (rewite)
(inmplies (not (and (lessp above (next above s))
(prehom seqg-1 (next above s) s)))
(not (extensible s)))
((use (extensible))
(di sabl e extensible)))

(defn above-all-aux (a s n)
(if (zerop n)
0

(plus (above (cons (cons a n) s))
(above-all-aux a s (subl n)))))

(defn above-all (a s)
(above-all-aux a s (bound)))

(prove-1l enma | essp-above-all-aux (rewite)
(implies (lessp 0 n)
(not (lessp (above-all-aux a s n)
(above (cons (cons a n) s))))))

(prove-| enma above-al | - aux- nobnotone (rewite)
(implies (not (lessp bound n))
(not (Il essp (above-all-aux a s bound)
(above-all-aux a s n))))
((induct (above-all-aux a s bound))))

(prove-1 emma | essp-above-all-bound (rewite)
(inmplies (and (lessp 0 n)
(not (lessp (bound) n)))
(not (lessp (above-all a s)
(above (cons (cons a n) s))))))

(defn next-element (a s)
(next (above-all a s) s))

(defn next-color (a s)
(p a (next-element a s)))

(prove-lema nunberp-p (rewite)

(nunmberp (p x y))
((use (p-intro))))

(prove-1 emma next-color-bound (rewite)
(and (lessp 0 (next-color a s))
(not (lessp (bound) (next-color a s)))))

(di sabl e above-all)

;; first of two goals for extensible-cons
(prove-lemma | essp-next-element (rewite)
(inmplies (extensible s)
(l essp (above (cons (cons a (next-color a s)) s))
(next-elenment a s)))
((use (extensible-necc (above (above-all a s))))))

(prove-1l emma prehom seq- 1- next - el ement
(rewite)
(inmplies (extensible s)
(prehomseqg-1 (next-element a s) s))
((use (extensibl e-necc (above (above-all a s))))))

(di sabl e next-el enent)

;; second of two goals for extensible-cons
(prove-1 ema prehom seq- 1- next - el ement - cons
(rewite)
(inmplies (extensible s)
(prehomseq-1 (next-elenent a s)

(cons (cons a (next-color a s)) s))))

(di sabl e next-col or)

45

(prove-1l emma extensible-cons (rewite)
(inmplies (extensible s)
(extensible (cons (cons a (next-color a s)) s)))
((use (extensible-suff (next (next-elenment a s))
(s (cons (cons a (next-color a s)) s))))))

(defn next-pair (s)
(cons (next (caar s) s) (next-color (next (caar s) s) s)))

(prove-1l emma next-pair-extends (rewite)
(inmplies (extensible s)
(extensible (cons (next-pair s) s))))

(defn ransey-seqg-p (s)
a list of pairs in decreasing order, such that
i if () . ?) is before (i . ¢) (and hence presumably i < j)
;; then p(i,j) <->c.
(and (extensible s)
(prehomseq s)))

(prove-| enma extensi bl e-next-property (rewite)
(inplies
(extensible s)
(and (lessp a (next a s))
(prehomseqg-1 (next a s) s))))

(prove-|l emma ransey-seq- p-extends (rewite)
(inmplies (ransey-seqg-p s)
(ransey-seq-p (cons (next-pair s) s))))

(prove-lemma extensible-nlistp (rewite)
(I MPLIES (NOT (LISTP S))
(EXTENSI BLE S))
((use (extensible (NEXT (addl (ABOVE S)))))))

(prove-l emua ranmsey-seq-p-nlistp (rewite)
(inmplies (nlistp s)
(ransey-seq-p s)))

(di sabl e ransey-seqg-p)
(di sabl e next-pair)

(defn ranmsey-seq (n)
;; gives decreasing prehonpgeneous seq. of length n -- |argest
;; one is on the front!
(if (zerop n)
ni
(cons (next-pair (ransey-seq (subl n)))
(ramsey-seq (subl n)))))

(prove-1l emmma ransey-seq- has-ransey-seq-p (rewite)
(ransey-seq-p (ransey-seq n)))

;7 Now we want to cut down this prehonpgenous sequence to one that’s
hormogeneous. First let’'s define the flag

(def n-sk good-color-p (c)
;; says that arbitrarily large el enents of ransey-seq agree with c
(forall big
(exi sts good-c-i ndex
(and (1 essp bi g good-c-index)
(equal c (cdr (car (ranmsey-seq good-c-index))))))))

;; The following two | enmas are for the benefit of the proof-checker
;, macro-command SK*.

