
Technical Report: 64 February 1992

Computational Logic Inc.

1717 W. 6th St. Suite 290

Austin, Texas 78703

(512) 322-9951

This document is derived from the on-line version of the
Ada Reference Manual (ANSI/MIL-STD-1815A-1983)
available at ajpo.sei.cmu.edu.

This work was sponsored in part by the Defense Advanced
Research Projects Agency, ARPA Orders 6082 and 9151.
The views, conclusions and modifications contained in this
document are those of the authors and should not be
interpreted as representing the official policies either
expressed or implied, of the Defense Advanced Research
Projects Agency or the U.S. Government.

The AVA Reference Manual:
Derived from ANSI/MIL-STD-1815A-1983

Modifications by
Michael K. Smith

The AVA Reference Manual

This manual consists of the text of ANSI/MIL-STD-1815A-1983, "Reference Manual for the Ada
Programming Language", with modifications and annotations by Computational Logic, Inc. The form of
the modifications and annotations is described in Forward to the AVA Revision.

Copyright 1991, 1992 Computational Logic, Inc. (modifications). ALL RIGHTS RESERVED.

No part of this book may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording or by any information storage and retrieval system,
without permission in writing from the publisher.

Original text of the ANSI/MIL-STD-1815-A-1983 Copyright  1980, 1982, 1983 owned by the United
States Government as represented by the Under Secretary of Defense, Research and Engineering. All
rights reserved. Provided that this notice of copyright is included on the first page, this document may be
copied in its entirety or without alteration or as altered by (1) adding text that is clearly marked as an
insertion; (2) shading or highlighting existing text; (3) deleting examples. Permission to publish other
excerpts should be obtained from the Ada Joint Program Office, OUSDRE(R&AT), The Pentagon,
Washington, D.C., 20301, U.S. A.

Reprinted by permission.

Computational Logic, Inc.
1717 W. 6th Street, Suite 290

Austin, TX 78703-7441

Library of Congress Cataloging-in-Publication Data
Smith, Michael K., Editor, 1949-
The AVA Reference Manual
ISBN
1. Programming Languages - Ada
LCC Number:

Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

Foreword to the AVA revision

AVA (A Verifiable Ada) is an attempt to formally define a subset of the Ada programming language
sufficient for reasonably sized programming projects. Such a formal definition is a prerequisite to the
production of provably correct Ada programs. This document in general is a subset of [DoD 83] and
represents the informal description of AVA. Work on the formal definition is ongoing.

We have removed or constrained various language elements. Not all of these changes were motivated by
the needs of formal definition. Some constructs were removed just to simplify this first effort. Certain
constructs, while amenable to formal definition, were removed because it was not clear how such a
formalization would be used to prove properties about programs.

We have indicated those places where we have deleted or re-worded text. Large blocks of text (like
chapters and sections) that have been deleted are indicated by omitted or removed. Paragraphs, sentences,
and portions thereof that have been removed are indicated by a ‘‘♦’’. The deletion of a series of
paragraphs can be detected by observing the discontinuity in paragraph numbers. In some places we have
modified or added text for clarification or to state stronger restrictions than Ada. This text appears in
facecode Helvetica. In some cases this additional text was motivated by a binding Ada Interpretation
(AI), in which case it is labeled by a form like "[AI-0001]". We have also added to each section a list of
cross-references to associated AI’s as of January 1988. Deletions in References, the appendices, and the
the AI cross-references have not been scrupulously tracked.

This document is based on the on-line version of the Reference Manual for the Ada Programming
Language [DoD 83] (hereafter ARM) available at ajpo.sei.cmu.com. This modified version was created
by Michael K. Smith of Computational Logic. Substantial discussions on the details of restrictions were
carried out with Dan Craigen and Mark Saaltink (now of Odyssey Research Associates). They also
reviewed a draft of this document and detected numerous errors. Many of the detailed modifications were
inspired by the extensive discussions available in the accumulated Ada Interpretations.

Predictability and critical systems

Computational Logic is concerned with the ultimate goal of fielding highly predictable systems.
Eventually we expect that all of the links in the chain of system development, from high level language to
hardware, will be amenable to predictability analysis. (See for example the December 89 issue of Journal
of Automated Reasoning which contains four articles describing the ‘‘Computational Logic Short Stack’’.)
One of the requirements for predicting the behavior of a program written in a high level language is a
precise understanding of the expected behavior of language constructs. This manual represents an effort
to carve out a predictable subset of the Ada programming language.

Applications with a requirement for high predictability include security oriented and safety critical
systems. Real-time applications have a significant need for detailed predictability in order to assess the
capability of the application to meet hard timing deadlines. Eventually we would hope that predictability
would be a requirement of all Ada programs.

Other work

There have been two motivations for work on Ada subsets.

(a) To get a dialect with predictable behavior for safety and security critical systems.

(b) To carve out a subset for which a reasonably tractable formal definition can be provided.

The second is ultimately in support of the first.

In addition there have been efforts to provide a complete formal definition of Ada [DDC 87] in
conformance with the published standard [DoD 83].

The Ada Runtime Environment Working Group (ARTEWG) produced a Catalogue of Ada Runtime
Implementation Dependencies [ARTEWG 87].

The main goal of this catalogue is to be the one place where all the areas of the Ada Reference Manual
(RM) which permit implementation flexibilities can be found.

This effort was primarily in aid of predictability and portability.

Odyssey Research Associates is working on the "Penelope System" [Ramsey 88, Polak 88]. It has
developed a formal definition for a language that corresponds to a substantial subset of Ada. Its formally
defined language has a more regular semantics than a literal Ada definition would.

The European Economic Community supported an attempt to provide a complete formal definition of
Ada [DDC 87] in conformance with the published standard, the Reference Manual for the Ada
Programming Language [DoD 83] (ARM). Conformance to the complete ARM presents some
unsolvable problems. The EEC definition was unable to define parts of the language because the
definition embodied in the ARM is ambiguous. It does a great service by detailing these problems. One
drawback to the EEC definition is its size. The definition is contained in 8 loose leaf binders and depends
on several supporting documents.

We have two observations with regard to the EEC definition.

• It clearly indicates that a formal definition of a programming language as complex as Ada is
possible. If the researcher team had been able to depart from the ARM and make some minor
modifications, they would have been able to complete their definition.

• Building tools to support formal reasoning from a definition this complex is problematic. We
believe that any successful tool of this sort will need to be based on a simpler formal description,
presumably for a subset of the language.

A SETL interpreter for Ada was developed at NYU [NYU 84, NYU 83]. However, it appears that the
requirement of reasonable efficiency makes the code more opaque than we would like a formal definition
to be.

Carre has developed a subset, SPARK (SPADE Ada Kernel) [Carre 88], which is an ‘‘annotated
sublanguage of Ada, intended for use in safety-critical applications’’. It is supported by tools in the
SPADE system, available from Program Validation Ltd.

Wichmann has proposed a lower level language, called Low-Ada [Wichmann 89a], designed to avoid
insecurities in the full Ada language [Wichmann 89b].

This language is not an ordinary programming language but is an intermediate form for representing Ada
programs to facilitate the production of high integrity software using Ada.

The intent is that compilers will be capable of generating Low-Ada, which would then be the input for
validation tools.

Foreword to the Original Ada LRM

Ada is the result of a collective effort to design a common language for programming large scale and
real-time systems.

The common high order language program began in 1974. The requirements of the United States
Department of Defense were formalized in a series of documents which were extensively reviewed by the
Services, industrial organizations, universities, and foreign military departments. The Ada language was
designed in accordance with the final (1978) form of these requirements, embodied in the Steelman
specification.

The Ada design team was led by Jean D. Ichbiah and has included Bernd Krieg-Brueckner, Brian
A. Wichmann, Henry F. Ledgard, Jean-Claude Heliard, Jean-Loup Gailly, Jean-Raymond Abrial, John
G.P. Barnes, Mike Woodger, Olivier Roubine, Paul N. Hilfinger, and Robert Firth.

At various stages of the project, several people closely associated with the design team made major
contributions. They include J.B. Goodenough, R.F. Brender, M.W. Davis, G. Ferran, K. Lester,
L. MacLaren, E. Morel, I.R. Nassi, I.C. Pyle, S.A. Schuman, and S.C. Vestal.

Two parallel efforts that were started in the second phase of this design had a deep influence on the
language. One was the development of a formal definition using denotational semantics, with the
participation of V. Donzeau-Gouge, G. Kahn, and B. Lang. The other was the design of a test translator
with the participation of K. Ripken, P. Boullier, P. Cadiou, J. Holden, J.F. Hueras, R.G. Lange, and D.T.
Cornhill. The entire effort benefitted from the dedicated assistance of Lyn Churchill and Marion Myers,
and the effective technical support of B. Gravem, W.L. Heimerdinger, and P. Cleve. H.G. Schmitz
served as program manager.

Over the five years spent on this project, several intense week-long design reviews were conducted, with
the participation of P. Belmont, B. Brosgol, P. Cohen, R. Dewar, A. Evans, G. Fisher, H. Harte, A.L.
Hisgen, P. Knueven, M. Kronental, N. Lomuto, E. Ploedereder, G. Seegmueller, V. Stenning, D. Taffs,
and also F. Belz, R. Converse, K. Correll, A.N. Habermann, J. Sammet, S. Squires, J. Teller, P. Wegner,
and P.R. Wetherall.

Several persons had a constructive influence with their comments, criticisms and suggestions. They
include P. Brinch Hansen, G. Goos, C.A.R. Hoare, Mark Rain, W.A. Wulf, and also E. Boebert,
P. Bonnard, H. Clausen, M. Cox, G. Dismukes, R. Eachus, T. Froggatt, H. Ganzinger, C. Hewitt,
S. Kamin, R. Kotler, O. Lecarme, J.A.N. Lee, J.L. Mansion, F. Minel, T. Phinney, J. Roehrich,
V. Schneider, A. Singer, D. Slosberg, I.C. Wand, the reviewers of Ada-Europe, AdaTech, Afcet, those of
the LMSC review team, and those of the Ada Tokyo Study Group.

These reviews and comments, the numerous evaluation reports received at the end of the first and second
phase, the nine hundred language issue reports and test and evaluation reports received from fifteen
different countries during the third phase of the project, the thousands of comments received during the
Ansi Canvass, and the on-going work of the Ifip Working Group 2.4 on system implementation languages
and that of the Purdue Europe LTPL-E committee, all had a substantial influence on the final definition of
Ada.

The Military Departments and Agencies have provided a broad base of support including funding,
extensive reviews, and countless individual contributions by the members of the High Order Language

Working Group and other interested personnel. In particular, William A. Whitaker provided leadership
for the program during the formative stages. David A. Fisher was responsible for the successful
development and refinement of the language requirement documents that led to the Steelman
specification.

This language definition was developed by Cii Honeywell Bull and later Alsys, and by Honeywell
Systems and Research Center, under contract to the United States Department of Defense. William
E. Carlson and later Larry E. Druffel served as the technical representatives of the United States
Government and effectively coordinated the efforts of all participants in the Ada program.

2 ARM
Foreword to the Original Ada LRM

ARM 3
Introduction

Chapter 1

INTRODUCTION

1AVA (A Verifiable Ada) is a subset of Ada.

1.1 Scope of the Standard

1This standard specifies the form and meaning of program units written in the AVA subset of Ada. Its
purpose is to promote formal specification and proofs of correctness of programs written in this
subset.

1.1.1 Extent of the Standard

1This standard specifies:

(a) 2The form of a program unit written in AVA.

(b) 3The effect of translating and executing such a program unit.

(c) 4The manner in which program units may be combined to form AVA programs.

(d) 5The predefined program units that a conforming implementation must supply.

(e) 6The permissible variations within the standard, and the manner in which they must be specified.

(f) 7Those violations of the standard that a conforming implementation is required to detect, and the
effect of attempting to translate or execute a program unit containing such violations.

(g) 8Omitted

9This standard does not specify:

(h) 10The means whereby a program unit written in AVA is transformed into object code executable by a
processor.

(i) 11The means whereby translation or execution of program units is invoked and the executing units are
controlled.

(j) 12The size or speed of the object code, or the relative execution speed of different language
constructs.

(k) 13The form or contents of any listings produced by implementations; in particular, the form or
contents of error or warning messages.

(l) 14Omitted

(m) 15The size of a program or program unit that will exceed the capacity of a particular conforming
implementation.

4 ARM
Introduction

16Where this standard specifies that a program unit written in AVA has an exact effect, this effect is the
operational meaning of the program unit and must be produced by all conforming implementations.
Where this standard specifies permissible variations in the effects of constituents of a program unit written
in AVA, the operational meaning of the program unit as a whole is understood to be the range of possible
effects that result from all these variations, and a conforming implementation is allowed to produce any of
these possible effects. ♦

16aIn some places this standard requires more specific behavior from a conforming implementation
than Ada does. For example, AVA specifies a left to right order of evaluation for the actual
parameters to a subprogram call. Such places are marked with IMPLEMENTATION
REQUIREMENT. See section 1.6.

1.1.2 Conformity of an Implementation With the Standard

1A conforming implementation is one that:

(a) 2Correctly translates and executes legal program units written in AVA, provided that they are not so
large as to exceed the capacity of the implementation.

(b) 3Rejects all program units that are so large as to exceed the capacity of the implementation.

(c) 4Rejects all program units that contain errors whose detection is required by the standard.

(d) 5Supplies all predefined program units required by the standard.

(e) 6Contains no variations except where the standard permits.

(f) 7Specifies all such permitted variations in the manner prescribed by the standard.

AI Crossreferences:

Section Class Status AI-0 Date Description
1.01.02 (00) ra WJ 0325/05 86-07-23 Implementation-dependent limitations

1.2 Structure of the Standard

1This reference manual contains various chapters, annexes, appendices, and an index. They are
numbered to conform to the corresponding sections of the ARM.

2Each chapter is divided into sections that have a common structure. Each section introduces its subject,
gives any necessary syntax rules, and describes the semantics of the corresponding language constructs.
Examples and notes, and then references, may appear at the end of a section.

3Examples are meant to illustrate the possible forms of the constructs described. Notes are meant to
emphasize consequences of the rules described in the section or elsewhere. References are meant to
attract the attention of readers to a term or phrase having a technical meaning defined in another section.

4The informal standard definition of the AVA programming language consists of the ♦ chapters and the ♦
annexes, subject to the following restriction: the material in each of the items listed below is informative,
and not part of the standard definition of the AVA programming language:

• 5Omitted

• 6Section 1.4 Language summary

• 7The examples, notes, and references given at the end of each section

ARM 5
Introduction

• 8Each section whose title starts with the word "Example" or "Examples"

1.3 Design Goals and Sources: Omitted

1.4 Language Summary

1An AVA program is composed of one or more program units. These program units can be compiled
separately. Program units may be subprograms (which define executable algorithms) ♦ or package units
(which define collections of entities). Each unit normally consists of two parts: a specification, containing
the information that must be visible to other units, and a body, containing the implementation details,
which need not be visible to other units.

2This distinction of the specification and body, and the ability to compile units separately, allows a
program to be designed, written, and tested as a set of largely independent software components.

3An AVA program will normally make use of a library of program units of general utility. The language
provides means whereby individual organizations can construct their own libraries. The text of a
separately compiled program unit must name the library units it requires.

4Program Units

5A subprogram is the basic unit for expressing an algorithm. There are two kinds of subprograms:
procedures and functions. A procedure is the means of invoking a series of actions. For example, it may
read data, update variables, or produce some output. It may have parameters, to provide a controlled
means of passing information between the procedure and the point of call.

6A function is the means of invoking the computation of a value. It is similar to a procedure, but in
addition will return a result.

7A package is the basic unit for defining a collection of logically related entities. For example, a package
can be used to define a common pool of data and types, a collection of related subprograms, or a set of
type declarations and associated operations. Portions of a package can be hidden from the user, thus
allowing access only to the logical properties expressed by the package specification.

8♦

9Declarations and Statements

10The body of a program unit generally contains two parts: a declarative part, which defines the logical
entities to be used in the program unit, and a sequence of statements, which defines the execution of the
program unit.

11The declarative part associates names with declared entities. For example, a name may denote ♦ a
constant, or a variable. A package declarative part also introduces ♦ types and the names and
parameters of other nested subprograms and packages to be used in the package unit.

12The sequence of statements describes a sequence of actions that are to be performed. The statements are
executed in succession (unless an exit or return statement, or the raising of an exception, causes execution
to continue from another place).

6 ARM
Introduction

13An assignment statement changes the value of a variable. A procedure call invokes execution of a
procedure after associating any actual parameters provided at the call with the corresponding formal
parameters.

14Case statements and if statements allow the selection of an enclosed sequence of statements based on the
value of an expression or on the value of a condition.

15The loop statement provides the basic iterative mechanism in the language. A loop statement specifies
that a sequence of statements is to be executed repeatedly as directed by an iteration scheme, or until an
exit statement is encountered.

16A block statement comprises a sequence of statements preceded by the declaration of local entities used
by the statements.

17♦

18Execution of a program unit may encounter error situations in which normal program execution cannot
continue. For example, an arithmetic computation may exceed the maximum allowed value of a number,
or an attempt may be made to access an array component by using an incorrect index value. To deal with
such error situations, the statements of a program unit can be textually followed by exception handlers that
specify the actions to be taken when the error situation arises. Exceptions can be raised explicitly by a
raise statement.

19Data Types

20Every object in the language has a type, which characterizes a set of values and a set of applicable
operations. The main classes of types are scalar types (comprising enumeration and numeric types),
composite types, ♦ and private types.

21An enumeration type defines an ordered set of distinct enumeration literals, for example a list of states or
an alphabet of characters. The enumeration types BOOLEAN and CHARACTER are predefined.

22Numeric types provide a means of performing exact ♦ numerical computations. Exact computations use
integer types, which denote sets of consecutive integers. ♦ The numeric type INTEGER ♦ is predefined.

23Composite types allow definitions of structured objects with related components. The composite types in
the language provide for arrays and records. An array is an object with indexed components of the same
type. A record is an object with named components of possibly different types. The array type STRING
is predefined.

24♦

26Private types can be defined in a package that conceals structural details that are externally irrelevant.
Only the logically necessary properties ♦ are made visible to the users of such types.

27The concept of a type is refined by the concept of a subtype, whereby a user can constrain the set of
allowed values of a type. Subtypes can be used to define subranges of scalar types and arrays with a
limited set of index values ♦.

28Other Facilities

ARM 7
Introduction

29♦

30Input-output is defined in the language by means of predefined library packages. Facilities are provided
for input-output of characters and strings.

31♦

1.5 Method of Description and Syntax Notation

1The form of AVA program units is described by means of a context-free syntax together with context-
dependent requirements expressed by narrative rules.

2The informal meaning1 of AVA program units is described by means of narrative rules defining both the
effects of each construct and the composition rules for constructs. This narrative employs technical terms
whose precise definition is given in the text (references to the section containing the definition of a
technical term appear at the end of each section that uses the term).

3All other terms are in the English language and bear their natural meaning, as defined in Webster’s Third
New International Dictionary of the English Language.

4The context-free syntax of the language is described using a simple variant of Backus-Naur Form. In
particular,

(a) 5Lower case words, some containing embedded underlines, are used to denote syntactic categories,
for example:

adding_operator

6Whenever the name of a syntactic category is used apart from the syntax rules themselves, spaces
take the place of the underlines (thus: adding operator).

(b) 7Boldface words are used to denote reserved words, for example:

array

(c) 8Square brackets enclose optional items. Thus the two following rules are equivalent.

return_statement ::= return [expression];
return_statement ::= return; | return expression;

(d) 9Braces enclose a repeated item. The item may appear zero or more times; the repetitions occur
from left to right as with an equivalent left-recursive rule. Thus the two following rules are
equivalent.

term ::= factor {multiplying_operator factor}
term ::= factor | term multiplying_operator factor

(e) 10A vertical bar separates alternative items unless it occurs immediately after an opening brace, in
which case it stands for itself:

letter_or_digit ::= letter | digit
component_association ::= [choice {| choice} =>] expression

(f) 11If the name of any syntactic category starts with an italicized part, it is equivalent to the category
name without the italicized part. The italicized part is intended to convey some semantic

1See [SmithMK 88, SmithMK 90] for descriptions of progress toward a formal definition of AVA.

8 ARM
Introduction

information. For example type_name ♦ is equivalent to name alone.

Note:

12The syntax rules describing structured constructs are presented in a form that corresponds to the
recommended paragraphing. For example, an if statement is defined as

if_statement ::=
if condition then

sequence_of_statements
{ elsif condition then

sequence_of_statements }
[else

sequence_of_statements]
end if;

13Different lines are used for parts of a syntax rule if the corresponding parts of the construct described by
the rule are intended to be on different lines. Indentation in the rule is a recommendation for indentation
of the corresponding part of the construct. It is recommended that all indentations be by multiples of a
basic step of indentation (the number of spaces for the basic step is not defined). The preferred places for
other line breaks are after semicolons. On the other hand, if a complete construct can fit on one line, this
is also allowed in the recommended paragraphing.

1.6 Classification of Errors

1The language definition classifies errors into several different categories:

(a) 2Errors that must be detected at compilation time by every AVA compiler.

3These errors correspond to any violation of a rule given in this reference manual, other than the
violations that correspond to (b) below ♦. In particular, violation of any rule that uses the terms
must, allowed, legal, or illegal belongs to this category. Any program that contains such an error is
not a legal AVA program; on the other hand, the fact that a program is legal does not mean, per se,
that the program is free from other forms of error.

(b) 4Errors that must be detected at run time by the execution of an AVA program.

5The corresponding error situations are associated with the names of the predefined exceptions.
Every AVA compiler is required to generate code that raises the corresponding exception if such an
error situation arises during program execution. If an exception is certain to be raised in every
execution of a program, then compilers are allowed (although not required) to report this fact at
compilation time.

(c) 6Erroneous execution. Omitted.

(d) 8Incorrect order dependences. Omitted.

9aNote the elimination of erroneous execution and incorrect order dependencies. This has
been accomplished in two ways.

(a) 9bWe have removed or restricted some constructs that permit the kinds of ambiguity that
lead to erroneous behavior.

(b) 9cWe have specified one of the allowed Ada behaviors to be the allowed AVA behavior.
These are marked with IMPLEMENTATION REQUIREMENT in the text.

9dOrder of evaluation in all important cases (e.g. state changing cases) is now specified. This

ARM 9
Introduction

makes the semantics much simpler, even though it assigns meanings to erroneous programs. It
is our contention that virtually all substantial Ada applications that handle predefined exceptions
are erroneous, so we do not feel that this represents any loss. It is certainly better than Ada’s
stance that the behavior of such programs is a priori unpredictable. In addition, there exists a
simple preprocessing step to guarantee consistency with the AVA definition under any
conforming Ada compiler.2 This involves an Ada to Ada transformation that serializes those
operations that have an undefined order in Ada so that their order of elaboration/evaluation
corresponds to that prescribed for AVA. In addition we require value-result semantics for
procedure calls. Again, this can be guaranteed by wrapping assignments to temporary variables
around procedure calls. In the text we label certain progamming practices as ‘‘poor style’’. In
general, these correspond to practices that can lead to compiler dependent behavior, even when
executing code compiled by conforming Ada compilers.

AI Crossreferences:

Section Class Status AI-0 Date Description
1.06 (02) BI WA 0256/23 88-06-16 "Successful" compilation
1.06 (03) BI RE 0613/00 88-12-21 Invalid pragmas are not illegal
1.06 (09) BI WI 0284/01 87-06-09 Definition of incorrect order dependence
1.06 (10) ra RE 0579/00 88-08-31 Compile time detection of erroneous constructs

2Such transformations do require assumptions about the extent to which the compiler will optimize. An aggressive,
optimizing compiler that does not ensure the visible behavioral equivalence between the original code and the optimized
object is dangerous and unpredictable.

10 ARM
Introduction

ARM 11
Lexical Elements

Chapter 2

LEXICAL ELEMENTS

1The text of a program consists of the texts of one or more compilations. The text of a compilation is a
sequence of lexical elements, each composed of characters; the rules of composition are given in this
chapter. ♦

2References: character 2.1, compilation 10.1, lexical element 2.2 ♦

2.1 Character Set

1The only characters allowed in the text of a program are the graphic characters and format effectors. Each
graphic character corresponds to a unique code of the ISO seven-bit coded character set (ISO standard
646), and is represented (visually) by a graphical symbol. Some graphic characters are represented by
different graphical symbols in alternative national representations of the ISO character set. The
description of the language definition in this standard reference manual uses the ASCII graphical symbols,
the ANSI graphical representation of the ISO character set.

2graphic_character ::= basic_graphic_character
| lower_case_letter | other_special_character

basic_graphic_character ::=
upper_case_letter | digit

| special_character | space_character

basic_character ::=
basic_graphic_character | format_effector

3The basic character set is sufficient for writing any program. The characters included in each of the
categories of basic graphic characters are defined as follows:

(a) 4upper case letters
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

(b) 5digits
0 1 2 3 4 5 6 7 8 9

(c) 6special characters
" # & ’ () * + , - . / : ; < = > _ |

(d) 7the space character

8Format effectors are the ISO (and ASCII) characters called horizontal tabulation, vertical tabulation,
carriage return, line feed, and form feed.

12 ARM
Lexical Elements

9The characters included in each of the remaining categories of graphic characters are defined as follows:

(e) 10lower case letters
a b c d e f g h i j k l m n o p q r s t u v w x y z

(f) 11other special characters
! $ % ? @ [\] ^ ‘ { } ~

12Allowable replacements for the special characters vertical bar (|), sharp (#), and quotation (") are defined
in section 2.10.

Notes:

13The ISO character that corresponds to the sharp graphical symbol in the ASCII representation appears as a
pound sterling symbol in the French, German, and United Kingdom standard national representations. In
any case, the font design of graphical symbols (for example, whether they are in italic or bold typeface) is
not part of the ISO standard.

14The meanings of the acronyms used in this section are as follows: ANSI stands for American National
Standards Institute, ASCII stands for American Standard Code for Information Interchange, and ISO
stands for International Organization for Standardization.

15The following names are used when referring to special characters and other special characters:

symbol name symbol name

" quotation > greater than
sharp _ underline
& ampersand | vertical bar
’ apostrophe ! exclamation mark
(left parenthesis $ dollar
) right parenthesis % percent
* star, multiply ? question mark
+ plus @ commercial at
, comma [left square bracket
- hyphen, minus \ back-slash
. dot, point, period] right square bracket
/ slash, divide ^ circumflex
: colon ‘ grave accent
; semicolon { left brace
< less than } right brace
= equal ~ tilde

AI Crossreferences:

Section Class Status AI-0 Date Description
2.01 (01) BI WJ 0339/04 86-12-01 Allow non-English characters in comments
2.01 (01) ST RE 0420/03 88-11-08 Allow 256 values for type CHARACTER
2.01 (11) ST RE 0510/00 87-01-13 Use of national symbols and standards in an ISO standard

ARM 13
Lexical Elements

2.2 Lexical Elements, Separators, and Delimiters

1The text of a program consists of the texts of one or more compilations. The text of each compilation is a
sequence of separate lexical elements. Each lexical element is either a delimiter, an identifier (which may
be a reserved word), a numeric literal, a character literal, a string literal, or a comment. The effect of a
program depends only on the particular sequences of lexical elements that form its compilations,
excluding the comments, if any.

2In some cases an explicit separator is required to separate adjacent lexical elements (namely, when
without separation, interpretation as a single lexical element is possible). A separator is any of a space
character, a format effector, or the end of a line. A space character is a separator except within a
comment, a string literal, or a space character literal. Format effectors other than horizontal tabulation are
always separators. Horizontal tabulation is a separator except within a comment.

3The end of a line is always a separator. The language does not define what causes the end of a line.
However if, for a given implementation, the end of a line is signified by one or more characters, then these
characters must be format effectors other than horizontal tabulation. In any case, a sequence of one or
more format effectors other than horizontal tabulation must cause at least one end of line.

4One or more separators are allowed between any two adjacent lexical elements, before the first of each
compilation, or after the last. At least one separator is required between an identifier or a numeric literal
and an adjacent identifier or numeric literal.

5A delimiter is either one of the following special characters (in the basic character set)

& ’ () * + , - . / : ; < = > |

6or one of the following compound delimiters each composed of two adjacent special characters

=> .. ** := /= >= <= << >> <>

7Each of the special characters listed for single character delimiters is a single delimiter except if this
character is used as a character of a compound delimiter, or as a character of a comment, string literal,
character literal, or numeric literal.

8The remaining forms of lexical element are described in other sections of this chapter.

Notes:

9Each lexical element must fit on one line, since the end of a line is a separator. The quotation, sharp, and
underline characters, likewise two adjacent hyphens, are not delimiters, but may form part of other lexical
elements.

10The following names are used when referring to compound delimiters:

delimiter name

=> arrow
.. double dot
** double star, exponentiate
:= assignment (pronounced: "becomes")
/= inequality (pronounced: "not equal")
>= greater than or equal

14 ARM
Lexical Elements

<= less than or equal
<< left label bracket
>> right label bracket
<> box

11References: character literal 2.5, comment 2.7, compilation 10.1, format effector 2.1, identifier 2.3,
numeric literal 2.4, reserved word 2.9, space character 2.1, special character 2.1, string literal 2.6

2.3 Identifiers

1Identifiers are used as names and also as reserved words.

2identifier ::=
letter {[underline] letter_or_digit}

letter_or_digit ::= letter | digit

letter ::= upper_case_letter | lower_case_letter

3All characters of an identifier are significant, including any underline character inserted between a letter
or digit and an adjacent letter or digit. Identifiers differing only in the use of corresponding upper and
lower case letters are considered as the same.

4Examples:

COUNT X get_symbol Ethelyn Marion

SNOBOL_4 X1 PageCount STORE_NEXT_ITEM

Note:

5No space is allowed within an identifier since a space is a separator.

6References: digit 2.1, lower case letter 2.1, name 4.1, reserved word 2.9, separator 2.2, space character
2.1, upper case letter 2.1

2.4 Numeric Literals

1There is one class of numeric literals: ♦ integer literals. ♦ Integer literals are the literals of the type
universal_integer.

2numeric_literal ::= decimal_literal | based_literal

3References: literal 4.2, universal_integer type 3.5.4 ♦

AI Crossreferences:

Section Class Status AI-0 Date Description
2.04 (01) BI CA 0565/02 88-10-03 Support for static universal_integer expressions

ARM 15
Lexical Elements

2.4.1 Decimal Literals

1A decimal literal is a numeric literal expressed in the conventional decimal notation (that is, the base is
implicitly ten).3

2decimal_literal ::= integer [exponent] ♦

integer ::= digit {[underline] digit}

exponent ::= E [+] integer ♦

3An underline character inserted between adjacent digits of a decimal literal does not affect the value of
this numeric literal. The letter E of the exponent, if any, can be written either in lower case or in upper
case, with the same meaning.

4An exponent indicates the power of ten by which the value of the decimal literal without the exponent is
to be multiplied to obtain the value of the decimal literal with the exponent. ♦

5Examples:

12 0 1E6 123_456 -- integer literals

♦

Notes:

6Leading zeros are allowed. No space is allowed in a numeric literal, not even between constituents of the
exponent, since a space is a separator. A zero exponent is allowed for an integer literal.

7References: digit 2.1, lower case letter 2.1, numeric literal 2.4, separator 2.2, space character 2.1, upper
case letter 2.1

2.4.2 Based Literals

1A based literal is a numeric literal expressed in a form that specifies the base explicitly. The base must be
at least two and at most sixteen.

2based_literal ::=
base # based_integer ♦ # [exponent]

base ::= integer

based_integer ::=
extended_digit {[underline] extended_digit}

extended_digit ::= digit | letter

3An underline character inserted between adjacent digits of a based literal does not affect the value of this
numeric literal. The base and the exponent, if any, are in decimal notation. The only letters allowed as
extended digits are the letters A through F for the digits ten through fifteen. A letter in a based literal

3Note that the occurrences of integer in the productions defining decimal literals might better be changed to natural
[AI-00052]. See also discussion of ‘‘range -1..10’’ in [AI-00148].

16 ARM
Lexical Elements

(either an extended digit or the letter E of an exponent) can be written either in lower case or in upper
case, with the same meaning.

4The conventional meaning of based notation is assumed; in particular the value of each extended digit of a
based literal must be less than the base. An exponent indicates the power of the base by which the value
of the based literal without the exponent is to be multiplied to obtain the value of the based literal with the
exponent.

5Examples:

2#1111_1111# 16#FF# 016#0FF# -- integer literals of value 255
16#E#E1 2#1110_0000# -- integer literals of value 224
♦

6References: digit 2.1, exponent 2.4.1, letter 2.3, lower case letter 2.1, numeric literal 2.4, upper case letter
2.1

AI Crossreferences:

Section Class Status AI-0 Date Description
2.04.02 (04) co WJ 0008/05 86-07-23 Negative exponents in based notation

2.5 Character Literals

1A character literal is formed by enclosing one of the 95 graphic characters (including the space) between
two apostrophe characters. A character literal has a value that belongs to a character type.

2character_literal ::= ’graphic_character’

3Examples:

’A’ ’*’ ’’’ ’ ’

4References: character type 3.5.2, graphic character 2.1, literal 4.2, space character 2.1

AI Crossreferences:

Section Class Status AI-0 Date Description
2.05 (01) ST RE 0420/03 88-11-08 Allow 256 values for type CHARACTER

2.6 String Literals

1A string literal is formed by a sequence of graphic characters (possibly none) enclosed between two
quotation characters used as string brackets.

2string_literal ::= "{graphic_character}"

3A string literal has a value that is a sequence of character values corresponding to the graphic characters
of the string literal apart from the quotation character itself. If a quotation character value is to be
represented in the sequence of character values, then a pair of adjacent quotation characters must be
written at the corresponding place within the string literal. (This means that a string literal that includes
two adjacent quotation characters is never interpreted as two adjacent string literals.)

4The length of a string literal is the number of character values in the sequence represented. (Each doubled

ARM 17
Lexical Elements

quotation character is counted as a single character.)

5Examples:

"Message of the day:"
"" -- an empty string literal
" " "A" """" -- three string literals of length 1

"Characters such as $, %, and } are allowed in string literals"

Note:

6A string literal must fit on one line since it is a lexical element (see 2.2). Longer sequences of graphic
character values can be obtained by catenation of string literals. Similarly catenation of constants
declared in the package ASCII can be used to obtain sequences of character values that include
nongraphic character values (the so-called control characters). Examples of such uses of catenation are
given below:

"FIRST PART OF A SEQUENCE OF CHARACTERS " &
"THAT CONTINUES ON THE NEXT LINE"

"sequence that includes the" & ASCII.ACK & "control character"

7References: ascii predefined package C, catenation operation 4.5.3, character value 3.5.2, constant 3.2.1,
declaration 3.1, end of a line 2.2, graphic character 2.1, lexical element 2.2

AI Crossreferences:

Section Class Status AI-0 Date Description
2.06 (06) ra WA 0017/05 88-06-17 Use of a string value in a multidimensional aggregate

2.7 Comments

1A comment starts with two adjacent hyphens and extends up to the end of the line. A comment can
appear on any line of a program. The presence or absence of comments has no influence on whether a
program is legal or illegal. Furthermore, comments do not influence the effect of a program; their sole
purpose is the enlightenment of the human reader.

2Examples:

-- the last sentence above echoes the Algol 68 report

end; -- processing of LINE is complete

-- a long comment may be split onto
-- two or more consecutive lines

---------------- the first two hyphens start the comment

Note:

3Horizontal tabulation can be used in comments, after the double hyphen, and is equivalent to one or more
spaces (see 2.2).

4References: end of a line 2.2, illegal 1.6, legal 1.6, space character 2.1

18 ARM
Lexical Elements

AI Crossreferences:

Section Class Status AI-0 Date Description
2.07 (01) BI WJ 0339/04 86-12-01 Allow non-English characters in comments

2.8 Pragmas: Removed

AI Crossreferences:

Section Class Status AI-0 Date Description
2.08 (04) CR WJ 0511/05 88-05-23 Error in 0388/04
2.08 (04) na na 0185/01 86-02-03 [combined with 0388]
2.08 (04) ra WJ 0388/06 88-06-13 Pragmas are allowed in a generic formal part
2.08 (07) BI CE 0010/06 88-12-30 The meaning of operations and identifiers in pragma arguments
2.08 (08) BI WI 0317/06 87-08-06 Extending language defined pragmas
2.08 (08) co WJ 0425/05 87-08-06 Restrictions on arguments of implementation-defined pragmas
2.08 (08) ra WI 0011/00 83-10-10 May a pragma affect the m e a n i n g of a legal text outside?
2.08 (09) BI CE 0009/04 88-09-02 Implementation-defined names cannot be reserved words
2.08 (09) BI CE 0509/01 88-12-08 The legality of pragma arguments
2.08 (09) BI WI 0411/01 87-01-20 An object name occurring in a pragma is not a forcing occurrence
2.08 (09) BI WJ 0186/08 86-12-04 Pragmas recognized by an impl do not force default representation
2.08 (09) BI WJ 0242/09 87-06-18 Subprogram names allowed in pragma INLINE
2.08 (09) BI WJ 0306/15 88-05-23 Pragma INTERFACE: allowed names and illegalities
2.08 (09) BI WJ 0322/02 86-07-23 Forcing occurrences in unknown pragmas
2.08 (09) BI WJ 0371/05 86-07-23 Representation clauses containing forcing occurrences

2.9 Reserved Words

1The identifiers listed below are called reserved words and are reserved for special significance in the
language. For readability of this manual, the reserved words appear in lower case boldface.

2

abort declare generic of select
abs delay goto or separate
accept delta others subtype
access digits if out
all do in task
and is package terminate
array pragma then
at else private type

elsif limited procedure
end loop

begin entry raise use
body exception range

exit mod record when
rem while

new renames with
case for not return
constant function null reverse xor

3A reserved word must not be used as a declared identifier.

Notes:

4Reserved words differing only in the use of corresponding upper and lower case letters are considered as
the same (see 2.3). In some attributes the identifier that appears after the apostrophe is identical to some

ARM 19
Lexical Elements

reserved word.

5References: attribute 4.1.4, declaration 3.1, identifier 2.3, lower case letter 2.1, upper case letter 2.1

AI Crossreferences:

Section Class Status AI-0 Date Description
2.09 (01) BI CE 0009/04 88-09-02 Implementation-defined names cannot be reserved words

2.10 Allowable Replacements of Characters

1The following replacements are allowed for the vertical bar, sharp, and quotation basic characters:

• 2A vertical bar character (|) can be replaced by an exclamation mark (!) where used as a delimiter.

• 3The sharp characters (#) of a based literal can be replaced by colons (:) provided that the
replacement is done for both occurrences.

• 4The quotation characters (") used as string brackets at both ends of a string literal can be replaced
by percent characters (%) provided that the enclosed sequence of characters contains no quotation
character, and provided that both string brackets are replaced. Any percent character within the
sequence of characters must then be doubled and each such doubled percent character is
interpreted as a single percent character value.

5These replacements do not change the meaning of the program.

Notes:

6It is recommended that use of the replacements for the vertical bar, sharp, and quotation characters be
restricted to cases where the corresponding graphical symbols are not available. Note that the vertical bar
appears as a broken bar on some equipment; replacement is not recommended in this case.

7The rules given for identifiers and numeric literals are such that lower case and upper case letters can be
used indifferently; these lexical elements can thus be written using only characters of the basic character
set. If a string literal of the predefined type STRING contains characters that are not in the basic character
set, the same sequence of character values can be obtained by catenating string literals that contain only
characters of the basic character set with suitable character constants declared in the predefined package
ASCII. Thus the string literal "AB$CD" could be replaced by "AB" & ASCII.DOLLAR & "CD".
Similarly, the string literal "ABcd" with lower case letters could be replaced by "AB" & ASCII.LC_C &
ASCII.LC_D.

8References: ascii predefined package C, based literal 2.4.2, basic character 2.1, catenation operation 4.5.3,
character value 3.5.2, delimiter 2.2, graphic character 2.1, graphical symbol 2.1, identifier 2.3, lexical
element 2.2, lower case letter 2.1, numeric literal 2.4, string bracket 2.6, string literal 2.6, upper case letter
2.1

AI Crossreferences:

Section Class Status AI-0 Date Description
2.10 (05) ra WJ 0350/04 86-12-04 Lexical elements not changed by allowable character replacements

20 ARM
Lexical Elements

ARM 21
Declarations and Types

Chapter 3

DECLARATIONS AND TYPES

1This chapter describes the types in the language and the rules for declaring constants, variables, and
named numbers.

3.1 Declarations

1The language defines several kinds of entities that are declared, either explicitly or implicitly, by
declarations. Such an entity can be a numeric literal, an object, ♦ a record component, a loop parameter,
♦ a type, a subtype, a subprogram, a package, ♦ a formal parameter (of a subprogram ♦), ♦ or an
operation (in particular, an attribute or an enumeration literal; see 3.3.3 and 7.4.2).

2There are several forms of declaration. A basic declaration is a form of declaration defined as follows.

3basic_declaration ::=
inner_declaration

| type_declaration | subtype_declaration
| subprogram_declaration | package_declaration | ♦
| renaming_declaration | deferred_constant_declaration

inner_declaration ::=
object_declaration | number_declaration

4Certain forms of declaration always occur (explicitly) as part of a basic declaration; these forms are ♦
component declarations ♦ , parameter specifications ♦ , and enumeration literal specifications. A loop
parameter specification is a form of declaration that occurs only in certain forms of loop statement.

5The remaining forms of declaration are implicit ♦. Certain operations are implicitly declared (see 3.3.3).

6For each form of declaration the language rules define a certain region of text called the scope of the
declaration (see 8.2). Several forms of declaration associate an identifier with a declared entity. Within
its scope, and only there, there are places where it is possible to use the identifier to refer to the associated
declared entity; these places are defined by the visibility rules (see 8.3). At such places the identifier is
said to be a name of the entity (its simple name); the name is said to denote the associated entity and the
declaration of the entity is also said to declare the name [AI-00097].

7Certain forms of enumeration literal specification associate a character literal with the corresponding
declared entity. Certain forms of declaration associate an operator symbol or some other notation with an
explicitly or implicitly declared operation.

22 ARM
Declarations and Types

8The process by which a declaration achieves its effect is called the elaboration of the declaration; this
process happens during program execution.

9After its elaboration, a declaration is said to be elaborated. Prior to the completion of its elaboration
(including before the elaboration), the declaration is not yet elaborated. The elaboration of any
declaration has always at least the effect of achieving this change of state (from not yet elaborated to
elaborated). The phrase "the elaboration has no other effect" is used in this manual whenever this change
of state is the only effect of elaboration for some form of declaration. An elaboration process is also
defined for declarative parts, declarative items, and compilation units (see 3.9 and 10.5).

10Object, number, type, and subtype declarations are described here. The remaining basic declarations are
described in later chapters.

Note:

11The syntax rules use the term identifier for the first occurrence of an identifier in some form of
declaration; the term simple name is used for any occurrence of an identifier that already denotes some
declared entity.

12References: attribute 4.1.4, ♦ block statement 5.6, character literal 2.5, component declaration 3.7,
declarative item 3.9, declarative part 3.9, deferred constant declaration 7.4 ♦ , elaboration 3.9 ♦ ,
enumeration literal specification 3.5.1, ♦ identifier 2.3, ♦ loop parameter specification 5.5, loop statement
5.5, name 4.1, number declaration 3.2.2, numeric literal 2.4, object declaration 3.2.1, operation 3.3,
operator symbol 6.1, package declaration 7.1, parameter specification 6.1, record component 3.7,
renaming declaration 8.5 , scope 8 .2 , simple name 4.1 , subprogram body 6.3 , subprogram declaration 6
.1 , subtype declaration 3.3.2 , type declaration 3.3.1 , visibility 8.3

3.2 Objects and Named Numbers

1An object is an entity that contains (has) a value of a given type. An object is one of the following:

• 2an object declared by an object declaration ♦,

• 3a formal parameter of a subprogram ♦,

• 4♦

• 5a loop parameter,

• 6♦

• 7a component ♦ of another object.

8A number declaration is similar to [AI-00263] an object declaration and is similarly elaborated. It
associates an identifier with a value of type universal_integer ♦.

9object_declaration ::=
identifier_list : [constant] subtype_indication := expression;

| ♦

number_declaration ::=
identifier_list : constant := universal_static_expression;

identifier_list ::= identifier {, identifier}

ARM 23
Declarations and Types

10An object declaration is called a single object declaration if its identifier list has a single identifier; it is
called a multiple object declaration if the identifier list has two or more identifiers. A multiple object
declaration is equivalent to a sequence of the corresponding number of single object declarations. For
each identifier of the list, the equivalent sequence has a single object declaration formed by this identifier,
followed by a colon and by whatever appears at the right of the colon in the multiple object declaration;
the equivalent sequence is in the same order as the identifier list.

11A similar equivalence applies also for the identifier lists of number declarations, component declarations,
parameter specifications, ♦ and deferred constant declarations.

12In the remainder of this reference manual, explanations are given for declarations with a single identifier;
the corresponding explanations for declarations with several identifiers follow from the equivalence stated
above.

13Example:

-- the multiple object declaration

BUICK, FORD : CAR := (NUMBER => 30300, OWNER => "Smith, Michael K. "); -- see 3.7

-- is equivalent to the two single object declarations in the order given

BUICK : CAR := (NUMBER => 30300, OWNER => "Smith, Michael K. ");
FORD : CAR := (NUMBER => 30300, OWNER => "Smith, Michael K. ");

14References: constrained array definition 3.6, component 3.3, declaration 3.1, deferred constant declaration
7.4, ♦ expression 4.4, formal parameter 6.1, identifier 2.3, loop parameter 5.5, numeric type 3.5,
parameter specification 6.1, scope 8.2, simple name 4.1, static expression 4.9, subprogram 6, subtype
indication 3.3.2, type 3.3, universal_integer type 3.5.4

AI Crossreferences:

Section Class Status AI-0 Date Description
3.02 (08) BI WJ 0263/06 88-05-23 A named number is not an object
3.02 (09) ST RE 0538/00 87-08-05 Declaring constant arrays with an anonymous type

3.2.1 Object Declarations

1An object declaration declares an object whose type is given ♦ by a subtype indication ♦. The object
declaration includes the assignment compound delimiter followed by an expression which
specifies an initial value for the declared object; the type of the expression must be that of the object.

