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1. Introduction

The application of formal methods to the analysis of computing systems promises to provide higher

and higher levels of assurance as the sophistication of our tools and techniques increases. But evolution of

the state of the art of formal program analysis is matched by increasing demands upon the technology.  In

the security arena advances in program verification methodologies, automated reasoning systems,

specification techniques, and security modeling have been met with continuing reassessment of acceptable

levels of assurance.  System developers contemplating certification at the A1 level as outlined in the

Trusted Computer Systems Evaluation Criteria [3], for example, can expect that the assurance requirements

will become more rigorous with each year that passes.

Conversely, the desire for enhanced assurance drives the evolution of tools and techniques for

providing it.  One way to assure that technology keeps pace with evolving expectations is by continually

re-evaluating our entrenched tools and techniques in relation to possible alternatives.  The alternation of

evaluation with informed refinement and selection can incrementally improve the research environment for

1all. The verification community has been quite willing to compare and contrast various technologies and

systems [15, 2, 16, 13] though it is unclear how much these comparisons have led to specific changes.

One of the most entrenched tools for providing assurance in the security area is the Gypsy

Verification Environment [7] (GVE). The GVE is one of two systems endorsed by the National Computer

Security Center for use in meeting the verification requirements for A1 certification.  It has been used

extensively in secure system specification and verification projects including the Encrypted Packet

Interface [21], Message Flow Modulator [8], Honeywell SCOMP [5], Honeywell LOCK [1], and ACCAT

Guard [14].

The Z specification language [9, 22] evolved within the Programming Research Group at Oxford

University. We are not aware of its use within the security community though it has been used to specify

significant software systems including a subset of the Unix filing system [18], the Computer Aided Visitor

Information and Retrieval System [4], the ICL Data Dictionary [23], and a CICS System at IBM in the

U.K. These examples suggest that Z might provide a viable specification language for secure systems.

One goal of our research was to investigate this suggestion.

We present a comparison of the Gypsy and Z specification languages in the context of a nontrivial

1This paradigm of scientific process is often blocked by prejudice for or against certain research directions, the personal and
financial investments researchers and user communities have in those directions, and the momentum of ongoing system development
projects.
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2example. Our example is a previous specification of a subset of the Unix file system functionality [18] in

Z and the translation of this specification into Gypsy. We compare and contrast the two specifications.  On

the basis of this comparison, certain conclusions are drawn which we hope can suggest refinements to the

two languages and possibly a direction for future language designs which will avoid the pitfalls and

capitalize on the strong points of each.

2. The Two Languages

2.1 Gypsy

3Gypsy [6] is a program description language composed of two strongly intersecting components: a

programming language and a specification language.  Some parts of the language are used for

programming, some for specification, and some for both.  Among other advantages, this provides a

common framework for expressing specifications and programs and obviates the need for elaborate

mappings from specifications to programs. A potential disadvantage is that it is quite easy in Gypsy to

write specifications which are semantically quite similar to the implementation.

Gypsy is descended from Pascal [11] and contains features for data abstraction, condition handling,

dynamic memory management, and concurrency.  The specification component of the language contains

the full expressive power of the predicate calculus and the ability to write recursive functions.

Specifications may be written as Floyd-Hoare style program annotations, algebraic-style axioms, or state

machine descriptions.

The Gypsy Verification Environment [7] is a collection of software tools which form a development

environment for creating, specifying, maintaining, and verifying Gypsy programs.  These tools include a

parser, verification condition generator, interactive proof checker, and algebraic simplifier.  Gypsy is fully

described in [6] and a methodology for using the language effectively is documented in [7].

2We are experts in the use of Gypsy but did not feel confident to write a creditable Z specification. We chose a problem which had
been specified by Z experts to present Z favorably; we wish to make it absolutely clear from the outset that all of the Z text in this
paper is taken almost verbatim from [18].  It is included here only to make the current presentation self-contained.

3We devote somewhat less attention to the description of Gypsy than to Z since most security researchers have at least a passing
acquaintance with Gypsy.
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2.2 The Z Specification Language

Key to understanding Z is the designers’ "conviction that real software can be specified and that

ordinary mathematics is the proper tool" [9]. Z purports to offer a standard mathematical notation which is

"easy for a scientifically trained reader to understand; is rigorous; denotes rich concepts; and is an open

notation, because you can enlarge it at will" [9].