(prove-| emma good-col or-p-suff (rewite)
(implies (and (lessp (big c) good-c-index)
(equal ¢
(cdar (ramsey-seq good-c-index))))
(good-color-p ¢)))

46

(prove-1l emma good-col or-p-necc (rewite)
(inmplies
(not (and (lessp big (good-c-index big c))
(equal c
(cdar (ransey-seq (good-c-index big c))))))
(not (good-color-p c)))
((use (good-color-p))
(di sabl e good-col or-p)))

(defn good-c-index-wit (bound)
(if (zerop bound)
1

(plus (big bound)
(good-c-index-wit (subl bound)))))

(prove-1l ema good-c-index-wit-positive (rewite)
(I essp 0 (good-c-index-wit bound)))

(prove-1l emma | essp-bi g-good-c-index (rewite)
(inmplies (and (lessp 0 c)
(not (lessp bound c)))
(equal (lessp (big c) (good-c-index-wt bound))
t)))

(di sabl e good-c-i ndex-w t)

(defn color ()
(cdar (ransey-seq (good-c-index-wit (bound)))))

(prove-l emmma ransey-seq- has-col ors-i n-bounds (rewite)
(implies (lessp 0 n)
(and (lessp 0 (cdar (ransey-seq n)))
(not (lessp (bound) (cdar (ranmsey-seq n))))))
((enabl e next-pair next-color)))

(prove-1lenma col or-in-bounds (rewite)
(and (lessp 0 (color))
(not (lessp (bound) (color)))))

(prove-lemua col or-is-good (rewite)
(good-col or-p (color))
((use (good-col or-p-suff (good-c-index (good-c-index-wt (bound)))

(¢ (coloar))))))

(di sabl e col or)
(di sabl e *1*col or)

(defn ranmsey-index (n)
;; returns the index of the nth nenber of ransey-seq which has color (color)
(if (zerop n)
(good-c-index 0 (color))
(good-c-index (ransey-index (subl n)) (color))))

(prove-lemma col or-properties (rewite)
(and (1l essp big (good-c-index big (color)))
(equal (cdr (car (ramsey-seq (good-c-index big (color)))))
(color)))
((use (good-color-p-necc (c (color))))
(di sabl e good- col or-p-necc)))

(prove-l emma ranmsey-index-increasing (rewite)
(implies (lesspi j)
(Il essp (ranmsey-index i) (ransey-index j)))
((induct (plus j a))))

(defn ramsey (n)
(car (car (ransey-seq (ransey-index n)))))

47

; Next goal

; (prove-l emra ransey-increasing (rewite)

; (inplies (lesspi j)

; (lessp (ranmsey i) (ransey j))))

(prove-1 emma good-c-index-nunberp (rewite)
(nunmber p (good-c-index big (color)))

((use (color-properties))

(di sabl e col or-properties)))

(prove-1l emma ransey-index-nunberp (rewite)
(nunmberp (ransey-index n)))

(prove-lemm car-next-pair (rewite)
(equal (car (next-pair s))
(next (caar s) s))
((enabl e next-pair)))

(prove-1l emma ransey-seq-extensible (rewite)
(extensible (ramsey-seq n)))

(prove-1 emma next-not-zerop (rewite)
(implies (extensible s)
(and (nunberp (next a s))
(not (equal (next a s) 0))))
((use (extensible-next-property))
(di sabl e extensi bl e-next-property)))

(prove-1l emma ransey-seq-increasing (rewite)
(inmplies (lesspi j)
(equal (lessp (caar (ramsey-seq i))
(caar (ransey-seq j)))
t))
((induct (plus j 0))))

(prove-l emma ransey-index-increasing-rewite (rewite)
(inmplies (lesspi j)
(equal (lessp (ransey-index i) (ramsey-index j)) t)))
(di sabl e ranmsey-i ndex-i ncreasing)

(prove-1l emma ranmsey-increasing ni
(implies (lesspi j)
(lessp (ransey i) (ramsey j))))

Now we want to show that ransey is honogeneous for (color)
; (prove-1 emra ransey-honogeneous (rewite)

; (inplies (lesspi j)
; (iff (p (ranmsey i) (ransey j))

(color))))
(defn restn
;; fromBill Bevier's library
(n1)
(if (listp 1)

(if (zerop n)
|

(restn (subl n) (cdr 1)))
1)

W' ve already proved (ranmsey-seq-p (ranseg-seq i)). So, in order

;; to prove the key | enmma ransey-seq-prehom bel ow, we’'ll use this
;; together with an appropriate fact about restn and prehom seqs