2The declared object is a constant if the reserved word constant appears in the object declaration. The
value of a constant cannot be modified after initialization. Formal parameters of mode in of subprograms
♦ are also constants; a loop parameter is a constant within the corresponding loop; a subcomponent ♦ of a
constant is a constant.

3An object that is not a constant is called a variable (in particular, the object declared by an object
declaration that does not include the reserved word constant is a variable). The only ways to change the
value of a variable are either directly by an assignment, or indirectly when the variable is updated (see
6.2) by a procedure ♦ (this action can be performed either on the variable itself, on a subcomponent of the
variable, or on another variable that has the given variable as subcomponent).

24 ARM
Declarations and Types

4The elaboration of an object declaration proceeds as follows:

(a) 5The subtype indication ♦ is first elaborated. This establishes the subtype of the object.

(b) 6♦ The initial value is obtained by evaluating the corresponding expression. ♦

(c) 7The object is created.

(d) 8The initial value ♦ is assigned to the object ♦.

9♦

15The steps (a) to (d) are performed in the order indicated. ♦

16The initialization of an object (the declared object or one of its subcomponents) checks that the initial
value belongs to the subtype of the object; for an array object declared by an object declaration, an
implicit subtype conversion is first applied as for an assignment statement ♦. The exception
CONSTRAINT_ERROR is raised if this check fails. If the object is a constant whose subtype is an
unconstrained array type, the initial value must unambiguously determine the array constraints.
See 5.2.

♦

19Examples of variable declarations:

♦
SIZE : INTEGER range 0 .. 10_000 := 0;
SORTED : BOOLEAN := FALSE;
♦
OPTION : BIT_VECTOR(0..10) := (others => TRUE);

20Examples of constant declarations:

LIMIT : constant INTEGER := 10_000;
LOW_LIMIT : constant INTEGER := LIMIT/10;
♦

Note:

21The expression initializing a constant object need not be a static expression (see 4.9). In the above
examples, LIMIT and LOW_LIMIT are initialized with static expressions. ♦

22References: assignment 5.2, assignment compound delimiter 5.2, component 3.3, composite type 3.3,
constrained subtype 3.3, constraint_error exception 11.1, conversion 4.6, declaration 3.1, ♦ elaboration
3.9, evaluation 4.5, expression 4.4, formal parameter 6.1, in some order 1.6, ♦ mode in 6.1, package 7,
predefined operator 4.5, primary 4.4, private type 7.4, qualified expression 4.7, reserved word 2.9, scalar
type 3.5, subcomponent 3.3, subprogram 6, subtype 3.3, subtype indication 3.3.2, type 3.3, visible part 7.2

AI Crossreferences:

Section Class Status AI-0 Date Description
3.02.01 (01) BI CE 0270/04 88-05-09 The type of an object declared to have a private type
3.02.01 (06) BI RE 0364/00 85-07-21 subcomponents to components
3.02.01 (16) BI WJ 0308/05 88-12-14 Checking default initialization of discriminants for compatibility
3.02.01 (18) BI RE 0470/00 86-10-13 Attempt to access undefined component of function result is erroneous
3.02.01 (18) BI WJ 0155/08 86-12-01 Evaluation of an attribute prefix having an undefined value
3.02.01 (18) BI WJ 0356/08 88-05-23 Access values that designate deallocated objects

ARM 25
Declarations and Types

3.02.01 (18) BI WJ 0374/06 88-05-23 An attempt to access an undefined constant is erroneous
3.02.01 (18) BI WJ 0426/05 87-06-18 Operations on undefined array values
3.02.01 (18) ra RE 0489/01 88-08-31 Composite assignment with undefined component values
3.02.01 (18) ra RE 0490/00 86-11-09 Operations on an undefined variable of a private type.
3.03.01 (03) ra CE 0369/06 88-11-20 Representing values of discrete base type

3.2.2 Number Declarations

1A number declaration is a special form of constant declaration. The type of the static expression given for
the initialization of a number declaration must be the type universal_integer ♦. The constant declared by
a number declaration is called a named number and has the type of the static expression.

Note:

2The rules concerning expressions of a universal type are explained in section 4.10. It is a consequence of
these rules that if every primary contained in the expression is of the type universal_integer, then the
named number is also of this type. ♦

3Examples of number declarations:

♦
MAX : constant := 500; -- a universal integer number
POWER_16 : constant := 2**16; -- the universal integer 65_536
ONE, UN, EINS : constant := 1; -- three different names for 1
MAX_LINE_SIZE : constant := 120; -- a universal integer number

4References: identifier 2.3, primary 4.4, static expression 4.9, type 3.3, universal_integer type 3.5.4,
universal type 4.10

3.3 Types and Subtypes

1A type is characterized by a set of values and a set of operations.

2There exist several classes of types. Scalar types are integer types ♦ and types defined by enumeration of
their values; values of these types have no components. Array and record types are composite; a value of
a composite type consists of component values. ♦ Private types are types for which the set of possible
values is well defined, but not directly available to the users of such types. ♦ (Private types are described
in chapter 7, ♦ the other classes of types are described in this chapter.)

3♦

4The set of possible values for an object of a given type can be subjected to a condition that is called a
constraint (the case where the constraint imposes no restriction is also included); a value is said to satisfy
a constraint if it satisfies the corresponding condition. A subtype is a type together with a constraint; a
value is said to belong to a subtype of a given type if it belongs to the type and satisfies the constraint; the
given type is called the base type of the subtype. A type is a subtype of itself; such a subtype is said to be
unconstrained: it corresponds to a condition that imposes no restriction. The base type of a type is the
type itself.

5The set of operations defined for a subtype of a given type includes the operations that are defined for the
type; however the assignment operation to a variable having a given subtype only assigns values that

26 ARM
Declarations and Types

belong to the subtype. Additional operations, such as qualification (in a qualified expression), are
implicitly defined by a subtype declaration.

6♦ Certain operations of types and subtypes are called attributes; these operations are denoted by the form
of name described in section 4.1.4.

7The term subcomponent is used in this manual in place of the term component to indicate either a
component, or a component of another component or subcomponent. Where other subcomponents are
excluded, the term component is used instead.

8A value of a given type must not have a subcomponent whose type is the given type itself.

9The name of a class of types is used in this manual as a qualifier for objects and values that have a type of
the class considered. For example, the term "array object" is used for an object whose type is an array
type. ♦

Note:

10The set of values of a subtype is a subset of the values of the base type. This subset need not be a proper
subset; it can be an empty subset.

11References: array type 3.6, assignment 5.2, attribute 4.1.4, component of an array 3.6, component of a
record 3.7, enumeration type 3.5.1, integer type 3.5.4, object 3.2.1, private type 7.4, qualified expression
4.7, record type 3.7, subtype declaration 3.3.2, type declaration 3.3.1

3.3.1 Type Declarations

1A type declaration declares a type.

2type_declaration ::= full_type_declaration | ♦
| private_type_declaration

full_type_declaration ::=
type identifier ♦ is type_definition;

type_definition ::=
enumeration_type_definition | ♦

| array_type_definition
| record_type_definition | ♦

3The elaboration of a full type declaration consists of ♦ the elaboration of the type definition.

4The types created by the elaboration of distinct type definitions are distinct types. Moreover, the
elaboration of the type definition for a numeric type ♦ creates both a base type and a subtype of the base
type; the same holds for a constrained array definition (one of the two forms of array type definition).

5The simple name declared by a full type declaration denotes the declared type, unless the type declaration
declares both a base type and a subtype of the base type, in which case the simple name denotes the
subtype, and the base type is anonymous. A type is said to be anonymous if it has no simple name. For
explanatory purposes, this reference manual sometimes refers to an anonymous type by a pseudo-name,
written in italics, and uses such pseudo-names at places where the syntax normally requires an identifier.

ARM 27
Declarations and Types

6Examples of type definitions:

(WHITE, RED, YELLOW, GREEN, BLUE, BROWN, BLACK)
♦
array(1 ..10) of INTEGER

7Examples of type declarations:

type COLOR is (WHITE, RED, YELLOW, GREEN, BLUE, BROWN, BLACK);
♦
type TABLE is array(0..10) of INTEGER;

Notes:

8Two type definitions always define two distinct types, even if they are textually identical. ♦

10♦ Private type declarations are used in package specifications ♦ (see 7.4 ♦).

11References: ♦ array type definition 3.6, base type 3.3, constrained array definition 3.6, constrained
subtype 3.3, declaration 3.1, elaboration 3.9, enumeration type definition 3.5.1, identifier 2.3, ♦ integer
type definition 3.5.4, multiple object declaration 3.2, numeric type 3.5, private type declaration 7.4,
reserved word 2.9, type 3.3

AI Crossreferences:

Section Class Status AI-0 Date Description
3.03.01 (03) ra CE 0369/06 88-11-20 Representing values of discrete base type

3.3.2 Subtype Declarations

1A subtype declaration declares a subtype.

2subtype_declaration ::=
subtype identifier is subtype_indication;

subtype_indication ::= type_mark [constraint]

type_mark ::= type_name | subtype_name

constraint ::=
range_constraint | index_constraint | ♦

3A type mark denotes a type or a subtype. If a type mark is the name of a type, the type mark denotes this
type and also the corresponding unconstrained subtype. The base type of a type mark is, by definition, the
base type of the type or subtype denoted by the type mark.

4A subtype indication defines a subtype of the base type of the type mark.

5If an index constraint appears after a type mark in a subtype indication, the type mark must not already
impose an index constraint. ♦

6The elaboration of a subtype declaration consists of the elaboration of the subtype indication. The
elaboration of a subtype indication creates a subtype. If the subtype indication does not include a
constraint, the subtype is the same as that denoted by the type mark. The elaboration of a subtype
indication that includes a constraint proceeds as follows: ♦

28 ARM
Declarations and Types

(a) 7The constraint is first elaborated. ♦

(b) 8A check is then made that the constraint is compatible with the type or subtype denoted by the type
mark.

9The condition imposed by a constraint is the condition obtained after elaboration of the constraint. (The
rules of constraint elaboration are such that the expressions and ranges of constraints are evaluated by the
elaboration of these constraints.) The rules defining compatibility are given for each form of constraint in
the appropriate section. These rules are such that if a constraint is compatible with a subtype, then the
condition imposed by the constraint cannot contradict any condition already imposed by the subtype on its
values. The exception CONSTRAINT_ERROR is raised if any check of compatibility fails.

10Examples of subtype declarations:

subtype RAINBOW is COLOR range RED .. BLUE; -- see 3.3.1
subtype RED_BLUE is RAINBOW;
subtype INT is INTEGER;
subtype SMALL_INT is INTEGER range -10 .. 10;
subtype BYTE is BIT_VECTOR(0..7); -- see 3.6
♦

Note:

11A subtype declaration does not define a new type.

12References: base type 3.3, ♦, compatibility of index constraints 3.6.1, compatibility of range constraints
3.5, constraint_error exception 11.1, declaration 3.1, ♦ elaboration 3.9, evaluation 4.5, expression 4.4, ♦
index constraint 3.6.1, range constraint 3.5, reserved word 2.9, subtype 3.3, type 3.3, type name 3.3.1,
unconstrained subtype 3.3

AI Crossreferences:

Section Class Status AI-0 Date Description
3.03.02 (06) co RE 0389/00 85-09-16 Creating an already existing subtype
3.03.02 (06) ra WJ 0449/04 87-06-18 Evaluating default discriminant expressions

3.3.3 Classification of Operations

1The set of operations of a type includes the explicitly declared subprograms that have a parameter or result
of the type; such subprograms are necessarily declared after the type declaration or subtype indication.4

2The remaining operations are each implicitly declared for a given type or subtype declaration,
immediately after the type or subtype definition. These implicitly declared operations comprise the basic
operations, the predefined operators (see 4.5), and enumeration literals. ♦ The operations implicitly
declared for a given type declaration normally occur immediately after the type declaration and before
the next explicit declaration, if any. ♦

3A basic operation is an operation that is inherent in one of the following:

• 4An assignment (in assignment statements and initializations), ♦ a membership test, or a short-
circuit control form.

4[AI-00624.]

ARM 29
Declarations and Types

• 5A selected component or an indexed component ♦.

• 6A qualification (in qualified expressions), an explicit type conversion, or an implicit type
conversion of a value of type universal_integer to the corresponding value of another numeric
type.

• 7A numeric literal (for a universal type), ♦ a string literal, an aggregate, or an attribute.

8For every type or subtype T, the following attribute is defined:

9T’BASE The base type of T. This attribute is allowed only as the prefix of the name of
another attribute: for example, T’BASE’FIRST.

Notes:

10Each literal is an operation whose evaluation yields the corresponding value (see 4.2). Likewise, an
aggregate is an operation whose evaluation yields a value of a composite type (see 4.3). Some operations
of a type operate on values of the type, for example, predefined operators and certain subprograms and
attributes. The evaluation of some operations of a type returns a value of the type, for example, literals
and certain functions, attributes, and predefined operators. Assignment is an operation that operates on an
object and a value. The evaluation of the operation corresponding to a selected component ♦ or an
indexed component yields the object or value denoted by this form of name.

10aIn Ada, numerous conversion functions are defined whenever a new integer type or other
numeric type is defined. E.g.

type T is new parent_type; -- A
parent_type(x:T) return parent_type; -- 1 of these by ARM 3.4(5)
T(x:parent_type) return T; -- 1 of these by ARM 3.4(5)

type T is range L .. R; -- B
the_one_predefined(x:T) return the_one_predefined; -- 1 of these by ARM 3.5.4(5),3.4(5)
T(x:the_one_predefined) return T -- 1 of these by ARM 3.5.4(5),3.4(5)
implicit_T(x:universal_integer) return T; -- 1 of these by ARM 3.5.4(8)

10bIn B above (type T is range L..R) we don’t know which predefined integer type was chosen for T
to be a subtype of and so we cannot reliably use conversions like SHORT_INTEGER(x).

type T is any integer type definition
T(x:T) return T; -- 1 of these by ARM 4.6(4)

subtype T is integer type specification
For every conversion of the base type there is one for the subtype that
converts to the base type and then checks that the result belongs to
the subtype. -- K of these by ARM 4.6(4).

For all numeric types and subtypes:
T(x:any_numeric_type) return T; -- N of these by ARM 4.6(7)
any_numeric_type(x:T) return any_numeric_type; -- N of these by ARM 4.6(7)

10cNote that some of these are operations of existing integer types, e.g. ‘‘integer(x:T) return
integer’’. While these basic operations of explicit type conversion are visible throughout the
entire scope of the associated declaration, the name of the type can only be used where it is
visible.

30 ARM
Declarations and Types

11References: assignment 5.2, attribute 4.1.4, character literal 2.5, composite type 3.3, conversion 4.6,
enumeration literal 3.5.1, formal parameter 6.1, function 6.5, indexed component 4.1.1, initial value 3.2.1,
literal 4.2, membership test 4.5 4.5.2, numeric literal 2.4, numeric type 3.5, object 3.2.1, 6.1, predefined
operator 4.5, qualified expression 4.7, selected component 4.1.3, short-circuit control form 4.5 4.5.1,
string literal 2.6, subprogram 6, subtype 3.3, type 3.3, type declaration 3.3.1, universal_integer type 3.5.4,
universal type 4.10

AI Crossreferences:

Section Class Status AI-0 Date Description
3.03.03 (01) BI WJ 0330/12 86-07-23 Explicit declaration of enumeration literals
3.03.03 (02) co RE 0624/00 88-12-21 Subtype declarations also implicitly declare operations
3.03.03 (07) BI RE 0598/00 88-11-08 Of what types is an attribute an operation?

3.4 Derived Types : Removed

AI Crossreferences:

Section Class Status AI-0 Date Description
3.04 (06) BI RE 0567/01 88-09-02 "Corresponding" predefined operation of a derived type
3.04 (10) BI WJ 0138/10 87-02-23 Representation clauses for derived types
3.04 (10) BI WJ 0292/05 86-12-01 Derived types with address clauses for entries
3.04 (10) co RE 0599/00 88-11-08 Representation clauses for derived types
3.04 (11) BI RE 0626/00 88-12-21 Within the parenthesis, replace "is" by "must be".
3.04 (11) BI WJ 0367/06 88-05-23 Deriving from types declared in a generic package
3.04 (11) BI WJ 0398/08 87-06-18 Operations declared for types declared in instances
3.04 (11) ra RE 0393/00 85-10-06 Not all operations of a type are derivable
3.04 (13) BI WI 0318/03 88-08-17 Conformance rules and derived subprograms
3.04 (14) co CE 0433/03 88-11-20 Evaluating and checking parameters "before the call"
3.04 (15) na na 0394/03 87-03-11 Is a numeric type a derived type?
3.04 (22) BI WJ 0138/10 87-02-23 Representation clauses for derived types

3.5 Scalar Types

1Scalar types comprise enumeration types ♦ and integer types. Enumeration types and integer types are
called discrete types; each value of a discrete type has a position number which is an integer value.
Integer types ♦ are called numeric types. All scalar types are ordered, that is, all relational operators are
predefined for their values.

2range_constraint ::= range range

range ::= range_attribute
| simple_expression .. simple_expression

3A range specifies a subset of values of a scalar type. The range L .. R specifies the values from L to R
inclusive if the relation L <= R is true. The values L and R are called the lower bound and upper bound of
the range, respectively. A value V is said to satisfy a range constraint if it belongs to the range; the value
V is said to belong to the range if the relations L <= V and V <= R are both TRUE. It is poor
programming practice to permit L or R to modify variables that are mutually accessible.5 A null
range is a range for which the relation R < L is TRUE; no value belongs to a null range. The operators <=

5A variable is accessible with respect to a particular expression if it is a subexpression of the expression or is accessed
by calls on user functions within the expression. A mutually accessible variable is one that is accessible to two
expressions that may be evaluated in an order not defined by the language.

ARM 31
Declarations and Types

and < in the above definitions are the predefined operators of the scalar type.

4If a range constraint is used in a subtype indication ♦ the type of the simple expressions (likewise, of the
bounds of a range attribute) must be the same as the base type of the type mark of the subtype indication.
A range constraint is compatible with a subtype if each bound of the range belongs to the subtype, or if the
range constraint defines a null range; otherwise the range constraint is not compatible with the subtype.

5The elaboration of a range constraint consists of the evaluation of the range. The evaluation of a range
defines its lower bound and its upper bound. The evaluation of the expressions in L and R proceeds
from left to right.6

6Attributes

7For any scalar type T or for any subtype T of a scalar type, the following attributes are defined:

8T’FIRST Yields the lower bound of T. The value of this attribute has the same type as T.

9T’LAST Yields the upper bound of T. The value of this attribute has the same type as T.

Note:

10Indexing and iteration rules use values of discrete types.

11References: attribute 4.1.4, constraint 3.3, enumeration type 3.5.1, evaluation 4.5, index 3.6, integer type
3.5.4, loop statement 5.5, range attribute 3.6.2, relational operator 4.5 4.5.2, satisfy a constraint 3.3, simple
expression 4.4, subtype indication 3.3.2, type mark 3.3.2

AI Crossreferences:

Section Class Status AI-0 Date Description
3.05 (02) ST RE 0427/00 86-06-19 Semi-constrained subtypes
3.05 (08) BI CA 0174/07 88-10-03 T’FIRST and T’LAST for real types
3.05 (09) BI CA 0174/07 88-10-03 T’FIRST and T’LAST for real types

3.5.1 Enumeration Types

1An enumeration type definition defines an enumeration type.

2enumeration_type_definition ::=
(enumeration_literal_specification {, enumeration_literal_specification})

enumeration_literal_specification ::= enumeration_literal

enumeration_literal ::= identifier | character_literal

3The identifiers and character literals listed by an enumeration type definition must be distinct. Each
enumeration literal specification is the declaration of the corresponding enumeration literal: this
declaration is equivalent to the explicit [AI-00330] declaration of a parameterless function, the designator
being the enumeration literal, and the result type being the enumeration type. The designator of such a
function is allowed to have the form of a character literal [AI-00401]. The elaboration of an
enumeration type definition creates an enumeration type; this elaboration includes that of every

6IMPLEMENTATION REQUIREMENT. The left to right order eliminates one source of incorrect order dependencies.

32 ARM
Declarations and Types

enumeration literal specification. The implicit body of an enumeration literal is considered to be
elaborated when the corresponding enumeration literal specification is elaborated [AI-00430].

4Each enumeration literal yields a different enumeration value. The predefined order relations between
enumeration values follow the order of corresponding position numbers. The position number of the
value of the first listed enumeration literal is zero; the position number for each other enumeration literal
is one more than for its predecessor in the list.

5If the same identifier or character literal is specified in more than one enumeration type definition, the
corresponding literals are said to be overloaded. At any place where an overloaded enumeration literal
occurs in the text of a program, the type of the enumeration literal must be determinable from the context
(see 8.7).

6Examples:

type GENDER is (M, F);
type DAY is (MON, TUE, WED, THU, FRI, SAT, SUN);
type SUIT is (CLUBS, DIAMONDS, HEARTS, SPADES);
type LEVEL is (LOW, MEDIUM, URGENT);
type COLOR is (WHITE, RED, YELLOW, GREEN, BLUE, BROWN, BLACK);
type LIGHT is (RED, AMBER, GREEN); -- RED and GREEN are overloaded

type HEXA is (’A’, ’B’, ’C’, ’D’, ’E’, ’F’);
type MIXED is (’A’, ’B’, ’*’, B, NONE, ’?’, ’%’);

type MONTH_NAME is (JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC)

subtype WEEKDAY is DAY range MON .. FRI;
subtype MAJOR is SUIT range HEARTS .. SPADES;
subtype RAINBOW is COLOR range RED .. BLUE; -- the color RED, not the light

Note:

7If an enumeration literal occurs in a context that does not otherwise suffice to determine the type of the
literal, then qualification by the name of the enumeration type is one way to resolve the ambiguity (see
8.7).

8References: character literal 2.5, declaration 3.1, designator 6.1, elaboration 3.9, 6.1, function 6.5,
identifier 2.3, name 4.1, overloading 6.6 8.7, position number 3.5, qualified expression 4.7, relational
operator 4.5 4.5.2, type 3.3, type definition 3.3.1

AI Crossreferences:

Section Class Status AI-0 Date Description
3.05.01 (03) BI RE 0401/00 85-12-03 Character literals are implicitly declared as functions
3.05.01 (03) BI WJ 0330/12 86-07-23 Explicit declaration of enumeration literals
3.05.01 (03) BI WJ 0430/05 88-05-23 Using an enumeration literal does not raise PROGRAM_ERROR

ARM 33
Declarations and Types

3.5.2 Character Types

1An enumeration type is said to be a character type if at least one of its enumeration literals is a character
literal. The predefined type CHARACTER is a character type whose values are the 128 characters of the
ASCII character set. Each of the 95 graphic characters of this character set is denoted by the
corresponding character literal.

2Example:

type ROMAN_DIGIT is (’I’, ’V’, ’X’, ’L’, ’C’, ’D’, ’M’);

Notes:

3The predefined package ASCII includes the declaration of constants denoting control characters and of
constants denoting graphic characters that are not in the basic character set.

4A conventional character set such as EBCDIC can be declared as a character type ♦.

5References: ascii predefined package C, basic character 2.1, character literal 2.5, constant 3.2.1,
declaration 3.1, enumeration type 3.5.1, graphic character 2.1, identifier 2.3, literal 4.2, predefined type C,
type 3.3

AI Crossreferences:

Section Class Status AI-0 Date Description
3.05.02 (01) ST RE 0420/03 88-11-08 Allow 256 values for type CHARACTER

3.5.3 Boolean Types

1There is a predefined enumeration type named BOOLEAN. It contains the two literals FALSE and TRUE
ordered with the relation FALSE < TRUE.7 ♦

2References: enumeration literal 3.5.1, enumeration type 3.5.1, relational operator 4.5 4.5.2, type 3.3

3.5.4 Integer Types

1♦

7The predefined integer types include the type INTEGER. ♦

8Integer literals are the literals of an anonymous predefined integer type that is called universal_integer in
this reference manual. Other integer types have no literals. However, for each integer type there exists an
implicit conversion that converts a universal_integer value into the corresponding value (if any) of the
integer type. The circumstances under which these implicit conversions are invoked are described in
section 4.6.

9The position number of an integer value is the corresponding value of the type universal_integer.

10The same arithmetic operators are predefined for all integer types (see 4.5). The exception

7Note that type foo = (FALSE,TRUE) is not a boolean type. It is a distinct enumeration type that overloads FALSE and
TRUE.

34 ARM
Declarations and Types

CONSTRAINT_ERROR8 is raised by the execution of an operation (in particular an implicit
conversion) that cannot deliver the correct result (that is, if the value corresponding to the mathematical
result is not a value of the integer type). ♦

11Examples:

subtype PAGE_NUM is INTEGER range 1 .. 2_000;
subtype LINE_SIZE is INTEGER range 1 .. MAX_LINE_SIZE;

subtype SMALL_INT is INTEGER range -10 .. 10;
subtype COLUMN_PTR is LINE_SIZE range 1 .. 10;
subtype BUFFER_SIZE is INTEGER range 0 .. MAX;

Notes:

12♦ The predefined operators of an integer type deliver results whose range is defined by the parent
predefined type; such a result need not belong to the declared subtype, in which case an attempt to assign
the result to a variable of the integer subtype raises the exception CONSTRAINT_ERROR.

13The smallest (most negative) value supported by the predefined integer types of an implementation
(excluding universal_integer [AI-000565]) is the named number AVA.MIN_INT and the largest (most
positive) value is AVA.MAX_INT (see 13.7). An implementation must not accept a compilation unit
containing a static univeral_integer expression whose value lies outside of the range
AVA.MIN_INT .. AVA.MAX_INT.9

14References: anonymous type 3.3.1, belong to a subtype 3.3, bound of a range 3.5, constraint_error
exception 11.1, conversion 4.6, identifier 2.3, integer literal 2.4, literal 4.2, numeric_error exception 11.1,
parent type 3.4, predefined operator 4.5, range constraint 3.5, static expression 4.9, subtype declaration
3.3.2, system predefined package 13.7, type 3.3, type declaration 3.3.1, type definition 3.3.1, universal
type 4.10

AI Crossreferences:

Section Class Status AI-0 Date Description
3.05.04 (00) ST RE 0600/00 88-11-08 Why We Need Unsigned Integers in Ada
3.05.04 (03) ra WJ 0240/05 86-07-23 Integer type definitions cannot contain a RANGE attribute
3.05.04 (04) BI WJ 0023/06 86-07-23 Static numeric subtypes
3.05.04 (05) na na 0394/03 87-03-11 Is a numeric type a derived type?
3.05.04 (07) BI CE 0459/04 88-12-07 Precision and range of predefined numeric types
3.05.04 (07) BI WI 0597/01 88-11-08 Unsigned integer types can be provided
3.05.04 (07) ra CE 0402/05 88-11-20 Unsigned integer types are not predefined
3.05.04 (08) BI CA 0565/02 88-10-03 Support for static universal_integer expressions
3.05.04 (10) NB WJ 0387/05 87-02-23 Raising CONSTRAINT_ERROR instead of NUMERIC_ERROR
3.05.04 (10) ra WJ 0267/06 88-07-07 Evaluating expressions in case statements
3.05.04 (13) BI CA 0565/02 88-10-03 Support for static universal_integer expressions
3.05.04 (13) BI WA 0304/05 88-11-04 The definition of SYSTEM.MIN_INT and SYSTEM.MAX_INT

8AI-00387.

9IMPLEMENTATION REQUIREMENT. Ada requires that such expressions be accepted, unless insufficient resources
(memory) are available [AI-00565]. We require otherwise in order that:

(a) we have a single, predictable mathematics

(b) we can reliably determine what is and is not a static expression.

See also 4.10(4).

ARM 35
Declarations and Types

3.5.5 Operations of Discrete Types

1The basic operations of a discrete type include the operations involved in assignment, the membership
tests, and qualification; for a boolean type they include the short-circuit control forms; for an integer type
they include the explicit conversion of values of other numeric types to the integer type, and the implicit
conversion of values of the type universal_integer to the type.

1aSome of the operations of a discrete type require or return information about the constraints of
the subtype or have names dependent on the subtype name. In this case we talk about
operations or attributes of the subtype. Formally, these are operations of the base type that may
take additional, subtype dependent arguments to express constraint information.

2Finally, for every discrete type or subtype T, the basic operations include the attributes listed below. In
this presentation, T is referred to as being a subtype (the subtype T) for any property that depends on
constraints imposed by T; other properties are stated in terms of the base type of T.

3The first group of attributes yield characteristics of the subtype T. This group includes the attribute BASE
(see 3.3.3) and the attributes FIRST and LAST (see 3.5) ♦.

4♦

5All attributes of the second group are functions with a single parameter. The corresponding actual
parameter is indicated below by X.

6T’POS This attribute is a function. The parameter X must be a value of the base type of
T. The result type is the type universal_integer. The result is the position number of
the value of the parameter.

7T’VAL This attribute is a ♦ function with a single parameter of base type integer.10 The
result type is the base type of T. The result is the value whose position number is the
universal_integer value corresponding to X. The exception CONSTRAINT_ERROR
is raised if the universal_integer value corresponding to X is not in the range
T’POS(T’BASE’FIRST) .. T’POS(T’BASE’LAST).

8T’SUCC This attribute is a function. The parameter X must be a value of the base type of
T. The result type is the base type of T. The result is the value whose position
number is one greater than that of X. The exception CONSTRAINT_ERROR is
raised if X equals T’BASE’LAST.

9T’PRED This attribute is a function. The parameter X must be a value of the base type of
T. The result type is the base type of T. The result is the value whose position
number is one less than that of X. The exception CONSTRAINT_ERROR is raised
if X equals T’BASE’FIRST.

10T’IMAGE This attribute is a function. The parameter X must be a value of the base type of
T. The result type is the predefined type STRING. The result is the image of the
value of X, that is, a sequence of characters representing the value in display form.
The image of an integer value is the corresponding decimal literal; without
underlines, leading zeros, exponent, or trailing spaces; but with a single leading
character that is either a minus sign or a space. The lower bound of the index of the
image is one.

10We have eliminated the notion of special function as it is not needed in our subset. See AI-00013 for a discussion.
Note that if the argument to T’VAL is universal_integer it gets implicitly converted to integer. This may result in
CONSTRAINT_ERROR, but this is the identical behavior to the special function.

36 ARM
Declarations and Types

11The image of an enumeration value is either the corresponding identifier in upper
case or the corresponding character literal (including the two apostrophes); neither
leading nor trailing spaces are included. The image of a character C, other than a
graphic character, is implementation-defined; the only requirement is that the image
must be such that C equals CHARACTER’VALUE(CHARACTER’IMAGE(C)).

12T’VALUE This attribute is a function. The parameter X must be a value of the predefined type
STRING. The result type is the base type of T. Any leading and any trailing spaces
of the sequence of characters that corresponds to the parameter are ignored.

13For an enumeration type, if the sequence of characters has the syntax of an
enumeration literal and if this literal exists for the base type of T, the result is the
corresponding enumeration value. For the type CHARACTER, if the sequence of
characters is the image of a character other than a graphic character, the
result is the corresponding enumeration value [AI-00239]. For an integer type,
if the sequence of characters has the syntax of an integer literal, with an optional
single leading character that is a plus or minus sign, and if there is a corresponding
value in the base type of T, the result is this value. In any other case, the exception
CONSTRAINT_ERROR is raised.

14♦

15Besides the basic operations, the operations of a discrete type include the predefined relational operators.
For enumeration types, operations include enumeration literals. For boolean types, operations include the
predefined unary logical negation operator not, and the predefined logical operators. For integer types,
operations include the predefined arithmetic operators: these are the binary and unary adding operators -
and +, all multiplying operators, the unary operator abs, and the exponentiating operator.

16The operations of a subtype are the corresponding operations of its base type. Some of the base type
operations depend on subtype information in order to execute. These operations are:
assignment, membership tests, qualification, explicit type conversions, and the attributes of the first group;
the effect of each of these operations depends on the subtype (assignments, membership tests,
qualifications, and conversions involve a subtype check; attributes of the first group yield a characteristic
of the subtype).

Notes:

17For a subtype of a discrete type, the results delivered by the attributes SUCC, PRED, VAL, and VALUE
need not belong to the subtype; similarly, the actual parameters of the attributes POS, SUCC, PRED, and
IMAGE need not belong to the subtype. The following relations are satisfied (in the absence of an
exception) by these attributes:

T’POS(T’SUCC(X)) = T’POS(X) + 1
T’POS(T’PRED(X)) = T’POS(X) - 1

T’VAL(T’POS(X)) = X
T’POS(T’VAL(N)) = N

18Examples:

-- For the types and subtypes declared in section 3.5.1 we have:

-- COLOR’FIRST = WHITE, COLOR’LAST = BLACK
-- RAINBOW’FIRST = RED, RAINBOW’LAST = BLUE

-- COLOR’SUCC(BLUE) = RAINBOW’SUCC(BLUE) = BROWN

ARM 37
Declarations and Types

-- COLOR’POS(BLUE) = RAINBOW’POS(BLUE) = 4
-- COLOR’VAL(0) = RAINBOW’VAL(0) = WHITE

19References: abs operator 4.5 4.5.6, assignment 5.2, attribute 4.1.4, base type 3.3, basic operation 3.3.3,
binary adding operator 4.5 4.5.3, boolean type 3.5.3, bound of a range 3.5, character literal 2.5, constraint
3.3, constraint_error exception 11.1, conversion 4.6, discrete type 3.5, enumeration literal 3.5.1,
exponentiating operator 4.5 4.5.6, function 6.5, graphic character 2.1, identifier 2.3, integer type 3.5.4,
logical operator 4.5 4.5.1, membership test 4.5 4.5.2, multiplying operator 4.5 4.5.5, not operator 4.5
4.5.6, numeric literal 2.4, numeric type 3.5, object 3.2, operation 3.3, position number 3.5, predefined
operator 4.5, predefined type C, qualified expression 4.7, relational operator 4.5 4.5.2, short-circuit control
form 4.5 4.5.1, string type 3.6.3, subtype 3.3, type 3.3, unary adding operator 4.5 4.5.4, universal_integer
type 3.5.4, universal type 4.10

AI Crossreferences:

Section Class Status AI-0 Date Description
3.05.05 (07) BI WI 0013/01 83-11-08 Is ’VAL renameable?
3.05.05 (10) BI WJ 0234/05 87-03-16 Lower bound for ’IMAGE of enumeration values
3.05.05 (11) NB WJ 0239/11 87-02-23 ENUMERATION_IO and IMAGE for non-graphic characters

3.5.6 Real Types: Removed

AI Crossreferences:

Section Class Status AI-0 Date Description
3.05.06 (06) NB WJ 0387/05 87-02-23 Raising CONSTRAINT_ERROR instead of NUMERIC_ERROR

3.5.7 Floating Point Types: Removed

AI Crossreferences:

Section Class Status AI-0 Date Description
3.05.07 (00) co RE 0457/00 86-09-05 Real type definitions cannot contain a RANGE attribute
3.05.07 (06) ra WJ 0205/06 87-06-18 The formula for mantissa is correct
3.05.07 (08) BI CE 0459/04 88-12-07 Precision and range of predefined numeric types
3.05.07 (09) co WJ 0217/05 88-05-23 The safe numbers of a floating point subtype
3.05.07 (09) co WJ 0314/05 87-08-06 The safe numbers for IBM-370 floating point
3.05.07 (10) BI WJ 0023/06 86-07-23 Static numeric subtypes
3.05.07 (11) na na 0394/03 87-03-11 Is a numeric type a derived type?
3.05.07 (12) ra CA 0469/03 88-05-10 When the bounds in a type declaration are not model numbers
3.05.07 (15) BI WI 0344/05 88-06-30 Model and safe numbers for range-constrained real subtypes
3.05.07 (17) ra WJ 0375/05 88-05-23 Restricting the allowed values of a floating point subtype

3.5.8 Operations of Floating Point Types: Removed

AI Crossreferences:

Section Class Status AI-0 Date Description
3.05.08 (16) BI WJ 0407/06 88-05-23 The operations of a subtype with reduced accuracy

38 ARM
Declarations and Types

3.5.9 Fixed Point Types: Removed

AI Crossreferences:

Section Class Status AI-0 Date Description
3.05.09 (02) ST RE 0518/00 87-02-10 Fixed and Floating type Declarations needlessly Different
3.05.09 (05) BI RE 0640/00 88-12-21 Small overlooked
3.05.09 (05) ST RE 0519/00 87-02-10 "Small" should be a power of two TIMES THE RANGE
3.05.09 (06) ra WJ 0143/04 86-07-23 Model numbers for delta 1.0 range -7.0 .. 8.0
3.05.09 (06) ra WP 0340/05 88-12-07 Model numbers for fixed point types having a null range
3.05.09 (07) ra RE 0520/01 87-02-10 What are Fixed Point BASE types and Predefined types?
3.05.09 (08) BI WJ 0023/06 86-07-23 Static numeric subtypes
3.05.09 (09) BI CE 0341/13 88-12-07 Extra precision or range for fixed point representations
3.05.09 (09) BI WJ 0144/10 87-09-12 A fixed point type declaration cannot raise an exception
3.05.09 (09) CR WJ 0471/04 87-09-12 Correction to 0144/08 examples
3.05.09 (09) na na 0394/03 87-03-11 Is a numeric type a derived type?
3.05.09 (10) ra WJ 0343/05 86-12-01 Decimal fixed point representations
3.05.09 (11) BI WJ 0508/03 88-05-23 The safe numbers of a fixed point subtype
3.05.09 (11) na na 0428/01 86-08-08 [combined with 0217]
3.05.09 (14) BI WI 0344/05 88-06-30 Model and safe numbers for range-constrained real subtypes
3.05.09 (14) ra WJ 0145/04 86-07-23 Dynamic computation of ’MANTISSA for fixed point subtypes
3.05.09 (14) ra WJ 0146/10 88-05-23 Model numbers for a fixed point subtype with length clause
3.05.09 (14) ST RE 0521/00 87-02-10 Fixed Point Subtypes inheriting Small
3.05.09 (16) ra WJ 0146/10 88-05-23 Model numbers for a fixed point subtype with length clause
3.05.09 (18) ra WJ 0147/05 87-08-06 Declaring a fixed point type that occupies one word

3.5.10 Operations of Fixed Point Types: Removed

AI Crossreferences:

Section Class Status AI-0 Date Description
3.05.10 (08) CR CE 0583/02 88-11-20 Correction to 0179/08
3.05.10 (08) CR WJ 0467/04 88-05-23 Correction to 0179/06
3.05.10 (08) ra WJ 0179/08 88-06-13 The definition of the attribute FORE
3.05.10 (15) BI WJ 0407/06 88-05-23 The operations of a subtype with reduced accuracy

3.6 Array Types

1An array object is a composite object consisting of components that have the same subtype. The name for
a component of an array uses one or more index values belonging to specified integer11 types. The value
of an array object is a composite value consisting of the values of its components.

2array_type_definition ::=
unconstrained_array_definition | constrained_array_definition

unconstrained_array_definition ::=
array(index_subtype_definition {, index_subtype_definition}) of

component_subtype_indication

constrained_array_definition ::=
array index_constraint of component_subtype_indication

11‘‘Discrete’’ type was changed to integer type so that we don’t need to worry about constraint errors arising from null
strings with indices of enumerated types without predecessors for the lower bound. This did not quite work, since we still
need to check for null strings of types like STR:

type STR is array(INTEGER range <>) of CHARACTER;

See also 4.2.

ARM 39
Declarations and Types

index_subtype_definition ::= index_type_mark range <>

index_constraint ::= (index_range {, index_range})

index_range ::= integer_subtype_indication | integer_range

discrete_range ::= discrete_subtype_indication | range

3An array object is characterized by the number of indices (the dimensionality of the array), the type and
position of each index, the lower and upper bounds for each index, and the type and possible constraint of
the components. The order of the indices is significant.

4A one-dimensional array has a distinct component for each possible index value. A multidimensional
array has a distinct component for each possible sequence of index values that can be formed by selecting
one value for each index position (in the given order). The possible values for a given index are all the
values between the lower and upper bounds, inclusive; this range of values is called the index range.

5An unconstrained array definition defines an array type. For each object that has the array type, the
number of indices, the type and position of each index, and the subtype of the components are as in the
type definition; the values of the lower and upper bounds for each index belong to the corresponding
index subtype, except for null arrays as explained in section 3.6.1. The index subtype for a given index
position is, by definition, the subtype denoted by the type mark of the corresponding index subtype
definition. The compound delimiter <> (called a box) of an index subtype definition stands for an
undefined range (different objects of the type need not have the same bounds). The elaboration of an
unconstrained array definition creates an array type; this elaboration includes that of the component
subtype indication.

6A constrained array definition defines both an array type and a subtype of this type:

• 7The array type is an implicitly declared anonymous type; this type is defined by an (implicit)
unconstrained array definition, in which the component subtype indication is that of the
constrained array definition, and in which the type mark of each index subtype definition denotes
the subtype defined by the corresponding discrete range.

• 8The array subtype is the subtype obtained by imposition of the index constraint on the array type.

9If a constrained array definition is given for a type declaration, the simple name declared by this
declaration denotes the array subtype.

10The elaboration of a constrained array definition creates the corresponding array type and array subtype.
For this elaboration, the index constraint and the component subtype indication are elaborated. The
elaboration of each discrete range of the index constraint proceeds left to right followed by the
elaboration of the component subtype indication.12 It is poor programming practice to permit
index constraints and/or the component subtype indication to modify variables that are mutually
accessible.

11Examples of type declarations with unconstrained array definitions:

♦
type BIT_VECTOR is array(INTEGER range <>) of BOOLEAN;
type MATRIX is array(INTEGER range <>,INTEGER range <>) of INTEGER;

12IMPLEMENTATION REQUIREMENT. The required order eliminates one source of incorrect order dependencies.

40 ARM
Declarations and Types

type ROMAN is array(POSITIVE range <>) of ROMAN_DIGIT;

12Examples of type declarations with constrained array definitions:

type SCHEDULE is array(1..7) of BOOLEAN;
type TABLE is array(1 .. 10) of INTEGER;
type LINE is array(1 .. MAX_LINE_SIZE) of CHARACTER;

13Examples of object declarations with constrained array definitions:

GRID : array(1 .. 80, 1 .. 100) of BOOLEAN;
MIX : array(COLOR range RED .. GREEN) of BOOLEAN;
PAGE : array(1..50) of LINE; -- an array of arrays

Note:

14For a one-dimensional array, the rule given means that a type declaration with a constrained array
definition such as

type T is array (POSITIVE range MIN .. MAX) of COMPONENT;

15is equivalent (when legal) to the succession of declarations

subtype index_subtype is POSITIVE range MIN .. MAX;
type array_type is array(INDEX_SUBTYPE range <>) of COMPONENT;
subtype T is array_type(index_subtype);

16where index_subtype and array_type are both anonymous. Consequently, T is the name of a subtype and
all objects declared with this type mark are arrays that have the same bounds. Similar transformations
apply to multidimensional arrays.

17♦

18References: anonymous type 3.3.1, bound of a range 3.5, component 3.3, constraint 3.3, discrete type 3.5,
elaboration 3.1 3.9, in some order 1.6, name 4.1, object 3.2, range 3.5, subtype 3.3, subtype indication
3.3.2, type 3.3, type declaration 3.3.1, type definition 3.3.1, type mark 3.3.2

AI Crossreferences:

Section Class Status AI-0 Date Description
3.06 (01) co RE 0417/00 86-04-15 Allowed range of index subtypes
3.06 (05) BI RE 0249/00 84-05-26 Index types should be required to be discrete.
3.06 (07) ra CE 0369/06 88-11-20 Representing values of discrete base type

3.6.1 Index Constraints and Discrete Ranges

1An index constraint determines the range of possible values for every index of an array type, and thereby
the corresponding array bounds.

2For an integer range used in a constrained array definition and defined by a range, an implicit conversion
to the predefined type INTEGER is assumed if each bound is either a numeric literal, a named number, or
an attribute, and the type of both bounds (prior to the implicit conversion) is the type universal_integer.
Otherwise, both bounds must be of the same integer type (i.e., INTEGER, by 3.6), other than
universal_integer; this type must be determinable independently of the context, but using the fact that the

ARM 41
Declarations and Types

type must be discrete and that both bounds must have the same type. These rules apply also to a discrete
range used in an iteration rule (see 5.5) ♦.13

3If an index constraint follows a type mark in a subtype indication, then the type or subtype denoted by the
type mark must not already impose an index constraint. The type mark must denote an unconstrained
array type ♦. The index constraint must provide an integer range for each index of the array type and the
type of each integer range must be the same as that of the corresponding index.

4An index constraint is compatible with the type denoted by the type mark if and only if the constraint
defined by each discrete range is compatible with the corresponding index subtype. If any of the discrete
ranges defines a null range, any array thus constrained is a null array, having no components. An array
value satisfies an index constraint if at each index position the array value and the index constraint have
the same index bounds. (Note, however, that assignment and certain other operations on arrays involve an
implicit subtype conversion.)

5The bounds of each array object are determined as follows:

• 6For a variable declared by an object declaration, the subtype indication of the corresponding object
declaration must define a constrained array subtype (and, thereby, the bounds). The same
requirement exists for the subtype indication of a component declaration, if the type of the record
component is an array type; and for the component subtype indication of an array type definition,
if the type of the array components is itself an array type.