The basic structuring concept is the schema [24]. A schema is an association of variable declarations

and observations about those variables. An observation merely expresses some relation among variables.

An observation can be viewed as placing a constraint upon any implementation of the specification.

Schemata can be written in either a tabular or linear form; the tabular form seems to be the preferred form.

Consider the following schema for a portion of a specification of a symbol table abstraction [9].

___LOOKUP____________________________
st, st’ : ST
s? : SYM
v! : VAL

_________________

st’ = st
s? ∈ dom (st)
v! = st (s?)

______________________________________

The top portion of the schema defines a collection of variables: a variable st which is a mapping from

symbols (SYM) to values (VAL), an input variable s?, and an output variable v! of the indicated types.

The intelligibility of the schema relies heavily upon certain conventions.  The primed variable st’ is

assumed to be the final value of st; variables suffixed with "?" and "!" are assumed to be for input and

output, respectively.

The bottom portion of the schema is a collection of observations stating relations among the

variables. These are merely predicate calculus expressions involving the variables of the schema and may

involve any of the standard operations of predicate calculus, elementary set theory, or mathematics.  A

standard notation is defined in [9]. In the example above, the observations indicate that the state variable is

unchanged by the LOOKUP operation. A precondition of the operation is that input symbol s? is in the

domain of the state mapping.  The output value v! is the result of accessing the value currently associated

with s? in the state.  Notice that the specification is highly nonprocedural and places no constaints on the

implementation other than the logical consequences of the observations.

The top portion may also include the names of other schemata indicating that these are to be included
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as subparts of the current schema. Common variables are shared and the collections of observations are

conjoined. Inclusion is the simplest operation in a schema calculus which permits building up complex and

well structured specifications by defining and combining schemata.  The schema calculus provides a

notation for expressing complex schemata compactly; the schema operations seem to be entirely eliminable

in favor of a (possibly quite large) list of variable declarations and observations.

3. The Unix File System Example

A specification in Z of part of the functionality of the Unix filing system is given in [18]. The system

modeled is UNIX Level 6.  Operations covered include nine system calls—read, write, create,

seek, open, close, fstat, link, and unlink—and the commands ls and move. The specification

seems to have been intended as a tutorial example of the use of Z and proceeds by defining a series of

progressively more elaborate mechanisms for accessing and manipulating files.  At each level, additional

complexity is added by defining new schemata from variable declarations, observations and previous

schemata using logic and the schema calculus.

We developed a specification of the same functionality in Gypsy trying to follow as closely as

possible the development style while still constructing a reasonable Gypsy specification.  Our approach was

to define a sequence of Gypsy scopes reflecting the added functionality at each step in the development of

the specification.  For example, the authors of the Z specification define an initial mechanism for reading

and storing files considered as byte sequences.  They then elaborate this into a mechanism for reading and

storing files with a level of indirection representing the filing system.  To mimic this structure, we first

wrote a Gypsy scope modeling the reading and storing of files as byte sequences.  A subsequent scope used

the types and procedures defined there to define other procedures adding the level of indirection.  Our goal

was a Gypsy specification which would be as easy as possible to compare to the Z specification.  In this

section we illustrate the two specifications by considering the successive elaborations of WRITE operation.

3.1 The Basic Types

3.1-A The Z Version:

Types in Z seem to be rather informal; we merely declare, for example, that we want a type BYTE.

We can declare sets, sequences, tuples, bags, relations, mappings, and functions.  We can state whether

functions are partial or total and (with a lambda expression) how they are computed.  For our purposes we

need the types
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BYTE

FILE ≡ seq BYTE

We’ll also need the naturals, but these are primitive.  A constant ZERO of type BYTE is required, but there

seems to be no need to explicitly define it.

3.1-B The Gypsy Version:

The typing mechanism in Gypsy is more formal and more restrictive.  Basic types such as INTEGER

and BOOLEAN are available as are the static type compositions arrays and records and the dynamic type

compositions of sets, sequences, and mapping.  Gypsy also has buffer types for communication between

concurrent processes.  The Gypsy analog of the Z types above is:

type BYTE = pending;

type BYTE_SEQ = sequence of byte;

const ZERO: byte := pending;

type FILE = byte_seq;

The keyword pending in Gypsy is a conceptual place-holder which makes no commitment to the ultimate

implementation.