(prove-|l enma ransey-seq-restn-length (rewite)
(equal (restn n (ramsey-seq n))

nil))

48

(prove-1l emma prehom seq-ransey (rewite)
(prehom seq (ranmsey-seq n))
((use (ransey-seq-has-ransey-seqg-p))
(di sabl e ransey- seq- has-ransey- seq- p)
(enabl e ransey-seq-p)))

(defn length

(N

(if (listp 1)
(addl (length (cdr 1)))
0))

(prove-1l emma prehomseqg-1-restn (rewite)
(inmplies (and (prehomseg-1 a s)
(lessp x (length s)))
(equal (p (caar (restn x s)) a)
(cdar (restn x s)))))

(prove-l emma prehomseq-restn (rewite)
(inmplies (and (prehomseq s)
(lessp 0 x)
(lessp x (length s)))
(equal (p (caar (restn x s)) (caar s))
(cdar (restn x s)))))

(prove-l emua ranmsey-seq-plus (rewite)
(equal (restn x (ransey-seq (plus x Vy)))
(ramsey-seq y)))

(prove-lema plus-comm (rewite)
added to raw version to help with | emma bel ow

(equal (plus x y) (plus y x)))

(prove-1l emma ransey-seq-pl us-comuted (rewite)
(equal (restn x (ranmsey-seq (plus y x)))
(ramsey-seq y)))

(prove-lemn | ength-ransey-seq (rewite)
(equal (length (ranmsey-seq n)) (fix n)))

The | emmas from here to RAMSEY- SEQ PREHOM were to elimnate the
;; proof-checker hints fromthat | emm

(prove-lemma plus-difference-elim(elin
(implies (and (nunberp j)
(not (lesspj i)))
(equal (plus i (difference j i))
i)
(prove-lemma restn-di fference-ransey-seq (rewite)
(implies (and (lessp 0 i)
(lessp i j))
(equal (restn (difference j i)
(ransey-seq j))
(ramsey-seq i))))

(prove-1l emma prehom seq-restn-commuted (rewite)
(implies (and (prehomseq s)
(lessp 0 x)
(lessp x (length s)))
(equal (p (caar s) (caar (restn x s)))
(cdar (restn x s))))
((use (prehomseqg-restn))
(di sabl e prehom seqg-restn)))

49

(prove-1l emma ransey-seq-prehom| emra ni
(inmplies (and (lessp 0i) (lesspi j))
(equal (p (caar (restn (difference j i)
(ransey-seq j)))
(caar (ransey-seq j)))
(cdar (restn (difference j i)
(ransey-seq j)))))
((disable restn-difference-ransey-seq
ramsey- seq- pl us- conmut ed)))

(prove-1l emma ransey-seq- prehom
;; originally done with proof-checker
(rewite)
(inmplies (and (lessp 0 i) (lesspi j))
(equal (p (caar (ramsey-seq i))
(caar (ransey-seq j)))
(cdar (ransey-seq i))))
((use (ransey-seq-prehomlemm))))

(prove-1l emua cdar-ranseq-seq-ransey-i ndex

(rewite)
(equal (cdar (ransey-seq (ranmsey-index n)))
(color)))

(prove-1 emma | essp-good-c-index (rewite)
(equal (lessp big
(good-c-index big (color)))
t))

(di sabl e col or-properties)

(prove-1l emma good-c-index-non-zero (rewite)
(equal (lessp O
(good-c-index big (color)))
t)
((use (I essp-good-c-index))
(di sabl e | essp-good-c-index)))

(prove-1l emma ransey-i ndex-positive
(rewrite)
(lessp 0 (ransey-index n))
((expand (ransey-index n))))

(prove-1l ema ransey-seq- hom| essp
ni
(implies (lesspi j)
(equal (p (ranmsey i) (ransey j))

(color))))

(prove-lemma p-numis-p (rewite)
(inmplies (and (nunberp x) (nunberp y))
(equal (p-numx y) (p x y)))
((enable p)))

(prove-1l emma nunberp-ransey (rewite)
(nunberp (caar (ransey-seq (ransey-index n))))
((enabl e next-pair)
(expand (ransey-seq (ransey-index n)))))

(prove-1l emma ransey-seq- hom
(rewite)
(implies (and (nunberp i) (nunberp j) (not (equal
(equal (p-num (ransey i) (ransey j))
(color)))
((use (ransey-seq-hom| essp)
(ranmsey-seqg-homlessp (i j) (j i)))))

i)

50

The above, together with what was already proved, i.e.