• 7For a constant declared by an object declaration, the bounds of the constant are defined by the
initial value if the subtype of the constant is unconstrained; they are otherwise defined by this
subtype (in the latter case, the initial value is the result of an implicit subtype conversion).

• 8♦

• 9For a formal parameter of a subprogram ♦ the bounds are obtained from the corresponding actual
parameter. (The formal parameter is constrained with the corresponding values of the bounds.)

• 10For a renaming declaration ♦ the bounds are those of the renamed object ♦.

11For the elaboration of an index constraint, the discrete ranges are evaluated left to right.14 It is poor
programming practice to permit the different index ranges to modify variables that are mutually
accessible.

12Examples of array declarations including an index constraint:

RECTANGLE : MATRIX(1 .. 20, 1 .. 30);
BOARD : MATRIX(1 .. 8, 1 .. 8); -- see 3.6
INVERSE : MATRIX(1 .. N, 1 .. N); -- N need not be static

FILTER : BIT_VECTOR(0 .. 31);

13♦

Notes:

13The range ‘‘-1..10’’ is illegal as an integer range in a constrained array definition (as well as in an iteration rule) since
its elements are not both ‘‘numeric literals, named numbers, or attributes’’ of type universal_integer. The independently
determined types of these expressions are universal_integer. Therefore, the range is illegal. Basically, this is due to the
fact that -1 is not a universal_integer literal [AI-00148].

14IMPLEMENTATION REQUIREMENT. The left to right order eliminates one source of incorrect order dependencies.

42 ARM
Declarations and Types

15The elaboration of a subtype indication consisting of a type mark followed by an index constraint checks
the compatibility of the index constraint with the type mark (see 3.3.2).

16All components of an array have the same subtype. In particular, for an array of components that are
one-dimensional arrays, this means that all components have the same bounds and hence the same length.

17References: actual parameter 6.4.1, array bound 3.6, array component 3.6, array type 3.6, array type
definition 3.6, bound of a range 3.5, compatible 3.3.2, component declaration 3.7, constant 3.2.1,
constrained array definition 3.6, constrained array subtype 3.6, conversion 4.6, ♦ discrete range 3.6,
expression 4.4, formal parameter 6.1, function 6.5, index 3.6, index constraint 3.6.1, index subtype 3.6,
initial value 3.2.1, integer literal 2.4, integer type 3.5.4, iteration rule 5.5, mode 12.1.1, name 4.1, null
range 3.5, object 3.2, object declaration 3.2.1, predefined type C, range 3.5, record component 3.7,
renaming declaration 8.5, result subtype 6.1, satisfy 3.3, subprogram 6, subtype conversion 4.6, subtype
indication 3.3.2, type mark 3.3.2, unconstrained array type 3.6, unconstrained subtype 3.3, universal type
4.10, universal_integer type 3.5.4, variable 3.2.1

AI Crossreferences:

Section Class Status AI-0 Date Description
3.06.01 (02) BI WA 0218/08 88-11-08 Implicit conversion of attributes that are functions
3.06.01 (02) ra RE 0161/01 84-01-13 Index Constraints with mixed bounds
3.06.01 (02) ra WJ 0148/05 86-07-23 Legality of -1..10 in loops
3.06.01 (02) ST RE 0140/01 85-09-16 Allow -1..10 as a discrete range in loops
3.06.01 (04) co WJ 0282/06 86-12-01 Compatibility of constraint defined by discrete range

3.6.2 Operations of Array Types

1The basic operations15 of an array type include the operations involved in assignment and aggregates ♦,
membership tests, indexed components, qualification, and explicit conversion; for one-dimensional arrays
the basic operations also include the operations involved in ♦ string literals if the component type is a
character type.

2If A is an array object, an array value, or a constrained array subtype, the basic operations also include the
attributes listed below. These attributes are not allowed for an unconstrained array type. The argument N
used in the attribute designators for the N-th dimension of an array must be a static expression of type
universal_integer. The value of N must be positive (nonzero) and no greater than the dimensionality of
the array.

3A’FIRST Yields the lower bound of the first index range. The value of this attribute has the
same type as this lower bound.

4A’FIRST(N) Yields the lower bound of the N-th index range. The value of this attribute has the
same type as this lower bound.

5A’LAST Yields the upper bound of the first index range. The value of this attribute has the
same type as this upper bound.

6A’LAST(N) Yields the upper bound of the N-th index range. The value of this attribute has the
same type as this upper bound.

7A’RANGE Yields the first index range, that is, the range A’FIRST .. A’LAST.

15Some of operations of an array type require or return information about the constraints of the subtype. In this case we
talk about operations or attributes of the subytype, but formally these operations are operations of the base type that
take additional arguments carrying the needed constraint information. See also 3.5.5.

ARM 43
Declarations and Types

8A’RANGE(N) Yields the N-th index range, that is, the range A’FIRST(N) .. A’LAST(N).

9A’LENGTH Yields the number of values of the first index range (zero for a null range). The
value of this attribute is of the type universal_integer.

10A’LENGTH(N) Yields the number of values of the N-th index range (zero for a null range). The
value of this attribute is of the type universal_integer.

11In addition, the attribute T’BASE is defined for an array type or subtype T (see 3.3.3). ♦

12Besides the basic operations, the operations of an array type include the predefined comparison for
equality and inequality♦. For one-dimensional arrays, the operations include catenation♦. ♦

13Examples (using arrays declared in the examples of section 3.6.1):

-- FILTER’FIRST = 0 FILTER’LAST = 31 FILTER’LENGTH = 32
-- RECTANGLE’LAST(1) = 20 RECTANGLE’LAST(2) = 30

Notes:

14The attributes A’FIRST and A’FIRST(1) yield the same value. A similar relation exists for the attributes
A’LAST, A’RANGE, and A’LENGTH. The following relations are satisfied (except for a null array) by
the above attributes if the index type is an integer type:

A’LENGTH = A’LAST - A’FIRST + 1
A’LENGTH(N) = A’LAST(N) - A’FIRST(N) + 1

15♦

16References: aggregate 4.3, array type 3.6, assignment 5.2, attribute 4.1.4, basic operation 3.3.3, bound of a
range 3.5, catenation operator 4.5 4.5.3, character type 3.5.2, constrained array subtype 3.6, conversion
4.6, designator 6.1, dimension 3.6, index 3.6, indexed component 4.1.1, ♦ membership test 4.5 4.5.2, null
range 3.5, object 3.2, operation 3.3, predefined operator 4.5, qualified expression 4.7, relational operator
4.5 4.5.2, static expression 4.9, string literal 2.6, subcomponent 3.3, type 3.3, unconstrained array type 3.6,
universal type 4.10, universal_integer type 3.5.4

AI Crossreferences:

Section Class Status AI-0 Date Description
3.06.02 (02) co WA 0271/04 88-06-16 Using array attributes with access values
3.06.02 (02) ST RE 0584/00 88-09-02 Restrict argument of RANGE attribute in Ada 9x

3.6.3 The Type String

1The values of the predefined type STRING are one-dimensional arrays of the predefined type
CHARACTER, indexed by values of the predefined subtype POSITIVE:

subtype POSITIVE is INTEGER range 1 .. INTEGER’LAST;
type STRING is array(POSITIVE range <>) of CHARACTER;

2Examples:

STARS : STRING(1 .. 120) := (1 .. 120 => ’*’);
QUESTION : constant STRING := "HOW MANY CHARACTERS?";
-- QUESTION’FIRST = 1, QUESTION’LAST = 20 (the number of characters)

44 ARM
Declarations and Types

ASK_TWICE : constant STRING := QUESTION & QUESTION;
NINETY_SIX : constant ROMAN := "XCVI"; -- see 3.6

Notes:

3String literals (see 2.6 and 4.2) are basic operations applicable to the type STRING and to any other
one-dimensional array type whose component type is a character type. The catenation operator is a
predefined operator for the type STRING and for one-dimensional array types; it is represented as &. The
relational operators <, <=, >, and >= are defined for values of these types, and correspond to lexicographic
order (see 4.5.2).

4References: aggregate 4.3, array 3.6, catenation operator 4.5 4.5.3, character type 3.5.2, component type
(of an array) 3.6, dimension 3.6, index 3.6, lexicographic order 4.5.2, positional aggregate 4.3, predefined
operator 4.5, predefined type C, relational operator 4.5 4.5.2, string literal 2.6, subtype 3.3, type 3.3

3.7 Record Types

1A record object is a composite object consisting of named components. The value of a record object is a
composite value consisting of the values of its components.

2record_type_definition ::=
record

component_list
end record

component_list ::=
component_declaration {component_declaration}

| ♦

component_declaration ::=
identifier_list : component_subtype_definition ♦ ;

component_subtype_definition ::= subtype_indication

3Each component declaration declares a component of the record type. ♦ The identifiers of all components
of a record type must be distinct. The use of a name that denotes a record component ♦ is not allowed
within the record type definition that declares the component.

4A component declaration with several identifiers is equivalent to a sequence of single component
declarations, as explained in section 3.2. Each single component declaration declares a record component
whose subtype is specified by the component subtype definition.

5♦

7♦ The same components are present in all values of the record type. ♦

8The elaboration of a record type definition creates a record type; it consists of the elaboration of any
corresponding (single) component declarations, in the order in which they appear ♦. The elaboration of a
component declaration consists of the elaboration of the component subtype definition.

9For the elaboration of a component subtype definition, ♦ the subtype indication is elaborated. ♦

ARM 45
Declarations and Types

10Examples of record type declarations:

type DATE is
record

DAY : INTEGER range 1 .. 31;
MONTH : MONTH_NAME;
YEAR : INTEGER range 0 .. 4000;

end record;

type CAR is
record

NUMBER : INTEGER;
OWNER : STRING(1 .. 20);

end record;

type PERSON is
record

NAME : STRING(1 .. 20);
BIRTH : DATE;
AGE : INTEGER range 0 .. 130;
VEHICLE : CAR;
SPOUSE : STRING(1 .. 20);

end record;

11Examples of record variables:

TOMORROW, YESTERDAY : DATE := (1, JANUARY, 1988);
NEXT_CAR : CAR := (34549821,"Smith, Michael K. ");
NEXT_PERSON : PERSON := ("Smith, Michael K. ",YESTERDAY,40,

NEXT_CAR,"Smith, Elizabeth B. ")

Notes:

12♦

12Unlike the components of an array, the components of a record need not be of the same type.

13References: assignment compound delimiter 2.2, component 3.3, composite value 3.3, ♦ declaration 3.1,
elaboration 3.9, expression 4.4, identifier 2.3, identifier list 3.2, ♦ name 4.1, object 3.2, subtype 3.3, type
3.3, type mark 3.3.2

AI Crossreferences:

Section Class Status AI-0 Date Description
3.07 (00) ra CE 0566/05 88-10-03 Storage allocation for constrained record subtypes
3.07 (02) ST RE 0429/00 86-06-19 Allow array type definition for record component
3.07 (08) BI WJ 0358/10 86-12-04 Discriminant checks for non-existent subcomponents

3.7.1 Discriminants: Removed

AI Crossreferences:

Section Class Status AI-0 Date Description
3.07.01 (03) BI RE 0654/00 88-12-21 Derived type overlooked
3.07.01 (06) ra WI 0175/01 86-01-28 Discriminant name as part of larger expression

46 ARM
Declarations and Types

3.7.2 Discriminant Constraints: Removed

AI Crossreferences:

Section Class Status AI-0 Date Description
3.07.02 (01) ra RE 0162/00 84-01-13 Discriminant Constraints do not apply to subtypes
3.07.02 (05) BI WJ 0007/19 86-12-04 Discriminant checks for incomplete, private, and access types
3.07.02 (05) BI WJ 0358/10 86-12-04 Discriminant checks for non-existent subcomponents
3.07.02 (05) co WJ 0319/09 87-06-18 Checking for subtype incompatibility
3.07.02 (08) BI WJ 0014/10 87-06-18 Evaluating default discriminant expressions
3.07.02 (08) BI WJ 0308/05 88-12-14 Checking default initialization of discriminants for compatibility
3.07.02 (08) co RE 0456/00 86-08-12 Required discriminant constraint
3.07.02 (10) BI WJ 0308/05 88-12-14 Checking default initialization of discriminants for compatibility

3.7.3 Variant Parts: Removed

AI Crossreferences:

Section Class Status AI-0 Date Description
3.07.03 (00) ST RE 0345/00 85-06-18 Record type with variant having no discriminants

3.7.4 Operations of Record Types

1The basic operations of a record type include the operations involved in assignment and aggregates ♦,
membership tests, selection of record components, and qualification.

4In addition, the attribute T’BASE ♦ is defined for a record type T (see 3.3.3).

5Besides the basic operations, the operations of a record type include the predefined comparison for
equality and inequality♦.

6♦

7References: actual parameter 6.4.1, aggregate 4.3, assignment 5.2, attribute 4.1.4, basic operation 3.3.3,
boolean type 3.5.3, constant 3.2.1, conversion 4.6, formal parameter 6.1, ♦ membership test 4.5 4.5.2,
mode 6.1, object 3.2.1, operation 3.3, predefined operator 4.5, predefined type C, qualified expression 4.7,
record type 3.7, relational operator 4.5 4.5.2, selected component 4.1.3, subcomponent 3.3, subtype 3.3,
type 3.3

AI Crossreferences:

Section Class Status AI-0 Date Description
3.07.04 (03) ra WA 0005/08 88-11-04 ’CONSTRAINED for a formal parameter

3.8 Access Types: Removed

AI Crossreferences:

Section Class Status AI-0 Date Description
3.08 (06) BI WJ 0324/08 88-05-23 Checking the subtype of a non-null access value
3.08.01 (04) BI WJ 0007/19 86-12-04 Discriminant checks for incomplete, private, and access types
3.08.01 (04) co WJ 0319/09 87-06-18 Checking for subtype incompatibility
3.08.01 (04) na na 0264/01 84-11-05 [combined with 0039]
3.08.01 (04) ra WJ 0231/05 88-05-23 Full declarations of incomplete types can have discriminants
3.08.02 (02, 03) BI RE 0101/00 83-11-07 A prefix cannot be a value.

ARM 47
Declarations and Types

3.08.02 (04) na na 0275/08 86-04-16 [Combined with 0007]

3.9 Declarative Parts

1A declarative part contains declarative items (possibly none).

2declarative_part ::= {basic_declarative_item} {later_declarative_item}

basic_declarative_item ::= basic_declaration | ♦ | use_clause

later_declarative_item ::= subprogram_body | package_body
| subprogram_declaration | package_declaration |♦
| use_clause | ♦

inner_declarative_part ::= {inner_declarative_item}

inner_declarative_item ::= inner_declaration | use_clause

3The elaboration of a declarative part consists of the elaboration of the declarative items, if any, in the
order in which they are given in the declarative part. After its elaboration, a declarative item is said to be
elaborated. Prior to the completion of its elaboration (including before the elaboration), the declarative
item is not yet elaborated.

4For several forms of declarative item, the language rules (in particular scope and visibility rules) are such
that it is either impossible or illegal to use an entity before the elaboration of the declarative item that
declares this entity. For example, it is not possible to use the name of a type for an object declaration if
the corresponding type declaration is not yet elaborated. In the case of bodies, the following checks are
performed:

• 5For a subprogram call, a check is made that the body of the subprogram is already elaborated.
The check that the body of a subprogram has been elaborated is made after the
evaluation of all of the actual parameters of a call.16

• 6♦

8The exception PROGRAM_ERROR is raised if this check fails.

9If a subprogram declaration ♦ or a package declaration is a declarative item of a given declarative part,
then the body (if there is one) of the program unit declared by the declarative item must itself be a
declarative item of this declarative part (and must appear later). ♦

10References: inner_declaration 3.1, ♦ program_error exception 11.1, scope 8.2, subprogram call 6.4,
type 3.3, visibility 8.3

11Elaboration of declarations: 3.1, component declaration 3.7, deferred constant declaration 7.4.3,
enumeration literal specification 3.5.1, ♦ loop parameter specification 5.5, number declaration 3.2.2,
object declaration 3.2.1, package declaration 7.2, parameter specification 6.1, private type declaration
7.4.1, renaming declaration 8.5, subprogram declaration 6.1, subtype declaration 3.3.2

16IMPLEMENTATION REQUIREMENT. This eliminates one source of IODs. See [AI-00406] for the Ada requirement
that no such ordering be specified.

48 ARM
Declarations and Types

12Elaboration of type definitions: 3.3.1, array type definition 3.6, enumeration type definition 3.5.1, integer
type definition 3.5.4, record type definition 3.7

13Elaboration of other constructs: context clause 10.1, compilation unit 10.1, library unit 10.5, package
body 7.1, subprogram body 6.3, use clause 8.4, with clause 10.1.1

AI Crossreferences:

Section Class Status AI-0 Date Description
3.09 (05) BI WJ 0180/07 86-07-23 Elaboration checks for INTERFACE subprograms
3.09 (05) BI WJ 0406/05 87-08-06 Evaluating parameters of a call before raising PROGRAM_ERROR
3.09 (06) BI WJ 0149/09 87-02-23 Activating a task before elaboration of its body
3.09 (08) BI WJ 0430/05 88-05-23 Using an enumeration literal does not raise PROGRAM_ERROR

ARM 49
Names and Expressions

Chapter 4

NAMES AND EXPRESSIONS

1The rules applicable to the different forms of name and expression, and to their evaluation, are given in
this chapter.

4.1 Names

1Names can also denote declared entities, whether declared explicitly or implicitly (see 3.1). Names can
also denote objects designated by ♦ subcomponents ♦ of objects and values ♦. Finally, names can denote
attributes of any of the foregoing.

2name ::= simple_name
| character_literal | ♦
| indexed_component | ♦
| selected_component | attribute

simple_name ::= identifier

prefix ::= name | function_call

3A simple name for an entity is either the identifier associated with the entity by its declaration, or another
identifier associated with the entity by a renaming declaration.

4Certain forms of name (indexed and selected components ♦ and attributes) include a prefix that is either a
name or a function call. ♦

5If the prefix of a name is a function call, then the name denotes a component ♦ or an attribute ♦ of the
result of the function call ♦.

6A prefix is said to be appropriate for a type in ♦ the following case:

• 7The type of the prefix is the type considered.

• 8♦

9The evaluation of a name determines the entity denoted by the name. This evaluation has no other effect
for a name that is a simple name or a character literal ♦.

10The evaluation of a name that has a prefix includes the evaluation of the prefix, that is, of the
corresponding name or function call. ♦

50 ARM
Names and Expressions

11Examples of simple names:

♦
LIMIT -- the simple name of a constant (see 3.2.1)
♦
BOARD -- the simple name of an array variable (see 3.6.1)
TABLE -- the simple name of a type (see 3.6)
INCREMENT -- the simple name of a function (see 6.1)
♦

12References: attribute 4.1.4, belong to a type 3.3, character literal 2.5, component 3.3, constraint_error
exception 11.1, declaration 3.1, designate 3.8, designated type 3.8, entity 3.1, evaluation 4.5, formal
parameter 6.1, function call 6.4, identifier 2.3, indexed component 4.1.1, mode 6.1, object 3.2.1, ♦ raising
of exceptions 11, renaming declarations 8.5, selected component 4.1.3, subcomponent 3.3, type 3.3

AI Crossreferences:

Section Class Status AI-0 Date Description
4.01 (10) BI RE 0676/00 88-12-21 A mistake?

4.1.1 Indexed Components

1An indexed component denotes ♦ a component of an array ♦.

2indexed_component ::= prefix(expression {, expression})

3♦ The prefix must be appropriate for an array type. The expressions specify the index values for the
component; there must be one such expression for each index position of the array type. ♦

4Each expression must be of the type of the corresponding index. For the evaluation of an indexed
component, the prefix is evaluated first, followed by the expressions (left to right).17 The
exception CONSTRAINT_ERROR is raised if an index value does not belong to the range of the
corresponding index of the prefixing array ♦.

5Examples of indexed components:

FILTER(1) -- a component of a one-dimensional array (see 3.6.1)
PAGE(10) -- a component of a one-dimensional array (see 3.6)
BOARD(M, J + 1) -- a component of a two-dimensional array (see 3.6.1)
PAGE(10)(20) -- a component of a component (see 3.6)
♦

Notes on the examples:

6Distinct notations are used for components of multidimensional arrays (such as BOARD) and arrays of
arrays (such as PAGE). The components of an array of arrays are arrays and can therefore be indexed.
Thus PAGE(10)(20) denotes the 20th component of PAGE(10). ♦

7References: appropriate for a type 4.1, array type 3.6, component 3.3, component of an array 3.6,
constraint_error exception 11.1, dimension 3.6, evaluation 4.5, expression 4.4, function call 6.4, in some
order 1.6, index 3.6, name 4.1, prefix 4.1, raising of exceptions 11, returned value 5.8 6.5

17IMPLEMENTATION REQUIREMENT.

ARM 51
Names and Expressions

AI Crossreferences:

Section Class Status AI-0 Date Description
4.01.01 (04) BI RE 0585/00 88-09-02 discriminant change after prefix evaluation

4.1.2 Slices: Removed

4.1.3 Selected Components

1Selected components are used to denote record components ♦; they are also used as expanded names as
described below.

2selected_component ::= prefix.selector

selector ::= simple_name

3The following ♦ forms of selected components are used to denote ♦ a record component ♦:

(a) 4Omitted

(b) 5A component of a record:

6The selector must be a simple name denoting a component of a record object or value. The prefix
must be appropriate for the type of this object or value.

(c) 9Omitted

(d) 11Omitted

13A selected component of the remaining form is called an expanded name. In this case the selector must
be ♦ a simple name ♦. A function call is not allowed as the prefix of an expanded name. An expanded
name can denote:

(e) 14An entity declared in the visible part of a package:

15The prefix must denote the package. The selector must be the simple name ♦ of the entity.

(f) 16Omitted

19If, according to the visibility rules, there is at least one possible interpretation of the prefix of a
selected component as the name of an enclosing subprogram,18 then the expanded name is in
error. In particular, no interpretations of the prefix as a function call are then considered.

20The evaluation of a name that is a selected component includes the evaluation of the prefix.

21Examples of selected components:

TOMORROW.MONTH -- a record component (see 3.7)
NEXT_CAR.OWNER -- a record component (see 3.7)
NEXT_PERSON.VEHICLE.NUMBER -- a record component (see 3.7)

22Examples of expanded names:

18We take ‘‘name of an enclosing subprogram’’ to only include the names that are literally present and to exclude any
renaming of these that introduce alternative names [see AI-0119].

52 ARM
Names and Expressions

TABLE_MANAGER.INSERT -- a procedure of the visible part of a package (see 7.5)
♦
STANDARD.BOOLEAN -- the name of a predefined type (see 8.6 and C)

Note:

23For a record with components that are other records, the above rules imply that the simple name must be
given at each level for the name of a subcomponent. For example, the name
NEXT_CAR.OWNER.BIRTH.MONTH cannot be shortened (NEXT_CAR.OWNER.MONTH is not
allowed).

24References: ♦ appropriate for a type 4.1, ♦ body of a program unit 3.9, character literal 2.5, component of
a record 3.7, constraint_error exception 11.1, declaration 3.1, designate 3.8, entity 3.1, function call 6.4,
index 3.6, ♦ object 3.2.1, occur immediately within 8.1, operator 4.5, ♦ overloading 8.3, package 7,
predefined type C, prefix 4.1, procedure body 6.3, program unit 6, raising of exceptions 11, record 3.7,
record component 3.7, renaming declaration 8.5, reserved word 2.9, simple name 4.1, subprogram 6,
variable 3.7.3, visibility 8.3, visible part 3.7.3

AI Crossreferences:

Section Class Status AI-0 Date Description
4.01.03 (15) BI WA 0504/03 88-06-16 Expanded names with a renamed prefix in generic packages
4.01.03 (15) BI WJ 0016/10 86-08-05 Using a renamed package prefix inside a package
4.01.03 (15) BI WJ 0187/06 87-09-12 Using a name decl by a renaming decl as an expanded name selector
4.01.03 (15) BI WJ 0412/06 88-05-23 Expanded names for generic formal parameters
4.01.03 (15) CR WJ 0468/04 87-09-12 Correction to 0187/04 discussion
4.01.03 (17) BI RE 0593/00 88-10-05 Visibility of accept statements
4.01.03 (17) BI WI 0119/02 88-03-28 The prefix of an expanded name
4.01.03 (18) BI WA 0504/03 88-06-16 Expanded names with a renamed prefix in generic packages
4.01.03 (18) BI WI 0119/02 88-03-28 The prefix of an expanded name
4.01.03 (18) BI WJ 0016/10 86-08-05 Using a renamed package prefix inside a package
4.01.03 (18) BI WJ 0412/06 88-05-23 Expanded names for generic formal parameters
4.01.03 (19) BI WI 0119/02 88-03-28 The prefix of an expanded name

4.1.4 Attributes

1An attribute denotes a basic operation of an entity given by a prefix.

2attribute ::= prefix’attribute_designator

attribute_designator ::= simple_name [(universal_static_expression)]

3The applicable attribute designators depend on the prefix. An attribute can be a basic operation delivering
a value; alternatively it can be a function, a type, or a range. The meaning of the prefix of an attribute
must be determinable independently of the attribute designator and independently of the fact that it is the
prefix of an attribute.

4The attributes defined by the language are summarized in Annex A. In addition, an implementation may
provide implementation-defined attributes; their description must be given in Appendix F. The attribute
designator of any implementation-defined attribute must not be the same as that of any language-defined
attribute.

5The evaluation of a name that is an attribute has an effect that depends on the specific attribute.
The result of this evaluation may be a value, a type, or a function to be applied. In case the
prefix is appropriate for an array type, the evaluation of a name includes the evaluation of the

ARM 53
Names and Expressions

prefix.

Notes:

6The attribute designator ♦ RANGE has the same identifier as a reserved word. However, no confusion is
possible since an attribute designator is always preceded by an apostrophe. The only predefined attribute
designators that have a universal expression are those for certain operations of array types (see 3.6.2).

7Examples of attributes:

COLOR’FIRST -- minimum value of the enumeration type COLOR (see 3.3.1 and 3.5)
RAINBOW’BASE’FIRST -- same as COLOR’FIRST (see 3.3.2 and 3.3.3)
♦
BOARD’LAST(2) -- upper bound of the second dimension of BOARD (see 3.6.1 and 3.6.2)
BOARD’RANGE(1) -- index range of the first dimension of BOARD (see 3.6.1 and 3.6.2)
♦

8References: appropriate for a type 4.1, basic operation 3.3.3, declared entity 3.1, name 4.1, prefix 4.1,
reserved word 2.9, simple name 4.1, static expression 4.9, type 3.3, universal expression 4.10

AI Crossreferences:

Section Class Status AI-0 Date Description
4.01.04 (03) BI WI 0188/01 84-06-12 Implementation Defined Attributes
4.01.04 (03) na na 0061/00 85-08-01 [combined with 0015]
4.01.04 (03) ra WJ 0015/12 86-12-01 When the prefix of ’ADDRESS contains a function name
4.01.04 (04) BI CE 0009/04 88-09-02 Implementation-defined names cannot be reserved words

4.2 Literals

1A literal is either a numeric literal, an enumeration literal, ♦ or a string literal. The evaluation of a literal
yields the corresponding value.

2Numeric literals are the literals of the type universal_integer ♦. Enumeration literals include character
literals and yield values of the corresponding enumeration types. ♦

3A string literal is a basic operation that combines a sequence of characters into a value of a one-
dimensional array of a character type; the bounds of this array are determined according to the rules for
positional array aggregates (see 4.3.2). For a null string literal, the upper bound is the predecessor, as
given by the PRED attribute, of the lower bound. The evaluation of a null string literal raises the
exception CONSTRAINT_ERROR if the lower bound does not have a predecessor (see 3.5.5).

4The type of a string literal ♦ must be determinable solely from the context in which this literal appears,
excluding the literal itself, but using the fact that ♦ a string literal is a value of a one-dimensional array
type whose component type is a character type.

5The character literals corresponding to the graphic characters contained within a string literal must be
visible at the place of the string literal (although these characters themselves are not used to determine the
type of the string literal).

6Examples:

54 ARM
Names and Expressions

♦
1_345 -- an integer literal
CLUBS -- an enumeration literal
’A’ -- a character literal
"SOME TEXT" -- a string literal

7References: ♦ aggregate 4.3, array 3.6, array bound 3.6, array type 3.6, character literal 2.5, character type
3.5.2, component type 3.3, constraint_error exception 11.1, designate 3.8, dimension 3.6, enumeration
literal 3.5.1, graphic character 2.1, integer literal 2.4, null literal 3.8, numeric literal 2.4, object 3.2.1,
string literal 2.6, type 3.3, universal_integer type 3.5.4, visibility 8.3

AI Crossreferences:

Section Class Status AI-0 Date Description
4.02 (03) BI WA 0472/04 88-06-16 Graphic characters not in a string literal’s component type
4.02 (05) ST RE 0390/00 85-09-16 Visibility of character literals.
4.02 (05) ST RE 0420/03 88-11-08 Allow 256 values for type CHARACTER

4.3 Aggregates

1An aggregate is a basic operation that combines component values into a composite value of a record or
array type.

2aggregate ::=
(component_association {, component_association})

component_association ::=
[choice {| choice} =>] expression

choice19 ::= simple_expression | discrete_range
| component_simple_name | others

3Each component association associates an expression with components (possibly none). A component
association is said to be named if the components are specified explicitly by choices; it is otherwise said to
be positional. For a positional association, the (single) component is implicitly specified by position, in
the order of the corresponding component declarations for record components, in index order for array
components. The only choices allowed in an aggregate are component_simple_name or others.
The other possibilities support the use of choice in case statements.

4Named associations can be given in any order. Positional and named associations cannot be used in
the same aggregate. Aggregates containing a single component association must always be given in
named notation. (Consider this narrative requirement to be a syntax rule for purposes of overload
resolution [AI-00157].) Specific rules concerning component associations exist for record aggregates and
array aggregates.

5♦ A choice that is a component simple name is only allowed in a record aggregate. ♦ The choice others
is only allowed in a component association if the association ♦ has this single choice and the containing
aggregate has this single component association; it specifies all components, which must be of the
same type.

19Moved from 3.7.3, which has been removed.

ARM 55
Names and Expressions

6Each component of the value defined by an aggregate must be represented once and only once in the
aggregate and must be a defined component of the type [AI-00309]. Hence each aggregate must be
complete and a given component is not allowed to be specified by more than one choice.

7The type of an aggregate must be determinable solely from the context in which the aggregate appears,
excluding the aggregate itself, but using the fact that this type must be composite ♦. The type of an
aggregate in turn determines the required type for each of its components.

Notes:

8The above rule implies that the determination of the type of an aggregate cannot use any information from
within the aggregate. In particular, this determination cannot use the type of the expression of a
component association, or the form or the type of a choice. An aggregate can always be distinguished
from an expression enclosed by parentheses: this is a consequence of the fact that named notation is
required for an aggregate with a single component.

9References: array aggregate 4.3.2, array type 3.6, basic operation 3.3.3, component 3.3, composite type
3.3, composite value 3.3, discrete range 3.6, expression 4.4, index 3.6, ♦ primary 4.4, record aggregate
4.3.1, record type 3.7, simple expression 4.4, simple name 4.1, type 3.3

AI Crossreferences:

Section Class Status AI-0 Date Description
4.03 (06) BI WI 0309/02 88-07-06 Aggregates with choices outside the aggregate’s subtype
4.03 (06) co WJ 0293/05 87-06-18 Null others choice for array aggregates
4.03 (06) na na 0491/01 87-04-19 [Combined with 0309]
4.03 (06) ra WJ 0169/06 86-07-23 Legality of incomplete null multidimensional array aggregates

4.3.1 Record Aggregates

1If the type of an aggregate is a record type, the component names given as choices must denote all
components of the record type. If the choice others is given as a choice of a record aggregate, it must
represent all components and there must be at least one component. A component association with
the choice others or with more than one choice is only allowed if the represented components are all of
the same type. The expression of a component association must have the type of the associated record
components.

2♦

3For the evaluation of a record aggregate, the expressions given in the component associations are
evaluated left to right.20 The expression of a named association is evaluated once for each associated
component. A check is made that the value of each subcomponent of the aggregate belongs to the subtype
of this subcomponent. The exception CONSTRAINT_ERROR is raised if this check fails.

4Example of a record aggregate with positional associations:

(4, JULY, 1776) -- see 3.7

5Examples of record aggregates with named associations:

20IMPLEMENTATION REQUIREMENT.

56 ARM
Names and Expressions

(DAY => 4, MONTH => JULY, YEAR => 1776)
(MONTH => JULY, DAY => 4, YEAR => 1776)
♦

6Example of component association with several choices:

(MONTH => JULY, DAY|YEAR => 0) -- see 3.7

8References: aggregate 4.3, choice 4.3, component association 4.3, component name 3.7, constraint 3.3,
constraint_error exception 11.1, evaluate 4.5, expression 4.4, in some order 1.6, program 10, raising of
exceptions 11, record component 3.7, record type 3.7, satisfy 3.3, static expression 4.9, subcomponent 3.3,
subtype 3.3.2, type 3.3

AI Crossreferences:

Section Class Status AI-0 Date Description
4.03.01 (01) BI WI 0309/02 88-07-06 Aggregates with choices outside the aggregate’s subtype
4.03.01 (01) BI WJ 0244/04 87-01-20 Record aggregates with multiple choices in a component association
4.03.01 (01) ST RE 0681/00 88-12-21 Can’t declare a constant of a ’null’ record type.
4.03.01 (03) BI WA 0189/06 88-11-04 Order of evaluation of components in a record aggregate

4.3.2 Array Aggregates

1If the type of an aggregate is a one-dimensional array type, then the only allowed choice is others, and
the expression of each component association must be of the component type.

2If the type of an aggregate is a multidimensional array type, an n-dimensional aggregate is written as a
one-dimensional aggregate, in which the expression specified for each component association is itself
written as an (n-1)-dimensional aggregate which is called a subaggregate; the index subtype of the
one-dimensional aggregate is given by the first index position of the array type. The same rule is used to
write a subaggregate if it is again multidimensional, using successive index positions. A string literal is
allowed in a multidimensional aggregate at the place of a one-dimensional array of a character type. In
what follows, the rules concerning array aggregates are formulated in terms of one-dimensional
aggregates.

3♦ The component associations of an array aggregate must be either all positional or a single association
with the single choice others. ♦ An others choice is static if the applicable index constraint is static.

4The bounds of an array aggregate that has an others choice are determined by the applicable index
constraint. An others choice is only allowed if the aggregate appears in one of the following contexts
(which defines the applicable index constraint):

(a) 5The aggregate is an actual parameter, ♦ the result expression of a function, or the expression that
follows an assignment compound delimiter. Moreover, the subtype of the corresponding formal
parameter, ♦ function result, or object is a constrained array subtype. An object is a constrained
array subtype if it declared to be one or if it is a formal that is defined to be an
unconstrained array type.

(b) 7The aggregate is the operand of a qualified expression whose type mark denotes a constrained array
subtype.

(c) 8The aggregate is not a subaggregate and is the expression of a component association of an
enclosing (array or record) aggregate. ♦

(d) 8aThe aggregate is a subaggregate of a multidimensional array aggregate that is in one of
the previous three contexts [AI-00177].

ARM 57
Names and Expressions

9The bounds of an array aggregate that does not have an others choice are determined as follows. ♦ For a
positional aggregate, the lower bound is determined by the applicable index constraint if the aggregate
appears in one of the contexts (a) through (d); otherwise, the lower bound is given by S’FIRST where S is
the index subtype; in either case, the upper bound is determined by the number of components.

10The evaluation of an array aggregate that is not a subaggregate proceeds in one step. The choices of this
aggregate and of its subaggregates, if any, are not evaluated, since the only possible choice for an
array aggregate is OTHERS. The expressions of the component associations of the array aggregate are
evaluated left to right21; the expression of a named association is evaluated once for each associated
component. The evaluation of a subaggregate consists of this step.

11For the evaluation of an aggregate ♦ a check is made that ♦ the value of each subcomponent of the
aggregate belongs to the subtype of this subcomponent. For an n-dimensional multidimensional
aggregate, a check is made that all (n-1)-dimensional subaggregates have the same bounds. The exception
CONSTRAINT_ERROR is raised if any of these checks fails. CONSTRAINT_ERROR is also raised
if the bounds of a positional aggregate do not belong to the corresponding index subtype
[AI-00019]. These checks are all made after the component expressions have been evaluated.22

Note:

12The allowed contexts for an array aggregate including an others choice are such that the bounds of such
an aggregate are always known from the context.

13Examples of array aggregates with positional associations:

(7, 9, 5, 1, 3, 2, 4, 8, 6, 0)
♦

14♦

15Examples of two-dimensional array aggregates:

-- Two aggregates for values of type MATRIX (see 3.6):

((1, 1, 1), (2, 2, 2))
(others => (1, 1, 1))
♦

16Examples of aggregates as initial values:

A : TABLE := (7, 9, 5, 1, 3, 2, 4, 8, 6, 0); -- A(1)=7, A(10)=0
B : TABLE := TABLE’(♦ others => 0); -- B(i)=0 for i in 1..10
♦

E : BIT_VECTOR(M .. N) := (others => TRUE);
F : STRING(1 .. 1) := (others => ’F’); -- a one component aggregate: same as "F"

17References: actual parameter 6.4.1, aggregate 4.3, array type 3.6, assignment compound delimiter 5.2,
choice 4.3, component 3.3, component association 4.3, component type 3.3, constrained array subtype 3.6,

21IMPLEMENTATION REQUIREMENT.

22IMPLEMENTATION REQUIREMENT.

58 ARM
Names and Expressions

constraint 3.3, constraint_error exception 11.1, dimension 3.6, evaluate 4.5, expression 4.4, formal
parameter 6.1, function 6.5, in some order 1.6, index constraint 3.6.1, index range 3.6, index subtype 3.6,
index type 3.6, named component association 4.3, null array 3.6.1, object 3.2, positional component
association 4.3, qualified expression 4.7, raising of exceptions 11, static expression 4.9, subcomponent
3.3, type 3.3

AI Crossreferences:

Section Class Status AI-0 Date Description
4.03.02 (02) co WA 0273/04 88-06-17 The bounds of a string literal in a multidimensional aggregate
4.03.02 (02) ra WA 0017/05 88-06-17 Use of a string value in a multidimensional aggregate
4.03.02 (03) BI WA 0414/04 88-06-17 Null discrete range as an array aggregate choice
4.03.02 (03) BI WJ 0190/05 86-07-23 A static expression cannot have a generic formal type
4.03.02 (03) BI WJ 0310/04 86-07-23 OTHERS choices and static index constraints
4.03.02 (04) na na 0415/01 87-01-20 [combined with 0244]
4.03.02 (05) BI CE 0568/02 88-11-20 Unconstrained array objects and others choices
4.03.02 (06) BI WI 0473/01 87-04-16 Named associations for default array aggregates
4.03.02 (08) BI WJ 0177/04 86-07-23 Use of others in a multidimensional aggregate
4.03.02 (11) BI WJ 0019/07 86-07-23 Checking for too many components in positional aggregates
4.03.02 (11) BI WJ 0313/03 86-07-23 Non-null bounds belong to the index subtype
4.03.02 (11) co WA 0176/04 88-11-04 Bounds of subaggregates in null arrays
4.03.02 (11) co WA 0437/01 88-06-17 Evaluation of multi-dimensional array aggregates
4.03.02 (11) ra WJ 0018/06 86-07-23 Checking aggregate index and subcomponent values
4.03.02 (11) ra WJ 0265/05 87-06-18 Index subtype of an array aggregate

4.4 Expressions

1An expression is a formula that defines the computation of a value.

2expression ::=
relation {and relation} | relation {and then relation}

| relation {or relation} | relation {or else relation}
| relation {xor relation}

relation ::=
simple_expression [relational_operator simple_expression]

| simple_expression [not] in range
| simple_expression [not] in type_mark

simple_expression ::= [unary_adding_operator] term {binary_adding_operator term}

term ::= factor {multiplying_operator factor}

factor ::= primary [** primary] | abs primary | not primary

primary ::=
numeric_literal | ♦ | aggregate | string_literal | name | ♦

| function_call | type_conversion | qualified_expression | (expression)

3Each primary has a value and a type. The only names allowed as primaries are named numbers; attributes
that yield values; and names denoting ♦ values. ♦

4The possible types of an expression depend only on the type of its constituents and on the operators
applied except for string literals and aggregates; for an overloaded constituent or operator, the
determination of the constituent type, or the identification of the appropriate operator, depends on the
context. The types of string literals and aggregates must be determinable solely from the context
in which they appear. For each predefined operator, the operand and result types are given in section

ARM 59
Names and Expressions

4.5.

5Examples of primaries:

♦
PI -- named number
(1,2,3,4,5) -- array aggregate
SUM -- variable
INTEGER’LAST -- attribute
ABS(X) -- function call
COLOR’(BLUE) -- qualified expression
♦
(LINE_COUNT + 10) -- parenthesized expression

6Examples of expressions:

VOLUME -- primary
not DESTROYED -- factor
2*LINE_COUNT -- term
-4 -- simple expression
-4 + A -- simple expression
B**2 - 4*A*C -- simple expression
♦
COUNT in SMALL_INT -- relation
COUNT not in SMALL_INT -- relation
INDEX = 0 or ITEM_HIT -- expression
(COLD and SUNNY) or WARM -- expression (parentheses are required)
A**(B**C) -- expression (parentheses are required)

7References: aggregate 4.3, ♦ array aggregate 4.3.2, attribute 4.1.4, binary adding operator 4.5 4.5.3,
context of overload resolution 8.7, exponentiating operator 4.5 4.5.6, function call 6.4, multiplying
operator 4.5 4.5.5, name 4.1, named number 3.2, numeric literal 2.4, object 3.2, operator 4.5, overloading
8.3, overloading an operator 6.7, qualified expression 4.7, range 3.5, ♦ relation 4.5.1, relational operator
4.5 4.5.2, result type 6.1, string literal 2.6, type 3.3, type conversion 4.6, type mark 3.3.2, unary adding
operator 4.5 4.5.4, variable 3.2.1

4.5 Operators and Expression Evaluation

1The language defines the following six classes of operators. ♦ They are given in the order of increasing
precedence.

2logical_operator ::= and | or | xor

relational_operator ::= = | /= | < | <= | > | >=

binary_adding_operator ::= + | - | &

unary_adding_operator ::= + | -

multiplying_operator ::= * | / | mod | rem

highest_precedence_operator ::= ** | abs | not

3The short-circuit control forms and then and or else have the same precedence as logical operators. The
membership tests in and not in have the same precedence as relational operators.

60 ARM
Names and Expressions

4For a term, simple expression, relation, or expression, operators of higher precedence are associated with
their operands before operators of lower precedence. In this case, for a sequence of operators of the same
precedence level, the operators are associated in textual order from left to right; parentheses can be used to
impose specific associations.

5The operands of a factor, of a term, of a simple expression, or of a relation, and the operands of an
expression that does not contain a short-circuit control form, are evaluated left to right23 (but before
application of the corresponding operator). The right operand of a short-circuit control form is evaluated
if and only if the left operand has a certain value (see 4.5.1). It is poor programming style for the
evaluation of the operands of an expression to modify variables that are mutually accessible by
any pair of operands.

6For each form of type declaration, certain of the above operators are predefined, that is, they are implicitly
declared by the type declaration. For each such implicit operator declaration, the names of the parameters
are LEFT and RIGHT for binary operators; the single parameter is called RIGHT for unary adding
operators and for the unary operators abs and not. The effect of the predefined operators is explained in
subsections 4.5.1 through 4.5.7 and in 4.10 for universal expressions [AI-00689].

7The predefined operations on integer types either yield the mathematically correct result or raise the
exception CONSTRAINT_ERROR.24 A predefined operation that delivers a result of an integer type
(other than universal_integer) can only raise the exception CONSTRAINT_ERROR if the mathematical
result is not a value of the type. ♦

8Examples of precedence:

not SUNNY or WARM -- same as (not SUNNY) or WARM
X > 4 and Y > 0 -- same as (X > 4) and (Y > 0)

-4*A**2 -- same as -(4 * (A**2))
abs(1 + A) + B -- same as (abs (1 + A)) + B
Y**(-3) -- parentheses are necessary
A / B * C -- same as (A/B)*C
A + (B + C) -- evaluate B + C before adding it to A

9References: constraint_error exception 11.1, designator 6.1, expression 4.4, factor 4.4, implicit
declaration 3.1, in some order 1.6, integer type 3.5.4, membership test 4.5.2, name 4.1, overloading 6.6
8.7, raising of an exception 11, range 3.5, relation 4.4, short-circuit control form 4.5 4.5.1, simple
expression 4.4, term 4.4, type 3.3, type declaration 3.3.1, universal_integer type 3.5.4

AI Crossreferences:

Section Class Status AI-0 Date Description
4.05 (07) NB WJ 0387/05 87-02-23 Raising CONSTRAINT_ERROR instead of NUMERIC_ERROR

23IMPLEMENTATION REQUIREMENT.

24AI-00387.

ARM 61
Names and Expressions

4.5.1 Logical Operators and Short-circuit Control Forms

1The following logical operators are predefined for any boolean type and any one-dimensional array type
whose components are of a boolean type; in either case the two operands have the same type.

Operator Operation Operand type 2Result type

and conjunction any boolean type same boolean type
array of boolean components same array type25

or inclusive disjunction any boolean type same boolean type
array of boolean components same array type

xor exclusive disjunction any boolean type same boolean type
array of boolean components same array type

3The operations on arrays are performed on a component-by-component basis on matching components, if
any (as for equality, see 4.5.2). The bounds of the resulting array are those of the left operand. A check is
made that for each component of the left operand there is a matching component of the right operand, and
vice versa. The exception CONSTRAINT_ERROR is raised if this check fails. When the predefined
boolean operators (and not) deliver a result having an array type, CONSTRAINT_ERROR is
raised if any component of the result does not belong to the component subtype [AI-00535].