Defining the natural numbers as a type in Gypsy is awkward.  Whereas the integers are unbounded in

Gypsy, there is no satisfactory way to specify an unbounded subset of them.  The naturals are characterized

in our specification as the collection of integers between 0 and some unspecified constant. The lemma

(axiom) MAX_NAT_POSITIVE guarantees that this range is nonempty.

const MAX_NAT : integer := pending;

lemma MAX_NAT_POSITIVE =
MAX_NAT > 0;

type NATURAL = integer [0..MAX_NAT];

This characterization of the naturals in Gypsy is clumsy.  It is likely that for any language which is

mechanically processed (as Gypsy is) there will be interesting concepts which cannot be formalized

conveniently within a fixed notational framework. A language such as Z which is more freely extensible

seems to have a distinct advantage in this regard.  On the other hand, many would argue that the desire to

include too much in a formal language is exactly the cause of complexity and inelegance in languages such

as PL/I and ADA. [10]
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3.2 Writing Files

3.2-A The Z Version:

The operation of writing a file is defined in the Z specification by the schema:

___writeFILE____________________________
file, file’ : FILE
offset? : N
data? : seq BYTE

_________________

offset?file’ = zero ⊕ file ⊕ (data?°pred )offset?

where zero = (λn:N | 1≤n≤k • ZERO)k
______________________________________

The uninitiated may find this specification rather daunting.  Actually, it is quite simple once the meaning of

the operators is understood.

zero is a sequence of length k all of whose bytes are ZERO. ⊕ is the function overriding operator;k

f⊕g(x) equals g(x) unless g(x) is undefined, in which case it equals f(x). pred is the predecessor

function. The specification states that to determine the value of any byte in the written file one must look

first at the written data, then at the previous contents of the file, and finally to ZERO.

Notice again the very nonprocedural nature of the specification. There is no prescription how the

final value of file is obtained, only of what the final value must be.

3.2-B The Gypsy Version:

It is possible in Gypsy to state the specification corresponding to the Z schema writeFILE in a

very abstract fashion essentially as a functional relationship between the input and output values of the file.

This might be expressed as:

function WRITE_TO_SEQUENCE (in_file : file;
offset : natural;

data : byte_seq) : byte_seq =
begin

exit (result =
if (offset le size (in_file))

then in_file [1..offset-1] @ data
else in_file @ n_zeros ([offset - size (in_file)] + 1)

@ data
fi);

end; {write_to_sequence}
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function N_ZEROS (n: integer): byte_seq =
begin

exit (  result
= if n le 0

then null (byte_seq)
else zero :> n_zeros (n - 1)

fi);
pending;

end; {n_zeros}

The Gypsy version is somewhat more verbose but quite similar in spirit to the Z version.  Preference and

experience determines which is more daunting.  Notice the need in Gypsy to declare the auxiliary function

N_ZEROS comparable to the Z construct zero .k

The Gypsy function WRITE_TO_SEQUENCE defines the desired input/output relation of the WRITE

operation, but it is not the operation itself.  It is natural in Gypsy to characterize the operation itself as a

function or procedure and use the specification function WRITE_TO_SEQUENCE to state a constraint on

4its behavior.

procedure WRITE_FILE (var fl : file;
offset : natural;

data : byte_seq) =
begin

exit fl = write_to_sequence (fl’, offset, data);
pending;

end; {write_file}

This has essentially the same content as the Z schema, where the exit specification gives a postcondition

of the routine analogous to the Z schema observation.  The presence of the keyword pending in place of

the procedure body indicates that no commitment is currently made to an implementation. Any

implementation supplied later must satisfy the specification.

3.3 File Storage

3.3-A The Z Version:

In the file system we access a file via its file_id, a number supplied by the system when the file is

created. This implies a mapping from file_id to files specified in Z by a new type FID and a schema.

___SS_________________________________
fstore : FID →| FILE

______________________________________

A concept that recurs in several operations on stored files is the notion of accessing the file within the store.