(prove-|lemma ransey-increasing (rewite)

(implies (lesspi j)
(lessp (ransey i) (ramsey j))))

and the fact that p-numwas arbitrary (and there are no add- axi ons)
finishes the job.

51

52

Appendix F
Schroeder-Bernstein Theorem EventsList

The following events go through in a version of the proof-checker (PC-NQTHM) enhancement of the
Boyer-Moore prover, as documented in [5] and [6], extended by the functional variables work [2] and DEFN-

SK. All text on aline following asemicolon ‘;’ isacomment.

;; The proof in here is based on the hint to exercise (8) on
page 43 of Kunen's Set Theory book

(defn id (x) x)

(constrain fa-and-fb-are-one-one (rewite)
(and
;; fa is one-to-one
(inmplies (and (a x) (ay) (not (equal x vy)))
(not (equal (fa x) (fay))))
;; fb is one-to-one
(inmplies (and (b x) (b y) (not (equal x vy)))
(not (equal (fb x) (fby))))
;; the image of fa on a is contained in b
(implies (a x) (b (fa x)))
;; the image of fb on b is contained in a
(inmplies (b x) (a (fb x)))
(or (truep (a x)) (falsep (a x)))
(or (truep (b x)) (falsep (b x))))
;; let fa and fb be the identity function and let a and b be the universe
((fa id)
(fbid)
(a (lanmbda (x) t)) (b (lanmbda (x) t))))

(defn-sk in-fa-range (x)
(exists fa-1 (and (a fa-1)
(equal (fa fa-1) x))))

;; The following 3 events were generated automatically to help with
;; the proof-checker’s application of the macro comrmand SK*.

(di sabl e in-fa-range)

(prove-lemu in-fa-range-suff
(rewrite)
(implies (and (a fa-1) (equal (fa fa-1) x))
(in-fa-range x))
((use (in-fa-range))))

(prove-lemm in-fa-range-necc
(rewrite)
(inmplies (not (and (a (fa-1 x))
(equal (fa (fa-1 x)) x)))
(not (in-fa-range x)))
((use (in-fa-range))))

(defn-sk in-fb-range (x)
(exists fb-1 (and (b fb-1)
(equal (fb fb-1) x))))
;; The following 3 events were generated autonatically to help with
; the proof-checker’s application of the macro comrand sk*.

(di sabl e i n-fb-range)

53

(prove-lemma in-fb-range-suff
(rewite)
(inmplies (and (b fb-1) (equal (fb fb-1) x))
(in-fb-range x))
((use (in-fb-range))))

(prove-lema in-fb-range-necc
(rewrite)
(inmplies (not (and (b (fb-1 x))
(equal (fb (fb-1 x)) x)))
(not (in-fb-range x)))
((use (in-fb-range))))

(defn circled (flg x n)
7 If flgis 'a, returnst iff x isin a-n in the sense of Kunen's proof.
;; Simlarly for bif flgis not "a
(if (equal flg 'a)
(if (zerop n)
(a x)
(and (in-fb-range x)
(circled "b (fb-1 x) (subl n))))
(if (zerop n)
(b x)
(and (in-fa-range x)
(circled "a (fa-1 x) (subl n))))))

(defn-sk a-core (x)
;; introduced "inductively" so that the level will be tight
(and (a x)
(forall a-level
(implies (and (nunberp a-level)
(circled "a x a-level))
(circled "a x (addl a-level))))))

(di sabl e a-core)

(prove-l emma a-core-necc-base (rewite)
(inmplies (and (zerop n)
(a-core x))
(circled "a x n))
((use (a-core))))

(prove-1 enmma a-core-necc-induction (rewite)
(inmplies (and (not (zerop n))
(a-core x)
(circled "a x (subl n)))
(circled "a x n))
((use (a-core (a-level (subl n))))))

(prove-lemm a-core-necc (rewite)
;; the conclusion inplies the nore obvi ous consequence of a-core
(inmplies (not (circled "a x n))
(not (a-core x)))
((disable circled)
(induct (plus n q))))

(di sabl e a-core-necc-base)
(di sabl e a-core-necc-inducti on)

(prove-lemma a-core-suff (rewite)
(inmplies (and (a x)
(implies (and (nunberp (a-level x))
(circled "a x (a-level x)))
(circled "a x (addl (a-level x)))))
(a-core x))
((use (a-core))))