4The short-circuit control forms and then and or else are defined for two operands of a boolean type and
deliver a result of the same type. The left operand of a short-circuit control form is always evaluated first.
If the left operand of an expression with the control form and then evaluates to FALSE, the right operand
is not evaluated and the value of the expression is FALSE. If the left operand of an expression with the
control form or else evaluates to TRUE, the right operand is not evaluated and the value of the expression
is TRUE. If both operands are evaluated, and then delivers the same result as and, and or else delivers
the same result as or.

5♦ The conventional meaning of the logical operators is given by the following truth table:26

A B (A and B) (A or B) 6(A xor B)

TRUE TRUE TRUE TRUE FALSE
TRUE FALSE FALSE TRUE TRUE
FALSE TRUE FALSE TRUE TRUE
FALSE FALSE FALSE FALSE FALSE

7Examples of logical operators:

SUNNY or WARM
♦

8Examples of short-circuit control forms:

NEXT_PERSON.AGE /= 0 and then 25 / NEXT_PERSON.AGE < 1 -- see 3.7
N = 0 or else A(N) = HIT_VALUE

25We had intended to delete these overloadings. Unfortunately that would transform some ambiguous Ada programs
into unambiguous AVA programs. We could make such occurrences illegal if an operand could be interpreted as an
array of booleans. But we need overloading anyway.

26This was in a note. It now has definitional force.

62 ARM
Names and Expressions

9References: boolean type 3.5.3, bound of an index range 3.6.1, false boolean value 3.5.3, operation 3.3,
operator 4.5, predefined operator 4.5, true boolean value 3.5.3, type 3.3

AI Crossreferences:

Section Class Status AI-0 Date Description
4.05.01 (01) ra RE 0474/01 86-11-09 Definition of predefined operators.
4.05.01 (03) BI WA 0535/03 88-11-04 Boolean operators producing out of range results
4.05.01 (03) BI WJ 0426/05 87-06-18 Operations on undefined array values
4.05.01 (03) ra WJ 0431/05 88-05-23 Predefined logical operators for boolean arrays
4.05.01 (04) BI WA 0391/06 88-06-16 Order of evaluation for short-circuit control forms

4.5.2 Relational Operators and Membership Tests

1The equality and inequality operators are predefined for every type. The other relational operators are the
ordering operators < (less than), <= (less than or equal), > (greater than), and >= (greater than or equal).
The ordering operators are predefined for any scalar type, and for any discrete array type, that is, a
one-dimensional array type whose components are of a discrete type. The operands of each predefined
relational operator have the same type. The result type is the predefined type BOOLEAN.

2The relational operators have their conventional meaning: the result is equal to TRUE if the corresponding
relation is satisfied; the result is FALSE otherwise. The inequality operator gives the complementary
result to the equality operator: FALSE if equal, TRUE if not equal.

Operator Operation Operand type 3Result type

= /= equality and inequality any type BOOLEAN

< <= > >= test for ordering any scalar type BOOLEAN
discrete array type BOOLEAN

4Equality for the discrete types is equality of the values. ♦

5For two array values or two record values of the same type, the left operand is equal to the right operand if
and only if for each component of the left operand there is a matching component of the right operand and
vice versa; and the values of matching components are equal, as given by the predefined equality operator
for the component type. In particular, two null arrays of the same type are always equal ♦.

6For comparing two records of the same type, matching components are those which have the same
component identifier.

7For comparing two one-dimensional arrays of the same type, matching components are those (if any)
whose index values match in the following sense: the lower bounds of the index ranges are defined to
match, and the successors of matching indices are defined to match. For comparing two multidimensional
arrays, matching components are those whose index values match in successive index positions.

8♦

9The ordering operators <, <=, >, and >= that are defined for discrete array types correspond to
lexicographic order using the predefined order relation of the component type. A null array is
lexicographically less than any array having at least one component. In the case of nonnull arrays, the left
operand is lexicographically less than the right operand if the first component of the left operand is less
than that of the right; otherwise the left operand is lexicographically less than the right operand only if
their first components are equal and the tail of the left operand is lexicographically less than that of the

ARM 63
Names and Expressions

right (the tail consists of the remaining components beyond the first and can be null).

10The membership tests in and not in are predefined for all types.27 The result type is the predefined type
BOOLEAN. For a membership test with a range, the simple expression and the bounds of the range must
be of the same scalar type; for a membership test with a type mark, the type of the simple expression must
be the base type of the type mark. The evaluation of the membership test in yields the result TRUE if the
value of the simple expression is within the given range, or if this value belongs to the subtype denoted by
the given type mark; otherwise this evaluation yields the result FALSE (for a value of a real type, see
4.5.7). The membership test not in gives the complementary result to the membership test in.

11Examples:

X /= Y

"" < "A" and "A" < "AA" -- TRUE
"AA" < "B" and "A" < "A " -- TRUE
♦
N not in 1 .. 10 -- range membership test
TODAY in MON .. FRI -- range membership test
TODAY in WEEKDAY -- subtype membership test (see 3.5.1)
♦

Notes:

12No exception is ever raised by a predefined relational operator or by a membership test, but an exception
can be raised by the evaluation of the operands.

13♦ Two nonnull arrays have matching components if and only if the value of the attribute LENGTH(N) for
each index position N is the same for both.

14References: array type 3.6, base type 3.3, belong to a subtype 3.3, boolean predefined type 3.5.3, bound of
a range 3.5, component 3.3, component identifier 3.7, component type 3.3, composite type 3.3, designate
3.8, dimension 3.6, discrete type 3.5, evaluation 4.5, exception 11, index 3.6, index range 3.6, ♦ null array
3.6.1, ♦ object 3.2.1, operation 3.3, operator 4.5, predefined operator 4.5, raising of exceptions 11, range
3.5, record type 3.7, scalar type 3.5, simple expression 4.4, subcomponent 3.3, successor 3.5.5, type 3.3,
type mark 3.3.2

AI Crossreferences:

Section Class Status AI-0 Date Description
4.05.02 (10) co RE 0207/00 84-03-13 Intended types

4.5.3 Binary Adding Operators

1The binary adding operators + and - are predefined for any numeric type and have their conventional
meaning. The catenation operators & are predefined for any one-dimensional array type ♦.

2Operator Operation Left operand type Right operand type Result type

+ addition any numeric type same numeric type same numeric type

27They are operations, not operators or functions [AI-00128]. Presumably this is what allows them to take types as
arguments.

64 ARM
Names and Expressions

- subtraction any numeric type same numeric type same numeric type

& catenation any array type same array type same array type
any array type the component type same array type28

the component type any array type same array type
the component type the component type any array type

♦

4If both operands are one-dimensional arrays, the result of the catenation is a one-dimensional array whose
length is the sum of the lengths of its operands, and whose components comprise the components of the
left operand followed by the components of the right operand. The lower bound of this result is the lower
bound of the left operand, unless the left operand is a null array, in which case the result of the catenation
is the right operand.

4If either operand is of the component type of an array type, the result of the catenation is given by the
above rules, using in place of this operand an array having this operand as its only component and having
the lower bound of the index subtype of the array type as its lower bound.

5The exception CONSTRAINT_ERROR is raised by catenation if the upper bound of the result exceeds
the range of the index subtype, unless the result is a null array. ♦

6Examples:

♦
"A" & "BCD" -- catenation of two string literals
’A’ & "BCD" -- catenation of a character literal and a string literal
’A’ & ’A’ -- catenation of two character literals

7References: array type 3.6, character literal 2.5, component type 3.3, constraint_error exception 11.1,
dimension 3.6, index subtype 3.6, length of an array 3.6.2, ♦ null array 3.6.1, numeric type 3.5, operation
3.3, operator 4.5, predefined operator 4.5, raising of exceptions 11, range of an index subtype 3.6.1, string
literal 2.6, type 3.3

4.5.4 Unary Adding Operators

1The unary adding operators + and - are predefined for any numeric type and have their conventional
meaning. For each of these operators, the operand and the result have the same base type.

Operator Operation Operand type 2Result type

+ identity any numeric type same numeric type

- negation any numeric type same numeric type

3References: numeric type 3.5, operation 3.3, operator 4.5, predefined operator 4.5, type 3.3

28We had intended to delete these overloadings. Unfortunately that would transform some ambiguous Ada programs
into unambiguous AVA programs.

ARM 65
Names and Expressions

4.5.5 Multiplying Operators

1The operators * and / are predefined for any integer ♦ type and have their conventional meaning; the
operators mod and rem are predefined for any integer type. For each of these operators, the operands and
the result have the same base type. ♦

Operator Operation Operand type 2Result type

* multiplication any integer type same integer type
♦ ♦

/ integer division any integer type same integer type
♦ ♦ ♦

mod modulus any integer type same integer type

rem remainder any integer type same integer type

3Integer division and remainder are defined by the relation

A = (A/B)*B + (A rem B)

4where (A rem B) has the sign of A and an absolute value less than the absolute value of B. Integer
division satisfies the identity

(-A)/B = -(A/B) = A/(-B)

5The result of the modulus operation is such that (A mod B) has the sign of B and an absolute value less
than the absolute value of B; in addition, for some integer value N, this result must satisfy the relation

A = B*N + (A mod B)

6♦

12The exception CONSTRAINT_ERROR29 is raised by integer division, rem, and mod if the right operand
is zero.

13Examples:

I : INTEGER := 1;
J : INTEGER := 2;
K : INTEGER := 3;
♦

Expression Value Result Type

I*J 2 same as I and J, that is, INTEGER
K/J 1 same as K and J, that is, INTEGER
K mod J 1 same as K and J, that is, INTEGER
♦

Notes:

14For positive A and B, A/B is the quotient and A rem B is the remainder when A is divided by B. The

29AI-00387.

66 ARM
Names and Expressions

following relations are satisfied by the rem operator:

A rem (-B) = A rem B
(-A) rem B = -(A rem B)

15For any integer K, the following identity holds:

A mod B = (A + K*B) mod B

16The relations between integer division, remainder, and modulus are illustrated by the following table:

A B A/B A rem B A mod B A B A/B A rem B A mod B

10 5 2 0 0 -10 5 -2 0 0
11 5 2 1 1 -11 5 -2 -1 4
12 5 2 2 2 -12 5 -2 -2 3
13 5 2 3 3 -13 5 -2 -3 2
14 5 2 4 4 -14 5 -2 -4 1

10 -5 -2 0 0 -10 -5 2 0 0
11 -5 -2 1 -4 -11 -5 2 -1 -1
12 -5 -2 2 -3 -12 -5 2 -2 -2
13 -5 -2 3 -2 -13 -5 2 -3 -3
14 -5 -2 4 -1 -14 -5 2 -4 -4

17References: actual parameter 6.4.1, base type 3.3, constraint_error exception 11.1, declaration 3.1, ♦
integer type 3.5.4, numeric type 3.5, predefined operator 4.5, raising of exceptions 11, renaming
declaration 8.5, standard predefined package 8.6, type conversion 4.6

AI Crossreferences:

Section Class Status AI-0 Date Description
4.05.05 (08) BI WJ 0475/05 88-05-23 Multiplication of fixed point values by negative integers
4.05.05 (10) ra WJ 0020/07 86-07-23 Real literals with fixed point multiplication and division
4.05.05 (10) ra WJ 0376/04 86-12-01 Universal real operands with fixed point multiply and /
4.05.05 (10) ST RE 0262/01 87-02-10 Real literals with fixed point multiplication and division
4.05.05 (11) BI RE 0522/00 87-02-10 Counter-Productive Accuracy of Universal Fixed
4.05.05 (11) ra WJ 0235/05 88-05-23 Redundant parentheses enclosing universal_fixed expressions do
4.05.05 (12) NB WJ 0387/05 87-02-23 Raising CONSTRAINT_ERROR instead of NUMERIC_ERROR

4.5.6 Highest Precedence Operators

1The highest precedence unary operator abs is predefined for any numeric type. The highest precedence
unary operator not is predefined for any boolean type and any one-dimensional array type whose
components have a boolean type.

Operator Operation Operand type 2Result type

abs absolute value any numeric type same numeric type

not logical negation any boolean type same boolean type
array of boolean components same array type

3The operator not that applies to a one-dimensional array of boolean components yields a one-dimensional
boolean array with the same bounds; each component of the result is obtained by logical negation of the
corresponding component of the operand (that is, the component that has the same index value).

4The highest precedence exponentiating operator ** is predefined for each integer type ♦. The right

ARM 67
Names and Expressions

operand, called the exponent, is of the predefined type INTEGER.

Operator Operation Left operand type Right operand type 5Result type

** exponentiation any integer type INTEGER same as left
♦

6Exponentiation with a positive exponent is equivalent to repeated multiplication of the left operand by
itself, as indicated by the exponent and from left to right. ♦ Exponentiation by a zero exponent delivers
the value one. ♦ Exponentiation of an integer raises the exception CONSTRAINT_ERROR for a
negative exponent.

7References: array type 3.6, boolean type 3.5.3, bound of an array 3.6.1, component of an array 3.6,
constraint_error exception 11.1, dimensionality 3.6, index 3.6, integer type 3.5.4, multiplication operation
4.5.5, predefined operator 4.5, raising of exceptions 11

AI Crossreferences:

Section Class Status AI-0 Date Description
4.05.06 (00) ST RE 0460/00 86-10-02 Allow non-integral powers for exponentiation
4.05.06 (03) BI WA 0535/03 88-11-04 Boolean operators producing out of range results
4.05.06 (06) ra CA 0476/03 88-05-02 Model interval for exponentiation with a negative exponent
4.05.06 (06) ra WJ 0137/05 86-07-23 Exponentiation with floating point operand

4.5.7 Accuracy of Operations with Real Operands: Removed

AI Crossreferences:

Section Class Status AI-0 Date Description
4.05.07 (00) BI WJ 0407/06 88-05-23 The operations of a subtype with reduced accuracy
4.05.07 (04) BI WJ 0516/05 88-05-23 The safe interval for a fixed/integer result
4.05.07 (07) BI CA 0174/07 88-10-03 T’FIRST and T’LAST for real types
4.05.07 (07) BI WI 0021/12 88-11-04 MACHINE_OVERFLOWS for correct extended safe results
4.05.07 (07) NB WJ 0387/05 87-02-23 Raising CONSTRAINT_ERROR instead of NUMERIC_ERROR
4.05.07 (08) ra RE 0432/00 86-06-19 A SAFE interval gives the bounds required on the result?
4.05.07 (09) ra CA 0476/03 88-05-02 Model interval for exponentiation with a negative exponent
4.05.07 (10) BI CA 0174/07 88-10-03 T’FIRST and T’LAST for real types
4.05.07 (12) ra RE 0525/00 87-02-10 Unnecessary Loss of Accuracy

4.6 Type Conversions

1The evaluation of an explicit type conversion evaluates the expression given as the operand, and converts
the resulting value to a specified target type. Explicit type conversions are allowed between closely
related types as defined below.

2type_conversion ::= type_mark(expression)

3The target type of a type conversion is the base type of the type mark. The type of the operand of a type
conversion must be determinable independently of the context (in particular, independently of the target
type). Furthermore, the operand of a type conversion is not allowed to be ♦ an aggregate or a string
literal; an expression enclosed by parentheses is allowed as the operand of a type conversion only if the
expression alone is allowed.

4A conversion to a subtype consists of a conversion to the target type followed by a check that the result of
the conversion belongs to the subtype. A conversion of an operand of a given type to the type itself is

68 ARM
Names and Expressions

allowed.

5The other allowed explicit type conversions correspond to the following three cases:

(a) 6Numeric types

7The operand can be of any numeric type; the value of the operand is converted to the target type
which must also be a numeric type. ♦

(b) 8Omitted

(c) 10Array types

11The conversion is allowed if the operand type and the target type are array types that satisfy the
following conditions: both types must have the same dimensionality; for each index position the
index types must either be the same or be convertible to each other; the component types must be
the same ♦. If the type mark denotes an unconstrained array type, then, for each index position, the
bounds of the result are obtained by converting the bounds of the operand to the corresponding
index type of the target type. If the type mark denotes a constrained array subtype, then the bounds
of the result are those imposed by the type mark. In either case, the value of each component of the
result is that of the matching component of the operand (see 4.5.2).

12In the case of conversions of numeric types ♦, the exception CONSTRAINT_ERROR is raised by the
evaluation of a type conversion if the result of the conversion fails to satisfy a constraint imposed by the
type mark.

13In the case of array types, a check is made that any constraint on the component subtype is the same for
the operand array type as for the target array type. If the type mark denotes an unconstrained array type
and if the operand is not a null array, then, for each index position, a check is made that the bounds of the
result belong to the corresponding index subtype of the target type. If the type mark denotes a constrained
array subtype, a check is made that for each component of the operand there is a matching component of
the target subtype, and vice versa. The exception CONSTRAINT_ERROR is raised if any of these checks
fails.

14If a conversion is allowed from one type to another, the reverse conversion is also allowed. ♦

15Apart from the explicit type conversions and implicit subtype conversions in the case of assignment
with array types (see 5.2.1), the only allowed form of type conversion is the implicit conversion of a
value of the type universal_integer ♦ into another numeric type. An implicit conversion of an operand of
type universal_integer to another integer type ♦ can only be applied if the operand is either a numeric
literal, a named number, ♦ an attribute or the application of an implementation defined attribute that
is a function returning a value of type universal_integer [AI-00218]; such an operand is called a
convertible universal operand in this section. An implicit conversion of a convertible universal operand is
applied if and only if the innermost complete context (see 8.7) determines a unique (numeric) target type
for the implicit conversion, and there is no legal interpretation of this context without this conversion.

Notes:

16The rules for implicit conversions imply that no implicit conversion is ever applied to the operand of an
explicit type conversion. Similarly, implicit conversions are not applied if both operands of a predefined
relational operator are convertible universal operands.

17The language allows implicit subtype conversions in the case of array types (see 5.2.1). ♦ Explicit
conversions are NOT used for actual parameters that correspond to formals of mode in out (see 6.4).

ARM 69
Names and Expressions

18♦

20Examples of conversions between array types:

type SEQUENCE is array (INTEGER range <>) of INTEGER;
subtype DOZEN is SEQUENCE(1 .. 12);
subtype ledger_index is integer range (1..100);
LEDGER : array(ledger_index) of INTEGER;

SEQUENCE(LEDGER) -- bounds are those of LEDGER
♦

21Examples of implicit conversions:

X : INTEGER := 2;

X + 1 + 2 -- implicit conversion of each universal_integer literal
1 + 2 + X -- implicit conversion of each universal_integer literal
X + (1 + 2) -- implicit conversion of each universal_integer literal

2 = (1 + 1) -- no implicit conversion: the type is universal_integer
A’LENGTH = B’LENGTH -- no implicit conversion: the type is universal_integer
C : constant := 3 + 2; -- no implicit conversion: the type is universal_integer

X = 3 and 1 = 2 -- implicit conversion of 3, but not of 1 and 2

22References: actual parameter 6.4.1, array type 3.6, attribute 4.1.4, base type 3.3, belong to a subtype 3.3,
component 3.3, constrained array subtype 3.6, constraint_error exception 11.1, dimension 3.6, expression
4.4, index 3.6, index subtype 3.6, index type 3.6, integer type 3.5.4, matching component 4.5.2, mode 6.1,
name 4.1, named number 3.2, null array 3.6.1, numeric literal 2.4, numeric type 3.5, raising of exceptions
11, statement 5, subtype 3.3, type 3.3, type mark 3.3.2, unconstrained array type 3.6, universal_integer
type 3.5.4, variable 3.2.1

AI Crossreferences:

Section Class Status AI-0 Date Description
4.06 (03) ra CA 0481/04 88-10-03 Overload resolution for the operand of a type conversion
4.06 (07) BI RE 0601/00 88-11-08 Accuracy of type conversions from real types to integers
4.06 (07) ST RE 0526/00 87-03-11 Rounding up or down
4.06 (11) na na 0368/07 87-03-06 NUMERIC_ERROR for array and integer conversions
4.06 (13) BI WJ 0313/03 86-07-23 Non-null bounds belong to the index subtype
4.06 (13) co WA 0022/05 88-11-04 Checking the component subtypes in array conversions
4.06 (15) BI RE 0569/00 88-07-06 Rules of the form "X must be of type T"
4.06 (15) BI RE 0606/00 88-12-13 Implicit conversion rules
4.06 (15) BI WA 0218/08 88-11-08 Implicit conversion of attributes that are functions
4.06 (15) co WA 0165/04 88-11-04 Expressions and implicit conversions
4.06 (15) na na 0250/01 86-03-25 [combined with 0218]
4.06 (15) ra WA 0136/05 88-11-04 Implicit conversion rules

4.7 Qualified Expressions

1A qualified expression is used to state explicitly the type, and possibly the subtype, of an operand that is
the given expression or aggregate.

2qualified_expression ::=
type_mark’(expression) | type_mark’aggregate

70 ARM
Names and Expressions

3The operand must have the same type as the base type of the type mark. The value of a qualified
expression is the value of the operand. The evaluation of a qualified expression evaluates the operand and
checks that its value belongs to the subtype denoted by the type mark. The exception
CONSTRAINT_ERROR is raised if this check fails.

4Examples:

type MASK is (FIX, DEC, EXP, SIGNIF);
type CODE is (FIX, CLA, DEC, TNZ, SUB);

PRINT (MASK’(DEC)); -- DEC is of type MASK
PRINT (CODE’(DEC)); -- DEC is of type CODE

for J in CODE’(FIX) .. CODE’(DEC) loop ... -- qualification needed for either FIX or DEC
for J in CODE range FIX .. DEC loop ... -- qualification unnecessary
for J in CODE’(FIX) .. DEC loop ... -- qualification unnecessary for DEC
♦

Notes:

5Whenever the type of an enumeration literal or aggregate is not known from the context, a qualified
expression can be used to state the type explicitly. For example, an overloaded enumeration literal must
be qualified in the following cases: when given as a parameter in a subprogram call to an overloaded
subprogram that cannot otherwise be identified on the basis of remaining parameter or result types, in a
relational expression where both operands are overloaded enumeration literals, or in an array or loop
parameter range where both bounds are overloaded enumeration literals. Explicit qualification is also
used ♦ to constrain a value to a given subtype.

6References: aggregate 4.3, array 3.6, base type 3.3, bound of a range 3.5, constraint_error exception 11.1,
context of overload resolution 8.7, enumeration literal 3.5.1, expression 4.4, function 6.5, loop parameter
5.5, overloading 8.5, raising of exceptions 11, range 3.3, relation 4.4, subprogram 6, subprogram call 6.4,
subtype 3.3, type 3.3, type mark 3.3.2

4.8 Allocators: Removed

AI Crossreferences:

Section Class Status AI-0 Date Description
4.08 (05) BI WJ 0150/04 86-07-23 Allocated objects belong to the designated subtype
4.08 (05) BI WJ 0397/04 86-07-23 Checking the designated subtype for an allocator
4.08 (05) ra WJ 0331/07 87-06-18 The effect of a constraint in an allocator
4.08 (06) BI RE 0580/00 88-08-31 Undefined variables created by allocators
4.08 (07) BI WJ 0356/08 88-05-23 Access values that designate deallocated objects
4.08 (07) ST RE 0570/00 88-07-06 Releasing heap storage associated with task type instances
4.08 (11) ra WJ 0294/05 87-08-20 The name given in pragma CONTROLLED
4.08 (13) BI WJ 0397/04 86-07-23 Checking the designated subtype for an allocator

ARM 71
Names and Expressions

4.9 Static Expressions and Static Subtypes

1Certain expressions of a scalar type are said to be static. Similarly, certain discrete ranges are said to be
static, and the type marks of certain scalar subtypes are said to denote static subtypes.

2An expression of a scalar type is said to be static if and only if every primary is one of those listed in (a)
through (h) below, every operator denotes a predefined operator, the expression contains no
membership test (in, not in) or short-circuit control forms [AI-00128], the evaluation of the
expression delivers a value (that is, it does not raise an exception), and every component factor, term,
simple expression and relation has a scalar type [AI-00219]:

(a) 3An enumeration literal (including a character literal).

(b) 4A numeric literal.

(c) 5A named number.

(d) 6A name denoting a constant explicitly declared by a constant declaration with a static subtype,
and initialized with a static expression [AI-00001].

(e) 7A function call whose function name is an operator symbol that denotes a predefined operator,
including a function name that is an expanded name or a name that denotes an enumeration
literal, a predefined operator, or a language defined attribute of a static subtype [AI-00438,
AI-00492]; each actual parameter must also be a static expression.

(f) 8A language-defined attribute of a static subtype; for an attribute that is a function, the actual
parameter must also be a static expression.

(g) 9A qualified expression whose type mark denotes a static subtype and whose operand is a static
expression.

(h) 10A static expression enclosed in parentheses.

11A static range is a range whose bounds are static expressions. A static range constraint is a range
constraint whose range is static. A static subtype is either a scalar base type ♦; or a scalar subtype formed
by imposing on a static subtype ♦ a static range constraint. A static discrete range is either a static
subtype or a static range. A static index constraint is an index constraint for which each index subtype of
the corresponding array type is static, and in which each discrete range is static. If the range constraint
in a subtype indication is not compatible with the type mark, the subtype defined by the subtype
indication is not static [AI-00114].

Notes:

12♦

13Array attributes are not static: in particular, the RANGE attribute is not static.

14References: actual parameter 6.4.1, attribute 4.1.4, base type 3.3, bound of a range 3.5, character literal
2.5, constant 3.2.1, constant declaration 3.2.1, discrete range 3.6, discrete type 3.5, enumeration literal
3.5.1, exception 11, expression 4.4, function 6.5, implicit declaration 3.1, initialize 3.2.1,, named number
3.2, numeric literal 2.4, predefined operator 4.5, qualified expression 4.7, raising of exceptions 11, range
constraint 3.5, scalar type 3.5, subtype 3.3, type mark 3.3.2

AI Crossreferences:

Section Class Status AI-0 Date Description
4.09 (02) BI WJ 0128/04 86-07-23 No membership tests or short-circuit operations in static expressions
4.09 (02) BI WJ 0190/05 86-07-23 A static expression cannot have a generic formal type

72 ARM
Names and Expressions

4.09 (02) BI WJ 0219/06 86-07-23 Use of & and ’IMAGE in static expressions
4.09 (02) co RE 0607/00 88-12-13 Is a renamed predefined operator predefined?
4.09 (06) BI WA 0505/03 88-06-16 Static constants in instances
4.09 (06) BI WJ 0001/10 86-07-23 Renaming and static expressions
4.09 (06) na na 0208/01 86-08-21 [combined with 0163]
4.09 (06) ra WJ 0163/05 86-07-23 Implicit conversion preserves staticness
4.09 (07) BI CA 0438/08 88-10-17 Static function calls
4.09 (07) BI WA 0492/04 88-06-16 PRED, SUCC, POS, and VAL can be used in static expressions
4.09 (11) BI CA 0114/05 88-10-03 A subtype indication with an incompatible range is not static
4.09 (11) BI WJ 0023/06 86-07-23 Static numeric subtypes
4.09 (11) BI WJ 0251/05 87-03-16 Are types derived from generic formal types static subtypes?
4.09 (11) BI WJ 0409/05 87-09-12 Static subtype names created by instantiation
4.09 (11) ST RE 0539/00 87-08-05 Need for static attributes of arrays and records

4.10 Universal Expressions

1A universal_expression is an expression that delivers a result of type universal_integer ♦.

2The same operations are predefined for the type universal_integer as for any integer type. ♦

5For the evaluation of an operation of a ♦ universal expression, an implementation is required30 to raise
the exception CONSTRAINT_ERROR31 ♦ if the result or any operand [AI-00181] of the operation is
an integer value greater than AVA.MAX_INT or less than AVA.MIN_INT.32

6♦

7Examples:

1 + 1 -- 2
abs(-10)*3 -- 30

KILO : constant := 1000;
MEGA : constant := KILO*KILO; -- 1_000_000
♦

8References: actual parameter 6.4.1, attribute 4.1.4, ava.max_int 13.7, ava.min_int 13.7, evaluation of an
expression 4.5, function 6.5, integer type 3.5.4, multiplying operator 4.5 4.5.5, predefined operation 3.3.3,
primary 4.4, type 3.3, universal_integer type 3.5.4

AI Crossreferences:

Section Class Status AI-0 Date Description
4.10 (02) ra WA 0129/04 88-11-04 2.0**3 can be a universal_real expression
4.10 (04) BI CA 0565/02 88-10-03 Support for static universal_integer expressions
4.10 (04) ra WJ 0103/06 86-07-23 Accuracy of a relation between two static universal real operands
4.10 (04) ra WJ 0209/06 88-05-23 Exact evaluation of static universal real expressions
4.10 (04) ra WJ 0405/06 86-12-01 One nonstatic operand for a universal real relation
4.10 (04) ST RE 0285/00 84-10-01 Accuracy of Attributes of Generic Formal Types

30IMPLEMENTATION REQUIREMENT: Ada permits static universal expression to deliver results outside the bounds of
‘‘the largest value of all predefined integer types’’. AVA does not allow this for either static or non-static expressions.

31AI-00387.

32Note that the Ada definition is ambiguous as to whether certain expressions are static or not. Consider "1E100 -
1E100". It can be considered either 1) static, with value 0. or 2) non-static, raising CONSTRAINT_ERROR. The choice
is implementation dependent.

ARM 73
Names and Expressions

4.10 (05) BI WJ 0181/04 86-07-23 NUMERIC_ERROR for nonstatic universal operands
4.10 (05) NB WJ 0387/05 87-02-23 Raising CONSTRAINT_ERROR instead of NUMERIC_ERROR

74 ARM
Names and Expressions

ARM 75
Statements

Chapter 5

STATEMENTS

1A statement defines an action to be performed; the process by which a statement achieves its action is
called execution of the statement.

2This chapter describes the general rules applicable to all statements. Some specific statements are
discussed in later chapters. Procedure call statements are described in Chapter 6 on subprograms. ♦
Raise statements are described in Chapter 11 on exceptions ♦. The remaining forms of statements are
presented in this chapter.

3References: ♦ procedure call statement 6.4, raise statement 11.3

5.1 Simple and Compound Statements - Sequences of Statements

1A statement is either simple or compound. A simple statement encloses no other statement. A compound
statement can enclose simple statements and other compound statements.

2sequence_of_statements ::= statement {statement}

statement ::=
♦ simple_statement | ♦ compound_statement

simple_statement ::= null_statement
| assignment_statement | procedure_call_statement
| exit_statement | return_statement | ♦
| raise_statement | ♦

compound_statement ::=
if_statement | case_statement

| loop_statement | block_statement | ♦

♦

null_statement ::= null;

3♦ For a block statement without a declarative part, an implicit declarative part (and preceding declare) is
assumed.

4♦

5Execution of a null statement has no other effect than to pass to the next action.

76 ARM
Statements

6The execution of a sequence of statements consists of the execution of the individual statements in
succession until the sequence is completed, or a transfer of control takes place. A transfer of control is
caused either by the execution of an exit ♦ or return statement; ♦ or by the raising of an exception ♦.

7♦

Note:

8The scope of a declaration starts at the place of the declaration itself (see 8.2). ♦ An implicit declaration
in a block statement may hide a declaration given in an outer program unit or block statement (according
to the usual rules of hiding explained in section 8.3).

9References: assignment statement 5.2, ♦ block statement 5.6, case statement 5.4, declaration 3.1,
declarative part 3.9, exception 11, exit statement 5.7, hiding 8.3, identifier 2.3, if statement 5.3, implicit
declaration 3.1, ♦ loop statement 5.5, package 7, package body 7.1, procedure call statement 6.4, program
unit 6, raise statement 11.3, raising of exceptions 11, return statement 5.8, scope 8.2, simple name 4.1,
subprogram 6, subprogram body 6.3

5.2 Assignment Statement

1An assignment statement replaces the current value of a variable with a new value specified by an
expression. The named variable and the right-hand side expression must be of the same type ♦.33

2assignment_statement ::=
variable_name := expression;

3For the execution of an assignment statement, the variable name and the expression are first evaluated, in
that order.34 It is poor programming style if the evaluation of variable name and the expression
modify variables that are mutually accessible. A check is then made that the value of the expression
belongs to the subtype of the variable, except in the case of a variable that is an array (the assignment then
involves a subtype conversion as described in section 5.2.1). Finally, the value of the expression becomes
the new value of the variable.

4The exception CONSTRAINT_ERROR is raised if the above-mentioned subtype check fails; in such a
case the current value of the variable is left unchanged. ♦

5Examples:

VALUE := MAX_VALUE - 1;
SHADE := BLUE;
♦
U := DOT_PRODUCT(V, W); -- see 6.5
♦
BIRTHDATE := (DAY => 1, MONTH => MAY, YEAR => 1960); -- see 3.7

6Examples of constraint checks:

33Note that in full Ada the type of the expression can be used to determine an overload resolution of the left hand side in
certain circumstances [AI-00120]. But this case does not arise in AVA.

34IMPLEMENTATION REQUIREMENT. Note that ‘‘evaluate’’ is not an accurate description of what we do to the
variable name in order to find out its type constraints.

ARM 77
Statements

I, J : INTEGER range 1 .. 10 := 1;
K : INTEGER range 1 .. 20 := 11;

...

I := J; -- identical ranges
K := J; -- compatible ranges
J := K; -- will raise the exception CONSTRAINT_ERROR if K > 10

Notes:

7♦

8If the right-hand side expression is either a numeric literal or named number, or an attribute that yields a
result of type universal_integer ♦, then an implicit type conversion is performed, as described in section
4.6.

9♦

10References: array 3.6, array assignment 5.2.1, component 3.6 3.7, constraint_error exception 11.1,
designate 3.8, evaluation 4.5, expression 4.4, function call 6.4, implicit type conversion 4.6, name 4.1,
numeric literal 2.4, object 3.2, overloading 6.6 8.7, subcomponent 3.3, subtype 3.3, subtype conversion
4.6, type 3.3, universal_integer type 3.5.4, variable 3.2.1

AI Crossreferences:

Section Class Status AI-0 Date Description
5.02 (03) BI WA 0333/08 88-11-04 Evaluation order when assigning an array aggregate
5.02 (03) BI WI 0571/02 88-12-13 Floating point subtypes with reduced accuracy
5.02 (03) BI WJ 0407/06 88-05-23 The operations of a subtype with reduced accuracy
5.02 (04) BI RE 0586/00 88-09-02 meaning of ’these discriminants’
5.02 (04) ra RE 0587/00 88-09-02 meaning of ’this execution’

5.2.1 Array Assignments

1If the variable of an assignment statement is an array variable ♦, the value of the expression is implicitly
converted to the subtype of the array variable; the result of this subtype conversion becomes the new value
of the array variable.

2This means that the new value of each component of the array variable is specified by the matching
component in the array value obtained by evaluation of the expression (see 4.5.2 for the definition of
matching components). The subtype conversion checks that for each component of the array variable
there is a matching component in the array value, and vice versa. The exception CONSTRAINT_ERROR
is raised if this check fails; in such a case the value of each component of the array variable is left
unchanged.

3Examples:

subtype low_index is integer range 1..20;
subtype high_index is integer range 3..22;
subtype S1 is STRING(low_index);
subtype S2 is STRING(high_index);

A : S1 := "This is a test. ";

78 ARM
Statements

B : S2 := A; -- same number of components

Notes:

4♦

5The implicit subtype conversion described above for assignment to an array variable is performed only for
the value of the right-hand side expression as a whole; it is not performed for subcomponents that are
array values. Such subcomponents must be of the same subtype in the expression and variable.

6References: array 3.6, assignment 5.2, constraint_error exception 11.1, matching array components 4.5.2,
subtype conversion 4.6, type 3.3, variable 3.2.1

5.3 If Statements

1An if statement selects for execution one or none of the enclosed sequences of statements, depending on
the (truth) value of one or more corresponding conditions.

2if_statement ::=
if condition then
sequence_of_statements

{elsif condition then
sequence_of_statements}

[else
sequence_of_statements]

end if;

condition ::= boolean_expression

3An expression specifying a condition must be of a boolean type.35

4For the execution of an if statement, the condition specified after if, and any conditions specified after
elsif, are evaluated in succession (treating a final else as elsif TRUE then), until one evaluates to TRUE or
all conditions are evaluated and yield FALSE. If one condition evaluates to TRUE, then the
corresponding sequence of statements is executed; otherwise none of the sequences of statements is
executed.

5Examples:

if MONTH = DECEMBER and DAY = 31 then
MONTH := JANUARY;
DAY := 1;
YEAR := YEAR + 1;

end if;

if LINE_TOO_SHORT then
raise PROGRAM_ERROR;

elsif LINE_FULL then
PUT(OFILE,EOL);
PUT(OFILE,ITEM);

35Note that in full Ada different conditions do not need to be of the same boolean type.

ARM 79
Statements

else
PUT(OFILE,ITEM);

end if;

if NEXT_PERSON.VEHICLE.OWNER /= NEXT_PERSON.NAME then -- see 3.7
REPORT ("Incorrect data");

end if;

6References: boolean type 3.5.3, evaluation 4.5, expression 4.4, sequence of statements 5.1

5.4 Case Statements

1A case statement selects for execution one of a number of alternative sequences of statements; the chosen
alternative is defined by the value of an expression.

2case_statement ::=
case expression is

case_statement_alternative
{case_statement_alternative}

end case;

case_statement_alternative ::=
when choice {| choice } =>

sequence_of_statements

3The expression must be of a discrete type which must be determinable independently of the context in
which the expression occurs, but using the fact that the expression must be of a discrete type. ♦ Each
choice in a case statement alternative must be of the same type as the expression (unless it is a discrete
range, in which case the elements of the range must be of the same type as the expression); the
list of choices specifies for which values of the expression the alternative is chosen.

4If the expression is the name of an object whose subtype is static, then each value of this subtype must be
represented once and only once in the set of choices of the case statement, and no other value is allowed;
this rule is likewise applied if the expression is a qualified expression or type conversion whose type mark
denotes a static subtype. Otherwise, for other forms of expression, each value of the (base) type of the
expression must be represented once and only once in the set of choices, and no other value is allowed.

5The simple expressions and discrete ranges given as choices in a case statement must be static. A choice
defined by a discrete range stands for all values in the corresponding range (none if a null range). The
choice others is only allowed for the last alternative and as its only choice; it stands for all values
(possibly none) not given in the choices of previous alternatives.36 A component simple name is not
allowed as a choice of a case statement alternative.

6The execution of a case statement consists of the evaluation of the expression followed by the execution
of the chosen sequence of statements.

7Examples:

case SENSOR is

36Note that subsets of Ada that are concerned with safety rule out the use of others in order that all possible choices will
be explicitly covered in the case statement.

80 ARM
Statements

when ELEVATION => RECORD_ELEVATION(SENSOR_VALUE);
when AZIMUTH => RECORD_AZIMUTH (SENSOR_VALUE);
when DISTANCE => RECORD_DISTANCE (SENSOR_VALUE);
when others => null;

end case;

case TODAY is
when MON => COMPUTE_INITIAL_BALANCE;
when FRI => COMPUTE_CLOSING_BALANCE;
when TUE .. THU => GENERATE_REPORT(TODAY);
when SAT .. SUN => null;

end case;

case BIN_NUMBER(COUNT) is
when 1 => UPDATE_BIN(1);
when 2 => UPDATE_BIN(2);
when 3 | 4 => EMPTY_BIN(1); EMPTY_BIN(2);
when others => raise PROGRAM_ERROR;

end case;

Notes:

8The execution of a case statement chooses one and only one alternative, since the choices are exhaustive
and mutually exclusive. Qualification of the expression of a case statement by a static subtype can often
be used to limit the number of choices that need be given explicitly.

9An others choice is required in a case statement if the type of the expression is the type universal_integer
(for example, if the expression is an integer literal), since this is the only way to cover all values of the
type universal_integer.

10References: base type 3.3, choice 4.3, context of overload resolution 8.7, discrete type 3.5, expression 4.4,
function call 6.4, conversion 4.6, discrete type 3.5, enumeration literal 3.5.1, expression 4.4, name 4.1,
object 3.2.1, overloading 6.6 8.7, qualified expression 4.7, sequence of statements 5.1, static discrete
range 4.9, static subtype 4.9, subtype 3.3, type 3.3, type conversion 4.6, type mark 3.3.2

AI Crossreferences:

Section Class Status AI-0 Date Description
5.04 (03) BI WJ 0151/05 86-07-23 Case expression of a type derived from a generic formal type
5.04 (05) ST RE 0477/00 86-10-13 Case choises should not have to be static.
5.04 (06) ra WJ 0267/06 88-07-07 Evaluating expressions in case statements

5.5 Loop Statements

1A loop statement includes a sequence of statements that is to be executed repeatedly, zero or more times.

2loop_statement ::=
♦ [iteration_scheme] loop

sequence_of_statements
end loop ♦;

iteration_scheme ::= while condition
| for loop_parameter_specification

loop_parameter_specification ::=
identifier in [reverse] discrete_range

ARM 81
Statements

3♦

4A loop statement without an iteration scheme specifies repeated execution of the sequence of statements.
Execution of the loop statement is complete when the loop is left as a consequence of the execution of an
exit statement, or as a consequence of some other transfer of control (see 5.1).

5For a loop statement with a while iteration scheme, the condition is evaluated before each execution of the
sequence of statements; if the value of the condition is TRUE, the sequence of statements is executed, if
FALSE the execution of the loop statement is complete.

6For a loop statement with a for iteration scheme, the loop parameter specification is the declaration of the
loop parameter with the given identifier. The loop parameter is an object whose subtype is the discrete
range [AI-00006], and thus whose type is the base type of the discrete range (see 3.6.1). Within the
sequence of statements, the loop parameter is a constant. Hence a loop parameter is not allowed as the
(left-hand side) variable of an assignment statement. Similarly the loop parameter must not be given as an
♦ in out parameter of a procedure ♦.

7For the execution of a loop statement with a for iteration scheme, the loop parameter specification is first
elaborated. This elaboration creates the loop parameter and evaluates the discrete range.

8If the discrete range is a null range, the execution of the loop statement is complete. Otherwise, the
sequence of statements is executed once for each value of the discrete range (subject to the loop not being
left as a consequence of the execution of an exit statement or as a consequence of some other transfer of
control). Prior to each such iteration, the corresponding value of the discrete range is assigned to the loop
parameter. These values are assigned in increasing order unless the reserved word reverse is present, in
which case the values are assigned in decreasing order.

9Example of a loop statement without an iteration scheme:

loop
GET(STANDARD_INPUT,CURRENT_CHARACTER);
exit when CURRENT_CHARACTER = ’*’;

end loop;

10Example of a loop statement with a while iteration scheme:

while BID(N).PRICE < CUT_OFF.PRICE loop
RECORD_BID(BID(N).PRICE);
N := N + 1;

end loop;

11Example of a loop statement with a for iteration scheme:

for J in BUFFER’RANGE loop -- legal even with a null range
if BUFFER(J) /= SPACE then

PUT(STANDARD_OUTPUT,BUFFER(J));
end if;

end loop;

12♦

Notes:

13The scope of a loop parameter extends from the loop parameter specification to the end of the loop

82 ARM
Statements

statement, and the visibility rules are such that a loop parameter is only visible within the sequence of
statements of the loop.

14The discrete range of a for loop is evaluated just once. Use of the reserved word reverse does not alter
the discrete range, so that the following iteration schemes are not equivalent; the first has a null range.

for J in reverse 1 .. 0
for J in 0 .. 1

15♦

16References: actual parameter 6.4.1, assignment statement 5.2, base type 3.3, bound of a range 3.5,
condition 5.3, constant 3.2.1, context of overload resolution 8.7, conversion 4.6, declaration 3.1, discrete
range 3.6.1, elaboration 3.1, evaluation 4.5, exit statement 5.7, expanded name 4.1.3, false boolean value
3.5.3, identifier 2.3, integer type 3.5.4, null range 3.5, object 3.2.1, prefix 4.1, procedure call 6.4, raising
of exceptions 11, reserved word 2.9, return statement 5.8, scope 8.2, sequence of statements 5.1, ♦
terminate alternative 9.7.1, true boolean value 3.5.3 3.5.4, visibility 8.3

AI Crossreferences:

Section Class Status AI-0 Date Description
5.05 (06) BI WJ 0006/05 86-07-23 The subtype of a loop parameter
5.05 (06) ra CE 0369/06 88-11-20 Representing values of discrete base type

5.6 Block Statements

1A block statement encloses a sequence of statements optionally preceded by a declarative part and
optionally followed by exception handlers.

2block_statement ::= ♦
[declare

inner_declarative_part]
begin

sequence_of_statements
[exception

exception_handler ♦]
end ♦;

3♦

4The execution of a block statement consists of the elaboration of its declarative part (if any) followed by
the execution of the sequence of statements. If the block statement has exception handlers, these service
corresponding exceptions that are raised during the execution of the sequence of statements (see 11.2).

5Example:

♦
declare

TEMP : INTEGER := 1;
begin

TEMP := V; V := U; U := TEMP;
end ; ♦

6♦

ARM 83
Statements

8References: declarative part 3.9, exception handler 11.2, exit statement 5.7, expanded name 4.1.3, raising
of exceptions 11, return statement 5.8, sequence of statements 5.1, simple name 4.1

5.7 Exit Statements

1An exit statement is used to complete the execution of an enclosing loop statement (called the loop in
what follows); the completion is conditional if the exit statement includes a condition.

2exit_statement ::=
exit ♦ [when condition];

3♦ An exit statement ♦ is only allowed within a loop, and applies to the innermost enclosing loop. ♦

4For the execution of an exit statement, the condition, if present, is first evaluated. Exit from the loop then
takes place if the value is TRUE or if there is no condition.