This is expressed in the following framing schema:

4Primed variables such as fl’ represent the input values of variable parameters in Gypsy as opposed to the output values in Z.



8

___φSS________________________________
SS, SS’
file, file’  : FILE
fid : FID

_________________

file = fstore (fid)
fstore’ = fstore ⊕ {fid → file’}

______________________________________

In traditional mathematical parlance this schema might translate as: let fstore be a storage system in which

file is associated with fid. Notice that we specify explicitly how file is computed; thus in an expansion

of this schema, we could replace all occurences of file by fstore (fid). This notion is called hiding

of the variable in Z.

Given the framing schema φSS, the notion of writing a file in the storage system can be expressed in

quite a terse fashion as:

___writeSS_____________________________
φSS
writeFILE

______________________________________

If desired, the expansion of this schema can be obtained by conjoining its constituent schemata.  Common

variables and observations are recorded only once.  The result is

___writeSS_____________________________
SS, SS’
fid : FID
file, file’ : FILE
offset? : N
data? : seq BYTE

_________________

file = fstore (fid)
offset?file’ = zero ⊕ file ⊕ (data?°pred )offset?

fstore’ = fstore ⊕ {fid → file’}

where zero = (λn:N | 1≤n≤k • ZERO)k
______________________________________

which may be simplified using any of the rules of predicate calculus.

3.3-B The Gypsy Version:

These same concepts may be expressed straightforwardly in Gypsy. The types we need are declared

as follows:

type FILE_ID = pending;

type STORAGE_SYSTEM = mapping from file_id to file;

The functionality of writeSS is expressed in the following Gypsy procedure:
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procedure WRITE_STORED_FILE (var SS : storage_system;
FID : file_id;

data : byte_seq;
offset : natural) =

begin
entry FID in domain (SS’);
exit SS = SS’ with (into [FID]

:= write_to_sequence (SS’[FID], offset, data));
write_file (SS[FID], offset, data);

end; {write_stored_file}

Notice that this procedure makes use of the earlier version just as the Z schema made use of its predecessor.

The specification is the exact analog of that for WRITE_FILE, with the change made to a component of

the file structure rather than to the file in isolation.  This is the Gypsy counterpart of the Z notion of

"hiding" discussed above.  The key difference between the Gypsy and Z versions is that in the Gypsy code

we have procedural abstraction rather than the schema abstraction of Z.

In this case we give a body to the procedure rather than leaving it pending. It seemed natural to do

so for two reasons.  It illustrates that WRITE_STORED_FILE is merely a specific instance of

WRITE_FILE, where the file var parameter is obtained via indirection through its file_id.  Also it allows

us to prove the correctness of this procedure assuming the correctness of WRITE_FILE.

There is a subtlety in the Z specification which becomes more explicit in the Gypsy version.  In the Z

version, fstore is declared as a partial function; the observation file = fstore (fid) assures that

it is defined at fid. This is stated explicitly in the entry specification on the Gypsy routine.

3.4 Sequential Access to Files

The next step in the development is to add the notion of sequential access to files via channels. A

channel records an association between a file id and a current position in the file.  Sequential access in the

file commences from that position.

3.4-A The Z Version:

This association is made in Z with the schema:

___CHAN______________________________
fid : FID
posn : N

______________________________________

An additional important property of channels is that the fid of the channel never changes, expressed by:



10

___∆CHAN_____________________________
CHAN, CHAN’

_________________

fid’ = fid
______________________________________

The operation of writing a file via a channel makes use of the previous schemata writeSS and ∆CHAN

along with some observations to characterize the result.

___writeCHAN__________________________
writeSS
∆CHAN

_________________

offset? = posn
posn’ = posn + #data?

______________________________________

Here the # operator returns the length of its argument. Notice that the parameter offset? to schema

writeSS is supplied by the posn component of the channel.

Finally, we wish to add a named system of channels for performing sequential access.  We add the

data type CID of channel ids and a mapping from channel ids to channels.

___CS_________________________________
cstore: CID →| CHAN

______________________________________

We need also a schema describing the writing of a channel accessed via the channel system.  This is merely

an instance of the writeCHAN schema with posn supplied from the channel store.