(defn-sk b-core (x)
;; introduced "inductively" so that the level will be tight
(and (b x)
(forall b-1level
(implies (and (nunberp b-1evel)
(circled 'b x b-level))
(circled "b x (addl b-level))))))

(di sabl e b-core)

(prove-1l emma b-core-necc-base (rewite)
(inmplies (and (zerop n)
(b-core x))
(circled b x n))
((use (b-core))))

(prove-1 emma b-core-necc-induction (rewite)
(implies (and (not (zerop n))
(b-core x)
(circled b x (subl n)))
(circled "b x n))
((use (b-core (b-level (subl n))))))

(prove-lemm b-core-necc (rewite)
;; the conclusion inplies the nore obvi ous consequence of b-core
(inmplies (not (circled "b x n))
(not (b-core x)))
((disable circled)

(induct (plus n q))))

(di sabl e b-core-necc-base)
(di sabl e b-core-necc-inducti on)

(prove-lemma b-core-suff (rewite)
(inmplies (and (b x)
(implies (and (nunberp (b-1level x))
(circled "b x (b-level x)))
(circled 'b x (addl (b-level x)))))
(b-core x))
((use (b-core))))

(defn parity (n)
(if (zerop n)
t
(not (parity (subl n)))))

(defn j (x)
;; the isonorphism
(if (or (a-core x)
(parity (a-level x)))
(fa x)
(fb-1 x)))

(defn j-1 (y)
;; the isonorphisms inverse
(if (or (b-core vy)
(not (parity (b-level y))))
(fa-1y)
(fb y)))

55

; Qur goals:

;(prove-lemma j-1-j (rewite)

;o (inplies (a x)

; (equal (j-1(j x)) x)))

;(prove-lemma j-j-1 (rewite)
i (inplies (by)
; (equal (j (i-1y)) ¥)))

;; We'll start on the first of these. The theorem prover output
;; suggests the follow ng | enma:

;(prove-lemma b-core-fa (rewite)
;o (inplies (a x)

; (iff (b-core (fa x))
; (a-core x))))

;7 Amain lemua is that (a-core x) => (b-core (fa x)) for x in a.

(prove-lemm fa-1-inverts-fa
originally with proof-checker
(rewite)
(implies (a x)
(equal (fa-1 (fa x)) x))
((use (in-fa-range (x (fa x)) (fa-1 x)))))

;; The following is useful for proof-checker rewiting:

(prove-lemm in-fa-range-fa (rewite)
(inmplies (a x)
(in-fa-range (fa x))))

(prove-lemm b-core-fa
originally with proof-checker
(rewite)
(implies (a x)
(iff (b-core (fa x)) (a-core x)))
((use (a-core-suff (x x))
(b-core-necc (n (addl (addl (a-level x)))) (x (fa x)))
(a-core-necc (n (if (nunmberp (b-level (fa x)))
(b-level (fa x))
0))
(x x))
(b-core-suff (x (fa x))))))

;; Onto Case 2 of j-1-j. We find there the follow ng contradictory hyps:

S (AND (A X)

: (PARI TY (A-LEVEL X))

; (NOT (A-CORE X))

: (PARI TY (B-LEVEL (FA X))))

7, We want to prove:
B- LEVEL- FA

:(IMPLIES (AND (A X) (NOT (A-CORE X)))
: (EQUAL (B-LEVEL (FA X))
: (ADDL (A-LEVEL X))))

(prove-lemma b-fa-equality-rewite
(rewrite)
(implies (and (a x) (not (b y)))
(not (equal (fa x) y))))

(prove-l emm fa-range-contained-in-b
;; originally done with proof-checker
;5 proved B-FA-EQUALI TY-REWRI TE to help
(rewrite)
(implies (not (b y))
(not (in-fa-range vy)))
((use (in-fa-range (x Y¥)))))

(prove-lemma circled-inplies-b (rewite)
(implies (circled "b y n)
(b y)))

(prove-lemma a-fb-equality-rewite
(rewrite)
(implies (and (b y) (not (a x)))
(not (equal (fby) x))))

(prove-1l emm fb-range-contained-in-a
;; originally done with proof-checker
;7 proved A-FB-EQUALI TY-REWRI TE to hel p
(rewrite)
(implies (not (a x))
(not (in-fb-range x)))
((use (in-fb-range))))

(prove-lemma circled-inplies-a (rewite)
(implies (circled "a y n)
(ay)))

(prove-lemma circl ed-nonotone (rewite)
(inplies (and (circled flg x j)
(not (lesspj i)))
(circled flg x i)))