5Examples:

for N in 1 .. MAX_NUM_ITEMS loop
GET_NEW_ITEM(NEW_ITEM);
MERGE_ITEM(NEW_ITEM, STORAGE_FILE);
exit when NEW_ITEM = TERMINAL_ITEM;

end loop;

♦
loop

-- initial statements
exit ♦ when FOUND;
-- final statements

end loop ♦;

6♦

7References: condition 5.3, evaluation 4.5, ♦ loop statement 5.5, package body 7.1, subprogram body 6.3,
true boolean value 3.5.3

AI Crossreferences:

Section Class Status AI-0 Date Description
5.07 (00) ST RE 0211/00 84-03-13 Additional control statement for use w/in a LOOP statement.
5.07 (02) co WJ 0210/04 86-12-01 Loop name in an exit statement as an expanded name

5.8 Return Statements

1A return statement is used to complete the execution of the innermost37 enclosing function or procedure
♦.

2return_statement ::= return [expression];

3A return statement is only allowed within the body of a subprogram ♦ and applies to that body.

37In AVA there can only be a single enclosing function or procedure.

84 ARM
Statements

4A return statement for ♦ the body of a procedure ♦ must not include an expression. A return statement
for the body of a function ♦ must include an expression.

5The value of the expression defines the result returned by the function. The type of this expression must
be the base type of the type mark given after the reserved word return in the specification of the function
♦ (this type mark defines the result subtype).

6For the execution of a return statement, the expression (if any) is first evaluated and a check is made that
the value belongs to the result subtype. The execution of the return statement is thereby completed if the
check succeeds; so also is the execution of the subprogram ♦. The exception CONSTRAINT_ERROR is
raised at the place of the return statement if the check fails.

7Examples:

return; -- in a procedure
return KEY_VALUE(LAST_INDEX); -- in a function

Note:

8If the expression is either a numeric literal or named number, or an attribute that yields a result of type
universal_integer ♦, then an implicit conversion of the result is performed as described in section 4.6.

9References: block statement 5.6, constraint_error exception 11.1, expression 4.4, function body 6.3,
function call 6.4, implicit type conversion 4.6, named number 3.2, numeric literal 2.4, ♦ procedure body
6.3, reserved word 2.9, result subtype 6.1, subprogram body 6.3, subprogram specification 6.1, subtype
3.3, type mark 3.3.2, universal_integer type 3.5.4

5.9 Goto Statements: Removed

ARM 85
Subprograms

Chapter 6

SUBPROGRAMS

1Subprograms are one of the ♦ forms of program unit, of which programs can be composed. The other
form is packages.

2A subprogram is a program unit whose execution is invoked by a subprogram call. There are two forms
of subprogram: procedures and functions. A procedure call is a statement; a function call is an expression
and returns a value. The definition of a subprogram can be given in two parts: a subprogram declaration
defining its calling conventions, and a subprogram body defining its execution.

3References: function 6.5, function call 6.4, package 7, procedure 6.1, procedure call 6.4, subprogram body
6.3, subprogram call 6.4, subprogram declaration 6.1

6.1 Subprogram Declarations

1A subprogram declaration declares a procedure or a function, as indicated by the initial reserved word.

2subprogram_declaration ::= subprogram_specification;

subprogram_specification ::=
procedure identifier [formal_part]

| function identifier [formal_part] return type_mark

♦

formal_part ::=
(parameter_specification {; parameter_specification})

parameter_specification ::=
identifier_list : mode type_mark ♦

mode ::= [in] | in out | ♦

3The specification of a procedure specifies its identifier and its formal parameters (if any). The
specification of a function specifies its identifier, its formal parameters, of which there must be at least
one38 and the subtype of the returned value (the result subtype). ♦

38This is a somewhat arbitrary simplification reflecting a bias against the use of global variables. Without globals,
parameterless functions are just constants.

86 ARM
Subprograms

4A parameter specification with several identifiers is equivalent to a sequence of single parameter
specifications, as explained in section 3.2. Each single parameter specification declares a formal
parameter. If no mode is explicitly given, the mode in is assumed. ♦

6The elaboration of a subprogram declaration elaborates the corresponding formal part. The elaboration of
a formal part has no other effect.

7Examples of subprogram declarations:

procedure TRAVERSE_TREE;
procedure INCREMENT(X : in out INTEGER);
♦
procedure SWITCH(FROM, TO : in out COLOR); -- see 3.5.1

function RANDOM (I : in PAGE_NUM) return PAGE_NUM; -- see 3.5.4

function BIRTH_DATE(K : PERSON) return DATE; -- see 3.7
♦

Notes:

8♦

9All subprograms can be called recursively and are reentrant.

10References: declaration 3.1, elaboration 3.9, evaluation 4.5, expression 4.4, formal parameter 6.2, function
6.5, identifier 2.3, identifier list 3.2, mode 6.2, name 4.1, elaboration has no other effect 3.9, operator 4.5,
overloading 6.6 8.7, procedure 6, string literal 2.6, subprogram call 6.4, type mark 3.3.2

6.2 Formal Parameter Modes

1The value of an object is said to be read when this value is evaluated; it is also said to be read when one of
its subcomponents is read. The value of a variable is said to be updated when an assignment is performed
to the variable, and also (indirectly) when the variable is used as actual parameter of a subprogram call ♦
that updates its value; it is also said to be updated when one of its subcomponents is updated.

2A formal parameter of a subprogram has one of the ♦ following modes:

in 3The formal parameter is a constant and permits only reading of the value of the
associated actual parameter.

in out 4The formal parameter is a variable (or variable subcomponent) and permits both
reading and updating of the value of the associated actual parameter.39

♦

6For a scalar parameter, the above effects are achieved by copy: at the start of each call the value of the
actual parameter is copied into the associated formal parameter; then after normal completion of the
subprogram body, if the mode is in out ♦, the value of the formal parameter is copied back into the
associated actual parameter. ♦

39Note that (x) a variable if x is a variable, according to [AI-00178].

ARM 87
Subprograms

7For a parameter whose type is an array ♦ or record type, an implementation must achieve the above
effects by copy, as for scalar types.40 ♦

8For a parameter whose type is a private type, the above effects are achieved according to the rule that
applies to the corresponding full type declaration.

9Within the body of a subprogram, a formal parameter is subject to any constraint resulting from the type
mark given in its parameter specification. For a formal parameter of an unconstrained array type, the
bounds are obtained from the actual parameter, and the formal parameter is constrained by these bounds
(see 3.6.1). ♦

Notes:

11For parameters of array and record types, the parameter passing rules have these consequences:

• 12If the execution of a subprogram is abandoned as a result of an exception, the final value of an
actual parameter of such a type must be its value before the call.

• 13♦

16References: actual parameter 6.4.1, array type 3.6, assignment 5.2, bound of an array 3.6.1, constraint 3.3,
evaluation 4.5, exception 11, expression 4.4, formal parameter 6.1, global 8.1, mode 6.1, object 3.2,
parameter specification 6.1, private type 7.4, record type 3.7, scalar type 3.5, subcomponent 3.3,
subprogram body 6.3, subprogram call statement 6.4, type mark 3.3.2, unconstrained array type 3.6,
unconstrained variable 3.2.1, variable 3.2.1

AI Crossreferences:

Section Class Status AI-0 Date Description
6.02 (01) BI WI 0141/03 84-12-10 Meaning of "update" for shared actual parameters
6.02 (05) ST RE 0478/00 86-10-13 Referring to out-mode formal parameters to be allowed.
6.02 (06) BI RE 0348/00 85-06-18 Completion of the subprogram body
6.02 (06) ST RE 0349/00 85-06-18 Delete copy-in/copy-back for scalar and access parameters
6.02 (06) ST RE 0479/00 86-10-13 Access type out-variables should be null before call
6.02 (07) BI RE 0588/00 88-09-02 Dependence from parameter passing mechanism
6.02 (07) BI WI 0178/03 88-08-16 Passing parameters by reference
6.02 (09) ra WA 0005/08 88-11-04 ’CONSTRAINED for a formal parameter
6.02 (13) BI WI 0178/03 88-08-16 Passing parameters by reference
6.02 (13) ra WI 0135/03 88-09-02 Erroneous use of array and record formal parameters

6.3 Subprogram Bodies

1A subprogram body specifies the execution of a subprogram.

2subprogram_body ::=
subprogram_specification is

[inner_declarative_part]
begin

sequence_of_statements
[exception

40IMPLEMENTATION REQUIREMENT. Note that if it can be demonstrated to yield identical results for in out
parameters, an implementation may achieve these effects by reference. This will involve a proof of the absence of
exceptions propagating out of the subprogram call. See section 1.6 for a description of a program transformation that
will permit compilation and execution of AVA programs under all conforming Ada compilers.

88 ARM
Subprograms

exception_handler ♦]
end [identifier];

3The declaration of a subprogram is optional. In the absence of such a declaration, the subprogram
specification of the subprogram body ♦ acts like a declaration. Differences arise when discussing
recompilation. See 10.1(6) and [AI-00199]. For each subprogram declaration, there must be a
corresponding body ♦. If both a declaration and a body are given, the subprogram specification of the
body must conform to the subprogram specification of the declaration (see section 6.3.1 for conformance
rules).

4If an identifier appears at the end of a subprogram body, it must repeat the identifier of the subprogram
specification.

5The elaboration of a subprogram body has no other effect than to establish that the body can from then on
be used for the execution of calls of the subprogram.

6The execution of a subprogram body is invoked by a subprogram call (see 6.4). For this execution, after
establishing the association between formal parameters and actual parameters, the inner declarative part
of the body is elaborated, and the sequence of statements of the body is then executed. Upon completion
of the body, return is made to the caller (and any necessary copying back of formal to actual parameters
occurs (see 6.2)). The optional exception handlers at the end of a subprogram body handle exceptions
raised during the execution of the sequence of statements of the subprogram body (see 11.4).

Note:

7It follows from the visibility rules that if a subprogram declared in a package is to be visible outside the
package, a subprogram specification must be given in the visible part of the package. The same rules
dictate that a subprogram declaration must be given if a call of the subprogram occurs textually before the
subprogram body (the declaration must then occur earlier than the call in the program text). The rules
given in sections 3.9 and 7.1 imply that a subprogram declaration and the corresponding body must both
occur immediately within the same declarative region.

8Example of subprogram body:

procedure PUSH(E : in ELEMENT_TYPE; S : in out STACK) is
begin

if S.INDEX = S.SIZE then
raise PROGRAM_ERROR;

else
S.INDEX := S.INDEX + 1;
S.SPACE(S.INDEX) := E;

end if;
end PUSH;

9References: actual parameter 6.4.1, conform 6.3.1, declaration 3.1, declarative part 3.9, declarative region
8.1, designator 6.1, elaboration 3.9, elaboration has no other effect 3.1, exception 11, exception handler
11.2, formal parameter 6.1, occur immediately within 8.1, package 7, sequence of statements 5.1,
subprogram 6, subprogram call 6.4, subprogram declaration 6.1, subprogram specification 6.1, visibility
8.3, visible part 7.2

ARM 89
Subprograms

AI Crossreferences:

Section Class Status AI-0 Date Description
6.03 (03) BI RE 0252/01 84-11-24 Can a subprogram spec appear after its body

6.3.1 Conformance Rules

1Whenever the language rules require or allow the specification of a given subprogram to be provided in
more than one place, the following variations are allowed at each place:

• 3♦

• 4A simple name can be replaced by an expanded name in which this simple name is the selector, if
and only if at both places the meaning of the simple name is given by the same declaration.

• 5♦

6Two subprogram specifications are said to conform if, apart from comments and the above allowed
variations, both specifications are formed by the same sequence of lexical elements, and corresponding
lexical elements are given the same meaning by the visibility and overloading rules.

5Conformance is likewise defined for formal parts ♦ and type marks (for deferred constants ♦).

Notes:

6A simple name can be replaced by an expanded name even if the simple name is itself the prefix of a
selected component. For example, Q.R can be replaced by P.Q.R if Q is declared immediately within P.

7The following specifications do not conform since they are not formed by the same sequence of lexical
elements:

procedure P(X,Y : INTEGER)
procedure P(X : INTEGER; Y : INTEGER)
procedure P(X,Y : in INTEGER)

7aOverload resolution occurs before conformance checks [AI-00183].

8References: actual parameter 6.4 6.4.1, allow 1.6, comment 2.7, declaration 3.1, deferred constant 7.4.3,
direct visibility 8.3, expanded name 4.1.3, formal part 6.1, lexical element 2, name 4.1, numeric literal 2.4,
overloading 6.6 8.7, prefix 4.1, selected component 4.1.3, selector 4.1.3, simple name 4.1, subprogram
specification 6.1, ♦ visibility 8.3

AI Crossreferences:

Section Class Status AI-0 Date Description
6.03.01 (03) BI WA 0461/07 88-11-04 When two declarations are considered the same
6.03.01 (03) ra CA 0241/06 88-10-03 Conformance between a subprogram declaration and its subunit
6.03.01 (04) ra WJ 0493/05 88-05-23 Operator symbols that represent the same operator
6.03.01 (05) BI CA 0547/03 88-10-05 Conformance rules and instantiated units
6.03.01 (05) BI WA 0461/07 88-11-04 When two declarations are considered the same
6.03.01 (05) ra WJ 0350/04 86-12-04 Lexical elements not changed by allowable character replacements
6.03.01 (06) BI WI 0318/03 88-08-17 Conformance rules and derived subprograms

90 ARM
Subprograms

6.3.2 Inline Expansion of Subprograms: Removed

AI Crossreferences:

Section Class Status AI-0 Date Description
6.03.02 (03) BI WJ 0200/08 86-12-01 Dependences created by inline of generic instantiations
6.03.02 (03) BI WJ 0242/09 87-06-18 Subprogram names allowed in pragma INLINE

6.4 Subprogram Calls

1A subprogram call is either a procedure call statement or a function call; its evaluation invokes the
execution of the corresponding subprogram body. The call specifies the association of the actual
parameters, if any, with formal parameters of the subprogram.

2procedure_call_statement ::=
procedure_name [actual_parameter_part];

function_call ::=
function_name [actual_parameter_part]

actual_parameter_part ::=
(parameter_association {, parameter_association})

parameter_association ::=
♦ actual_parameter

♦

actual_parameter ::=
expression | variable_name | ♦

3Each parameter association associates an actual parameter with a corresponding formal parameter. A
parameter association is ♦ positional. The actual parameter corresponds to the formal parameter with the
same position in the formal part. ♦

5For each formal parameter of a subprogram, a subprogram call must specify exactly one corresponding
actual parameter. This actual parameter is specified ♦ explicitly by a parameter association ♦.

6The parameter associations of a subprogram call are evaluated left to right.41 The language rules do not
define in which order the values of in out ♦ parameters are copied back into the corresponding actual
parameters (when this is done).

6eIt is poor programming style for the evaluation of the actual parameters of the subprogram call to
modify variables that are used in the evaluation of any of the other parameter expressions.
Similarly, it is poor style if the actual parameters corresponding to two different formal
parameters of mode in out overlap42, or if an actual in out parameter overlaps a global

41IMPLEMENTATION REQUIREMENT: This eliminates one source of incorrect order dependencies.

42Two variables overlap if they are equal or either is a subcomponent of the other. Thus, the array a and array element
a(1) overlap. Array elements a(i) and a(j) potentially overlap.

ARM 91
Subprograms

accessible to the called subprogram or an actual in parameter that is referable43. Potential
overlap should be detected at compile time, to the extent possible, and a warning issued.

7Examples of procedure calls:

TRAVERSE_TREE; -- see 6.1
TABLE_MANAGER.INSERT(E); -- see 7.5
PRINT_HEADER(128, TITLE, TRUE); -- see 6.1
♦

8Examples of function calls:

DOT_PRODUCT(U, V) -- see 6.1 and 6.5
CLOCK -- see 9.6

Note:

8aDue to the above anti-overlap suggestions, given

procedure Q(x, y: in T, z: in out T);

the call "Q(a, a, b)" is acceptable, but "Q(a, b, b)" is poor style.

9References: expression 4.4, formal parameter 6.1, formal part 6.1, name 4.1, simple name 4.1, subprogram
6, type mark 3.3.2, variable 3.2.1

6.4.1 Parameter Associations

1Each actual parameter must have the same type as the corresponding formal parameter.

2An actual parameter associated with a formal parameter of mode in must be an expression; it is evaluated
before the call.44

3An actual parameter associated with a formal parameter of mode in out ♦ must be ♦ the name of a
variable ♦.45 Type conversions of actual parameters associated with an in out formal parameter
are not allowed.

4The variable name given for an actual parameter of mode in out ♦ is ‘‘evaluated’’ before the call (see
5.2). ♦

43An expression is called referable in the following cases:

(a) it is a variable, or

(b) it is a parenthesized referable expression, or

(c) it is a qualified expression or type conversion whose operand is referable.

44Evaluating or checking an actual subprogram parameter before the call means the evaluation or check is performed
during the execution of the subprogram call, before control is transferred to the subprogram body [AI-00433]. Thus,
exceptions raised during the evaluation of parameters will not be handled by the exception handler of the subprogram
body, but by a handler that is a function of the calling environment.

45Note that subcomponents of variables, e.g. ‘‘a(i)’’, are themselves the names of variables.

92 ARM
Subprograms

5The following constraint checks are performed for parameters of scalar ♦ type:

• 6Before the call: ♦ it is checked that the value of the actual parameter belongs to the subtype of the
formal parameter.

• 7After (normal) completion of the subprogram body: for a parameter of mode in out ♦, it is
checked that the value of the formal parameter belongs to the subtype of the actual variable before
any values are copied back.46 ♦

8♦

9For other types, for all modes, a check is made before the call as for scalar ♦ types; no check is made
upon return. When a subprogram parameter has a private type, the constraint checks that are
performed before or after the call are those appropriate for the type declared in the private type’s
full declaration [AI-00025].

10The exception CONSTRAINT_ERROR is raised at the place of the subprogram call if either of these
checks fails.

Note:

11For array types ♦ the check before the call is sufficient (a check upon return would be redundant) if the
type mark of the formal parameter denotes a constrained subtype, since array bounds ♦ cannot then vary.

12If this type mark denotes an unconstrained array type, the formal parameter is constrained with the bounds
of the corresponding actual parameter and no check (neither before the call nor upon return) is needed (see
3.6.1). ♦

12aAVA Note: In both Ada and AVA assignment works very differently from parameter passing. No implicit
subtype conversion is performed on arrays passed as parameters.

13References: actual parameter 6.4, array bound 3.6, array type 3.6, call of a subprogram 6.4, conform 6.3.1,
constrained subtype 3.3, constraint 3.3, constraint_error exception 11.1, evaluation 4.5, evaluation of a
name 4.1, expression 4.4, formal parameter 6.1, mode 6.1, name 4.1, parameter association 6.4, subtype
3.3, type 3.3, type conversion 4.6, type mark 3.3.2, unconstrained array type 3.6, variable 3.2.1

AI Crossreferences:

Section Class Status AI-0 Date Description
6.04.01 (02) co CE 0433/03 88-11-20 Evaluating and checking parameters "before the call"
6.04.01 (03) BI CA 0547/03 88-10-05 Conformance rules and instantiated units
6.04.01 (03) BI WI 0318/03 88-08-17 Conformance rules and derived subprograms
6.04.01 (03) ra WJ 0245/08 88-05-23 Type conversion conformance for renamed subprogram/entry calls
6.04.01 (04) BI WJ 0024/09 86-07-23 Type conversions as out parameters for non-scalar types
6.04.01 (04) BI WJ 0295/05 88-05-23 Evaluating the variable in an actual parameter type conversion
6.04.01 (04) co CE 0433/03 88-11-20 Evaluating and checking parameters "before the call"
6.04.01 (04) ra WI 0296/02 87-01-15 Type conversions and parameters passed by reference
6.04.01 (06) co CE 0433/03 88-11-20 Evaluating and checking parameters "before the call"
6.04.01 (07) ra CE 0377/03 88-11-20 Interleaving of copy-back and constraint checks
6.04.01 (09) BI WJ 0025/08 87-09-12 Checking out parameter constraints for private types
6.04.01 (09) co CE 0433/03 88-11-20 Evaluating and checking parameters "before the call"
6.04.01 (09) CR WJ 0396/03 86-07-23 Correction to discussion of 0025

46IMPLEMENTATION REQUIREMENT. In Ada, copy-back and constraint checking can be interleaved in an order that
is not defined by the language [AI-00377].

ARM 93
Subprograms

6.04.01 (11) co CE 0433/03 88-11-20 Evaluating and checking parameters "before the call"
6.04.01 (12) co CE 0433/03 88-11-20 Evaluating and checking parameters "before the call"

6.4.2 Default Parameters: Removed

AI Crossreferences:

Section Class Status AI-0 Date Description
6.04.02 (02) co CE 0433/03 88-11-20 Evaluating and checking parameters "before the call"
6.04.02 (02) co RE 0434/00 86-06-19 An actual parameter cannot be a value?

6.5 Function Subprograms

1A function is a subprogram that returns a value (the result of the function call). The specification of a
function starts with the reserved word function, and the parameters, if any, must have the mode in
(whether this mode is specified explicitly or implicitly). The statements of the function body ♦ must
include one or more return statements specifying the returned value.

2The exception PROGRAM_ERROR is raised if a function body is left otherwise than by a return
statement.47 This does not apply if the execution of the function is abandoned as a result of an exception.

3Example:

function DOT_PRODUCT(LEFT, RIGHT : TABLE) return INTEGER is
SUM : INTEGER := 0;

begin
CHECK(LEFT’FIRST = RIGHT’FIRST and LEFT’LAST = RIGHT’LAST);
for J in LEFT’RANGE loop

SUM := SUM + LEFT(J)*RIGHT(J);
end loop;
return SUM;

end DOT_PRODUCT;

4References: exception 11, formal parameter 6.1, function 6.1, function body 6.3, function call 6.4,
function specification 6.1, mode 6.1, program_error exception 11.1, raising of exceptions 11, return
statement 5.8, statement 5

AI Crossreferences:

Section Class Status AI-0 Date Description
6.05 (02) BI RE 0152/01 86-09-05 Raising PROGRAM_ERROR in a function call

47The exception is raised at the point of call, not within the function body. Equivalently, the error is raised when it is
realized that there is no more function body to execute, which in our simple model of execution is only known outside the
last handler within the body. See the unresolved discussion in [AI-00152].

94 ARM
Subprograms

6.6 Parameter and Result Type Profile - Overloading of Subprograms

1Two formal parts are said to have the same parameter type profile if and only if they have the same
number of parameters, and at each parameter position corresponding parameters have the same base type.
A subprogram ♦ has the same parameter and result type profile as another subprogram ♦ if and only if
both have the same parameter type profile, and either both are functions with the same result base type, or
both are procedures.

2The same subprogram identifier ♦ can be used in several subprogram specifications. The identifier ♦ is
then said to be overloaded; the subprograms that have this identifier ♦ are also said to be overloaded and
to overload each other. As explained in section 8.3, if two subprograms overload each other, one of them
can hide the other only if both subprograms have the same parameter and result type profile (see section
8.3 for the other requirements that must be met for hiding).

3A call to an overloaded subprogram is ambiguous (and therefore illegal) if the name of the subprogram,
the number of parameter associations, the types and the order of the actual parameters, ♦ and the result
type (for functions) are not sufficient to determine exactly one (overloaded) subprogram specification.

4Examples of overloaded subprograms:

procedure PUT(X : INTEGER);
procedure PUT(X : STRING);

procedure SET(TINT : COLOR);
procedure SET(SIGNAL : LIGHT);

5Examples of calls:

PUT(28);
PUT("no possible ambiguity here");

♦
SET(LIGHT’(RED));
SET(COLOR’(RED));

-- SET(RED) would be ambiguous since RED may
-- denote a value either of type COLOR or of type LIGHT

Notes:

6The notion of parameter and result type profile does not include parameter names, parameter modes, and
parameter subtypes ♦.

7Ambiguities may (but need not) arise when actual parameters of the call of an overloaded subprogram are
themselves overloaded function calls, literals, or aggregates. Ambiguities may also (but need not) arise
when several overloaded subprograms belonging to different packages are visible. These ambiguities can
usually be resolved in several ways: qualified expressions can be used for some or all actual parameters,
and for the result, if any; the name of the subprogram can be expressed more explicitly as an expanded
name; finally, the subprogram can be renamed.

8References: actual parameter 6.4.1, aggregate 4.3, base type 3.3, formal parameter 6.1, function 6.5,
function call 6.4, hiding 8.3, identifier 2.3, illegal 1.6, literal 4.2, mode 6.1, overloading 8.7, package 7,
parameter of a subprogram 6.2, qualified expression 4.7, renaming declaration 8.5, result subtype 6.1,

ARM 95
Subprograms

subprogram 6, subprogram specification 6.1, subtype 3.3, type 3.3

AI Crossreferences:

Section Class Status AI-0 Date Description
6.06 (03) BI WJ 0287/05 88-12-14 Resolving overloaded entry calls

6.7 Overloading of Operators: Removed

96 ARM
Subprograms

ARM 97
Packages

Chapter 7

PACKAGES

1Packages are one of the two forms of program unit, of which programs can be composed. The other
forms are subprograms ♦.

2Packages allow the specification of groups of logically related entities. In their simplest form packages
specify pools of common object and type declarations. More generally, packages can be used to specify
groups of related entities including also subprograms that can be called from outside the package, while
their inner workings remain concealed and protected from outside users. ♦

3References: ♦, program unit 6, subprogram 6 ♦, type declaration 3.3.1

7.1 Package Structure

1A package is generally provided in two parts: a package specification and a package body. Every package
has a package specification, but not all packages have a package body.

2package_declaration ::= package_specification;

package_specification ::=
package identifier is
{basic_declarative_item}

[private
{basic_declarative_item}]

end [package_simple_name]

package_body ::=
package body package_simple_name is

[declarative_part ♦]
[begin

sequence_of_statements
[exception

exception_handler ♦]]
end [package_simple_name];

3The simple name at the start of a package body must repeat the package identifier. Similarly if a simple
name appears at the end of the package specification or body, it must repeat the package identifier.

4If a subprogram declaration or a package declaration is a declarative item of a given package
specification, then the body (if there is one) of the program unit declared by the declarative item must
itself be a declarative item of the declarative part of the body of the given package.

98 ARM
Packages

Notes:

5A simple form of package, specifying a pool of objects and types, does not require a package body. One
of the possible uses of the sequence of statements of a package body is to initialize such objects. For each
subprogram declaration there must be a corresponding body ♦. A body is not a basic declarative item and
so cannot appear in a package specification.

6A package declaration is either a library package (see 10.2) or a declarative item declared within another
package declaration.

7References: basic declarative item 3.9, ♦, declarative item 3.9, declarative part 3.9, exception handler
11.2, identifier 2.3, library unit 10.1, object 3.2, package body 7.3, program unit 6, proper body 3.9,
sequence of statements 5.1, simple name 4.1, subprogram body 6.3, subprogram declaration 6.1, type 3.3

7.2 Package Specifications and Declarations

1The first list of declarative items of a package specification is called the visible part of the package. The
optional list of declarative items after the reserved word private is called the private part of the package.

2An entity declared in the private part of a package is not visible outside the package itself (a name
denoting such an entity is only possible within the package). In contrast, expanded names denoting
entities declared in the visible part can be used even outside the package; furthermore, direct visibility of
such entities can be achieved by means of use clauses (see 4.1.3 and 8.4).

3The elaboration of a package declaration consists of the elaboration of its basic declarative items in the
given order.

Notes:

4The visible part of a package contains all the information that another program unit is able to know about
the package. A package consisting of only a package specification (that is, without a package body) can
be used to represent a group of common constants or variables, or a common pool of objects and types, as
in the examples below.

5Example of a package describing a group of common variables:

package PLOTTING_DATA is
PEN_UP : BOOLEAN;

CONVERSION_FACTOR,
X_OFFSET, Y_OFFSET,
X_MIN, Y_MIN,
X_MAX, Y_MAX : INTEGER ; -- see 3.5.7

subtype pindex is integer range 1..500;

X_VALUE : array (pindex) of position;
Y_VALUE : array (pindex) of position;

end PLOTTING_DATA;

6Example of a package describing a common pool of objects and types:

ARM 99
Packages

package WORK_DATA is
subtype DAY is integer range 1..7;

subtype HOURS_SPENT is integer range 0 .. 24;
type TIME_TABLE is array (DAY) of HOURS_SPENT;
NORMAL_HOURS : constant TIME_TABLE := (8,8,8,8,7,0,0);

end WORK_DATA;

7References: basic declarative item 3.9, constant 3.2.1, declarative item 3.9, direct visibility 8.3,
elaboration 3.9, expanded name 4.1.3, name 4.1, number declaration 3.2.2, object declaration 3.2.1,
package 7, package declaration 7.1, package identifier 7.1, package specification 7.1, scope 8.2, simple
name 4.1, type declaration 3.3.1, use clause 8.4, variable 3.2.1

7.3 Package Bodies

1In contrast to the entities declared in the visible part of a package specification, the entities declared in the
package body are only visible within the package body itself. As a consequence, a package with a
package body can be used for the construction of a group of related subprograms (a package in the usual
sense), in which the logical operations available to the users are clearly isolated from the internal entities.

2For the elaboration of a package body, its declarative part is first elaborated, and its sequence of
statements (if any) is then executed. The optional exception handler ♦ at the end of a package body
services exceptions raised during the execution of the sequence of statements of the package body.

Notes:

3A variable declared in the body of a package is only visible within this body and, consequently, its value
can only be changed within the package body. The value of such a variable remains unchanged between
calls issued from outside the package to subprograms declared in the visible part. The properties of such a
variable are similar to those of an "own" variable of Algol 60.

4The elaboration of the body of a subprogram declared in the visible part of a package is caused by the
elaboration of the body of the package. Hence a call of such a subprogram by an outside program unit
raises the exception PROGRAM_ERROR if the call takes place before the elaboration of the package
body (see 3.9).

5Example of a package:

package RATIONAL_NUMBERS is

type RATIONAL is
record

NUMERATOR : INTEGER;
DENOMINATOR : POSITIVE;

end record;

function EQUAL(X,Y : RATIONAL) return BOOLEAN;

function div (X,Y : INTEGER) return RATIONAL; -- to construct a rational number

function plus (X,Y : RATIONAL) return RATIONAL;
function minus (X,Y : RATIONAL) return RATIONAL;
function times (X,Y : RATIONAL) return RATIONAL;

100 ARM
Packages

function div (X,Y : RATIONAL) return RATIONAL;
end;

package body RATIONAL_NUMBERS is

procedure SAME_DENOMINATOR (X,Y : in out RATIONAL) is
begin

-- reduces X and Y to the same denominator:
...

end;

function EQUAL(X,Y : RATIONAL) return BOOLEAN is
U,V : RATIONAL := X;

begin
V := Y;
SAME_DENOMINATOR (U,V);
return U.NUMERATOR = V.NUMERATOR;

end EQUAL;

function div (X,Y : INTEGER) return RATIONAL is
begin

if Y > 0 then
return (NUMERATOR => X, DENOMINATOR => Y);

else
return (NUMERATOR => -X, DENOMINATOR => -Y);

end if;
end div;

function plus (X,Y : RATIONAL) return RATIONAL is ... end;
function minus (X,Y : RATIONAL) return RATIONAL is ... end;
function times (X,Y : RATIONAL) return RATIONAL is ... end;
function div (X,Y : RATIONAL) return RATIONAL is ... end;

end RATIONAL_NUMBERS;

6References: declaration 3.1, declarative part 3.9, elaboration 3.1 3.9, exception 11, exception handler 11.2,
name 4.1, package specification 7.1, program unit 6, program_error exception 11.1, sequence of
statements 5.1, subprogram 6, variable 3.2.1, visible part 7.2

7.4 Private Type and Deferred Constant Declarations

1The declaration of a type as a private type in the visible part of a package serves to separate the
characteristics that can be used directly by outside program units (that is, the logical properties) from other
characteristics whose direct use is confined to the package (the details of the definition of the type itself).
Deferred constant declarations declare constants48 of private types.

2private_type_declaration ::=
type identifier ♦ is ♦ private;

deferred_constant_declaration ::=

48We wanted to provide deferred objects in order to allow variables of a private type. In the case of variables of limited
privated type this is impossible (see 7.4.1(4)). Thus, the only objects of limited private type that this subset of Ada can
use are constants.

ARM 101
Packages

identifier_list : constant type_mark;

3A private type declaration is only allowed as a declarative item of the visible part of a package ♦.

4The type mark of a deferred constant declaration must denote a private type ♦; a deferred constant
declaration and the declaration of the corresponding private type must both be declarative items of the
visible part of the same package. A deferred constant declaration with several identifiers is equivalent to a
sequence of single deferred constant declarations as explained in section 3.2.

5Examples of private type declarations:

type KEY is private;
type FILE_NAME is ♦ private;

6Example of deferred constant declaration:

NULL_KEY : constant KEY;

7References: constant 3.2.1, declaration 3.1, declarative item 3.9, deferred constant 7.4.3, ♦ identifier 2.3,
identifier list 3.2, ♦ package 7, private type 7.4.1, program unit 6, subtype 3.3, type 3.3, type mark 3.3.2,
visible part 7.2

AI Crossreferences:

Section Class Status AI-0 Date Description
7.04 (01) BI CE 0270/04 88-05-09 The type of an object declared to have a private type

7.4.1 Private Types

1If a private type declaration is given in the visible part of a package, then a corresponding declaration of a
type with the same identifier must appear as a declarative item of the private part of the package. The
corresponding declaration must be ♦ a full type declaration ♦. In the rest of this section explanations are
given in terms of full type declarations ♦.

12A private type declaration and the corresponding full type declaration define a single type. The private
type declaration, together with the visible part, define the operations that are available to outside program
units (see section 7.4.2 on the operations that are available for private types). On the other hand, the full
type declaration defines other operations whose direct use is only possible within the package itself.

13♦ The declared49 full type must not be an unconstrained array type. ♦

14Within the specification of the package that declares a private type and before the end of the
corresponding full type declaration, a restriction applies to the use of a name that denotes the private type
♦ and, likewise, to the use of a name that denotes any type ♦ that has a subcomponent of the private type.
The only allowed occurrences of such a name are in a deferred constant declaration, a type ♦ or a
subprogram specification ♦; moreover, occurrences within ♦ simple expressions are not allowed.

15The elaboration of a private type declaration creates a private type. ♦ The elaboration of the full type
declaration consists of the elaboration of the type definition ♦.

49See [AI-00232]. The declared full type is distinguished from the implicitly declared type as defined in 3.3.1(4).

102 ARM
Packages

Notes:

16It follows from the given rules that the declaration of a variable of a private type is not allowed
before the full declaration of the type. ♦

17References: array type 3.6, conform 6.3.1, declarative item 3.9, deferred constant declaration 7.4.3,
elaboration 3.9, expression 4.4, full type declaration 3.3.1, identifier 2.3, incomplete type declaration
3.8.1, ♦ name 4.1, operation 3.3, package 7, package specification 7.1, private part 7.2, private type 7.4,
private type declaration 7.4, record type definition 3.7, reserved word 2.9, subcomponent 3.3, subprogram
specification 6.1, subtype 3.3, subtype declaration 3.3.2, type 3.3, type declaration 3.3.1, type definition
3.3.1, unconstrained array type 3.6, variable 3.2.1, visible part 7.2

AI Crossreferences:

Section Class Status AI-0 Date Description
7.04.01 (01) ST RE 0540/00 87-08-05 The full declaration of a private type
7.04.01 (02) BI CE 0270/04 88-05-09 The type of an object declared to have a private type
7.04.01 (03) co WJ 0232/05 86-07-23 Full declarations that implicitly declare unconstrained types
7.04.01 (04) BI WJ 0039/12 86-07 -23 Forcing occurrences and premature uses of a type
7.04.01 (04) BI WJ 0153/05 86-07-23 Membership tests cannot use an incompletely declared private type
7.04.01 (04) na na 0246/01 84-11-05 [combined with 0039]
7.04.01 (04) ra WI 0517/00 87-01-20 Representation clauses for incompletely declared types
7.04.01 (04) ra WJ 0384/05 86-07-23 Use of an incomplete private type in a formal type declaration
7.04.01 (04) ST RE 0327/00 85-02-15 Instantiating with an incomplete private type
7.04.01 (04) ST RE 0404/00 85-12-03 Incomplete types as formal object parameters

7.4.2 Operations of a Private Type

1The operations that are implicitly declared by a private type declaration include basic operations. These
are the operations involved in assignment ♦, membership tests ♦, qualification, and explicit conversions.

2For a private type T, the basic operations also include the attribute T’BASE (see 3.3.3). ♦

3Finally, the operations implicitly declared by a private type declaration include the predefined comparison
for equality and inequality ♦.

4The above operations, together with subprograms that have a parameter or result of the private type and
that are declared in the visible part of the package, are the only operations from the package that are
available outside the package for the private type.

5Within the package that declares the private type, the additional operations implicitly declared by the full
type declaration are also available. The redefinition of these implicitly declared operations is NOT
allowed between the private type declaration and the corresponding full declaration.

6If a composite type has subcomponents of a private type and is declared outside the package that declares
the private type, then the operations that are implicitly declared by the declaration of the composite type
include all operations that only depend on the characteristics that result from the private type declaration
alone. (For example the operator < is not included for a one-dimensional array type.)

7If the composite type is itself declared within the package that declares the private type (including within
an inner package ♦), then additional operations that depend on the characteristics of the full type are
implicitly declared, as required by the rules applicable to the composite type (for example the operator <
is declared for a one-dimensional array type if the full type is discrete). These additional operations are
implicitly declared at the earliest place within the immediate scope of the composite type and after the full

ARM 103
Packages

type declaration.50

8♦

Note:

11A private type declaration and the corresponding full type declaration define two different views of one
and the same type. Outside of the defining package the characteristics of the type are those defined by the
visible part. Within these outside program units the type is just a private type and any language rule that
applies only to another class of types does not apply. The fact that the full declaration might implement
the private type with a type of a particular class (for example, as an array type) is only relevant within the
package itself.

12The consequences of this actual implementation are, however, valid everywhere. ♦

13Example:

package KEY_MANAGER is
type KEY is private;
NULL_KEY : constant KEY;
procedure GET_KEY(K : in out KEY);
function lt (X, Y : KEY) return BOOLEAN;

private
type KEY is array(1..1) of integer;
NULL_KEY : constant KEY := key’(others => 0);

end;

package body KEY_MANAGER is
LAST_KEY : KEY := NULL_KEY;

procedure GET_KEY(K : in out KEY) is
begin

LAST_KEY(1) := LAST_KEY(1) + 1;
K := LAST_KEY;

end GET_KEY;

function lt (X, Y : KEY) return BOOLEAN is
begin

return X(1) < Y(1);
end lt;

end KEY_MANAGER;

Notes on the example:

14Outside of the package KEY_MANAGER, the operations available for objects of type KEY include
assignment, the comparison for equality or inequality, the procedure GET_KEY and the function lt; they
do not include other relational operators such as ">=", or arithmetic operators.

15♦

50This ‘‘earliest declaration rule’’ is odd, but not that different from the requirement in Ada that when declaring a new
integer type, the type conversion "INTEGER(x:NEW_INTEGER) return INTEGER" is declared.

104 ARM
Packages

16The value of the variable LAST_KEY, declared in the package body, remains unchanged between calls of
the procedure GET_KEY. (See also the notes of section 7.3.)

16aNote the clumsiness of this private type. The full type definition of KEY should just be INTEGER
(or NATURAL). The reason that the integer needs to be wrapped up in an array type is that
AVA rules out the definition of new integer types.

17References: assignment 5.2, attribute 4.1.4, basic operation 3.3.3, component 3.3, composite type 3.3,
conversion 4.6, declaration 3.1, declarative region 8.1, dimension 3.6, equality 4.5.2, full type 7.4.1, full
type declaration 3.3.1, hiding 8.3, immediate scope 8.2, implicit declaration 3.1, incomplete type
declaration 3.8.1, membership test 4.5, operation 3.3, package 7, parameter of a subprogram 6.2,
predefined function 8.6, predefined operator 4.5, private type 7.4, private type declaration 7.4, program
unit 6, qualification 4.7, relational operator 4.5, selected component 4.1.3, subprogram 6, visible part 7.2

AI Crossreferences:

Section Class Status AI-0 Date Description
7.04.02 (07) ra WJ 0139/04 86-07-23 The declaration of "additional operations" for access types
7.04.02 (07) ra WJ 0154/06 86-07-23 Additional operations for composite and access types
7.04.02 (08) ra WJ 0154/06 86-07-23 Additional operations for composite and access types
7.04.02 (09) co WJ 0026/07 87-06-18 Effect of full type decl on CONSTRAINED attribute

7.4.3 Deferred Constants

1If a deferred constant declaration is given in the visible part of a package then a constant declaration (that
is, an object declaration declaring a constant object, with an explicit initialization) with the same identifier
must appear as a declarative item of the private part of the package. This object declaration is called the
full declaration of the deferred constant. The type mark given in the full declaration must conform to that
given in the deferred constant declaration (see 6.3.1). Multiple or single declarations are allowed for the
deferred and the full declarations, provided that the equivalent single declarations conform.

2Within the specification of the package that declares a deferred constant and before the end of the
corresponding full declaration, the use of a name that denotes the deferred constant is not allowed.

3The elaboration of a deferred constant declaration has no other effect.

4The execution of a program raises PROGRAM_ERROR if it attempts to use the value of a deferred
constant before the elaboration of the corresponding full declaration. If compilers can detect this
situation at compile time they should issue a warning.

Note:

5The full declaration for a deferred constant that has a given private type must not appear before the
corresponding full type declaration. This is a consequence of the rules defining the allowed uses of a
name that denotes a private type (see 7.4.1).

6References: conform 6.3.1, constant declaration 3.2.1, declarative item 3.9, deferred constant 7.4,
deferred constant declaration 7.4, elaboration has no other effect 3.1, formal parameter 6.1, identifier 2.3,
object declaration 3.2.1, package 7, package specification 7.1, private part 7.2, record component 3.7, type
mark 3.3.2, visible part 7.2

ARM 105
Packages

AI Crossreferences:

Section Class Status AI-0 Date Description
7.04.03 (04) BI WJ 0155/08 86-12-01 Evaluation of an attribute prefix having an undefined value

7.4.4 Limited Types: Removed.

AI Crossreferences:

Section Class Status AI-0 Date Description
7.04.04 (04) BI WJ 0260/06 86-07-23 Limited "full types"
7.04.04 (04) CR WA 0527/04 88-06-17 Error in 0260/06 example

7.5 Example of a Table Management Package

1The following example illustrates the use of packages in providing high level procedures with a simple
interface to the user.

2The problem is to define a table management package for inserting and retrieving items. The items are
inserted into the table as they are supplied. Each inserted item has an order number. The items are
retrieved according to their order number, where the item with the lowest order number is retrieved first.

3From the user’s point of view, the package is quite simple. There is a type called ITEM designating table
items, a procedure INSERT for inserting items, and a procedure RETRIEVE for obtaining the item with
the lowest order number. There is a special item NULL_ITEM that is returned when the table is empty♦.
The exception PROGRAM_ERROR is raised by INSERT if the table is already full.

4A sketch of such a package is given below. Only the specification of the package is exposed to the user.

5package TABLE_MANAGER is

type ITEM is
record

ORDER_NUM : INTEGER;
ITEM_CODE : INTEGER;
QUANTITY : INTEGER;
ITEM_TYPE : CHARACTER;

end record;

NULL_ITEM : constant ITEM :=
(ORDER_NUM | ITEM_CODE | QUANTITY => 0, ITEM_TYPE => ’ ’);

procedure INSERT (NEW_ITEM : in ITEM);
procedure RETRIEVE(FIRST_ITEM : in out ITEM);

♦
end;

6The details of implementing such packages can be quite complex; in this case they involve a two-way
linked table of internal items. A local housekeeping procedure EXCHANGE is used to move an internal
item between the busy and the free lists. The initial table linkages are established by the initialization
part. The package body need not be shown to the users of the package.

7package body TABLE_MANAGER is
SIZE : constant := 2000;

106 ARM
Packages

subtype INDEX is INTEGER range 0 .. SIZE;

type INTERNAL_ITEM is
record

CONTENT : ITEM;
SUCC : INDEX;
PRED : INDEX;

end record;

TABLE : array (INDEX) of INTERNAL_ITEM;
FIRST_BUSY_ITEM : INDEX := 0;
FIRST_FREE_ITEM : INDEX := 1;

function FREE_LIST_EMPTY (dummy : integer) return BOOLEAN is ... end;
function BUSY_LIST_EMPTY (dummy : integer) return BOOLEAN is ... end;
procedure EXCHANGE (FROM : in INDEX; TO : in INDEX) is ... end;

procedure INSERT (NEW_ITEM : in ITEM) is
begin

if FREE_LIST_EMPTY(0) then
raise PROGRAM_ERROR;

end if;
-- remaining code for INSERT

end INSERT;

procedure RETRIEVE (FIRST_ITEM : in out ITEM) is ... end;

begin
-- initialization of the table linkages

end TABLE_MANAGER;

7.6 Example of a Text Handling Package: Removed

ARM 107
Visibility Rules

Chapter 8

VISIBILITY RULES

1The rules defining the scope of declarations and the rules defining which identifiers are visible at various
points in the text of the program are described in this chapter. The formulation of these rules uses the
notion of a declarative region.

2References: declaration 3.1, declarative region 8.1, identifier 2.3, scope 8.2, visibility 8.3

8.1 Declarative Region

1A declarative region is a portion of the program text. A single declarative region is formed by the text of
each of the following:

• 2A ♦ subprogram declaration or a package declaration ♦ together with the corresponding body, if
any. ♦

• 3♦

• 4A record type declaration, together with a corresponding private ♦ type declaration if any ♦.

• 5A renaming declaration that includes a formal part ♦.

• 6A block statement or a loop statement.

7In each of the above cases, the declarative region is said to be associated with the corresponding
declaration or statement. A declaration is said to occur immediately within a declarative region if this
region is the innermost region that encloses the declaration, not counting the declarative region (if any)
associated with the declaration itself.

8A declaration that occurs immediately within a declarative region is said to be local to the region.
Declarations in outer (enclosing) regions are said to be global to an inner (enclosed) declarative region. A
local entity is one declared by a local declaration; a global entity is one declared by a global declaration.