___writeCS_____________________________
CS, CS’
writeCHAN

_________________

posn = cstore (fid)
______________________________________

3.4-B The Gypsy Version:

The most natural way in Gypsy of associating two dissimilar pieces of data is a record structure.  We

could have defined a CHANNEL record type of two fields.  In the writeCHAN operation, this would be

convenient. However, looking ahead to the use we’ll make of channels, it seemed that this way of

structuring would be inconvenient.

This illustrates a characteristic difference between Gypsy and Z. In Z, the association of data within a

schema has no connotations for an implementation structuring.  Individual pieces of data can be aggregated

into various different schemas. In Gypsy, on the other hand, associating data items into a structure, a

record for example, makes it very difficult to re-associate those data items differently at a later point.
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Our declarations and the definition of the operation for writing a file via a channel are specified as

follows:

type POSITION = natural;

type CHANNEL_ID = file_id;

procedure WRITE_CHANNEL (var SS : storage_system;
data : byte_seq;

chan_id : channel_id;
var posn : position) =

begin
entry chan_id in domain (SS);
exit SS = SS’ with ([chan_id]

:= write_to_sequence (SS[chan_id], posn’, data))
& posn = posn’ + size (data);

write_stored_file (SS, chan_id, data, posn);
posn := posn + size (data);

end; {read_channel}

Because we did not want to create a single data structure representing the channel, it was necessary to pass

the channel_id and position as separate parameters.  This has an associated benefit of guaranteeing

syntactically that the channel_id parameter could not be altered by the procedure invocation as called for in

the Z schema ∆CHAN since it is a const rather than a var parameter. If the channel id and position

parameters had been fields in a record parameter to this routine, it would have been more difficult to assert

that WRITE_CHANNEL does not alter the channel id.

We now define the channel system as the following mapping:

type CHANNEL_SYSTEM = mapping from channel_id to position;

The operation which allows us to write a file sequentially using the channel system is coded in Gypsy as

follows:

procedure WRITE_CS ( var SS : storage_system;
var CS : channel_system;

chan_id : channel_id;
data : byte_seq) =

begin
entry chan_id in domain (CS)

& chan_id in domain (SS);
exit SS = SS’ with ([chan_id]

:= write_to_sequence (SS’[chan_id], CS’[chan_id], data))
& CS = CS’ with ([chan_id] := CS’[chan_id] + size (data));

write_channel (SS, data, chan_id, CS[chan_id]);
end; {write_CS}

It is necessary to pass in both the storage system and channel system since both the file and the current

position are updated by the WRITE_CS operation. Notice also that we need to assure in the entry

specification that the channel_id is a proper file_id in the file system.  We’ll address this issue again in the

next section.
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3.5 The Access System

The last component of the specification we’ll consider is the access system. The access system is

merely the combination of the storage and the channel system.  However, we want to assure that no channel

contains a file id for which there is no associated file in the storage system.

3.5-A The Z Version:

This is expressed in Z by the following schema.

___AS_________________________________
SS
CS

_________________

ran (fid°cstore) ⊆ dom fstore
______________________________________

The observation in this schema expresses an invariant which must be preserved by every operation on the

access system.  Since the schema abstraction is nonprocedural, the invariant is simply inherited by every

schema which uses AS.

The write operation using the access system is specified using the framing schema

___φAS________________________________
AS, AS’
∆CHAN
cid : CID

_________________

CHAN = cstore cid
cstore’ = cstore ⊕ {cid → CHAN’}

______________________________________

and the following combination

___writeAS_____________________________
φAS
writeCHAN

______________________________________

3.5-B The Gypsy Version:

The desire to associate an invariant with a collection of data structures leads naturally in Gypsy to the

abstract data typing facility.  In this case the data type represents the aggregate of the storage system and

the channel system.

type ACCESS_SYSTEM <SS, set_SS, ...> =
begin

AS: record (SS: storage_system;
CS: channel_system);

HOLD domain (AS.CS) sub domain (AS.SS);
end;
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The type ACCESS_SYSTEM is a Gypsy abstract data type. The abstract typing mechanism in Gypsy

serves two distinct purposes: to hide the implementation of a type and to permit the association of an

invariant with the type in the form of the HOLD specification. The access control list including SS,

set_SS, and possibly others gives the list of routines which are permitted access to the concrete (record)

structure of the type.  Each of these must be proved to maintain the invariant.