(prove-lemm circled-b-fa
(rewite)
(implies (a x)
(equal (circled 'b (fa x) n)
(circled "a x (subl n)))))

(prove-lema b-1evel -fa-hack-1 enma ni
(implies (nunmberp (b-level (fa x)))
(equal (equal (b-level (fa x))
(addl (a-level x)))
(not (or (lessp (b-level (fa x))
(addl (a-level x)))
(lessp (addl (a-level x))
(b-Tevel (fa x))))))))

(prove-lemma b-1level -fa
;; originally done by proof-checker
(rewite)
(inmplies (and (a x) (not (a-core x)))
(equal (b-level (fa x))
(addl (a-level x))))
((use (a-core-suff)
(b-core-suff (x (fa x)))
(b-1evel -fa-hack-1 enma))
(disable circled)))

56

;; Onto Case 3 of j-1-j. Qur first subgoal is

(I MPLIES (AND (A X)

: (NOT (A- CORE X))

: (NOT (PARITY (A-LEVEL X)))

: (NOT (B-CORE (FB-1 X)))

: (PARI TY (B-LEVEL (FB-1 X))))
: (EQUAL (FB (FB-1 X)) X))

;; and this follows fromthe follow ng two | enmas

(prove-lenma not-parity-a-level-inplies-in-fb-range
I tried an automatic proof with lots of hints, but failed
(rewrite)
(inmplies (and (a x) (not (parity (a-level x))))
(in-fb-range x))
((instructions pronote
(claim(not (equal (a-level x) 0)))
(use-lemma a-core
((a-level (a-level x)) (x x)))
(claim(circled "a x (a-level x))
((expand (circled "a x (a-level x)))))
(drop 4)
(prove (expand (circled "a x (a-level x)))))))

;; The next subcase of j-1-j is:

;(inplies (and (a x)

; (not (a-core x))

; (not (parity (a-level x)))

; (not (parity (b-level (fb-1 x)))))
; (equal (fa-1 (fb-1 x)) x))

;; and this follows from

;(prove-lenmma b-level-fb-1 (rewite)
(implies (and (a x)

; (not (a-core x))

; (in-fb-range x))

; (equal (b-level (fb-1 x))

; (subl (a-level x)))))

;; 1've proved nearly the anal ogous thing already for fa. Let's prove that
;; one for fb and then deduce this fromit.

(prove-lemm fb-1-inverts-fb
;; originally done with proof-checker
(rewrite)
(implies (b x)
(equal (fb-1 (fb x)) x))
((use (in-fb-range (x (fb x)) (fb-1 x)))))

(prove-lenma in-fb-range-fb
(rewrite)
(implies (b x) (in-fb-range (fb x))))

(prove-lemma circled-a-fb
(rewite)
(inplies (b x)
(equal (circled "a (fb x) n)
(circled "b x (subl n)))))

(prove-lemua a-1|evel -fb-hack-1 enma ni
(inmplies (nunmberp (a-level (fb x)))
(equal (equal (a-level (fb x))
(addl (b-level x)))
(not (or (lessp (a-level (fb x))
(addl (b-level x)))
(Il essp (addl (b-level x))
(a-level (fb x))))))))

57

(prove-lemm a-core-fb

;; done originally with proof-checker
(rewrite)
(implies (b x)
(iff (a-core (fb x)) (b-core x)))
((use (b-core-suff (x x))
(a-core-necc (n (addl (addl (b-level x)))) (x (fb x)))
(b-core-necc (n (if (nunberp (a-level (fb x)))
(a-level (fb x))
0))
(x

X
(a-core-suff (x (fb x))))))

(prove-lemm a-level -fb
(rewite)
(implies (and (b x) (not (b-core x)))

(equal (a-level (fb x))
(addl (b-level x))))

((use (b-core-suff)

(a-core-suff (x (fb x)))
(a-1evel -fb-hack-1emm))
(disable circled)))

(prove-lemma b-1level -fb-1

;; equality reasoning was awkward for ne here so | used the proof-checker
(rewite)
(inmplies (and (a x)
(not (a-core x))
(in-fb-range x))
(equal (b-level (fb-1 x))
(subl (a-level x))))

;((use (a-level-fb (x (fb-1 x)))
; (fb-fb-1))
; (disable a-level-fb fb-fb-1))

((instructions (use-lemma a-level-fb ((x (fb-1 x))))
pronot e
(claim(equal x (fb (fb-1 x))))
(claim (b (fb-1 x)))
(generalize (((fb-1 x) vy)))
prove)))