9Some of the above forms of declarative region include several disjoint parts (for example, other
declarative items can be between the declaration of a package and its body). Each declarative region is
nevertheless considered as a (logically) continuous portion of the program text. Hence if any rule defines
a portion of text as the text that extends from some specific point of a declarative region to the end of this
region, then this portion is the corresponding subset of the declarative region (for example it does not
include intermediate declarative items between the two parts of a package).

Notes:

108 ARM
Visibility Rules

10As defined in section 3.1, the term declaration includes basic declarations, implicit declarations, and those
declarations that are part of basic declarations, for example, ♦ parameter specifications. It follows from
the definition of a declarative region that a ♦ parameter specification occurs immediately within the
region associated with the enclosing subprogram body ♦.

11The package STANDARD approximates a declarative region which encloses all library units: the
implicit declaration of each library unit is assumed to occur immediately within this package (see sections
8.6 and 10.1.1).51

12Declarative regions can be nested within other declarative regions. For example, packages can be
nested within each other, and can contain record type declarations, subprogram declarations,
block statements and loop statements.

13References: basic declaration 3.1, block statement 5.6, declaration 3.1, formal part 6.1, implicit
declaration 3.1, library unit 10.1, loop statement 5.5, package 7, package body 7.1, package declaration
7.1, parameter specification 6.1, private type declaration 7.4, record type 3.7, renaming declaration 8.5,
standard package 8.6, subprogram body 6.3, subprogram declaration 6.1

8.2 Scope of Declarations

1For each form of declaration, the language rules define a certain portion of the program text called the
scope of the declaration. The scope of a declaration is also called the scope of any entity declared by the
declaration. Furthermore, if the declaration associates some notation with a declared entity, this portion of
the text is also called the scope of this notation (either an identifier, a character literal, an operator symbol,
or the notation for a basic operation). Within the scope of an entity, and only there, there are places where
it is legal to use the associated notation in order to refer to the declared entity. These places are defined
by the rules of visibility and overloading.

2The scope of a declaration that occurs immediately within a declarative region extends from the beginning
of the declaration to the end of the declarative region; this part of the scope of a declaration is called the
immediate scope. Furthermore, for any of the declarations listed below, the scope of the declaration
extends beyond the immediate scope:

(a) 3A declaration that occurs immediately within the visible part of a package declaration.

(b) 4Omitted

(c) 5A component declaration.

(d) 6Omitted

(e) 7A parameter specification.

(f) 8Omitted

9In each of these cases, the given declaration occurs immediately within some enclosing declaration, and
the scope of the given declaration extends to the end of the scope of the enclosing declaration.

10In the absence of a subprogram declaration, the subprogram specification given in the subprogram body ♦
acts as the declaration and rule (e) applies also in such a case.

51The independent compilation of library units does not allow us to use the notion ‘‘end of declarative region’’ in
conjunction with the package STANDARD in any meaningful way.

ARM 109
Visibility Rules

Note:

11The above scope rules apply to all forms of declaration defined by section 3.1; in particular, they apply
also to implicit declarations. Rule (a) applies to a package declaration ♦. For nested declarations, the
rules (a) through (f) apply at each level. ♦ The scope of a use clause is defined in section 8.4.

12References: basic operation 3.3.3, character literal 2.5, component declaration 3.7, declaration 3.1,
declarative region 8.1, extends 8.1, identifier 2.3, implicit declaration 3.1, occur immediately within 8.1,
overloading 6.6 8.7, package declaration 7.1, package specification 7.1, parameter specification 6.1,
record type 3.7, renaming declaration 8.5, subprogram body 6.3, subprogram declaration 6.1, type
declaration 3.3.1, use clause 8.4, visibility 8.3, visible part 7.2

8.3 Visibility

1The meaning of the occurrence of an identifier at a given place in the text is defined by the visibility rules
and also, in the case of overloaded declarations, by the overloading rules. The identifiers considered in
this chapter include any identifier other than a reserved word or an attribute designator. The places
considered in this chapter are those where a lexical element (such as an identifier) occurs. The overloaded
declarations considered in this chapter are those for subprograms and enumeration literals ♦.

2For each identifier and at each place in the text (except for occurences as the entity indentifier in
some form of declaration52), the visibility rules determine a set of declarations (with this identifier) that
define possible meanings of an occurrence of the identifier. A declaration is said to be visible at a given
place in the text when, according to the visibility rules, the declaration defines a possible meaning of this
occurrence. Two cases arise. ♦

• 3The visibility rules determine at most one possible meaning. In such a case the visibility rules are
sufficient to determine the declaration defining the meaning of the occurrence of the identifier, or
in the absence of such a declaration, to determine that the occurrence is not legal at the given
point. ♦

• 4The visibility rules determine more than one possible meaning. In such a case the occurrence of
the identifier is legal at this point if and only if exactly one visible declaration is acceptable for the
overloading rules in the given context (see section 6.6 for the rules of overloading and section 8.7
for the context used for overload resolution).

5A declaration is only visible within a certain part of its scope; this part starts at the end of the declaration
except in a package declaration [AI-00392], in which case it starts at the reserved word is given after the
identifier of the package declaration. (This rule applies, in particular, for implicit declarations.)

6Visibility is either by selection or direct. A declaration is visible by selection at places that are defined as
follows. ♦

(a) 7For a declaration given in the visible part of a package declaration: at the place of the selector after
the dot of an expanded name whose prefix denotes the package.

(b) 8Omitted

(c) 9For a component ♦ declaration of a given record type declaration: at the place of the selector after
the dot of a selected component whose prefix is appropriate for the type; also at the place of a
component simple name (before the compound delimiter =>) in a named component association of

52This includes ending identifiers in subprogram bodies and packages.

110 ARM
Visibility Rules

an aggregate of the type.

(d) 10Omitted

(e) 11Omitted

(f) 12Omitted

13♦

14Where it is not visible by selection, a visible declaration is said to be directly visible. A declaration is
directly visible within a certain part of its immediate scope; this part extends to the end of the immediate
scope of the declaration, but excludes places where the declaration is hidden as explained below. In
addition, a declaration occurring immediately within the visible part of a package can be made directly
visible by means of a use clause according to the rules described in section 8.4. (See also section 8.6 for
the visibility of library units.)

15A declaration is said to be hidden within (part of) an inner declarative region if the inner region contains a
homograph of this declaration; the outer declaration is then hidden within the immediate scope of the
inner homograph. Each of two declarations is said to be a homograph of the other if both declarations
have the same identifier and overloading is allowed for at most one of the two. If overloading is allowed
for both declarations (i.e. they are both subprograms), then each of the two is a homograph of the other
if they have the same identifier, operator symbol, or character literal, as well as the same parameter and
result type profile (see 6.6).53 Private type declarations and deferred constant declarations are
hidden by their corresponding full declaration within the scope of the full declaration [AI-00385].

16Within the specification of a subprogram, every declaration with the same designator as the subprogram is
hidden; ♦ where hidden in this manner, a declaration is visible neither by selection nor directly.

17Two declarations that occur immediately within the same declarative region must not be homographs
except for private types and deferred constants and their respective full declarations as
described above.

18Whenever a declaration with a certain identifier is visible from a given point, the identifier and the
declared entity (if any) are also said to be visible from that point. Direct visibility and visibility by
selection are likewise defined for character literals♦. An operator is directly visible if and only if the
corresponding operator declaration is directly visible. Finally, the notation associated with a basic
operation is directly visible within the entire scope of this operation.

19Example:

package P is
package Q is
end;

end;

package body P is
A : BOOLEAN;
B : BOOLEAN;
package body Q is}

53Two enumeration literals cannot be homographs, because they are parameterless functions with different result types.
[AI-00182]

ARM 111
Visibility Rules

C : BOOLEAN;
B : BOOLEAN; -- an inner homograph of B

begin
...
B := A; -- means Q.B := P.A;
C := P.B; -- means Q.C := P.B;

end;
begin

...
A := B; -- means P.A := P.B;

end;

Note on the visibility of library units:

20The visibility of library units is determined by with clauses (see 10.1.1) and by the fact that library units
are implicitly declared in the package STANDARD (see 8.6).

Note on homographs:

21The same identifier may occur in different declarations and may thus be associated with different entities,
even if the scopes of these declarations overlap. Overlap of the scopes of declarations with the same
identifier can result from overloading of subprograms and of enumeration literals. Such overlaps can also
occur for entities declared in package visible parts and for ♦ record components, and parameters, where
there is overlap of the scopes of the enclosing package declarations ♦, record type declarations,
subprogram declarations, or renaming declarations. Finally overlapping scopes can result from nesting.

Note on immediate scope, hiding, and visibility:

22The rules defining immediate scope, hiding, and visibility imply that a reference to an identifier within its
own declaration is illegal (except for packages ♦). The identifier hides outer homographs within its
immediate scope, that is, from the start of the declaration; on the other hand, the identifier is visible only
after the end of the declaration. For this reason, all but the last of the following declarations are illegal:

K : INTEGER := K * K; -- illegal
T : T; -- illegal
procedure P(X : P); -- illegal
♦
procedure R(R : INTEGER♦); -- an inner declaration is legal (although confusing)

23References: aggregate 4.3, appropriate for a type 4.1, argument 2.8, basic operation 3.3.3, character literal
2.5, component association 4.3, component declaration 3.7, compound delimiter 2.2, declaration 3.1,
declarative region 8.1, designate 3.8, enumeration literal specification 3.5.1, expanded name 4.1.3,
extends 8.1, formal parameter 6.1, identifier 2.3, immediate scope 8.2, implicit declaration 3.1, lexical
element 2.2, library unit 10.1, object 3.2, occur immediately within 8.1, operator 4.5, operator symbol 6.1,
overloading 6.6 8.7, package 7, parameter 6.2, parameter association 6.4, parameter specification 6.1,
program unit 6, record type 3.7, reserved word 2.9, scope 8.2, selected component 4.1.3, selector 4.1.3,
simple name 4.1, subprogram 6, subprogram call 6.4, subprogram declaration 6.1, subprogram
specification 6.1, type 3.3, type declaration 3.3.1, use clause 8.4, visible part 7.2

AI Crossreferences:

Section Class Status AI-0 Date Description
8.03 (01) BI CE 0010/06 88-12-30 The meaning of operations and identifiers in pragma arguments

112 ARM
Visibility Rules

8.03 (01) ra RE 0253/00 84-05-26 Are simple_names after "end" exempt from the visibility rules?
8.03 (02) BI RE 0541/00 87-08-05 What is the meaning of an identifier or name?
8.03 (03) ra RE 0134/00 83-11-07 use of undeclared identifiers not prohibited
8.03 (05) BI WA 0392/06 88-06-16 Visibility within a package declaration
8.03 (05) ra RE 0528/00 87-03-11 Does a self-referencing subprogram need a declaration?
8.03 (14) ST RE 0480/00 86-10-13 Visibility of predefined operators with derived types
8.03 (15) BI WA 0385/05 88-11-04 Hiding an incomplete, private, or deferred constant declaration
8.03 (15) BI WJ 0286/11 87-06-18 Declarations visible in a generic subprogram decl and body
8.03 (16) na CA 0512/02 87-03-17 Improve the example in 0370/05
8.03 (16) ra WJ 0370/06 87-01-13 Visibility of subprogam names within instantiations
8.03 (17) BI WA 0386/06 88-11-04 Incomplete, private, and deferred constant homographs
8.03 (17) BI WJ 0002/07 86-12-01 Deriving homographs for an enumeration literal and a function
8.03 (17) BI WJ 0012/06 88-05-23 Declaration of homographs by derivation and instantiation
8.03 (17) BI WJ 0330/12 86-07-23 Explicit declaration of enumeration literals
8.03 (18) BI WJ 0027/07 87-06-18 Visibility of type mark in explicit conversion or qualified expression

8.4 Use Clauses

1A use clause achieves direct visibility of declarations that appear in the visible parts of named packages.

2use_clause ::= use package_name {, package_name};

3For each use clause, there is a certain region of text called the scope of the use clause. This region starts
immediately after the use clause. If a use clause is a declarative item of some declarative region, the
scope of the clause extends to the end of the declarative region. If a use clause occurs within a context
clause of a compilation unit, the scope of the use clause extends to the end of the declarative region
associated with the compilation unit.

4In order to define which declarations are made directly visible at a given place by use clauses, consider the
set of packages named by all use clauses whose scopes enclose this place, omitting from this set any
packages that enclose this place. A declaration that can be made directly visible by a use clause (a
potentially visible declaration) is any declaration that occurs immediately within the visible part of a
package of the set. A potentially visible declaration is actually made directly visible except in the
following two cases:

• 5A potentially visible declaration is not made directly visible if the place considered is within the
immediate scope of a homograph of the declaration.

• 6Potentially visible declarations that have the same identifier are not made directly visible unless
each of them is either an enumeration literal specification or the declaration of a subprogram (by a
subprogram declaration, a renaming declaration ♦, or an implicit declaration).

7The elaboration of a use clause has no other effect.

Note:

8The above rules guarantee that a declaration that is made directly visible by a use clause cannot hide an
otherwise directly visible declaration. The above rules are formulated in terms of the set of packages
named by use clauses.

9Consequently, the following lines of text all have the same effect (assuming only one package P).

use P;
use P; use P, P;

10Example of conflicting names in two packages:

ARM 113
Visibility Rules

package R is
package TRAFFIC is

type COLOR is (RED, AMBER, GREEN);
...

end TRAFFIC;

package WATER_COLORS is
type COLOR is (WHITE, RED, YELLOW, GREEN, BLUE, BROWN, BLACK);
...

end WATER_COLORS;

use TRAFFIC; -- COLOR, RED, AMBER, and GREEN are directly visible
use WATER_COLORS; -- two homographs of GREEN are directly visible

-- but COLOR is no longer directly visible

subtype LIGHT is TRAFFIC.COLOR; -- Subtypes are used to resolve
subtype SHADE is WATER_COLORS.COLOR; -- the conflicting type name COLOR

SIGNAL : LIGHT := GREEN; -- that of TRAFFIC
PAINT : SHADE := GREEN; -- that of WATER_COLORS

♦

end R;

11Example of name identification with a use clause:

package D is
T, U, V : BOOLEAN := FALSE;

end D;

with D;
package P is

package E is
B, W, V : INTEGER := 0;

end E;

procedure Q;
end P;

package body P is
procedure Q is

T, X : CHARACTER := ’a’;
use D, E;

begin
-- the name T means Q.T, not D.T
-- the name U means D.U
-- the name B means E.B
-- the name W means E.W
-- the name X means Q.X
-- the name V is illegal : either D.V or E.V must be used
...

end Q;
...

end P;

12References: compilation unit 10.1, context clause 10.1, declaration 3.1, declarative item 3.9, declarative

114 ARM
Visibility Rules

region 8.1, direct visibility 8.3, elaboration 3.1 3.9, elaboration has no other effect 3.1, enumeration literal
specification 3.5.1, extends 8.1, hiding 8.3, homograph 8.3, identifier 2.3, immediate scope 8.2, name 4.1,
occur immediately within 8.1, package 7, scope 8.2, subprogram declaration 6.1, visible part 7.2

AI Crossreferences:

Section Class Status AI-0 Date Description
8.04 (01) ST RE 0274/00 84-08-27 Propposed extension of the USE clause - Record component visibility
8.04 (05) BI WJ 0286/11 87-06-18 Declarations visible in a generic subprogram decl and body
8.04 (05) na na 0156/01 86-01-24 Making some subprograms directly visible
8.04 (06) na na 0156/01 86-01-24 Making some subprograms directly visible

8.5 Renaming Declarations

1A renaming declaration declares another name for an entity.

2renaming_declaration ::=
identifier : type_mark renames object_name;

| ♦
| package identifier renames package_name;
| subprogram_specification renames subprogram_name;

3The elaboration of a renaming declaration evaluates the name that follows the reserved word renames and
thereby determines the entity denoted by this name (the renamed entity). At any point where a renaming
declaration is visible, the identifier, or operator symbol} of this declaration denotes the renamed entity.
The renamed item cannot be an attribute.54

4The first form of renaming declaration is used for the renaming of objects. The renamed entity must be an
object of the base type of the type mark. The properties of the renamed object are not affected by the
renaming declaration. In particular, its value and whether or not it is a constant are unaffected; similarly,
the constraints that apply to an object are not affected by renaming (any constraint implied by the type
mark of the renaming declaration is ignored). The renaming declaration is legal only if exactly one object
has this type and can be denoted by the object name.

5♦

6The second form of renaming declaration is used ♦ for the renaming of ♦ packages.

7The last form of renaming declaration is used for the renaming of subprograms ♦. The renamed
subprogram ♦ and the subprogram specification given in the renaming declaration must have the same
parameter and result type profile (see 6.6). The renaming declaration is legal only if exactly one visible
subprogram ♦ satisfies the above requirements and can be denoted by the given subprogram ♦ name. In
addition, parameter modes must be identical for formal parameters that are at the same parameter position.
The subprogram name cannot be an attribute.55

8The subtypes of the parameters and result (if any) of a renamed subprogram ♦ are not affected by
renaming. These subtypes are those given in the original subprogram declaration ♦ (not those of the

54It is not obvious what form an attribute takes. Is it a constant or a function of no arguments? In addition, certain
attributes cannot be renamed in Ada because there is no way to express their specifications (VAL and POS).

55T’VAL could not be renamed in Ada. In general it is undesirable to constrain an implementation to translate an
attribute to a particular form, given that attributes are defined in such an ad hoc manner in Ada.

ARM 115
Visibility Rules

renaming declaration); even for calls that use the new name. ♦

9A procedure can only be renamed as a procedure. A function can only be renamed as a function.56 ♦

10Examples:

declare
L : PERSON renames NEXT_PERSON; -- see 3.7

begin
L.AGE := L.AGE + 1;

end;

♦
package TM renames TABLE_MANAGER;

function NO_FREE_SPACE (FOO : INTEGER) return BOOLEAN
renames FREE_LIST_EMPTY; -- see 8.5

♦

11Example of a renaming declaration with new parameter names:

procedure ADD1 (N : in out INTEGER) renames INCREMENT; -- see 6.1

12♦

Notes:

13Renaming may be used to resolve name conflicts and to act as a shorthand. Renaming with a different
identifier ♦ does not hide the old name; the new name and the old name need not be visible at the same
points. ♦

14♦

16A subtype can be used to achieve the effect of renaming a type ♦ as in

♦ subtype MODE is TEXT_IO.FILE_MODE;

17References: allow 1.6, attribute 4.1.4, base type 3.3, ♦ constant 3.2.1, constrained subtype 3.3, constraint
3.3, declaration 3.1, ♦ elaboration 3.1 3.9, enumeration literal 3.5.1, evaluation of a name 4.1, ♦ formal
parameter 6.1, function 6.5, identifier 2.3, legal 1.6, mode 6.1, name 4.1, object 3.2, object declaration 3.2,
operator 6.7, operator declaration 6.7, ♦ package 7, parameter 6.2, parameter specification 6.1, procedure
6.1, procedure call statement 6.4, reserved word 2.9, subcomponent 3.3, subprogram 6, subprogram call
6.4, subprogram declaration 6.1, subprogram specification 6.1, subtype 3.3.2, type 3.3, type mark 3.3.2,
variable 3.2.1, visibility 8.3

AI Crossreferences:

Section Class Status AI-0 Date Description
8.05 (04) BI WJ 0001/10 86-07-23 Renaming and static expressions
8.05 (04) ra WI 0028/01 84-01-29 Can an object designated by an access value be renamed?
8.05 (05) BI RE 0738/00 88-12-21 At the end of the first sentence, insert "or a constant"
8.05 (05) BI WJ 0170/07 88-06-13 Renaming a slice

56Enumeration literals cannot be renamed as functions in AVA, since we require function specifications to have at least
one parameter.

116 ARM
Visibility Rules

8.05 (05) CR WJ 0502/05 88-05-23 Error in 0170/06
8.05 (05) ra RE 0166/00 84-01-13 Rule is not clear
8.05 (07) BI WJ 0287/05 88-12-14 Resolving overloaded entry calls
8.05 (08) ra WJ 0245/08 88-05-23 Type conversion conformance for renamed subprogram/entry calls
8.05 (09) co RE 0221/00 84-03-13 Renaming of attributes defined as functions
8.05 (16) ST RE 0378/00 85-08-22 Subtype declarations as renamings

8.6 The Package Standard

1The predefined types (for example the types BOOLEAN, CHARACTER and INTEGER) are the types
that are declared in a predefined package called STANDARD; this package also includes the declarations
of their predefined operations. The package STANDARD is described in Annex C. Apart from the
predefined numeric types, the specification of the package STANDARD must be the same as or a
superset of, the package described in Annex C, for all implementations of the language.

2The package STANDARD forms a declarative region which encloses every library unit and consequently
the main program; the declaration of every library unit is assumed to occur immediately within this
package. The implicit declarations of library units are assumed to be ordered in such a way that the scope
of a given library unit includes any compilation unit that mentions the given library unit in a with clause.
However, the only library units that are visible within a given compilation unit are as follows: they
include the library units named by all with clauses that apply to the given unit, and moreover, if the given
unit is a secondary unit of some library unit, they include this library unit.

Notes:

3♦

3aThe name of a library unit cannot be a homograph of a name that is already declared in package
STANDARD [AI-00192].

4If a type is declared in the visible part of a library package, then it is a consequence of the visibility rules
that a basic operation (such as assignment) for this type is directly visible at places where the type itself is
not visible (whether by selection or directly). However this operation can only be applied to operands that
are visible and the declaration of these operands requires the visibility of either the type or one of its
subtypes.

5References: applicable with clause 10.1.1, ♦ block statement 5.6, declaration 3.1, declarative region 8.1,
expanded name 4.1.3, hiding 8.3, identifier 2.3, implicit declaration 3.1, library unit 10.1, loop statement
5.5, main program 10.1, must 1.6, name 4.1, occur immediately within 8.1, operator 6.7, package 7,
program unit 6, secondary unit 10.1, subtype 3.3, type 3.3, visibility 8.3, with clause 10.1.1

AI Crossreferences:

Section Class Status AI-0 Date Description
8.06 (02) ra WJ 0192/05 88-05-23 Allowed names of library units

ARM 117
Visibility Rules

8.7 The Context of Overload Resolution

1Overloading is defined for subprograms, enumeration literals, operators, ♦ and also for the operations that
are inherent in several basic operations such as assignment, membership tests, ♦ aggregates, and string
literals.

2For overloaded entities, overload resolution determines the actual meaning that an occurrence of an
identifier or character literal [AI-00352] has, whenever the visibility rules have determined that more
than one meaning is acceptable at the place of this occurrence; overload resolution likewise determines the
actual meaning of an occurrence of an operator or some basic operation.

3At such a place all visible declarations are considered. The occurrence is only legal if there is exactly one
interpretation of each constituent of the innermost enclosing complete context; a complete context is one
of the following:

• 4A declaration.

• 5A statement.

• 6♦

7When considering possible interpretations of a complete context, the only rules considered are the syntax
rules, the scope and visibility rules, and the rules of the form described below.

(a) 8Any rule that requires a name or expression to have a certain type, or to have the same type as
another name or expression.

(b) 9Any rule that requires the type of a name or expression to be a type of a certain class; similarly, any
rule that requires a certain type to be a discrete, integer, ♦, universal, character, or boolean type.

(c) 10Any rule that requires a prefix to be appropriate for a certain type.

(d) 11Any rule that specifies a certain type as the result type of a basic operation, and any rule that
specifies that this type is of a certain class.

(e) 12The rules that require the type of an aggregate or string literal to be determinable solely from the
enclosing complete context (see 4.3 and 4.2). Similarly, the rules that require the type (e.g.
meaning [AI-00462]) of the prefix of an attribute, the type of the expression of a case statement, or
the type of the operand of a type conversion, to be determinable independently of the context (see
4.1.4, 5.4, 4.6, and 6.4.1). Any overloaded identifiers occurring in the argument for
’FIRST(N), ’LAST(N), and ’RANGE(N) must be resolved independently of the context in
which these attributes are used [AI-00193].

(f) 13The rules given in section 6.6, for the resolution of overloaded subprogram calls; in section 4.6, for
the implicit conversions of universal expressions; in section 3.6.1, for the interpretation of discrete
ranges with bounds having a universal type; and in section 4.1.3, for the interpretation of an
expanded name whose prefix denotes a subprogram.

14♦

15Similarly, the simple names given in context clauses (see 10.1.1) ♦ follow different rules.57

Notes:

57By [AI-00297] parent unit names in subunits (see ARM 10.2) also follow different rules, but subunits are excluded from
the AVA subset.

118 ARM
Visibility Rules

16If there is only one possible interpretation, the identifier denotes the corresponding entity. However, this
does not mean that the occurrence is necessarily legal since other requirements exist which are not
considered for overload resolution; for example, the fact that an expression is static, the parameter modes,
whether an object is constant, conformance rules, ♦ order of elaboration, and so on.

17Similarly, subtypes are not considered for overload resolution (the violation of a constraint does not make
a program illegal but raises an exception during program execution).

18A loop parameter specification is a declaration, and hence a complete context.

19Rules that require certain constructs to have the same parameter and result type profile fall under the
category (a) ♦58.

20References: aggregate 4.3, assignment 5.2, basic operation 3.3.3, case statement 5.4, class of type 3.3,
declaration 3.1, enumeration literal 3.5.1, exception 11, expression 4.4, formal part 6.1, identifier 2.3,
legal 1.6, literal 4.2, loop parameter specification 5.5, membership test 4.5.2, name 4.1, operation 3.3.3,
operator 4.5, overloading 6.6, ♦ statement 5, static expression 4.9, static subtype 4.9, subprogram 6,
subtype 3.3, type conversion 4.6, visibility 8.3

21Rules of the form (a): assignment 5.2, choice 3.7.3 4.3.2 5.4, component association 4.3.1 4.3.2, discrete
range 3.6.1 5.5 9.5, index constraint 3.6.1, index expression 4.1.1 4.1.2 9.5, initial value 3.2.1,
membership test 4.5.2, parameter association 6.4.1, parameter and result type profile 8.5 12.3.6, qualified
expression 4.7, range constraint 3.5, renaming of an object 8.5, result expression 5.8

22Rules of the form (b): assignment 5.2, case expression 5.4, condition 5.3 5.5 5.7 9.7.1, discrete range 3.6.1
5.5 9.5, integer type declaration 3.5.4, membership test 4.4, number declaration 3.2.2, selected component
4.1.3, short-circuit control form 4.4, val attribute 3.5.5

23Rules of the form (c): indexed component 4.1.1, selected component 4.1.3

24Rules of the form (d): aggregate 4.3, membership test 4.4, numeric literal 2.4, short-circuit control form
4.4, string literal 4.2

AI Crossreferences:

Section Class Status AI-0 Date Description
8.07 (02) BI WA 0352/04 88-06-16 Character literals are subject to overload resolution
8.07 (03) BI CE 0297/04 88-11-20 Resolving overloaded parent unit names
8.07 (03) BI WI 0117/01 87-04-16 "Context" means "innermost enclosing complete context"
8.07 (03) co WJ 0120/05 86-12-01 Overload resolution for assignment statements
8.07 (07) BI CE 0297/04 88-11-20 Resolving overloaded parent unit names
8.07 (07) BI WJ 0157/05 86-07-23 Overloading resolution and parenthesized expressions
8.07 (08) ra WJ 0193/05 86-07-23 The value of ’FIRST’s argument in overloading resolution
8.07 (12) BI CA 0462/03 88-10-03 The "meaning" vs. the "type" of attribute prefixes
8.07 (12) ra CA 0481/04 88-10-03 Overload resolution for the operand of a type conversion
8.07 (13) BI WI 0119/02 88-03-28 The prefix of an expanded name
8.07 (13) BI WJ 0287/05 88-12-14 Resolving overloaded entry calls
8.07 (19) ra CA 0183/05 88-10-03 Conformance rules are not used for overload resolution
8.07 (19) ra CE 0463/03 88-12-08 The number of parameters is used for overload resolution
8.07 (21) ra CA 0183/05 88-10-03 Conformance rules are not used for overload resolution

58The text "the same holds for rules that require conformance of two constructs since conformance requires that
corresponding names be given the same meaning by the visibility and overloading rules" is deleted as per [AI-00183].

ARM 119
Tasks: Removed

Chapter 9

TASKS: REMOVED

AI Crossreferences:

Section Class Status AI-0 Date Description
9.01 (02) BI WA 0359/04 88-11-04 Equivalence of single task declarations
9.03 (03) BI RE 0283/01 86-07-10 When is the activation of a task concluded if it fails its activation?
9.03 (03) ra WJ 0268/06 86-07-23 Activation of already abnormal tasks
9.03 (04) BI WJ 0198/09 88-05-23 Termination of unactivated tasks
9.03 (04) ra RE 0440/00 86-07-10 "direct" or "indirect" task creation
9.03 (05) BI WJ 0237/06 86-07-23 Instances having implicit package bodies
9.03 (08) BI WJ 0198/09 88-05-23 Termination of unactivated tasks
9.04 (00) co WJ 0167/04 86-07-23 It is possible to access a task from outside its master
9.04 (05) BI WJ 0173/05 86-12-01 Completion of execution by exception propagation
9.04 (06) ra WJ 0441/06 88-05-23 A task without dependents can be completed but not terminated
9.04 (13) BI CA 0399/13 88-10-03 Status of library tasks when the main program terminates
9.05 (00) co RE 0373/00 85-08-04 Must there be a corresponding accept for each entry?
9.05 (03) ra CE 0369/06 88-11-20 Representing values of discrete base type
9.05 (05) BI WJ 0287/05 88-12-14 Resolving overloaded entry calls
9.05 (08) ST RE 0214/00 84-03-13 Allow accept statements in program units nested in tasks
9.06 (01) BI WJ 0464/05 88-05-23 Delay statements executed by the environment task
9.06 (01) ra WJ 0201/07 88-05-23 The relation between TICK, CLOCK, and the delay statement
9.06 (04) ra WJ 0201/07 88-05-23 The relation between TICK, CLOCK, and the delay statement
9.06 (04) ST RE 0223/00 84-03-13 Resolution for the function CLOCK
9.06 (05) BI RE 0754/00 88-12-21 TIME is a type, and has no value
9.06 (05) ra RE 0194/00 84-03-13 Function CALENDAR.CLOCK
9.06 (05) ra WJ 0195/09 88-05-23 The intended use of CLOCK
9.06 (05) ra WJ 0201/07 88-05-23 The relation between TICK, CLOCK, and the delay statement
9.06 (06) ra WJ 0196/05 86-07-23 Use of 86_400.0 in TIME_OF
9.06 (07) ra WJ 0355/06 86-12-01 Pragma ELABORATE for predefined library packages
9.06 (07) ST RE 0442/00 86-07-10 Time zone information in package CALENDAR
9.07.01 (04) ra RE 0029/01 84-03-13 How often are conditions evaluated?
9.07.01 (05) ra WJ 0030/07 86-07-23 All guards need not be evaluated first
9.07.01 (06) ra RE 0443/02 86-10-13 Is a rendezvous "on the fly" possible?
9.07.01 (06) ra WP 0233/11 88-12-07 Effect of priorities in selective waits
9.07.02 (01) ra WJ 0276/07 87-02-23 Rendezvous that are "immediately possible" vs. timed entry calls
9.07.02 (01) ra WJ 0444/05 87-08-06 Conditional entry calls can be queued momentarily
9.07.03 (04) ra RE 0445/00 86-07-10 Cancelling a timed entry call
9.07.03 (04) ra WJ 0276/07 87-02-23 Rendezvous that are "immediately possible" vs. timed entry calls
9.08 (00) ra WJ 0197/07 86-12-01 With SYSTEM clause not needed for pragma PRIORITY
9.08 (01) co WJ 0031/06 86-07-23 Out-of-range argument to pragma PRIORITY
9.08 (01) ra WI 0042/02 87-04-20 Effect of recompiling SYSTEM on pragma PRIORITY
9.08 (02) BI CA 0548/01 88-10-03 Effect of pragma PRIORITY on library unit elaboration
9.08 (04) BI RE 0594/00 88-10-05 Problems with Preemptive Scheduling
9.08 (04) co WI 0033/02 84-03-26 Effect of priorities on calls queued for an entry
9.08 (04) NB WJ 0288/06 86-07-23 Effect of priorities during activation
9.08 (04) ra WJ 0032/09 87-03-16 Preemptive scheduling is required
9.08 (04) ra WP 0233/11 88-12-07 Effect of priorities in selective waits

120 ARM
Tasks: Removed

9.09 (05) ST RE 0529/00 87-03-11 Resolving the meaning of an attribute name
9.09 (06) ra WJ 0034/06 86-07-23 Value of COUNT in an accept statement
9.10 (04) ra WA 0360/05 88-04-12 Abort of several tasks
9.10 (05) BI WJ 0198/09 88-05-23 Termination of unactivated tasks
9.10 (06) BI RE 0224/02 88-09-02 Synchronization point definition.
9.10 (06) BI WJ 0446/05 87-09-25 Raising an exception in an abnormally completed task
9.10 (08) BI RE 0581/00 88-08-31 Abort and undefined variables
9.11 (04) NB WI 0004/01 83-10-14 Packed composite objects and shared variables
9.11 (04) ST WI 0142/02 84-08-27 Proposed solution to packed composite object/shared variable problem
9.11 (04) BI RE 0106/00 83-11-07 "two synchronization" to "two successive synchronization"
9.11 (05) BI RE 0106/00 83-11-07 "two synchronization" to "two successive synchronization"
9.11 (05) NB WI 0004/01 83-10-14 Packed composite objects and shared variables
9.11 (05) ST WI 0142/02 84-08-27 Proposed solution to packed composite object/shared variable problem
9.11 (07) ra RE 0353/01 88-09-02 Shared variables.
9.11 (09) BI WI 0141/03 84-12-10 Meaning of "update" for shared actual parameters
9.11 (10) ST WI 0142/02 84-08-27 Proposed solution to packed composite object/shared variable problem
9.11 (11) BI WI 0447/02 86-12-15 Indivisible semantic effects

ARM 121
Program Structure and Compilation Issues

Chapter 10

PROGRAM STRUCTURE AND COMPILATION ISSUES

1The overall structure of programs and the facilities for separate compilation are described in this chapter.
A program is a collection of one or more compilation units submitted to a compiler in one or more
compilations. Each compilation unit specifies the separate compilation of a construct which can be a
subprogram declaration or body or a package declaration or body59 ♦.

2References: compilation 10.1, compilation unit 10.1, package body 7.1, package declaration 7.1,
subprogram body 6.3, subprogram declaration 6.1

10.1 Compilation Units - Library Units

1The text of a program can be submitted to the compiler in one or more compilations. Each compilation is
a succession of compilation units.

2compilation ::= {compilation_unit}

compilation_unit ::=
context_clause library_unit | context_clause secondary_unit

library_unit ::=
subprogram_declaration | package_declaration | ♦

| ♦ subprogram_body

secondary_unit ::= library_unit_body | ♦

library_unit_body ::= subprogram_body | package_body

3The compilation units of a program are said to belong to a program library. A compilation unit defines
either a library unit or a secondary unit. A secondary unit is ♦ the ♦ separately compiled proper body of
a library unit ♦. The ♦ designator of a separately compiled subprogram ♦ must be an identifier. Within
a program library the simple names of all library units must be distinct identifiers.

4The effect of compiling a library unit is to define ♦ this unit as one that belongs to the program library.
For the visibility rules, each library unit acts as a declaration that occurs immediately within the package
STANDARD.

59As a logical consequence of this, we require, contrary to [AI-507], that in the absence of compiler detected errors,
there should be no difference between compiling file1 = ‘‘Unit1’’ then file2 = ‘‘Unit2’’ vs. compiling file3 = ‘‘Unit1 Unit2’’.
See 10.3.

122 ARM
Program Structure and Compilation Issues

5The effect of compiling a secondary unit is to define the body of a library unit ♦.

6A subprogram body given in a compilation unit is interpreted as a secondary unit if the program library
already contains a library unit that is a subprogram declaration [AI-00199] with the same name; it is
otherwise interpreted both as a library unit and as the corresponding library unit body (that is, as a
secondary unit).60

7The compilation units of a compilation are compiled in the given order. ♦

8A subprogram that is a library unit can be used as a main program in the usual sense. Each main program
acts as if called by some environment task; the means by which this execution is initiated are not
prescribed by the language definition. An implementation may impose certain requirements on the
parameters and on the result, if any, of a main program (these requirements must be stated in Appendix F).
In any case, every implementation is required to allow, at least, main programs that are parameterless
procedures, and every main program must be a subprogram that is a library unit.

Notes:

9A simple program may consist of a single compilation unit. ♦

10♦ Two library subprograms must have distinct simple names and hence cannot overload each other.
However, renaming declarations are allowed to define overloaded names for such subprograms, and a
locally declared subprogram is allowed to overload a library subprogram.61 ♦

11References: allow 1.6, context clause 10.1.1, declaration 3.1, designator 6.1, environment 10.4, hiding 8.3,
identifier 2.3, library unit 10.5, local declaration 8.1, must 1.6, name 4.1, occur immediately within 8.1, ♦
overloading 6.6 8.7, package body 7.1, package declaration 7.1, parameter of a subprogram 6.2, ♦
procedure 6.1, program unit 6, proper body 3.9, renaming declaration 8.5, simple name 4.1, standard
package 8.6, subprogram 6, subprogram body 6.3, subprogram declaration 6.1, visibility 8.3

AI Crossreferences:

Section Class Status AI-0 Date Description
10.01 (03) ra WJ 0418/06 87-08-06 Self-referencing with clauses
10.01 (06) BI WJ 0199/08 86-07-23 Implicit declaration of library subprograms
10.01 (06) BI WJ 0225/09 86-07-23 Secondary units for generic subprograms
10.01 (06) na na 0254/01 85-02-04 [combined with 0225]
10.01 (06) ra WJ 0266/09 86-07-23 A body cannot be compiled for a library unit instantiation
10.01 (08) BI WA 0513/08 88-11-04 A main program can be given by a generic instantiation
10.01 (08) BI WI 0222/08 87-10-29 Executing a program
10.01 (08) co RE 0435/00 86-06-19 A subprogram cannot be a library unit.

60Its interpretation as a library unit does not result in the creation of a library unit that is a subprogram declaration.

61The expanded name STANDARD.L cannot be used for a library unit L unless the name STANDARD is visible and we
are in compilation unit L or the current compilation unit contained L in a with clause. See 8.6.

ARM 123
Program Structure and Compilation Issues

10.1.1 Context Clauses - With Clauses

1A context clause is used to specify the library units whose names are needed within a compilation unit.

2context_clause ::= {with_clause {use_clause}}

with_clause ::= with unit_simple_name {, unit_simple_name};

3The names that appear in a context clause must be the simple names of library units other than the one
to which this context clause is attached.62 The simple name of any library unit is allowed within a
with clause. The only names allowed in a use clause of a context clause are the simple names of library
packages mentioned by previous with clauses of the context clause. A simple name declared by a
renaming declaration is not allowed in a context clause.

4The with clauses and use clauses of the context clause of a library unit apply to this library unit and also to
the secondary unit that defines the corresponding body (whether such a clause is repeated or not for this
unit). Similarly, the with clauses and use clauses of the context clause of a compilation unit apply to this
unit ♦.

5If a ♦ library unit is named by a with clause that applies to a compilation unit, then this library unit is
directly visible within the compilation unit, except where hidden; the library unit is visible as if declared
immediately within the package STANDARD (see 8.6).

6♦ Dependences among compilation units are defined by with clauses; that is, a compilation unit
depends on those library units that are mentioned in with clauses that apply to it. These
dependences between units are taken into account for the determination of the allowed order of
compilation (and recompilation) of compilation units, as explained in section 10.3, and for the
determination of the allowed order of elaboration of compilation units, as explained in section 10.5.
Circular dependencies between library units are not allowed. A legal compilation must not
permit ambiguity in the order of elaboration of compilation units where this ambiguity could
lead to an ambiguity in the value of a variable when the main program is elaborated.

Notes:

7A library unit named by a with clause of a compilation unit is visible (except where hidden) within the
compilation unit and hence can be used as a corresponding program unit. Thus within the compilation
unit, the name of a library package can be given in use clauses and can be used to form expanded names;
♦ and a library subprogram can be called.

8The ♦ rules given for with clauses are such that the same effect is obtained whether the name of a library
unit is mentioned once or more than once by the applicable with clauses, or even within a given with
clause.

Example 1 : A main program:

62By [AI-00418] the only legitimate self-reference in a with clause is

with P2;
procedure P2 is ... end;

where a subprogram declaration of P2 exists as a library unit. AVA disallows even this.

124 ARM
Program Structure and Compilation Issues

9The following is an example of a main program consisting of a single compilation unit: a procedure for
printing the integer approximation of the ♦ roots of a quadratic equation. The predefined package
AVA_IO and a user-defined package INTEGER_OPERATIONS (containing the definition of the type
INT and of the packages INTEGER_IO and INTEGER_FUNCTIONS) are assumed to be already
present in the program library. Such packages may be used by other main programs.

10

with AVA_IO, INTEGER_OPERATIONS; use INTEGER_OPERATIONS;
procedure QUADRATIC_EQUATION is

IA, IB, IC : string (1..6) := "123456";
A, B, C, D : INTEGER := 0;
use AVA_IO, -- achieves direct visibility of PUT and EOL

INTEGER_FUNCTIONS; -- achieves direct visibility of ISQRT
begin

GET(standard_input,IA); GET(standard_input,IB); GET(standard_input,IC);
A := integer’value(IA);
B := integer’value(IB);
C := integer’value(IB);
D := B**2 - 4*A*C;
if D < 0 then

PUT(standard_output,"Imaginary Roots.");
else

PUT(standard_output,"Integer Roots : X1 = ");
PUT(standard_output,integer’image((-B - ISQRT(D))/(2*A)));
PUT(standard_output," X2 = ");
PUT(standard_output,integer’image((-B + ISQRT(D))/(2*A)));

end if;
PUT(standard_output,EOL);

end QUADRATIC_EQUATION;

Notes on the example:

11The with clauses of a compilation unit need only mention the names of those library subprograms and
packages whose visibility is actually necessary within the unit. They need not (and should not) mention
other library units that are used in turn by some of the units named in the with clauses, unless these other
library units are also used directly by the current compilation unit. For example, the body of the package
INTEGER_OPERATIONS may need elementary operations provided by other packages. The latter
packages should not be named by the with clause of QUADRATIC_EQUATION since these elementary
operations are not directly called within its body.

12References: allow 1.6, compilation unit 10.1, direct visibility 8.3, elaboration 3.9, hiding 8.3, instance
12.3, library unit 10.1, main program 10.1, must 1.6, name 4.1, package 7, package body 7.1, package
declaration 7.1, procedure 6.1, program unit 6, secondary unit 10.1, simple name 4.1, standard predefined
package 8.6, subprogram body 6.3, subprogram declaration 6.1, type 3.3, use clause 8.4, visibility 8.3

AI Crossreferences:

Section Class Status AI-0 Date Description
10.01.01 (04) BI WJ 0226/06 86-07-23 Applicability of context clauses to subunits

ARM 125
Program Structure and Compilation Issues

10.1.2 Examples of Compilation Units

1A compilation unit can be split into a number of compilation units. For example, consider the following
program.

2package PROCESSOR is

SMALL : constant := 20;
TOTAL : INTEGER := 0;

package STOCK is
LIMIT : constant := 1000;
type tarray is array (1 .. LIMIT) of INTEGER;
TABLE : TARRAY := (others => 0);
procedure RESTART;

end STOCK;

procedure UPDATE(X : INTEGER);

end PROCESSOR;

package body PROCESSOR is

package body STOCK is
procedure RESTART is
begin

for N in 1 .. LIMIT loop
TABLE(N) := N;

end loop;
end;

begin
RESTART;

end STOCK;

procedure UPDATE(X : INTEGER) is
use STOCK;

begin
...
TABLE(X) := TABLE(X) + SMALL;
...

end UPDATE;

begin
...
STOCK.RESTART; -- reinitializes TABLE
...

end PROCESSOR;

3The following four compilation units define a program with an effect equivalent to the above example
(the broken lines between compilation units serve to remind the reader that these units need not be
contiguous texts).

4Example 2 : Several compilation units:

5package STOCK is
LIMIT : constant := 1000;
type tarray is array (1 .. LIMIT) of INTEGER;

126 ARM
Program Structure and Compilation Issues

TABLE : TARRAY := (others => 0);
procedure RESTART;

end STOCK;

6package body STOCK is
procedure RESTART is
begin

for N in 1 .. LIMIT loop
TABLE(N) := N;

end loop;
end;

begin
RESTART;

end STOCK;

7with STOCK;
package PROCESSOR is

SMALL : constant := 20;
TOTAL : INTEGER := 0;

procedure UPDATE(X : INTEGER);

end PROCESSOR;

package body PROCESSOR is

procedure UPDATE(X : INTEGER) is
use STOCK;

begin
...
TABLE(X) := TABLE(X) + SMALL;
...

end UPDATE;

begin
...
STOCK.RESTART; -- reinitializes TABLE
...

end PROCESSOR;

8Note that in the latter version, the package STOCK has no visibility of outer identifiers other than the
predefined identifiers (of the package STANDARD). In particular, STOCK does not use any identifier
declared in PROCESSOR such as SMALL or TOTAL; otherwise STOCK could not have been extracted
from PROCESSOR in the above manner. The package PROCESSOR, on the other hand, depends on
STOCK and mentions this package in a with clause. This permits the inner occurrences of STOCK in the
expanded name STOCK.RESTART and in the use clause.

9These three compilation units can be submitted in one or more compilations. For example, it is possible
to submit the package specification and the package body together and in this order in a single
compilation.