The use of Gypsy data abstraction for our example is somewhat unfortunate because we are really

concerned only with maintaining the invariant; the data hiding aspect of abstract typing is primarily a

nuisance in the current context.  Since we will want to access the various components of the access system,

it is necessary to write functions which will permit us to access and set components.  For the storage system

component, such functions are:

function SS (AS: access_system): storage_system =
begin

cexit result = AS.SS;
result := AS.SS;

end; {SS}

procedure set_SS (var AS : access_system;
SS : storage_system) =

begin
cexit AS = AS’ with (.SS := SS);
AS.SS := SS;

end; {set_SS}

We would have similar functions for the channel system component of the abstract type.  It is also

necessary to define a special function which characterizes equality for the abstract type.

It is syntactically disallowed for any routine to refer to the concrete structure of the abstract type

except those routines mentioned on the access control list.  Even these cannot refer to the concrete structure

in their abstract external specifications (entry and exit). The centry and cexit specifications of

these routines may refer to the structure, but they are visible only in proof contexts in which the concrete

structure of the type is visible.  Thus SS and set_SS are abstract accessors which must be used in most

contexts in place of direct access to the SS component of the record structure.

The write operation using the access system then becomes
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procedure WRITE_AS ( var AS : access_system;
chan_id : channel_id;

data : byte_seq) =
begin

entry chan_id in domain (CS (AS));
exit SS(AS) = SS(AS) with ([chan_id]

:= write_to_sequence (SS(AS)[chan_id],
CS(AS)[chan_id], data))

& CS(AS) = CS(AS) with ([chan_id]
:= CS(AS)[chan_id] + size (data));

write_channel (SS(AS), data, chan_id, CS(AS)[chan_id]);
end; {write_AS}

The astute observer will have already noted that this is exactly the definition of WRITE_CS with

adjustments made for the abstract data typing and the combination of CS and SS parameters into one

structure.

Though we stop our exposition of the specifications here, the interested reader is invited to

investigate the complete specifications.  The Z version of the full spec is described in [18]. Our Gypsy

version is available upon request.

4. Comparing the Specifications

Our investigation of the UNIX Filing System example has highlighted various features of the two

specification languages. Though the resulting specifications are superficially quite different, we have

attempted to point out the underlying similarities.  We would aver that both specification languages can

result in elegant readable specifications if used with skill and care.  There are distinct differences, though,

which are worthy of note.

4.1 Expressiveness of the Languages

The fact that Gypsy is an implemented language means that there are certain constraints upon the

expressiveness of the language imposed by the parser.  Gypsy contains the full first order predicate calculus

and the ability to define functions recursively.  In addition, there is an extensive collection of data types

including sets, sequences, and mappings. However, we have seen that it is sometimes awkward to express

certain concepts—the natural numbers are a good example—in a satisfactory fashion.  Also, the lack of

polymorphism in Gypsy means that it is often necessary to write very similar functions to perform

analogous operations on, say, sequences of integers and sequences of Booleans.  Many concepts which

might be desirable from a programming standpoint—pointers, floating point, global variables, functions

with side effects—are explicitly excluded because of the difficulties they present for verification.

Z suffers from no such lack of expressiveness.  In addition to the huge notational variety suggested
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by the language designers [9], the writer of Z specifications is free to use or invent notation at will.  This

gives the Z user freedom to write the cleanest specifications possible.

On the other hand, the free and easy use of notation in Z may have some disadvantages.  The

semantics of Z is inherited from mathematics and in that respect well defined.  However, this is an

extremely powerful underlying theory. There is certainly no way to insure that Z specifications are

realizable or even consistent.  The same can be said of Gypsy specifications, though the procedural nature

of the language imposes a bias toward constructive specifications.  Z specs are often highly non-

constructive.

Also, much of the readability of a Z spec derives from various notational conventions: the suffixes

distinguishing input and output variables, for example.  Since these are not enforced by a language

processor it is possible to violate them quite easily.

4.2 Structuring of the Specifications

The primary structuring concept in Z is the schema abstraction; in Gypsy it is procedural abstraction.