It remains only to prove the follow ng subcase, and then we’'re done with j-1-j:

;(inplies (and (a x)

(not (a-core x))
(not (parity (a-level x)))
(b-core (fb-1 x)))

(equal (fa-1 (fb-1 x)) x))

I"ve already proved a-core-fb, and this should be useful

(prove-lenmma b-core-inplies-b (rewite)

(implies (b-core x) (b x))
((use (b-core))
(di sabl e b-core-suff b-core-necc)))

(prove-lemma fb-fb-1 (rewite)

(implies (and (a x)
(in-fb-range x))
(equal (fb (fb-1 x)) x)))

58

(prove-lemm b-core-fb-1 (rewite)
(inmplies (and (a x)
(not (a-core x))
(not (parity (a-level x))))
(not (b-core (fb-1 x))))
((instructions pronote
(contradict 2)
(= x (fb (fb-1 x)))
(drop 1 3)
(generalize (((fb-1 x) y)))
prove)))

Now finally for our first nain goal

(prove-lemma j-1-j (rewite)
(implies (a x)
(equal (j-1(j x)) x)))

;vss We're ready now for the converse. Here's the first sticking point:

;(inplies (and (b-core y)
; (a-core (fa-1vy)))
; (equal (fa (fa-1y)) y))

;7 We need only the following two easy | enmas

(prove-lenmma b-core-inplies-in-fa-range (rewite)
;; instantiations found easily using sk* and put in proof-checker
(inmplies (b-core y)
(in-fa-range y))
((use (in-fa-range-suff (fa-1 (fa-1y)) (xvy))
(b-core-necc (n 1) (x vy)))))

(prove-lemma fa-fa-1 (rewite)
(inmplies (in-fa-range y)
(equal (fa (fa-1y)) y))
((use (in-fa-range (x v¥)))))

Qur next goal is:

;(inmplies (and (b-core vy)

: (not (a-core (fa-11y)))

: (not (parity (a-level (fa-1y)))))
; (equal (fb-1 (fa-1y)) vy))

;. which is taken care of sinply by:

(prove-lemm a-core-fa-1
(rewite)
(inmplies (in-fa-range y)
(iff (a-core (fa-1y)) (b-core y)))
((instructions pronote

(dive 2)
(=y (fa(fa-1y)))
top

(claim(a (fa-1vy)))
(generalize (((fa-1y) x)))
prove)))

59

;; next we have to prove

;(implies (and (b y)

; (not (parity (b-level y)))
; (a-core (fa-1vy)))

; (equal (fa (fa-1y)) y))

; which follows fromfa-fa-1 together with an obvi ous anal og of
;5 NOT- PARI TY- A- LEVEL- | MPLI ES- | N- FB- RANGE

(prove-lenmma not-parity-b-level-inplies-in-fa-range
;5 sinply nodified from NOT- PARI TY- A- LEVEL- | MPLI ES- | N- FB- RANGE
(rewite)
(implies (and (b y) (not (parity (b-level y))))
(in-fa-range y))
((instructions pronote
(claim (not (equal (b-level y) 0)))
(use-lemma b-core
((b-level (b-level y)) (xV)))
(claim(circled "b y (b-level y))
((expand (circled "b y (b-level y)))))
(drop 4)
(prove (expand (circled "b y (b-level y)))))))

;; It renmins only to prove

;(implies (and (b y)

; (not (parity (b-level y)))

; (not (b-core y))

: (not (parity (a-level (fa-1vy)))))
; (equal (fb-1 (fa-11y)) vy))

;; which follows froman anal ogue of B-LEVEL-FB-1

(prove-lemma a-level-fa-1
(rewrite)
(implies (and (b y)
(not (b-core y))
(in-fa-range y))
(equal (a-level (fa-1vy))
(subl (b-level y))))
((instructions (use-lemma b-level-fa ((x (fa-1vy))))
pronot e
(claim(equal y (fa (fa-1vy))))
(claim(a (fa-1vy)))
(generalize (((fa-1y) x)))
prove)))

;7 and we're done!!
(prove-lemma j-j-1 (rewite)

(inmplies (b y)
(equal (j (j-1y)) ¥)))

;; To summari ze

;; Fromthe axi omsaying that fa naps a one-one into b and fb maps b one-one into a

;(constrain fa-and-fb-are-one-one (rewite)

; (and (inplies (and (a x) (a y) (not (equal x y)))

; (not (equal (fa x) (fay))))

; (implies (and (b x) (b y) (not (equal x vy)))