ARM 127
Program Structure and Compilation Issues

10References: compilation unit 10.1, declaration 3.1, identifier 2.3, package 7, package body 7.1, package
specification 7.1, program 10, standard package 8.6, use clause 8.4, visibility 8.3, with clause 10.1.1

10.2 Subunits of Compilation Units : Removed

AI Crossreferences:

Section Class Status AI-0 Date Description
10.02 (03) ra WJ 0035/06 86-12-04 Body stubs are not allowed in package specifications
10.02 (05) BI CE 0297/04 88-11-20 Resolving overloaded parent unit names
10.02 (05) BI WA 0482/04 88-11-04 Ancestor library unit for secondary units and subunits
10.02 (05) BI WJ 0289/05 86-07-23 Ancestor unit names in separate clauses must be simple names
10.02 (05) ST RE 0458/00 86-09-05 Problem with naming of subunits
10.02 (05) ST RE 0572/00 88-07-06 Unique path name for subunits

10.3 Order of Compilation

1The rules defining the order in which units can be compiled are direct consequences of the visibility rules
and, in particular, of the fact that any library unit that is mentioned by the context clause of a compilation
unit is visible in the compilation unit.63

2A compilation unit must be compiled after all library units named by its context clause. A secondary unit
that is a subprogram or package body must be compiled after the corresponding library unit. ♦

3If any illegal construct [AI-00261] is detected while attempting to compile a compilation unit, then the
attempted compilation of that compilation unit is rejected and it has no effect whatsoever on the program
library; the same holds for recompilations (no compilation unit can become obsolete because of such a
recompilation).

4The order in which the compilation units of a program are compiled must be consistent with the partial
ordering defined by the above rules.

5Similar rules apply for recompilations. A compilation unit is potentially affected64 by a change in any
library unit named by its context clause. A secondary unit is potentially affected by a change in the
corresponding library unit or in the context clause of the corresponding library unit. If a compilation
unit is successfully recompiled, the compilation units potentially affected by this change are obsolete and
must be recompiled unless they are no longer needed. An implementation may be able to reduce the
compilation costs if it can deduce that some of the potentially affected units are not actually affected by
the change65.

6♦ Changes in a subprogram or package body do not affect other compilation units (in the sense of not
requiring recompilation) since these compilation units only have access to the subprogram or package

63See also 10.1.1 and 10.5.

64By potentially effected we mean that it may require recompilation.

65IMPLEMENTATION REQUIREMENT: [AI-507] states that if one compilation unit is a replacement for another in the
same compilation, an implementation can reject the compilation in whole or in part. AVA does not allow this, but rather
requires replacement of the first compilation unit by the second, with obsolescence of dependents of the first compilation
unit. Worries about this compiler dependency can be completely avoided if all compilations are single compilation units.

128 ARM
Program Structure and Compilation Issues

specification. An implementation is only allowed to deviate from this rule ♦ for certain compiler
optimizations ♦ as described below.

• 7♦

• 8For optimization purposes, an implementation may compile several units of a given compilation in
a way that creates further dependences among these compilation units. The compiler must then
take these dependences into account when deciding on the need for recompilations. It is not
implementation dependent whether a compilation unit is obsolete. The additional
information computed by a compiler may make the recompilation of the obsolescent unit
much faster. For instance, it may detect that the the change to the governing unit really
has no effect on the dependent unit. In which case, recompilation of the obsolescent
dependent merely consists of marking it ‘‘not obsolescent’’. See [AI-530].

• 9♦

10Examples of Compilation Order:

(a) 11In example 1 (see 10.1.1): The procedure QUADRATIC_EQUATION must be compiled after the
library packages AVA_IO and INTEGER_OPERATIONS since they appear in its with clause.

(b) 12In example 2 (see 10.1.2): The package body STOCK must be compiled after the corresponding
package specification.

(c) 13In example 2 (see 10.1.2): The specification of the package STOCK must be compiled before the
package PROCESSOR. On the other hand, the package PROCESSOR can be compiled either
before or after the package body STOCK.

(d) 14Omitted

(e) 15Omitted

Notes:

16For library packages, it follows from the recompilation rules that a package body is made obsolete by the
recompilation of the corresponding specification. If the new package specification is such that a package
body is not required (that is, if the package specification does not contain the declaration of a program
unit), then the recompilation of a body for this package is not required. In any case, the obsolete package
body must not be used and can therefore be deleted from the program library.66

17References: compilation 10.1, compilation unit 10.1, context clause 10.1.1, elaboration 3.9, library unit
10.1, local declaration 8.1, name 4.1, package 7, package body 7.1, package specification 7.1, procedure
6.1, procedure body 6.3, proper body 3.9, subprogram body 6.3, subprogram declaration 6.1, subprogram
specification 6.1, type 3.3, variable 3.2.1, visibility 8.3, with clause 10.1.1

AI Crossreferences:

Section Class Status AI-0 Date Description
10.03 (03) BI WA 0256/23 88-06-16 "Successful" compilation
10.03 (03) BI WJ 0261/03 86-07-23 Change "any error" to "any illegal construct"
10.03 (03) na na 0118/03 84-09-03 [combined with 0255]
10.03 (03) ra WB 0255/07 88-06-15 Partial processing of compilation files
10.03 (05) BI CB 0506/04 88-11-08 Instantiation before occurrence of a body
10.03 (05) BI RE 0602/00 88-11-08 Instantiation when no later body is compiled
10.03 (05) ra WA 0530/04 88-06-16 Recompilation of unused with’d units
10.03 (05) ra WI 0400/07 87-03-11 Obsolete package bodies
10.03 (06) BI WJ 0408/11 87-08-20 Effect of compiling generic unit bodies separately

66See [AI-400] and 10.5.

ARM 129
Program Structure and Compilation Issues

10.03 (06) NB WI 0465/03 87-03-18 Pragma INLINE_GENERIC
10.03 (07) BI WJ 0200/08 86-12-01 Dependences created by inline of generic instantiations
10.03 (08) BI WA 0507/03 88-11-04 Duplicate units in a compilation
10.03 (08) na na 0323/11 87-02-04 [replaced by 0506 and 0507]
10.03 (09) ra WJ 0257/04 86-07-23 Restricting generic unit bodies to compilations

10.4 The Program Library

1Compilers are required to enforce the language rules in the same manner for a program consisting of
several compilation units ♦ as for a program submitted as a single compilation. Consequently, a library
file containing information on the compilation units of the program library must be maintained by the
compiler or compiling environment. This information may include symbol tables and other information
pertaining to the order of previous compilations.

2A normal submission to the compiler consists of the compilation unit(s) and the library file. The latter is
used for checks and is updated for each compilation unit successfully compiled.67

Notes:

3A single program library is implied for the compilation units of a compilation. The possible existence of
different program libraries and the means by which they are named are not concerns of the language
definition; they are concerns of the programming environment.

4There should be commands for creating the program library of a given program or of a given family of
programs. These commands may permit the reuse of units of other program libraries. Finally, there
should be commands for interrogating the status of the units of a program library. The form of these
commands is not specified by the language definition.

5References: compilation unit 10.1, context clause 10.1.1, order of compilation 10.3, program 10.1,
program library 10.1 ♦, use clause 8.4, with clause 10.1.1

AI Crossreferences:

Section Class Status AI-0 Date Description
10.04 (02) BI WA 0256/23 88-06-16 "Successful" compilation

10.5 Elaboration of Library Units

1Before the execution of a main program, all library units needed by the main program(including the
subprogram used as the main program [AI-00158]) are elaborated, as well as the corresponding
library unit bodies, if any. The library units needed by the main program are: those named by with clauses
applicable to the main program ♦ and to its body; ♦ those named by with clauses applicable to these
library units themselves, to the corresponding library unit bodies ♦; and so on, in a transitive manner. If a
package specification needed by a main program does not require a package body, then a body
for the package is elaborated only if a (non-obsolete) package body exists in the program library
when an attempt is made to execute the main program; if such a package body has been

67In the case of a file consisting of multiple compilation units it is permitted to reject the entire file if one of the
compilation units is illegal. This is in line with the permissive view taken in [AI-00255]. It is a necessary side effect of
different possibile compilation strategies. If the entire file is checked syntactically before any static semantic checks are
done, then no program unit has been successfully analyzed when a syntactic error is encountered.

130 ARM
Program Structure and Compilation Issues

compiled previously but is obsolete when the attempt is made to execute the main program, it is
not elaborated. It is highly recommended that an implementation warn programmers that an
unneeded package body has been made obsolete so such bodies are not unintentionally
omitted when the main program is executed [AI-00400].

2The elaboration of these library units and of the corresponding library unit bodies is performed in an order
consistent with the partial ordering defined by the with clauses (see 10.3). ♦

3It is required that when a library unit has a corresponding secondary unit, the secondary unit is
elaborated immediately after the library unit.68 ♦

4♦

5The program is illegal if no consistent order can be found (that is, if a circularity exists). The elaboration
of the compilation units of the program is performed in some order that is otherwise not defined by the
language.

6References: allow 1.6, compilation unit 10.1, context clause 10.1.1, dependence between compilation
units 10.3, elaboration 3.9, illegal 1.6, in some order 1.6, library unit 10.1, name 4.1, main program 10.1,
secondary unit 10.1, separate compilation 10.1, simple name 4.1, with clause 10.1.1

AI Crossreferences:

Section Class Status AI-0 Date Description
10.05 (01) BI WJ 0158/05 88-05-23 The main program is elaborated before it is called
10.05 (02) BI RE 0772/00 88-12-21 Incomplete
10.05 (02) BI WJ 0113/12 88-05-23 A subunit’s with clause can name its ancestor library unit
10.05 (02) ra WJ 0354/03 86-12-01 On the elaboration of library units
10.05 (04) BI WJ 0236/12 88-12-14 Pragma ELABORATE for bodiless packages with tasks
10.05 (04) ra WJ 0298/05 86-12-01 Interaction between pragmas ELABORATE and INTERFACE
10.05 (04) ra WJ 0355/06 86-12-01 Pragma ELABORATE for predefined library packages
10.05 (04) ST RE 0421/00 86-05-05 Eliminate pragma ELABORATE

10.6 Program Optimization

1Optimization of the elaboration of declarations and the execution of statements may be performed by
compilers. In particular, a compiler may be able to optimize a program by evaluating certain expressions,
in addition to those that are static expressions. Should one of these expressions, whether static or not, be
such that an exception would be raised by its evaluation, then the code in that path of the program can be
replaced by code to raise the exception; the same holds for exceptions raised by the evaluation of names
and simple expressions ♦.

2A compiler may find that some statements or subprograms will never be executed, for example, if their
execution depends on a condition known to be FALSE. The corresponding object machine code can then

68IMPLEMENTATION REQUIREMENT: This avoids certain erroneous programs based on order of elaboration. See
[AI-00354]. It has some other effects.

(a) It rules out mutual recursion between routines defined in different packages.

(b) If package specification B depends on package A, then the package body of A (if there is one) is elaborated
before package specification B.

(c) Obviously, a package specification is always elaborated before its body.

ARM 131
Program Structure and Compilation Issues

be omitted. This rule permits the effect of conditional compilation within the language.

Note:

3An expression whose evaluation is known to raise an exception need not represent an error if it occurs in a
statement or subprogram that is never executed. The compiler may warn the programmer of a potential
error.

4References: condition 5.3, declaration 3.1, elaboration 3.9, evaluation 4.5 , exception 11 , expression 4.4,
false boolean value 3.5.3, program 10, raising of exceptions 11.3, statement 5, static expression 4.9,
subprogram 6

AI Crossreferences:

Section Class Status AI-0 Date Description
10.06 (01) ra RE 0531/00 87-03-11 exceptions and static expressions

132 ARM
Program Structure and Compilation Issues

ARM 133
Exceptions

Chapter 11

EXCEPTIONS

1This chapter defines the facilities for dealing with errors or other exceptional situations that arise during
program execution. Such a situation is called an exception. To raise an exception is to abandon normal
program execution so as to draw attention to the fact that the corresponding situation has arisen.
Executing some actions, in response to the arising of an exception, is called handling the exception.

2An exception declaration declares a name for an exception. There is no facility in AVA for
programmer defined exceptions. An exception can be raised by a raise statement, or it can be raised by
another statement or operation that propagates the exception. When an exception arises, control is
transferred to a user-provided exception handler (if one exists) at the end of a block statement or at the
end of the body of a subprogram ♦, or package. If no handler exists, the exception is propagated out
to the main program.

2aAVA places extremely onerous restrictions on the Ada exception handling mechanism. What
remains is intended to allow routines to handle exceptions, reinitialize themselves, and continue.
We have attempted to make it impossible for AVA programs to use the exception mechanism to
distinguish between different implementation choices in those places where operations may be
performed in an arbitrary order.

3References: block statement 5.6, error situation 1.6, exception handler 11.2, name 4.1, package body 7.1,
propagation of an exception 11.4.1 11.4.2, raise statement 11.3, subprogram body 6.3,

11.1 Exception Declarations

1The following exceptions are predefined in the language; they are raised when the situations described are
detected.

4CONSTRAINT_ERROR
This exception is raised in any of the following situations: upon an attempt to violate
a range constraint or an index constraint, by the execution of a predefined
numeric operation that cannot deliver a correct result; this includes the case
where an implementation uses a predefined numeric operation for the
execution, evaluation, or elaboration of some construct [AI-00387].

5NUMERIC_ERRORThis exception is not raised. All previous occurences have been replaced by
CONSTRAINT_ERROR [AI-00387].

6PROGRAM_ERROR
This exception is raised upon an attempt to call a subprogram ♦ if the body of the
corresponding unit has not yet been elaborated or by an attempt to evaluate a

134 ARM
Exceptions

deferred constant before its full declaration has been elaborated (7.4.3). This
exception is also raised if the end of a function is reached (see 6.5), by operations
in the AVA_IO package, and may be explicitly raised by the programmer.

7STORAGE_ERRORThis exception may be raised in case available storage is not sufficient for the
execution or elaboration of a construct [AI-00133].

8♦

12References: collection 3.8, declaration 3.1, exception 11, exception handler 11.2, identifier 2.3, implicit
declaration 12.3, instantiation 12.3, name 4.1, object 3.2, raise statement 11.3, record component 3.7,
return statement 5.8, subprogram 6, subprogram body 6.3.

13Constraint_error exception contexts: aggregate 4.3.1 4.3.2, assignment statement 5.2 5.2.1, constraint
3.3.2, discrete type attribute 3.5.5, exponentiating operator 4.5.6, implicit conversion 3.5.4 3.5.6 4.6,
index constraint 3.6.1, indexed component 4.1.1, logical operator 4.5.1, numeric operation 3.5.5 3.5.8
3.5.10, object declaration 3.2.1, operator of a numeric type 4.5 4.5.7, parameter association 6.4.1,
qualified expression 4.7, range constraint 3.5, selected component, 4.1.3, subtype indication 3.3.2, type
conversion 4.6.

14Numeric_error exception contexts: Moved to constraint errror.

15Program_error exception contexts: collection 3.8, elaboration 3.9, elaboration check 3.9 7.3 9.3 12.2,
leaving a function 6.5

AI Crossreferences:

Section Class Status AI-0 Date Description
11.01 (03) ra WI 0334/01 87-02-12 Exceptions and recursive instantiation of generics
11.01 (06) BI WI 0159/00 86-08-01 NUMERIC_ERROR cannot be raised arbitrarily
11.01 (06) BI WJ 0311/06 86-07-23 No NUMERIC_ERROR for null strings
11.01 (06) NB WJ 0387/05 87-02-23 Raising CONSTRAINT_ERROR instead of NUMERIC_ERROR
11.01 (06) ra RE 0115/00 83-11-07 NUMERIC_ERROR raised by implicit type conversion
11.01 (06) ra WJ 0312/04 86-07-23 NUMERIC_ERROR when evaluating null aggregates and slices
11.01 (08) BI RE 0133/03 86-07-10 raising STORAGE_ERROR
11.01 (08) co WI 0036/02 84-03-26 STORAGE_ERROR - null arrays; NUMERIC_ERROR - array types

11.2 Exception Handlers

1The response to one or more exceptions is specified by an exception handler.

exception_handler ::=

2when others =>
sequence_of_statements

♦

3An exception choice can only be others. An exception ♦ handler occurs in a construct that is either a
block statement or the body of a subprogram ♦ or package. Such a construct will be called a frame in this
chapter. In each case the syntax of a frame that has exception handlers includes the following part:

4begin
sequence_of_statements

exception

ARM 135
Exceptions

exception_handler ♦
end

5The exception choice others traps all exceptions.

6The exception handler of a frame handles all exceptions that are raised by the execution of the sequence
of statements of the frame. ♦

7Example:

begin
-- sequence of statements

exception
♦
when others =>

PUT(standard_output," FATAL ERROR ");
raise PROGRAM_ERROR;

end;

Note:

8The same kinds of statement are allowed in the sequence of statements of an exception handler as are
allowed in the sequence of statements of the frame. For example, a return statement is allowed in a
handler within a function body.

9References: block statement 5.6, declarative part 3.9, exception 11, exception handling 11.4, function
body 6.3, name 4.1, package body 7.1, raise statement 11.3, return statement 5.8, sequence of statements
5.1, statement 5, subprogram body 6.3, visibility 8.3

11.3 Raise Statements

1A raise statement raises an exception.

2raise_statement ::= raise PROGRAM_ERROR;

3For the execution of a raise statement, the exception PROGRAM_ERROR is raised.

4Examples:

raise PROGRAM_ERROR;

5References: exception 11, name 4.1, package 7, sequence of statements 5.1, subprogram 6

AI Crossreferences:

Section Class Status AI-0 Date Description
11.03 (02) ST RE 0450/00 86-08-06 Should allow raising of an exception in another task.

136 ARM
Exceptions

11.4 Exception Handling

1When an exception is raised, normal program execution is abandoned and control is transferred to an
exception handler. The selection of this handler depends on whether the exception is raised during the
execution of statements or during the elaboration of declarations.

2References: declaration 3.1, elaboration 3.1 3.9, exception 11, exception handler 11.2, raising of
exceptions 11.3, statement 5

AI Crossreferences:

Section Class Status AI-0 Date Description
11.04 (00) ST RE 0595/00 88-10-05 Name of the "current exception"
11.04 (01) BI WJ 0446/05 87-09-25 Raising an exception in an abnormally completed task

11.4.1 Exceptions Raised During the Execution of Statements

1The handling of an exception raised by the execution of a sequence of statements depends on ♦ the
innermost frame that ♦ encloses the sequence of statements ♦.

2Different actions take place, depending on whether or not this frame has a handler for the exception, and
on whether the exception is raised in the sequence of statements of the frame or in that of an exception
handler.

3If an exception is raised in the sequence of statements of a frame that has a handler for the exception,
execution of the sequence of statements of the frame is abandoned and control is transferred to the
exception handler. The execution of the sequence of statements of the handler completes the execution of
the frame (or its elaboration if the frame is a package body).

4If an exception is raised in the sequence of statements of a frame that does not have a handler for the
exception, execution of this sequence of statements is abandoned. The next action depends on the nature
of the frame:

(a) 5For a subprogram body, the same exception is raised again at the point of call of the subprogram,
unless the subprogram is the main program itself, in which case execution of the main program is
abandoned.

(b) 6For a block statement, the same exception is raised again immediately after the block statement
(that is, within the innermost enclosing frame).

(c) 7For a package body that is a declarative item, the same exception is raised again immediately after
this declarative item (within the enclosing declarative part). ♦ If the package is a library unit,
execution of the main program is abandoned.

(d) 8Omitted

9An exception that is raised again (as in the above cases (a), (b), and (c)) is said to be propagated, either by
the execution of the subprogram, the execution of the block statement, or the elaboration of the package
body. ♦

10Finally, if an exception is raised in the sequence of statements of an exception handler, execution of this
sequence of statements is abandoned. Subsequent actions (including propagation, if any) are as in the
cases (a) to (d) above, depending on the nature of the frame.

11Example:

ARM 137
Exceptions

function FACTORIAL (N : POSITIVE) return INTEGER is
begin

if N = 1 then
return 1 ;

else
return N * FACTORIAL(N-1);

end if;
exception

when others => return INTEGER’LAST;
end FACTORIAL;

12If the multiplication raises CONSTRAINT_ERROR, then INTEGER’LAST is returned by the handler.
This value will cause further CONSTRAINT_ERROR exceptions to be raised by the evaluation of the
expression in each of the remaining invocations of the function, so that for large values of N the function
will ultimately return the value INTEGER’LAST.

12aIt is poor programming style to depend on particular values of potentially affected global or local
variables within the scope of the frame when control is transfered to an others handler. For
safe programming, any such variables that the program depends on should be reinitialized in the
handler.

13Example:

package P is
procedure R;
procedure Q;

end P;

package body P is

procedure Q is
begin

R;
... -- error situation (2)

exception
when others => -- handler E2
...

end Q;

procedure R is
begin

... -- error situation (3)
end R;

begin
... -- error situation (1)
Q;
...

exception
when others => -- handler E1
...

end P;

The following situations can arise:

14

138 ARM
Exceptions

(1) If the exception PROGRAM_ERROR is raised in the sequence of statements of the outer package
P, the handler E1 provided within P is used to complete the elaboration of P.

(2) 15If the exception PROGRAM_ERROR is raised in the sequence of statements of Q, the handler E2
provided within Q is used to complete the execution of Q. Control will be returned to the point of
call of Q upon completion of the handler.

(3) 16If the exception PROGRAM_ERROR is raised in the body of R, called by Q, the execution of R is
abandoned and the same exception is raised in the body of Q. The handler E2 is then used to
complete the execution of Q, as in situation (2).

17Note that in the third situation, the exception raised in R results in (indirectly) transferring control to a
handler that is part of Q and hence not enclosed by R. Note also that if a handler were provided within R
for the exception choice others, situation (3) would cause execution of this handler, rather than direct
termination of R.

18♦

Notes:

19The language does not define what happens when the execution of the main program is abandoned after
an unhandled exception.

20The predefined exceptions are those that can be propagated by the basic operations and the predefined
operators.

21♦

22References: basic operation 3.3.3, block statement 5.6, completion 9.4, declarative item 3.9, declarative
part 3.9, elaboration 3.1 3.9, exception 11, exception handler 11.2, frame 11.2, library unit 10.1, main
program 10.1, numeric_error exception 11.1, package 7, package body 7.1, predefined operator 4.5,
procedure 6.1, sequence of statements 5.1, statement 5, subprogram 6, subprogram body 6.3, subprogram
call 6.4

AI Crossreferences:

Section Class Status AI-0 Date Description
11.04.01 (03) BI WJ 0455/05 88-06-29 Raising an exception before the sequence of statements

11.4.2 Exceptions Raised During the Elaboration of Declarations

1If an exception is raised during the elaboration of the declarative part of a given frame, this elaboration is
abandoned. The next action depends on the nature of the frame:

(a) 2For a subprogram body, the same exception is raised again at the point of call of the subprogram,
unless the subprogram is the main program itself, in which case execution of the main program is
abandoned.

(b) 3For a block statement, the same exception is raised again immediately after the block statement.

(c) 4For a package body that is a declarative item, the same exception is raised again immediately after
this declarative item, in the enclosing declarative part. ♦ If the package is a library unit, execution
of the main program is abandoned.

(d) 5Omitted

6Similarly, if an exception is raised during the elaboration of a package declaration ♦ this elaboration is

ARM 139
Exceptions

abandoned; the next action depends on the nature of the declaration.

(e) 7For a package declaration that is a declarative item, the exception is raised again immediately after
the declarative item in the enclosing declarative part or package specification. For the declaration
of a library package, the execution of the main program is abandoned.

8An exception that is raised again (as in the above cases (a), (b), (c) and (e)) is said to be propagated, either
by the execution of the subprogram or block statement, or by the elaboration of the package declaration,
or package body.

9Example of an exception in the declarative part of a block statement (case (b)):

procedure P is
...

begin
declare

N : INTEGER := F; -- the function F may raise PROGRAM_ERROR
begin -- enter frame body here

...
exception

when others => ... -- handler E1
end;
...

exception
when others => ... -- handler E2

end P;

-- if the exception PROGRAM_ERROR is raised in the declaration of N, it is handled by E2

10References: activation 9.3, block statement 5.6, declarative item 3.9, declarative part 3.9, elaboration 3.1
3.9, exception 11, frame 11.2, library unit 10.1, main program 10.1, package body 7.1, package
declaration 7.1, package specification 7.1, subprogram 6, subprogram body 6.3, subprogram call 6.4

11.5 Exceptions Raised During Task Communication: Removed

11.6 Exceptions and Optimization: Removed

AI Crossreferences:

Section Class Status AI-0 Date Description
11.06 (00) BI RE 0315/11 87-04-16 Legal Reorderings of Operations
11.06 (05) ra RE 0380/00 85-08-22 Reassociation and overloading resolution
11.06 (06) ra WJ 0267/06 88-07-07 Evaluating expressions in case statements

11.7 Suppressing Checks: Removed

AI Crossreferences:

Section Class Status AI-0 Date Description
11.07 (03) ra RE 0299/00 84-10-16 Pragma Suppress and Subprogram Names
11.07 (04) BI RE 0542/00 87-08-05 Meaning of "base type" wrt pragma SUPPRESS
11.07 (10) BI WA 0535/03 88-11-04 Boolean operators producing out of range results
11.07 (18) ra RE 0532/00 87-03-11 Pragma SUPPRESS and compile-time evaluation of expressions

140 ARM
Exceptions

ARM 141
Generic Units: Removed

Chapter 12

GENERIC UNITS: REMOVED

AI Crossreferences:

Section Class Status AI-0 Date Description
12.01 (02) ST RE 0382/00 85-08-22 Allow generic subprogram bodies
12.01 (02) ST RE 0451/00 86-08-06 Task entries as formal parameters to generics
12.01 (02) ST RE 0452/00 86-08-06 "generic_type_definition" should have generic record types
12.01 (05) BI WA 0504/03 88-06-16 Expanded names with a renamed prefix in generic packages
12.01 (05) BI WJ 0286/11 87-06-18 Declarations visible in a generic subprogram decl and body
12.01 (05) BI WJ 0367/06 88-05-23 Deriving from types declared in a generic package
12.01 (05) BI WJ 0412/06 88-05-23 Expanded names for generic formal parameters
12.01 (05) co RE 0335/00 85-05-02 An expanded name of a generic is also "the name"
12.02 (01) ra WJ 0328/08 87-03-16 Legality of uninstantiated generic units
12.03 (00) BI CB 0506/04 88-11-08 Instantiation before occurrence of a body
12.03 (05) BI CA 0547/03 88-10-05 Conformance rules and instantiated units
12.03 (05) BI WJ 0398/08 87-06-18 Operations declared for types declared in instances
12.03 (05) BI WJ 0409/05 87-09-12 Static subtype names created by instantiation
12.03 (05) CR WJ 0483/04 87-09-12 Correction to question in 0409/03
12.03 (05) na na 0290/02 86-07-31 [combined with 0398]
12.03 (07) BI WA 0505/03 88-06-16 Static constants in instances
12.03 (17) BI WJ 0237/06 86-07-23 Instances having implicit package bodies
12.03 (17) BI WJ 0365/05 86-07-23 Actual parameter names are evaluated in generic instantiations
12.03 (18) BI WA 0256/23 88-06-16 "Successful" compilation
12.03 (22) BI WJ 0012/06 88-05-23 Declaration of homographs by derivation and instantiation
12.03.02 (04) BI WA 0256/23 88-06-16 "Successful" compilation
12.03.02 (04) BI WJ 0037/12 86-12-01 Instantiating when discriminants have defaults
12.03.06 (02) ra WJ 0038/06 87-02-23 Declarations associated with default names

142 ARM
Generic Units: Removed

ARM 143
Representation Clauses and Implementation-Dependent Features

Chapter 13

REPRESENTATION CLAUSES AND

IMPLEMENTATION-DEPENDENT FEATURES

1This chapter describes certain implementation-dependent features ♦.

13.1 Representation Clauses: Removed

AI Crossreferences:

Section Class Status AI-0 Date Description
13.01 (03) BI WJ 0138/10 87-02-23 Representation clauses for derived types
13.01 (03) BI WJ 0422/06 88-05-23 Representation clauses for derived enumeration and record types
13.01 (03) ra RE 0514/00 87-01-13 Do representation clauses affect prior subtypes?
13.01 (03) ra WJ 0040/07 86-12-01 Multiple specification of T’SIZE, T’STORAGE_SIZE, T’SMALL
13.01 (06) BI WI 0494/02 87-01-16 Forcing occurrences for component types
13.01 (06) BI WI 0515/01 87-01-19 Expressions, function calls, and forcing occurrences
13.01 (06) BI WJ 0039/12 86-07-23 Forcing occurrences and premature uses of a type
13.01 (06) BI WJ 0186/08 86-12-04 Pragmas recognized by an impl do not force default representation
13.01 (06) BI WJ 0321/02 86-07-23 Forcing occurrence of index subtype
13.01 (06) BI WJ 0322/02 86-07-23 Forcing occurrences in unknown pragmas
13.01 (06) na na 0171/01 84-11-05 [combined with 0039]
13.01 (06) ra CE 0419/02 87-01-28 Forcing occurrence in a generic formal type declaration
13.01 (07) BI WI 0515/01 87-01-19 Expressions, function calls, and forcing occurrences
13.01 (07) BI WJ 0039/12 86-07-23 Forcing occurrences and premature uses of a type
13.01 (07) BI WJ 0371/05 86-07-23 Representation clauses containing forcing occurrences
13.01 (08) na na 0423/01 87-01-20 [combined with 0411]
13.01 (08) ra WI 0424/01 87-08-07 Storage size specification vs. address clause
13.01 (10) BI CA 0523/05 88-10-03 Changing the effect of a program by specifying small
13.01 (10) BI RE 0383/00 85-08-22 Need for "erroneous" address clauses

13.2 Length Clauses: Removed

AI Crossreferences:

Section Class Status AI-0 Date Description
13.02 (02) BI WJ 0300/07 87-06-18 Prefixes of attributes in length clauses
13.02 (03) co RE 0436/00 86-06-19 A static expression must not be evaluated?
13.02 (05) BI WI 0553/01 88-11-22 Giving a size specification for a record type
13.02 (05) BI WI 0561/02 88-12-13 Size specifications for scalar types
13.02 (05) ra CE 0369/06 88-11-20 Representing values of discrete base type
13.02 (06) na na 0495/02 88-05-10 [Combined with 0301]
13.02 (06) ra WI 0301/03 88-10-11 Representation clauses and nonstatic constraints
13.02 (08) ra RE 0496/00 86-11-10 Specifying a negative STORAGE_SIZE value for tasks

144 ARM
Representation Clauses and Implementation-Dependent Features

13.02 (10) BI CE 0555/02 88-11-22 Pragma PACK for an array type
13.02 (10) BI WI 0554/01 88-11-22 Pragma PACK for a record type
13.02 (10) BI WI 0556/03 88-11-22 Giving a size specification for an array type
13.02 (10) ST RE 0453/00 86-08-06 STORAGE_SIZE for Tasks
13.02 (12) BI CE 0341/13 88-12-07 Extra precision or range for fixed point representations
13.02 (12) ra WJ 0099/12 88-05-23 ’SMALL can be specified for a derived fixed point type
13.02 (14) BI RE 0497/00 86-11-10 STORAGE_SIZE and dependent tasks
13.02 (17) ra RE 0524/00 87-02-10 Spanning the Range of the Type

13.3 Enumeration Representation Clauses: Removed

AI Crossreferences:

Section Class Status AI-0 Date Description
13.03 (00) BI WI 0564/00 88-10-11 Required enumeration representation clause support
13.03 (02) BI WJ 0422/06 88-05-23 Representation clauses for derived enumeration and record types
13.03 (04) BI RE 0798/00 88-12-21 Replace "values" by "expressions"

13.4 Record Representation Clauses: Removed

AI Crossreferences:

Section Class Status AI-0 Date Description
13.04 (02) BI WJ 0422/06 88-05-23 Representation clauses for derived enumeration and record types
13.04 (03) BI RE 0498/00 86-11-10 static range in component_clause
13.04 (05) BI CE 0550/03 88-11-22 Positioning record components across storage unit boundaries
13.04 (05) BI WI 0551/04 88-12-13 Specifying a record component size in a component clause
13.04 (07) BI CE 0550/03 88-11-22 Positioning record components across storage unit boundaries
13.04 (07) BI WI 0551/04 88-12-13 Specifying a record component size in a component clause
13.04 (07) BI WJ 0132/05 86-07-23 Static constraints and component clauses
13.04 (07) ra RE 0499/00 86-11-10 what is a record variant?
13.04 (07) ra WI 0301/03 88-10-11 Representation clauses and nonstatic constraints
13.04 (08) BI CE 0009/04 88-09-02 Implementation-defined names cannot be reserved words
13.04 (08) BI CE 0552/02 88-11-22 Component clauses for implementation-dependent components

13.5 Address Clauses: Removed

AI Crossreferences:

Section Class Status AI-0 Date Description
13.05 (00) BI RE 0573/01 88-11-08 Address clause and Initial values
13.05 (00) co na 0338/02 85-12-30 An address clause is illegal after a forcing occurrence [13.1(8)]
13.05 (00) na na 0228/01 87-08-03 [combined with 0337]
13.05 (03) BI WI 0559/00 88-10-07 Support for address clauses for objects and program units
13.05 (03) ra WI 0337/04 88-09-02 Incompatible record alignment and address clauses
13.05 (04) BI WJ 0263/06 88-05-23 A named number is not an object
13.05 (05) ra WJ 0336/05 88-05-23 Address clauses for subprogram bodies
13.05 (08) BI WJ 0292/05 86-12-01 Derived types with address clauses for entries
13.05 (08) co WJ 0379/03 86-12-01 Address clauses for entries of task types

ARM 145
Representation Clauses and Implementation-Dependent Features

13.5.1 Interrupts: Removed

13.6 Change of Representation: Removed

AI Crossreferences:

Section Class Status AI-0 Date Description
13.06 (01) BI WJ 0138/10 87-02-23 Representation clauses for derived types
13.06 (01) ra WJ 0040/07 86-12-01 Multiple specification of T’SIZE, T’STORAGE_SIZE, T’SMALL

13.7 The Package AVA

1For each implementation there is a predefined library package called AVA69 which includes the
definitions of certain configuration-dependent characteristics. The specification of the package AVA is
implementation-dependent and must be given in Appendix F. The visible part of this package must
contain at least the following declarations.

2package AVA is
♦
type NAME is implementation_defined_enumeration_type;

AVA_SYSTEM_NAME : constant NAME := implementation_defined;

♦

-- System-Dependent Named Numbers:

AVA_MIN_INT : constant := implementation_defined;
AVA_MAX_INT : constant := implementation_defined;
♦

end AVA;

3♦ Values of the enumeration type NAME are the names of alternative machine configurations handled by
the implementation; one of these is the constant AVA_SYSTEM_NAME. ♦

Note:

12It is a consequence of the visibility rules that a declaration given in the package AVA is not visible in a
compilation unit unless this package is mentioned by a with clause that applies (directly or indirectly) to
the compilation unit.

13References: apply 10.1.1, attribute 4.1.4, compilation unit 10.1, declaration 3.1, enumeration literal 3.5.1,
enumeration type 3.5.1, identifier 2.3, library unit 10.1, must 1.6, named number 3.2, number declaration
3.2.2, numeric literal 2.4, package 7, package specification 7.1, program library 10.1, type 3.3, visibility
8.3, visible part 7.2, with clause 10.1.1

69The package AVA replaces the Ada package SYSTEM.

146 ARM
Representation Clauses and Implementation-Dependent Features

AI Crossreferences:

Section Class Status AI-0 Date Description
13.07 (00) BI WI 0041/05 87-04-19 Recompilation of predefined library units
13.07 (02) co WJ 0045/05 86-07-23 Subtype SYSTEM.PRIORITY
13.07 (02) ra WJ 0355/06 86-12-01 Pragma ELABORATE for predefined library packages
13.07 (02) ST RE 0582/00 88-08-31 Need a standard name for null address
13.07 (03) ST RE 0291/00 84-10-01 SYSTEM.MAX_DIGITS Insufficient for Portability
13.07 (06) BI RE 0229/00 84-03-13 Enumeration literals include characters
13.07 (11) BI WI 0044/02 87-04-08 Pragma SYSTEM_NAME in nonempty library
13.07 (11) BI WI 0303/01 87-04-14 Implicit use of SYSTEM.STORAGE_UNIT
13.07 (11) ra WI 0302/01 87-04-10 Pragma SYSTEM_NAME (and related pragmas)

13.7.1 System-Dependent Named Numbers

1Within the package AVA, the following named numbers are declared. All are of the type
universal_integer. ♦

2AVA_MIN_INT The smallest (most negative) value of INTEGER type.

3AVA_MAX_INT The largest (most positive) value of INTEGER type.

4♦

8References: allow 1.6, integer type 3.5.4, named number 3.2, package 7, range constraint 3.5, system
package 13.7, type 3.3, universal_integer type 3.5.4

AI Crossreferences:

Section Class Status AI-0 Date Description
13.07.01 (02) BI CA 0565/02 88-10-03 Support for static universal_integer expressions
13.07.01 (02) BI WA 0304/05 88-11-04 The definition of SYSTEM.MIN_INT and SYSTEM.MAX_INT
13.07.01 (03) BI CA 0565/02 88-10-03 Support for static universal_integer expressions
13.07.01 (03) BI WA 0304/05 88-11-04 The definition of SYSTEM.MIN_INT and SYSTEM.MAX_INT
13.07.01 (07) ra WJ 0201/07 88-05-23 The relation between TICK, CLOCK, and the delay statement
13.07.01 (07) ra WJ 0366/07 88-05-23 The value of SYSTEM.TICK for different execution environments

13.7.2 Representation Attributes: Removed

AI Crossreferences:

Section Class Status AI-0 Date Description
13.07.02 (03) BI CE 0043/03 88-05-09 SYSTEM must apply to a unit using ’ADDRESS
13.07.02 (03) BI RE 0596/00 88-10-05 ’ADDRESS for derived task types
13.07.02 (03) BI RE 0603/00 88-11-08 ADDRESS attribute for single tasks
13.07.02 (03) BI WJ 0305/05 88-05-23 T’ADDRESS when T is a task type yields the task object address
13.07.02 (03) ra RE 0202/00 84-03-13 ’ADDRESS may not be Finer-grained than STORAGE_UNIT
13.07.02 (03) ra RE 0203/02 86-06-19 How is ’ADDRESS defined?
13.07.02 (03) ra RE 0533/00 87-03-11 Interpretation of ’address for a task entry
13.07.02 (05) BI RE 0536/03 88-11-08 The meaning of ’SIZE applied to a type or object
13.07.02 (06) ra na 0126/11 84-09-28 [combined with 0015]
13.07.02 (06) ra WJ 0015/12 86-12-01 When the prefix of ’ADDRESS contains a function name
13.07.02 (07) BI WJ 0258/06 88-06-13 ’POSITION etc. for renamed components
13.07.02 (07) CR WJ 0503/04 88-05-23 Error in 0258/05
13.07.02 (08) co WJ 0362/03 86-12-01 "component of a record" for representation attributes
13.07.02 (12) BI RE 0608/00 88-12-13 The value of ’STORAGE_SIZE

ARM 147
Representation Clauses and Implementation-Dependent Features

13.7.3 Representation Attributes of Real Types: Removed

AI Crossreferences:

Section Class Status AI-0 Date Description
13.07.03 (03) BI WJ 0263/06 88-05-23 A named number is not an object
13.07.03 (03) ra WI 0238/02 87-03-11 Effect of MACHINE_ROUNDS for underflow
13.07.03 (04) BI CA 0174/07 88-10-03 T’FIRST and T’LAST for real types
13.07.03 (04) BI WI 0021/12 88-11-04 MACHINE_OVERFLOWS for correct extended safe results
13.07.03 (05) BI WJ 0263/06 88-05-23 A named number is not an object
13.07.03 (05) ST RE 0609/00 88-12-13 Floating point machine attributes inadequate
13.07.03 (09) co CE 0543/01 88-12-08 The value of F’MACHINE_RADIX exp() (F’MACHINE_EMIN - 1)

13.8 Machine Code Insertions: Removed

13.9 Interface to Other Languages: Removed

AI Crossreferences:

Section Class Status AI-0 Date Description
13.09 (00) na na 0326/01 86-03-25 [combined with 0306]
13.09 (03) BI RE 0805/00 88-12-21 "{basic} declarative item" (twice)
13.09 (03) BI WJ 0180/07 86-07-23 Elaboration checks for INTERFACE subprograms
13.09 (03) BI WJ 0306/15 88-05-23 Pragma INTERFACE: allowed names and illegalities
13.09 (03) co RE 0454/00 86-08-06 Allowed placement of pragma INTERFACE
13.09 (03) na na 0410/02 86-07-01 [Combined with 0306]
13.09 (03) ra WJ 0298/05 86-12-01 Interaction between pragmas ELABORATE and INTERFACE
13.09 (07) na na 0372/01 86-03-25 [combined with 0317]

13.10 Unchecked Programming: Removed

AI Crossreferences:

Section Class Status AI-0 Date Description
13.10.01 (01) ra WJ 0355/06 86-12-01 Pragma ELABORATE for predefined library packages
13.10.01 (06) BI WJ 0356/08 88-05-23 Access values that designate deallocated objects
13.10.01 (08) ra RE 0589/00 88-09-02 Insert notes to clarify the use of UNCHECKED_DEALLOCATION
13.10.02 (00) BI RE 0500/00 86-11-10 UNCHECKED_CONVERSION for unconstrained types
13.10.02 (01) ra WJ 0355/06 86-12-01 Pragma ELABORATE for predefined library packages
13.10.02 (03) ra RE 0590/00 88-09-02 Safe unchecked conversions

148 ARM
Representation Clauses and Implementation-Dependent Features

ARM 149
Input-Output

Chapter 14

INPUT-OUTPUT

1Input-output is provided in the language by means of predefined packages. ♦ Operations for text
input-output are supplied in the package AVA_IO.70 ♦

2References: ♦ AVA_IO package 14.3

14.1 External Files and File Objects

1Values input from the external environment of the program, or output to the environment, are considered
to occupy external files. An external file can be anything external to the program that can produce a value
to be read or receive a value to be written. An external file is identified in a system dependent fashion
(see Appendix F). External files are made available via parameters to the main program of type
file type and by deferred constants declared in the package AVA_IO. These constants must
include at least STANDARD_INPUT and STANDARD_OUTPUT. Any aliasing among external
file parameters, standard_input and standard_output will result in implementation dependent
behavior [AI-00320].

2Input and output operations are expressed as operations on objects of some file type, rather than directly in
terms of the external files. In the remainder of this chapter,the term file is always used to refer to a file
object; the term external file is used otherwise. File objects are essentially indices into tables
maintained by the AVA_IO package. As such, they are always passed to predefined routines as
constant (in) parameters. Any actual changes occur in these internal tables. ♦

3♦

5♦ Input-output in human-readable form is defined by the (nongeneric) package AVA_IO.

6Before input or output operations can be performed on a file, the file must first be associated with an
external file. While such an association is in effect, the file is said to be open, and otherwise the file is
said to be closed. This association is accomplished in an implementation-dependent manner.
The objects of file type that are passed into the main program and declared in AVA_IO are
already open. Once closed they cannot be reopened.

70Note that this package should be trivially implementable using Ada’s predefined TEXT_IO. The reason we define a
completely new package is in order to avoid turning ambiguous Ada programs into unambiguious AVA programs.
TEXT_IO makes extensive use of default parameters, which we have excluded from our subset.

150 ARM
Input-Output

7The language does not define what happens to external files after the completion of the main program (in
particular, if corresponding files have not been closed). ♦

8An open file has a current mode, which is a value of ♦ the enumeration type

♦
type FILE_MODE is (IN_FILE, OUT_FILE); -- for AVA_IO

9These values correspond respectively to the cases where only reading ♦ or only writing are to be
performed. The mode of a file cannot be changed.

10♦

11The only exception that can be raised by a call of an input-output subprogram is
PROGRAM_ERROR;71 the situations in which it can be raised are described, either following the
description of the subprogram (and in section 14.4), or in Appendix F in the case of error situations that
are implementation-dependent.

Notes:

12Other exceptions may be raised by the evaluation of the arguments to input-output
subprograms, but after execution of the body has begun the only exceptions that may be
propagated to the caller is PROGRAM_ERROR [AI-00279].

13♦

14References: ♦ exception 11, file mode 14.1, ♦ io_exceptions package 14.5, open file 14.1, ♦ output file
14.2.2, ♦ string 3.6.3, AVA_IO package 14.3 ♦

AI Crossreferences:

Section Class Status AI-0 Date Description
14.01 (00) BI RE 0591/00 88-09-02 Concurrent I/O and erroneous executions
14.01 (00) BI RE 0592/00 88-09-02 I/O with undefined parameters
14.01 (01) ra WJ 0355/06 86-12-01 Pragma ELABORATE for predefined library packages
14.01 (07) BI WJ 0466/04 88-05-23 I/O performed by library tasks
14.01 (11) BI WJ 0279/09 86-12-01 Exceptions raised by calls of I/O subprograms
14.01 (11) ra CE 0501/02 88-12-30 The open/closed status of a file object

14.2 Sequential and Direct Files

1One kind of access to external files is defined: sequential access♦. ♦ A file object to be used for
sequential access is called a sequential file. ♦

2For sequential access, the external file is viewed as a sequence of values that are transferred in the order
of their appearance (as produced by the program or by the environment). When the file is opened, transfer
starts from the beginning of the file.

71To help the reader relate these exceptions to those defined for TEXT_IO in Ada, we use the notation
PROGRAM_ERRORoriginal to indicate what original exception was replaced by program_error. E.g.
PROGRAM_ERRORstatus, PROGRAM_ERRORmode, ...

ARM 151
Input-Output

♦

5♦The only allowed modes for sequential files are the modes IN_FILE and OUT_FILE.

Notes:

5aA capability for appending to a file is a system dependent property. In particular it depends on
the manner in which external files are associated with parameters to the main program. See
[AI-00278] for discussion in the context of full Ada.