Either permits a well structured development style and a clean modular specification.  Z seems to win for

sheer brevity and abstractness of the resulting specifications.

Much of the verbosity of the Gypsy specs comes from Gypsy’s proscription of non-local referencing.

This requires that all data structures accessed within a module be either local or passed in as parameters and

this tends to clutter the procedure header.  However, this has the strong advantage that Gypsy modules can

be understood in isolation from their calling environments and that the effects of a Gypsy procedure are

very strictly constrained.  A constraint on the language called the Independence Principle assures that any

module is analyzable/provable with regard only to its own code and the external specifications of any

routines it calls.

Fully understanding a Z spec may require expanding all of the schemata in the tree of schema

definitions defining it.  This could be formidable indeed.  The use of schema naming conventions seems to

make this seldom necessary. However, again this requires that the specifier follow the standard

conventions.

Data structuring in Z is much less constraining than in Gypsy.  Consider our formalization of the

Unix access system. By encapsulating the storage system and channel system into a single abstract data

type, we conceptually bind them together. In a later context (not discussed above) it is convenient to

consider a combination of the storage system with some other combinations of systems (not including the
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channel system).  In Z, this means simply including the appropriate schemata; including one schema within

another does not "hide" it from any future uses.  In Gypsy, there is a conceptual structural mismatch arising

from considering the "same" system component as a piece of two different aggregations.

4.3 Procedural vs. Nonprocedural

The debate over the relative merits of procedural versus non-procedural specifications at times takes

on an almost religious fervor.  Suffice it to say that Z is highly non-procedural.  Gypsy specifications can

be non-procedural though this is typically not the most natural style. The advantage of non-procedural

specifications is that they are largely implementation independent.  This is evident from the Z file system

example. The danger of non-procedural specifications is the lack of assurance that they are realizable.

The ability to supply bodies to our Gypsy procedures proved seductive and insofar as these procedure

bodies are considered as part of the specification, they constrain allowable implementations.  On the other

hand, the advantages of executable specifications for rapid prototyping have often been cited.  Gypsy

specifications are not executable because of the current lack of an interpreter for the language. It would not

5be difficult to supply one, however. Also, some aspects of the Gypsy specification language are intended

for run-time validation, the evaluation of specification expressions during program execution.  This allows

the checking of specifications very directly against the run-time behavior of a system.

4.4 Amenability to Code Level Specification

A difference in these specification styles which may be particularly relevant to secure system

development efforts is the applicability to specifications at or near the code level.  One of the increasing

demands upon verification technology alluded to earlier is the demand to close the gap between the

specification level and the machine code implementation of the system running on actual hardware.  This is

evident particularly in the requirements of the "beyond A1" certification level of DoD’s Trusted Computer

Systems Evaluation Criteria [3].

Z has been used for specifying some "real" software systems of impressive size including one system

of over 80,000 lines of code at IBM-Hursley. There is no reason why a specification in Z cannot be as

detailed and as near the code level as is required.  There is also ongoing research into refining Z

specifications into code in a guarded command language [17]. Presumably this could then be translated

into C or other suitable implementation language.

5It might be possible to supply some such notion for Z as well.  Logic programming gives a procedural as well as a declarative
interpretation to logical formulae.  However, Z is a much richer language than typical logic programming languages.
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Gypsy has been used for code level specification and verification on several projects. [21, 19] For

these projects Gypsy was used as the implementation language and mechanically translated into Bliss

which was then compiled. [20] Most current uses of Gypsy in the development of secure system

applications, however, have been for specification at the design level.  There is currently no Gypsy

compiler available except a prototype verified compiler for a very small subset of the language [25]. The

result is that Gypsy design level specifications are translated by hand into C or some other suitable

implementation language, an error-prone process [26].

Arguably, Gypsy has an advantage over Z in this process in that there is a clearer mapping from

procedural Gypsy code to an implementation than from a non-procedural Z specification to an

implementation. However, it may also be that the procedural nature of a Gypsy specification obscures

rather than clarifies the mapping if the implementation is structurally quite different from the spec.