; (not (equal (fb x) (fby))))

; (implies (a x) (b (fa x)))

; (implies (b x) (a (fb x)))

; (or (truep (a x)) (falsep (a x)))

; (or (truep (b x)) (falsep (b x))))

;o ((faid) (fbid) (a (lanbda (x) t)) (b (lanmbda (x) t))))

to finish this off we sinply prove the obvious | emmas needed for
7y J-iso below. For the first, j-range

;7 we need a lemma (as seen from observing the failed proof transcript)

(prove-lemma in-fb-range-inplies-b-fb-1 (rewite)
(implies (in-fb-range vy)
(b (fb-1y))))
(prove-lemma j-range (rewite)
(inmplies (a x)
(b (i x))))

(prove-lemma in-fa-range-inplies-a-fa-1 (rewite)
(inmplies (in-fa-range y)
(a (fa-1y))))
(prove-lemm j-1-range (rewite)

(implies (b x)
(a (i-1x))))

(disable j)
(disable j-1)

(prove-lemm j-is-one-one

;7 | tried briefly to prove arewite rule to help
;7 Wth the CLAAM but didn't try very hard
(rewite)
(implies (and (a x1)

(a x2)

(not (equal x1 x2)))

(not (equal (j x1) (j x2))))

((instructions pronote

(contradict 3)

(claim (equal (j-1 (j x1)) (j-1 (j x2))))

(drop 3)

(prove))))

61

;; we were able to conservatively extend the theory culmnating in
;; definitions of a function j which maps a one-one into b

(defn-sk j-iso ni

(and
;;] maps ainto b
(forall x
(implies (a x)
(b (i x))))

vy] is one-one
(forall (x1 x2)
(implies (and (a x1)
(a x2)
(equal (j x1) (j x2)))
(equal x1 x2)))
;] is onto
(forall y (inplies (b y)
(exists x (and (a x) ;the only nod -- Thanks, Bob
(equal (j x) ¥))))))
((prefix j-iso-)))
(prove-lemm j-is-an-i sonorphism ni
(j-iso0)
((use (j-iso (x (j-1 (j-iso-y)))))
(disable j-is0)))

63

Refer ences

R. S. Boyer and J S. Moore, A Computational Logic Handbook, Academic Press, Boston, 1988.

Robert S. Boyer, David M. Goldschlag, Matt Kaufmann, and J Strother Moore, ‘‘Functiona
Instantiation in First Order Logic’’, Tech. report 44, Computational Logic, Inc., May 1989.

J. R. Shoenfield, Mathematical Logic, Addison-Wesley, Reading, Ma., 1967.

D. de Champeaux, ‘* Subproblem Finder and Instance Checker, Two Cooperating Modules for Theorem
Provers’’, J. Assoc. for Comp. Mach., Vol. 33, October 1986, pp. 633-657.

Matt Kaufmann, ‘A User's Manual for an Interactive Enhancement to the Boyer-Moore Theorem
Prover’’, Tech. report 19, Computational Logic, Inc., May 1988.

Matt Kaufmann, ‘‘Addition of Free Variables to an Interactive Enhancement of the Boyer-Moore
Theorem Prover’’, Tech. report 42, Computational Logic, Inc., May 1989.

Kenneth Kunen, Set Theory: An Introduction to Independence Proofs, North-Holland, New Y ork, 1980.

Matt Kaufmann, ‘*Another Note on Skolemization'’, Internal Note 127, Computational Logic, Inc.,
March 1989.

Table of Contents

L INtrodUCHIONot 1

2. DOCUMENEAEION . . vttt et e e e e 2

2. FOrMUIAS . .ot e 3

2.2. SKkolemization in Bri€f 3

2.3. Specification of Normalization 4

2.4. New event: Defining first-order NOtIONSo e 5

2.5 FUMther remarks ... 6

S NOIMAIZALION . . . vttt e 6

4, SOUNANESS . . vttt e e e e e 8

D EXAMPIES . . .o e e e e 9

5.1 KOENIg STree LemmMa.ttt e e e e 10

5.2, RaMSEY S ThEOrEM. . . . e 13

5.3. Schroeder-Bernstein ThEOreM. . .. oo vttt e e et 16
Appendix A. The DEFN-FOmMechanism 22
Appendix B. SKolemization i e 23
Appendix C. Extending the soundness proof OF2 32
Appendix D. KoenigsLemmaEventsList i 36
Appendix E. Ramsey Theorem EventsList 44
Appendix F. Schroeder-Bernstein Theorem EventsList 52