4.5 Mechanical Support

The clearest distinction between Gypsy and Z is in the area of mechanical support for language

processing. There currently seems to be no language processing capability for Z. The Gypsy Verification

Environment (GVE), on the other hand, is a mature and well integrated collection of software tools for

developing and processing Gypsy programs and specifications. These tools include a parser, database

system, verification condition generator, interactive proof checker, and algebraic simplifier.

A mechanical parser is particularly beneficial from the point of view of writing consistent

specifications. We noticed in studying the Z Unix File System specification [18] that there was a least one

6schema (createCS) which is referenced but never defined. This sort of oversight is very easy to

eliminate with mechanical parsing.

4.6 Proofs about the Specifications

For both languages, it is possible to do proofs about the specifications. For Z, this follows from the

fact that the specification language in some senses just is elementary mathematics. Users interested in

doing proofs will find themselves on the safe and sure ground of elementary mathematics.  Proof, however,

does not seem to be a high priority for Z users.  Possibly this is because the focus of Z use is on

specification of software systems, not on formal verification which tends to focus on proving the

conformity of specifications and code.

6Interestingly enough, this is actually evident from the index of schemas and components given by the authors.  Schema
createCS is listed as being used within schema create; there is no separate entry for the definition of createCS.
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The Gypsy system is very heavily oriented toward proofs of correctness.  An overriding design

criterion for the language was that every construct have associated proof rules.  The verification condition

generator processes programs annotated with assertions to generate verification conditions (VC’s) adequate

to assure the conformity of code and specifications.  These verification conditions are conjectures which

can be proved using the Gypsy interactive theorem prover.  It is also possible to state and prove lemmas.

The need to resort to the process of verification condition generation for Gypsy programs is due to

the procedural nature of the language.  It is sometimes argued that the process of VC generation obfuscates

the relation between specifications and code.  The VC’s often bear little obvious relation to the code.

However, this seems to be a necessary price for having procedural constructs in the language.  It is possible

to reason about procedural programs directly with respect to a formal semantics, but it is much more

difficult to do so [25].

5. Conclusions

We have compared and contrasted two specification languages—Gypsy and Z—in light of a

common example.  Each provided some obvious advantages and disadvantages.

Z allows the construction of very clear and elegant specifications.  It has been used with good results

in specifying large software systems.  The principle failings of the language and its current usage seem to

be the following.

1. The expressive freedom allowed by the language can, if abused, easily result in specifications
which are either not satisfiable or for which there is no efficient implementation.

2. Because of the highly non-procedural character of specifications in Z, there may be no clear
mapping from specification to implementation.  Thus it might be very difficult to construct a
believable specification to code correspondence argument.

3. The greatest failing of Z currently seems to be the lack of mechanical support for language
processing. Inconsistencies and gaps in the specifications could be easily eliminated by a
parser.

Gypsy is a combined specification and programming language with extensive software support.  The

following comments can be made about Gypsy and its implementation.

1. Some common mathematical notions are difficult to express in Gypsy.  We noted the natural
number data type as an example; because of the absence of pointers, trees are also awkward to
express. However, it is not quite accurate to say that Gypsy is uniformly less expressive than
Z. It is unclear, for example, how difficult it would be to specify in Z concurrent programs

7which Gypsy allows.

2. The mechanisms of abstraction in Gypsy—procedural and data abstraction—are less flexible

7There is apparently ongoing research on specifying concurrent programs in Z based on the approach of [12].
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than schema abstraction.  In particular, it is difficult to associate components of a system into
various different aggregations.

3. Schema based specifications tend to be more succinct and abstract than the procedural
specifications of Gypsy.  This can be interpreted as implying that the procedural nature of
Gypsy specifications imposes unnecessary constraints on an implementation.

Our experience in comparing Gypsy and Z leads us to believe that the relative strengths of the two

specification languages are in fact quite complementary.  The major failing of Z—the lack of mechanized

language support—is also the easiest to remedy.  The lessons learned in the development of the Gypsy

Verification Environment could serve as a model for the development of a mechanical support environment

for Z.

Because of its procedural constructs and strong mechanical support for proofs about programs,

Gypsy will likely continue to have the edge over a language like Z in secure system development efforts.

But the lessons gained by comparing these very different specification paradigms may inform future

changes and improvements in both languages and their support environments.
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