6References: count type 14.3, file mode 14.1, in_file 14.1, out_file 14.1

AI Crossreferences:

Section Class Status AI-0 Date Description
14.02 (02) ra CA 0278/05 88-10-03 Appending to a file

14.2.1 File Management

Relevant portions moved to 14.3.1.

AI Crossreferences:

Section Class Status AI-0 Date Description
14.02.01 (00) ST RE 0544/00 87-08-05 File "append" capability proposed
14.02.01 (00) ST RE 0545/00 87-08-05 Procedure to find if a file exists
14.02.01 (03) co WJ 0247/05 86-07-23 A non-null FORM argument can be required by an implementation
14.02.01 (03) na na 0484/00 86-10-15 Correction to 0048/06 example
14.02.01 (03) ra WJ 0046/06 86-07-23 Lifetime of a temporary file and its name
14.02.01 (04) BI WJ 0332/04 86-07-23 NAME_ERROR or USE_ERROR raised when I/O not supported
14.02.01 (06) ra RE 0574/00 88-07-06 Effect of invalid FORM string
14.02.01 (07) BI WJ 0332/04 86-07-23 NAME_ERROR or USE_ERROR raised when I/O not supported
14.02.01 (09) BI WJ 0357/05 87-06-18 CLOSE or RESET of a sequential file from OUT_FILE mode
14.02.01 (15) BI WJ 0357/05 87-06-18 CLOSE or RESET of a sequential file from OUT_FILE mode
14.02.01 (20) ra RE 0448/00 86-07-10 Semantic ramifications of the NAME interface
14.02.01 (22) ra WJ 0046/06 86-07-23 Lifetime of a temporary file and its name

14.2.2 Sequential Input-Output

Relevant portions moved to 14.3.1.

AI Crossreferences:

Section Class Status AI-0 Date Description
14.02.02 (00) BI WJ 0320/06 86-07-23 Sharing external files
14.02.02 (04) ra RE 0184/00 84-01-25 DATA_ERROR in SEQUENTIAL_IO and DIRECT_IO

14.2.3 Specification of the Package Sequential_IO: Removed

14.2.4 Direct Input-Output: Removed

AI Crossreferences:

Section Class Status AI-0 Date Description
14.02.04 (00) BI WJ 0320/06 86-07-23 Sharing external files

152 ARM
Input-Output

14.2.5 Specification of the Package Direct_IO: Removed

14.3 Text Input-Output

1This section describes the package AVA_IO, which provides facilities for input and output in human-
readable form. Each file value is read or written sequentially, as a sequence of characters ♦. The
specification of the package is given below in section 14.3.10.

2The facilities for file management given ♦ in section ♦ 14.3.1, are available for text input-output. ♦
There are procedures GET and PUT that input values of types CHARACTER and STRING from text
files, and output values to them. These values are provided to the PUT procedures, and returned by the
GET procedures, in a parameter ITEM. ♦

3♦

5At the beginning of program execution the default input and output files are the so-called standard input
file and standard output file. These files are open, have respectively the current modes IN_FILE and
OUT_FILE, and are associated with two implementation-defined external files. ♦

6From a logical point of view, a text file is ♦ a sequence of characters♦. One character constant is
provided to mark the end of a line, EOL. This terminator is generated during output ♦ by calls of
procedures provided expressly for that purpose; or by passing the values of this constant as a
character to be output.72

7♦

9♦ When a file is initially open with mode OUT_FILE, its size is unbounded. STORAGE_ERROR is
raised if external file size limits are encountered. ♦

10References: ♦ external file 14.1, file 14.1, get procedure 14.3.5, in_file 14.1, out_file 14.1, put procedure
14.3.5, ♦ sequential access 14.1, standard input file 14.3.2, standard output file 14.3.2

AI Crossreferences:

Section Class Status AI-0 Date Description
14.03 (00) ST RE 0329/00 85-03-05 look-ahead operation for TEXT_IO
14.03 (01) ra WJ 0355/06 86-12-01 Pragma ELABORATE for predefined library packages
14.03 (05) ra RE 0575/00 88-07-06 Exception handling when Standard I/O is not supported
14.03 (05) ST RE 0485/00 86-10-13 Must standard input and output files be independent?
14.03 (06) ra RE 0537/00 87-06-11 Raising END_ERROR on SKIP_PAGE

14.3.1 File Management

1The only allowed file modes for text files are the modes IN_FILE and OUT_FILE. The subprograms
IS_OPEN, MODE, and CLOSE are described in this section.73

1afunction IS_OPEN (FILE : in FILE_TYPE) return BOOLEAN;

72This means that an entire file can be copied by GETting and PUTting characters, without any knowledge of the
underlying file structure.

73These have been moved here from 14.2.1.

ARM 153
Input-Output

1bReturns TRUE if FILE is open.

1cfunction MODE (FILE : in FILE_TYPE) return FILE_MODE;

1dReturns the FILE_MODE of FILE, either IN_FILE or OUT_FILE.

1eprocedure CLOSE (FILE : in FILE_TYPE);

1fSevers the association between the given file and its associated external file. The given file
is left closed.

1gIf the file has the current mode OUT_FILE♦ outputs a file terminator.

1hThe exception PROGRAM_ERRORstatus is raised if the given file is not open.

1ifunction END_OF_FILE74(FILE : in FILE_TYPE) return BOOLEAN;

1jOperates on a file of mode IN_FILE. Returns TRUE if no more elements can be read from
the given file; otherwise returns FALSE. The exception PROGRAM_ERRORstatus is raised
if this operation is attempted for a file that is not open.

1kThe exception PROGRAM_ERRORmode is raised if the mode is not IN_FILE.

2♦

6References: current mode 14.1, current size 14.1, closed file 14.1, ♦ current column number 14.3,
current default input file 14.3, current line number 14.3, current page number 14.3, end_of_file 14.3,
program_error exception 14.4, external file 14.1, file 14.1, file mode 14.1, file terminator 14.3, in_file
14.1, line length 14.3, ♦ out_file 14.1, page length 14.3, ♦

AI Crossreferences:

Section Class Status AI-0 Date Description
14.03.01 (02) ra CA 0278/05 88-10-03 Appending to a file
14.03.01 (04) BI WJ 0047/08 87-09-12 Effect of RESET on line and page length
14.03.01 (04) CR WJ 0486/04 87-09-12 Correction to 0047/06 example
14.03.01 (05) BI WJ 0048/12 87-02-23 Default files can be closed, deleted, and re-opened

14.3.2 Default Input and Output Files

1♦

1aThe following constants provide one means to access the file pointers to the standard input and
output files.

1bSTANDARD_INPUT : constant FILE_TYPE;

1cValue is a pointer to the standard input file (see 14.3).

1dSTANDARD_OUTPUT : constant FILE_TYPE;

1eValue is a pointer to the standard output file (see 14.3).

♦

74Moved from 14.2.2.

154 ARM
Input-Output

6References: ♦ file_type 14.1, get procedure 14.3.5, mode_error exception 14.4, put procedure 14.3.5,
PROGRAM_ERRORstatus exception 14.4

AI Crossreferences:

Section Class Status AI-0 Date Description
14.03.02 (00) ra WI 0049/01 84-01-29 Operations on an out-of-scope file object
14.03.02 (01) BI RE 0546/00 87-08-05 CREATE vis-a-vis 0048
14.03.02 (01) BI WJ 0048/12 87-02-23 Default files can be closed, deleted, and re-opened

14.3.3 Specification of Line and Page Lengths: Omitted

AI Crossreferences:

Section Class Status AI-0 Date Description
14.03.03 (05) ra CE 0534/03 88-10-03 Unbounded line lengths

14.3.4 Operations on Columns, Lines, and Pages

1♦

1aThe end of line constant described in this section and the procedures PUT_LINE and GET_LINE
described in section 14.3.6 provide the only explicit control of line structure in files.

1bEOL : constant CHARACTER := implementation_dependent;

AI Crossreferences:

Section Class Status AI-0 Date Description
14.03.04 (00) BI WJ 0320/06 86-07-23 Sharing external files
14.03.04 (21) ST RE 0487/00 86-10-13 The TEXT_IO procedures end_of_page and end_of_file

14.3.5 Get and Put Procedures

1The procedures GET and PUT for items of the types CHARACTER and STRING ♦ are described in
subsequent sections. Features of these procedures that are common to ♦ these types are described in this
section. The GET and PUT procedures for items of type CHARACTER and STRING deal with
sequences of individual character values rather than Ada literals.

2All procedures GET and PUT have forms with a file parameter, written first. ♦ Each procedure GET
operates on a file of mode IN_FILE. Each procedure PUT operates on a file of mode OUT_FILE.

3♦

9The exception PROGRAM_ERRORstatus is raised by any of the procedures GET, GET_LINE, PUT,
and PUT_LINE if the file to be used is not open. The exception PROGRAM_ERRORmode is raised by
the procedures GET and GET_LINE if the mode of the file to be used is not IN_FILE; and by the
procedures PUT and PUT_LINE, if the mode is not OUT_FILE.

10The exception PROGRAM_ERRORend is raised by a GET procedure if an attempt is made to read past
the end of a file.♦

11♦

ARM 155
Input-Output

14References: blank 14.3.9, column number 14.3, current default file 14.3, ♦ file 14.1, ♦ get procedure
14.3.6 14.3.7 14.3.8 14.3.9, in_file 14.1, ♦ line number 14.1, line terminator 14.1, maximum line length
14.3, mode 14.1, ♦ new_file procedure 14.3.4, out_file 14.1, page number 14.1, page terminator 14.1, put
procedure 14.3.6 14.3.7 14.3.8 14.3.9, skipping 14.3.7 14.3.8 14.3.9, ♦

AI Crossreferences:

Section Class Status AI-0 Date Description
14.03.05 (03) BI WJ 0320/06 86-07-23 Sharing external files
14.03.05 (07) co WJ 0243/05 86-12-01 Overriding width format in TEXT_IO

14.3.6 Input-Output of Characters and Strings

1For an item of type CHARACTER the following procedures are provided:

2procedure GET(FILE : in FILE_TYPE; ITEM : in out75 CHARACTER);
♦

3♦ Reads the next character from the specified input file and returns the value of this character in the
out parameter ITEM.

4The exception PROGRAM_ERRORend is raised if an attempt is made to read past the end of a
file.

5procedure PUT(FILE : in FILE_TYPE; ITEM : in CHARACTER);
♦

6♦ Outputs the given character to the file.

7For an item of type STRING the following procedures are provided:

8procedure GET(FILE : in FILE_TYPE; ITEM : in out STRING);
♦

9Determines the length of the given string and attempts that number of GET operations for successive
characters of the string (in particular, no operation is performed if the string is null).

10procedure PUT(FILE : in FILE_TYPE; ITEM : in STRING);
♦

11Determines the length of the given string and attempts that number of PUT operations for successive
characters of the string (in particular, no operation is performed if the string is null).

12procedure GET_LINE(FILE : in FILE_TYPE; ITEM : in out76 STRING; LAST : in out NATURAL);
♦

13Replaces successive characters of the specified string by successive characters read from the specified
input file. Reading stops if ♦ the end of the string is met. Reading stops if EOL is met or if the
end of the file is encountered. If an EOL ended the GET_LINE, it is skipped. Characters not
replaced in the string are left unchanged.

14If characters are read, returns in LAST the index value such that ITEM(LAST) is the last character
replaced (the index of the first character replaced is 0). If no characters are read, returns in LAST an
index value that is one less than ITEM’FIRST 0.

75Because of the constraints that AVA places on parameter modes, excluding mode out, this parameter is in out rather
than out.

76See previous footnote.

156 ARM
Input-Output

15The exception PROGRAM_ERRORend is raised if an attempt is made to read past the end of a
file.

16procedure PUT_LINE(FILE : in FILE_TYPE; ITEM : in STRING);
♦

17Calls the procedure PUT for the given string, and then ♦ outputs an EOL.

Notes:

18In a literal string parameter of PUT, the enclosing string bracket characters are not output. Each doubled
string bracket character in the enclosed string is output as a single string bracket character, as a
consequence of the rule for string literals (see 2.6).

19End of lines encountered by GET will be skipped over, while PUT may insert a number of them
in the course of outputting the string.

20References: current column number 14.3, ♦ file 14.1, file terminator 14.3, get procedure 14.3.5, line 14.3,
line length 14.3, new_line procedure 14.3.4, page terminator 14.3, put procedure 14.3.4, skipping 14.3.5

AI Crossreferences:

Section Class Status AI-0 Date Description
14.03.06 (00) ST RE 0605/00 88-11-22 Can’t correctly read a file written with Text_IO
14.03.06 (03) ST RE 0488/00 86-10-13 Skipping of leading line terminators in get routines
14.03.06 (13) BI WJ 0050/11 86-12-01 When does GET_LINE call SKIP_LINE?
14.03.06 (13) ra WJ 0172/06 86-07-23 GET_LINE for interactive devices

14.3.7 Input-Output for Integer Types: Removed

AI Crossreferences:

Section Class Status AI-0 Date Description
14.03.07 (06) BI WJ 0051/07 86-07-23 Reading "integer literals"
14.03.07 (06) ra WJ 0307/04 86-07-23 GET at end of file and from a null string
14.03.07 (14) ra WJ 0307/04 86-07-23 GET at end of file and from a null string

14.3.8 Input-Output for Real Types: Removed

AI Crossreferences:

Section Class Status AI-0 Date Description
14.03.08 (09) ra WJ 0307/04 86-07-23 GET at end of file and from a null string
14.03.08 (18) ra WJ 0307/04 86-07-23 GET at end of file and from a null string
14.03.08 (20) BI WJ 0215/05 86-07-23 Type of EXP should be FIELD

14.3.9 Input-Output for Enumeration Types: Removed

AI Crossreferences:

Section Class Status AI-0 Date Description
14.03.09 (06) NB WJ 0239/11 87-02-23 ENUMERATION_IO and IMAGE for non-graphic characters
14.03.09 (06) ra WJ 0307/04 86-07-23 GET at end of file and from a null string
14.03.09 (06) ra WJ 0316/05 87-06-18 Definition of blank, inclusion of horizontal tab
14.03.09 (09) NB WJ 0239/11 87-02-23 ENUMERATION_IO and IMAGE for non-graphic characters
14.03.09 (11) ra WJ 0307/04 86-07-23 GET at end of file and from a null string

ARM 157
Input-Output

14.3.10 Specification of the Package AVA_IO

1package AVA_IO is

type FILE_TYPE is private;

type FILE_MODE is (IN_FILE, OUT_FILE);

-- File Management

procedure CLOSE (FILE : in out FILE_TYPE);
function MODE (FILE : in FILE_TYPE) return FILE_MODE;
function IS_OPEN(FILE : in FILE_TYPE) return BOOLEAN;
function END_OF_FILE(FILE : in FILE_TYPE) return BOOLEAN;

-- Standard input and output files

STANDARD_INPUT : constant FILE_TYPE;
STANDARD_OUTPUT : constant FILE_TYPE;

-- Line Control

EOL : constant CHARACTER;

-- Character Input-Output

procedure GET(FILE : in FILE_TYPE; ITEM : in out CHARACTER);
procedure PUT(FILE : in FILE_TYPE; ITEM : in CHARACTER);

-- String Input-Output

procedure GET(FILE : in FILE_TYPE; ITEM : in out STRING);
procedure PUT(FILE : in FILE_TYPE; ITEM : in STRING);

procedure GET_LINE(FILE : in FILE_TYPE; ITEM : in out STRING; LAST : in out NATURAL);
procedure PUT_LINE(FILE : in FILE_TYPE; ITEM : in STRING);

-- Exceptions:
-- These exceptions are not defined in AVA. They are raised as PROGRAM_ERROR.
-- But they are documented here in order that we can maintain the sense of
-- the various reasons for exceptions raised by predefined I/O operations.

-- STATUS_ERROR : exception;
-- MODE_ERROR : exception;
-- NAME_ERROR : exception;
-- USE_ERROR : exception;
-- DEVICE_ERROR : exception;
-- END_ERROR : exception;
-- DATA_ERROR : exception;
-- LAYOUT_ERROR : exception;

private
-- implementation-dependent

end AVA_IO;

158 ARM
Input-Output

AI Crossreferences:

Section Class Status AI-0 Date Description
14.03.10 (00) BI RE 0248/00 84-05-14 Adding a private part to INTEGER_IO, etc.

14.4 Exceptions in Input-Output

1The following exceptions are included for expository reasons. They cannot be raised by input-output
operations since they have all been renamed to PROGRAM_ERROR. PROGRAM_ERROR is
raised in AVA_IO at the points where the io exceptions were raised in TEXT_IO. Only outline
descriptions are given of the conditions under which exceptions are raised; for full details see Appendix
F. ♦

2The exception PROGRAM_ERRORstatus is raised by an attempt to read or write a file that is not open
♦.

3The exception PROGRAM_ERRORmode is raised by an attempt to read from, or test for the end of, a
file whose current mode is OUT_FILE, and also by an attempt to write to a file whose current mode is
IN_FILE. ♦

4♦

5The exception PROGRAM_ERRORdevice is raised if an input-output operation cannot be completed
because of a malfunction of the underlying system.

6The exception PROGRAM_ERRORuse is raised if an operation is attempted that is not possible for
reasons that depend on characteristics of the external file. ♦

7The exception PROGRAM_ERRORend is raised by an attempt to skip (read past) the end of a file.

8♦

10References: col function 14.3.4, ♦ end_of_line function 14.3.4, end_of_page function 14.3.4, external file
14.1, file 14.1, ♦ get procedure 14.3.5, in_file 14.1, io_exceptions package 14.5, line function 14.3.4,
line_length function 14.3.4, name string 14.1, new_line procedure 14.3.4, new_page procedure 14.3.4, ♦
out_file 14.1, page function 14.3.4, page_length function 14.3.4, put procedure 14.3.5, ♦ skip_line
procedure 14.3.4, skip_page procedure 14.3.4, AVA_IO package 14.3

AI Crossreferences:

Section Class Status AI-0 Date Description
14.04 (01) BI RE 0604/00 88-11-08 Precedence of DEVICE_ERROR and USE_ERROR
14.04 (04) BI WJ 0332/04 86-07-23 NAME_ERROR or USE_ERROR raised when I/O not supported
14.04 (05) BI WJ 0332/04 86-07-23 NAME_ERROR or USE_ERROR raised when I/O not supported
14.04 (05) ra RE 0576/00 88-07-06 I/O to strings when TEXT_IO is not supported
14.04 (08) ra RE 0577/00 88-07-06 Input position after raising DATA_ERROR

ARM 159
Input-Output

14.5 Specification of the Package IO_Exceptions: Removed

14.6 Low Level Input-Output: Removed

AI Crossreferences:

Section Class Status AI-0 Date Description
14.06 (05) ra WJ 0355/06 86-12-01 Pragma ELABORATE for predefined library packages
14.06 (05) ST WI 0003/01 84-03-26 Allow DATA of mode "in" in SEND_CONTROL

14.7 Example of Input-Output (Rewritten Example)

1The following example shows the use of some of the text input-output facilities in a dialogue with a user
at a terminal. The user is prompted to type a color, and the program responds by giving the number of
items of that color available in stock, according to an inventory. The default input and output files are
used. ♦

2with AVA_IO; use AVA_IO;
package EXAMPLE is

type COLOR is (WHITE, RED, ORANGE, YELLOW, GREEN, BLUE, BROWN);
subtype color_range is integer range 1..7 ;

type array_of_color_inventory is array (COLOR_RANGE) of INTEGER ;

procedure DIALOGUE ;
procedure ENTER_COLOR (SELECTION : in out COLOR_range) ;

end EXAMPLE ;

package body EXAMPLE is

procedure ENTER_COLOR (SELECTION : in out COLOR_range) is
NAME : string(1..8) := "........";
LENGTH : INTEGER := 0;

begin
loop

PUT_LINE(standard_output,"Color selected: "); -- prompts user
GET_LINE(standard_input,NAME,LENGTH); -- accepts color typed, or raises exception
if NAME = "white..." then SELECTION := 1; exit;
elsif NAME = "red....." then SELECTION := 2; exit;
elsif NAME = "orange.." then SELECTION := 3; exit;
elsif NAME = "yellow.." then SELECTION := 4; exit;
elsif NAME = "green..." then SELECTION := 5; exit;
elsif NAME = "blue...." then SELECTION := 6; exit;
elsif NAME = "brown..." then SELECTION := 7; exit;
else PUT_LINE(standard_output,"Invalid color, try again. ");

PUT(standard_output,EOL);
end if;
NAME := "........";

end loop; -- repeats the loop until color accepted
end;

procedure DIALOGUE is

160 ARM
Input-Output

INVENTORY : ARRAY_OF_COLOR_INVENTORY := (20, 17, 43, 10, 28, 173, 87);
CHOICE : COLOR_RANGE := 1;
begin

loop

ENTER_COLOR(CHOICE); -- user types color and new line

PUT(standard_output," ");
PUT(standard_output,COLOR’IMAGE(COLOR’VAL(CHOICE)));
PUT(standard_output," items available:");
PUT(standard_output," ");
PUT_LINE(standard_output,INTEGER’IMAGE(INVENTORY(CHOICE)));

end loop;
end DIALOGUE;

end EXAMPLE;

2aExample of an interaction (characters typed by the user are italicized):

Color selected: Black
Invalid color, try again.

Color selected: Blue
BLUE items available: 173

Color selected: Yellow
YELLOW items available: 10

ARM 161
Predefined Language Attributes

Appendix A

Predefined Language Attributes

1This annex summarizes the definitions given elsewhere of the predefined language attributes.

2♦

4P’BASE For a prefix P that denotes a type or subtype:

This attribute denotes the base type of P. It is only allowed as the prefix of the name
of another attribute: for example, P’BASE’FIRST. (See 3.3.3.)

5♦

13P’FIRST For a prefix P that denotes a scalar type, or a subtype of a scalar type:

Yields the lower bound of P. The value of this attribute has the same type as P. (See
3.5.)

14P’FIRST For a prefix P that is appropriate for an array type, or that denotes a constrained array
subtype:

Yields the lower bound of the first index range. The value of this attribute has the
same type as this lower bound. (See 3.6.2 and 3.8.2.)

15P’FIRST(N) For a prefix P that is appropriate for an array type, or that denotes a constrained array
subtype:

Yields the lower bound of the N-th index range. The value of this attribute has the
same type as this lower bound. The argument N must be a static expression of type
universal_integer. The value of N must be positive (nonzero) and no greater than the
dimensionality of the array. (See 3.6.2 and 3.8.2.)

16♦

18P’IMAGE For a prefix P that denotes a discrete type or subtype:

This attribute is a function with a single parameter. The actual parameter X must be
a value of the base type of P. The result type is the predefined type STRING. The
result is the image of the value of X, that is, a sequence of characters representing the
value in display form. The image of an integer value is the corresponding decimal
literal; without underlines, leading zeros, exponent, or trailing spaces; but with a one
character prefix that is either a minus sign or a space.

The image of an enumeration value is either the corresponding identifier in upper
case or the corresponding character literal (including the two apostrophes); neither
leading nor trailing spaces are included. The image of a character other than a
graphic character is implementation-defined. (See 3.5.5.)

19♦

20P’LAST For a prefix P that denotes a scalar type, or a subtype of a scalar type:

Yields the upper bound of P. The value of this attribute has the same type as P. (See
3.5.)

21P’LAST For a prefix P that is appropriate for an array type, or that denotes a constrained array
subtype:

Yields the upper bound of the first index range. The value of this attribute has the
same type as this upper bound. (See 3.6.2 and 3.8.2.)

22P’LAST(N) For a prefix P that is appropriate for an array type, or that denotes a constrained array
subtype:

162 ARM
Predefined Language Attributes

Yields the upper bound of the N-th index range. The value of this attribute has the
same type as this upper bound. The argument N must be a static expression of type
universal_integer. The value of N must be positive (nonzero) and no greater than the
dimensionality of the array. (See 3.6.2 and 3.8.2.)

23♦

24P’LENGTH For a prefix P that is appropriate for an array type, or that denotes a constrained array
subtype:

Yields the number of values of the first index range (zero for a null range). The
value of this attribute is of the type universal_integer. (See 3.6.2.)

24P’LENGTH(N) For a prefix P that is appropriate for an array type, or that denotes a constrained array
subtype:

Yields the number of values of the N-th index range (zero for a null range). The
value of this attribute is of the type universal_integer. The argument N must be a
static expression of type universal_integer. The value of N must be positive
(nonzero) and no greater than the dimensionality of the array. (See 3.6.2 and 3.8.2.)

25♦

33P’POS For a prefix P that denotes a discrete type or subtype:

This attribute is a function with a single parameter. The actual parameter X must be
a value of the base type of P. The result type is the type universal_integer. The
result is the position number of the value of the actual parameter. (See 3.5.5.)

34♦

35P’PRED For a prefix P that denotes a discrete type or subtype:

This attribute is a function with a single parameter. The actual parameter X must be
a value of the base type of P. The result type is the base type of P. The result is the
value whose position number is one less than that of X. The exception
CONSTRAINT_ERROR is raised if X equals P’BASE’FIRST. (See 3.5.5.)

36P’RANGE For a prefix P that is appropriate for an array type, or that denotes a constrained array
subtype:

Yields the first index range of P, that is, the range P’FIRST .. P’LAST. (See 3.6.2.)

38P’RANGE(N) For a prefix P that is appropriate for an array type, or that denotes a constrained array
subtype:

Yields the N-th index range of P, that is, the range P’FIRST(N) .. P’LAST(N). (See
3.6.2.)

39♦

46P’SUCC For a prefix P that denotes a discrete type or subtype:

This attribute is a function with a single parameter. The actual parameter X must be
a value of the base type of P. The result type is the base type of P. The result is the
value whose position number is one greater than that of X. The exception
CONSTRAINT_ERROR is raised if X equals P’BASE’LAST. (See 3.5.5.)

47♦

48P’VAL For a prefix P that denotes a discrete type or subtype:

This attribute is a special function with a single parameter X which can be of any
integer type. The result type is the base type of P. The result is the value whose
position number is the universal_integer value corresponding to X. The exception
CONSTRAINT_ERROR is raised if the universal_integer value corresponding to X
is not in the range P’POS(P’BASE’FIRST) .. P’POS(P’BASE’LAST). (See 3.5.5.)

ARM 163
Predefined Language Attributes

49P’VALUE For a prefix P that denotes a discrete type or subtype:

This attribute is a function with a single parameter. The actual parameter X must be
a value of the predefined type STRING. The result type is the base type of P. Any
leading and any trailing spaces of the sequence of characters that corresponds to X
are ignored.

For an enumeration type, if the sequence of characters has the syntax of an
enumeration literal and if this literal exists for the base type of P, the result is the
corresponding enumeration value. For an integer type, if the sequence of characters
has the syntax of an integer literal, with an optional single leading character that is a
plus or minus sign, and if there is a corresponding value in the base type of P, the
result is this value. In any other case, the exception CONSTRAINT_ERROR is
raised. (See 3.5.5.)

50P’WIDTH For a prefix P that denotes a discrete subtype:

Yields the maximum image length over all values of the subtype P (the image is the
sequence of characters returned by the attribute IMAGE). The value of this attribute
is of the type universal_integer. (See 3.5.5.)

164 ARM
Predefined Language Pragmas: Removed

ARM 165
Predefined Language Pragmas: Removed

Appendix B

Predefined Language Pragmas: Removed

166 ARM
Predefined Language Environment

ARM 167
Predefined Language Environment

Appendix C

Predefined Language Environment

1This annex outlines the specification of the package STANDARD containing all predefined identifiers in
the language. The corresponding package body is implementation-defined and is not shown.

2The operators that are predefined for the types declared in the package STANDARD are given in
comments since they are implicitly declared. Italics are used for pseudo-names of anonymous types and
for undefined information (such as implementation_defined ♦).

3package STANDARD is

4type BOOLEAN is (FALSE, TRUE);

-- The predefined relational operators for this type are as follows:

-- function "=" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;
-- function "/=" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;
-- function "<" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;
-- function "<=" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;
-- function ">" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;
-- function ">=" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;

-- The predefined logical operators and the predefined logical negation operator are as follows:

-- function "and" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;
-- function "or" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;
-- function "xor" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;

-- function "not" (RIGHT : BOOLEAN) return BOOLEAN;

5-- The universal type universal_integer is predefined.

6type INTEGER is implementation_defined;

-- The predefined operators for this type are as follows:

-- function "=" (LEFT, RIGHT : INTEGER) return BOOLEAN;
-- function "/=" (LEFT, RIGHT : INTEGER) return BOOLEAN;
-- function "<" (LEFT, RIGHT : INTEGER) return BOOLEAN;
-- function "<=" (LEFT, RIGHT : INTEGER) return BOOLEAN;
-- function ">" (LEFT, RIGHT : INTEGER) return BOOLEAN;
-- function ">=" (LEFT, RIGHT : INTEGER) return BOOLEAN;
-- function "+" (RIGHT : INTEGER) return INTEGER;
-- function "-" (RIGHT : INTEGER) return INTEGER;
-- function "abs" (RIGHT : INTEGER) return INTEGER;

-- function "+" (LEFT, RIGHT : INTEGER) return INTEGER;
-- function "-" (LEFT, RIGHT : INTEGER) return INTEGER;
-- function "*" (LEFT, RIGHT : INTEGER) return INTEGER;
-- function "/" (LEFT, RIGHT : INTEGER) return INTEGER;
-- function "rem" (LEFT, RIGHT : INTEGER) return INTEGER;
-- function "mod" (LEFT, RIGHT : INTEGER) return INTEGER;

-- function "**" (LEFT : INTEGER; RIGHT : INTEGER) return INTEGER;

168 ARM
Predefined Language Environment

7-- An implementation may NOT provide additional predefined integer types. ♦
-- The specification of each operator for the type universal_integer♦
-- is obtained by replacing INTEGER by the
-- name of the type in the specification of the corresponding operator of the type
-- INTEGER, except for the right operand of the exponentiating operator.

♦

9type FLOAT, REAL is limited private;

12-- The following characters form the standard ASCII character set. Character literals
-- corresponding to control characters are not identifiers; they are indicated in italics in
-- this definition.

type CHARACTER is 13

(nul, soh, stx, etx, eot, enq, ack, bel,
bs, ht, lf, vt, ff, cr, so, si,
dle, dc1, dc2, dc3, dc4, nak, syn, etb,
can, em, sub, esc, fs, gs, rs, us,

’ ’, ’!’, ’"’, ’#’, ’$’, ’%’, ’&’, ’’’,
’(’, ’)’, ’*’, ’+’, ’,’, ’-’, ’.’, ’/’,
’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’,
’8’, ’9’, ’:’, ’;’, ’<’, ’=’, ’>’, ’?’,

’, ’A’, ’B’, ’C’, ’D’, ’E’, ’F’, ’G’,
’H’, ’I’, ’J’, ’K’, ’L’, ’M’, ’N’, ’O’,
’P’, ’Q’, ’R’, ’S’, ’T’, ’U’, ’V’, ’W’,
’X’, ’Y’, ’Z’, ’[’, ’\’, ’]’, ’^’, ’_’,

’‘’, ’a’, ’b’, ’c’, ’d’, ’e’, ’f’, ’g’,
’h’, ’i’, ’j’, ’k’, ’l’, ’m’, ’n’, ’o’,
’p’, ’q’, ’r’, ’s’, ’t’, ’u’, ’v’, ’w’,
’x’, ’y’, ’z’, ’{’, ’|’, ’}’, ’~’, del);

-- Enumeration representation clauses are not allowable AVA,
-- but the following captures the intent of the data type.

-- for CHARACTER use -- 128 ASCII character set without holes
-- (0, 1, 2, 3, 4, 5, ..., 125, 126, 127);

14-- The predefined operators for the type CHARACTER are the same as for
-- any enumeration type.

15package ASCII is

-- Control characters:

NUL : constant CHARACTER := nul; SOH : constant CHARACTER := soh;
STX : constant CHARACTER := stx; ETX : constant CHARACTER := etx;
EOT : constant CHARACTER := eot; ENQ : constant CHARACTER := enq;
ACK : constant CHARACTER := ack; BEL : constant CHARACTER := bel;
BS : constant CHARACTER := bs; HT : constant CHARACTER := ht;
LF : constant CHARACTER := lf; VT : constant CHARACTER := vt;
FF : constant CHARACTER := ff; CR : constant CHARACTER := cr;
SO : constant CHARACTER := so; SI : constant CHARACTER := si;
DLE : constant CHARACTER := dle; DC1 : constant CHARACTER := dc1;
DC2 : constant CHARACTER := dc2; DC3 : constant CHARACTER := dc3;
DC4 : constant CHARACTER := dc4; NAK : constant CHARACTER := nak;

ARM 169
Predefined Language Environment

SYN : constant CHARACTER := syn; ETB : constant CHARACTER := etb;
CAN : constant CHARACTER := can; EM : constant CHARACTER := em;
SUB : constant CHARACTER := sub; ESC : constant CHARACTER := esc;
FS : constant CHARACTER := fs; GS : constant CHARACTER := gs;
RS : constant CHARACTER := rs; US : constant CHARACTER := us;
DEL : constant CHARACTER := del;

-- Other characters:

EXCLAM : constant CHARACTER := ’!’; QUOTATION : constant CHARACTER := ’"’;
SHARP : constant CHARACTER := ’#’; DOLLAR : constant CHARACTER := ’$’;
PERCENT : constant CHARACTER := ’%’; AMPERSAND : constant CHARACTER := ’&’;
COLON : constant CHARACTER := ’:’; SEMICOLON : constant CHARACTER := ’;’;
QUERY : constant CHARACTER := ’?’; AT_SIGN : constant CHARACTER := ’@’;
L_BRACKET : constant CHARACTER := ’[’; BACK_SLASH : constant CHARACTER := ’\’;
R_BRACKET : constant CHARACTER := ’]’; CIRCUMFLEX : constant CHARACTER := ’^’;
UNDERLINE : constant CHARACTER := ’_’; GRAVE : constant CHARACTER := ’‘’;
L_BRACE : constant CHARACTER := ’{’; BAR : constant CHARACTER := ’|’;
R_BRACE : constant CHARACTER := ’}’; TILDE : constant CHARACTER := ’~’;

-- Lower case letters:

LC_A : constant CHARACTER := ’a’;
...
LC_Z : constant CHARACTER := ’z’;

end ASCII;

16-- Predefined subtypes:

subtype NATURAL is INTEGER range 0 .. INTEGER’LAST;
subtype POSITIVE is INTEGER range 1 .. INTEGER’LAST;

17-- Predefined string type:

type STRING is array(POSITIVE range <>) of CHARACTER;

♦

18-- The predefined operators for this type are as follows:

-- function "=" (LEFT, RIGHT : STRING) return BOOLEAN;
-- function "/=" (LEFT, RIGHT : STRING) return BOOLEAN;
-- function "<" (LEFT, RIGHT : STRING) return BOOLEAN;
-- function "<=" (LEFT, RIGHT : STRING) return BOOLEAN;
-- function ">" (LEFT, RIGHT : STRING) return BOOLEAN;
-- function ">=" (LEFT, RIGHT : STRING) return BOOLEAN;
-- function "&" (LEFT : CHARACTER; RIGHT : STRING) return STRING;
-- function "&" (LEFT : STRING; RIGHT : CHARACTER) return STRING;
-- function "&" (LEFT : CHARACTER; RIGHT : CHARACTER) return STRING;

-- function "&" (LEFT : STRING; RIGHT : STRING) return STRING;

♦

20-- The predefined exceptions:

♦
PROGRAM_ERROR : exception;
♦

170 ARM
Predefined Language Environment

end STANDARD;

21Certain aspects of the predefined entities cannot be completely described in the language itself. For
example, although the enumeration type BOOLEAN can be written showing the two enumeration literals
FALSE and TRUE, the short-circuit control forms cannot be expressed in the language.

Note:

22The language definition predefines the following library units:

♦
- The package AVA (see 13.7)

♦
- The package AVA_IO (see 14.3.10)
♦

ARM 171
Glossary

Appendix D

Glossary

[This appendix is not part of the standard definition of the AVA programming language.]

This appendix is informative and is not part of the standard definition of the AVA programming language.
Italicized terms in the abbreviated descriptions below either have glossary entries themselves or are
described in entries for related terms.

♦

Actual parameter. See parameter.

Aggregate. The evaluation of an aggregate yields a value of a composite type. The value is specified by
giving the value of each of the components. Either positional association or named association may be
used to indicate which value is associated with which component.

ARM. Reference Manual for the Ada Programming Language.

Array type. A value of an array type consists of components which are all of the same subtype (and
hence, of the same type). Each component is uniquely distinguished by an index (for a one-dimensional
array) or by a sequence of indices (for a multidimensional array). Each index must be a value of a
discrete type and must lie in the correct index range.

Assignment. Assignment is the operation that replaces the current value of a variable by a new value.
An assignment statement specifies a variable on the left, and on the right, an expression whose value is to
be the new value of the variable.

Attribute. The evaluation of an attribute yields a predefined characteristic of a named entity; some
attributes are functions.

Block statement. A block statement is a single statement that may contain a sequence of statements. It
may also include a declarative part, and exception handlers; their effects are local to the block statement.

Body. A body defines the execution of a subprogram or package.

♦

Compilation unit. A compilation unit is the declaration or the body of a program unit, presented for
compilation as an independent text. It is optionally preceded by a context clause, naming other
compilation units upon which it depends by means of one more with clauses.

Component. A component is a value that is a part of a larger value, or an object that is part of a larger
object. A component type referes to the type of one of the subparts of a composite type.

Composite type. A composite type is one composed from component types, whose values have
components. There are two kinds of composite type: array types and record types.

172 ARM
Glossary

Constant. See object.

Constraint. A constraint determines a subset of the values of a type. A value in that subset satisfies the
constraint.

Context clause. See compilation unit.

Declaration. A declaration associates an identifier (or some other notation) with an entity. This
association is in effect within a region of text called the scope of the declaration. Within the scope of a
declaration, there are places where it is possible to use the identifier to refer to the associated declared
entity. At such places the identifier is said to be a simple name of the entity; the name is said to denote the
associated entity.

Declarative Part. A declarative part is a sequence of declarations. It may also contain related
information such as subprogram bodies and representation clauses.

Denote. See declaration.

♦

Direct visibility. See visibility.

Discrete Type. A discrete type is a type which has an ordered set of distinct values. The discrete types
are the enumeration and integer types. Discrete types are used for indexing and iteration, and for choices
in case statements ♦.

♦

Elaboration. The elaboration of a declaration is the process by which the declaration achieves its effect
(such as creating an object); this process occurs during program execution.

♦

Enumeration type. An enumeration type is a discrete type whose values are represented by enumeration
literals which are given explicitly in the type declaration. These enumeration literals are either identifiers
or character literals.

Erroneous Execution. The Ada language definition specifies certain rules to be obeyed by Ada
programs that do not need to be checked by Ada compilers either at compilation-time or run-
time. The errors of this category are indicated by the use of the word erroneous to qualify the
execution of the corresponding constructs. The effect of erroneous execution on the Ada
program state is unpredictable. Erroneous programs have been eliminated from the AVA
subset, either by eliminating the constructs that give rise to them or by specifying a required
check. See also incorrect order dependencies.

Evaluation. The evaluation of an expression is the process by which the value of the expression is
computed. This process occurs during program execution.

Exception. An exception is an error situation which may arise during program execution. To raise an
exception is to abandon normal program execution so as to signal that the error has taken place. An

ARM 173
Glossary

exception handler is a portion of program text specifying a response to the exception. Execution of such a
program text is called handling the exception.

Expanded name. An expanded name denotes an entity which is declared immediately within some
construct. An expanded name has the form of a selected component: the prefix denotes the construct (a
program unit; or a block, or loop)♦; the selector is the simple name of the entity.

Expression. An expression defines the computation of a value.

♦

Formal parameter. See parameter.

Function. See subprogram.

♦

Handler. See exception.

Incorrect Order Dependencies, IODs. Whenever the Ada reference manual specifies that
different parts of a given construct are to be executed in some order that is not defined by the
language, this means that the implementation is allowed to execute these parts in any given
order, following the rules that result from that given order, but not in parallel. The foregoing is
expressed in terms of the process that is called execution; it applies equally to the processes
that are called evaluation and elaboration. In Ada, the construct is incorrect if execution of these
parts in a different order would have a different effect. In AVA we have ruled out IODs and
erroneous programs by either eliminating the constructs that give rise to them or specifying a
specific order of evalaution. These specific orders give rise to implementation requirements for
compilers or front-ends that operate on AVA programs.

Index. See array type.

Index constraint. An index constraint for an array type specifies the lower and upper bounds for each
index range of the array type.

Indexed component. An indexed component denotes a component in an array. It is a form of name
containing expressions which specify the values of the indices of the array component. ♦

♦

Integer type. An integer type is a discrete type whose values represent all integer numbers within a
specific range.

IODs. See Incorrect Order Dependencies.

Lexical element. A lexical element is an identifier, a literal, a delimiter, or a comment.

Limited type. A limited type is a type for which neither assignment nor the predefined comparison for
equality is implicitly declared. ♦ A private type can be defined to be limited. An equality operator can be
explicitly declared for a limited type.

174 ARM
Glossary

Literal. A literal represents a value literally, that is, by means of letters and other characters. A literal is
either a numeric literal, an enumeration literal, a character literal, or a string literal.

Mode. See parameter.

♦

Mutually accessible variable. A variable is accessible with respect to a particular expression if
it is a subexpression of the expression or is accessed by calls on user functions within the
expression. A mutually accessible variable is one that is accessible to two expressions that may
be evaluated in an order not defined by the language.

Name. A name is a construct that stands for an entity: it is said that the name denotes the entity, and that
the entity is the meaning of the name. See also declaration, prefix.

♦

Object. An object contains a value. A program creates an object ♦ by elaborating an object declaration.
The declaration ♦ specifies a type for the object: the object can only contain values of that type.

Operation. An operation is an elementary action associated with one or more types. It is either implicitly
declared by the declaration of the type, or it is a subprogram that has a parameter or result of the type.

Operator. An operator is an operation which has one or two operands. A unary operator is written
before an operand; a binary operator is written between two operands. This notation is a special kind of
function call. An operator can be declared as a function. Many operators are implicitly declared by the
declaration of a type (for example, most type declarations imply the declaration of the equality operator
for values of the type).

Overloading. An identifier can have several alternative meanings at a given point in the program text:
this property is called overloading. For example, an overloaded enumeration literal can be an identifier
that appears in the definitions of two or more enumeration types. The effective meaning of an overloaded
identifier is determined by the context. Subprograms, aggregates, and string literals can also be
overloaded.

Package. A package specifies a group of logically related entities, such as types, objects of those types,
and subprograms with parameters of those types. It is written as a package declaration and a package
body. The package declaration has a visible part, containing the declarations of all entities that can be
explicitly used outside the package. It may also have a private part containing structural details that
complete the specification of the visible entities, but which are irrelevant to the user of the package. The
package body contains implementations of subprograms ♦ that have been specified in the package
declaration. A package is one of the kinds of program unit.

Parameter. A parameter is one of the named entities associated with a subprogram ♦ and used to
communicate with the corresponding subprogram body ♦. A formal parameter is an identifier used to
denote the named entity within the body. An actual parameter is the particular entity associated with the
corresponding formal parameter by a subprogram call ♦. The mode of a formal parameter specifies
whether the associated actual parameter supplies a value for the formal parameter, or the formal supplies a
value for the actual parameter, or both. The association of actual parameters with formal parameters can
be specified by ♦ positional associations ♦.

ARM 175
Glossary

♦

Positional association. A positional association specifies the association of an item with a position in a
list, by using the same position in the text to specify the item.

♦

Prefix. A prefix is used as the first part of certain kinds of name. A prefix is either a function call or a
name.

Private part. See package.

Private type. A private type is a type whose structure and set of values are clearly defined, but not
directly available to the user of the type. A private type is known only by ♦ the set of operations defined
for it. A private type and its applicable operations are defined in the visible part of a package ♦.
Assignment, equality, and inequality are also defined for private types, unless the private type is limited.

Procedure. See subprogram.

Program. A program is composed of a number of compilation units, one of which is a subprogram called
the main program. Execution of the program consists of execution of the main program, which may
invoke subprograms declared in the other compilation units of the program.

Program unit. A program unit is any one of ♦ a package or subprogram.

Qualified expression. A qualified expression is an expression preceded by an indication of its type or
subtype. Such qualification is used when, in its absence, the expression might be ambiguous (for example
as a consequence of overloading).

Raising an exception. See exception.

Range. A range is a contiguous set of values of a scalar type. A range is specified by giving the lower
and upper bounds for the values. A value in the range is said to belong to the range.

Range constraint. A range constraint of a type specifies a range, and thereby determines the subset of
the values of the type that belong to the range.

♦

Record type. A value of a record type consists of components which are usually of different types or
subtypes. For each component of a record value or record object, the definition of the record type
specifies an identifier that uniquely determines the component within the record.

Renaming declaration. A renaming declaration declares another name for an entity.

♦

Satisfy. See constraint, subtype.

Scalar type. An object or value of a scalar type does not have components. A scalar type is ♦ a discrete

176 ARM
Glossary

type♦. The values of a scalar type are ordered.

Scope. See declaration.

Selected component. A selected component is a name consisting of a prefix and of an identifier called
the selector. Selected components are used to denote record components ♦; they are also used as
expanded names.

Selector. See selected component.

Simple name. See declaration, name.

Statement. A statement specifies one or more actions to be performed during the execution of a program.

Subcomponent. A subcomponent is either a component, or a component of another subcomponent.

Subprogram. A subprogram is either a procedure or a function. A procedure specifies a sequence of
actions and is invoked by a procedure call statement. A function specifies a sequence of actions and also
returns a value called the result, and so a function call is an expression. A subprogram is written as a
subprogram declaration, which specifies its name, formal parameters, and (for a function) its result; and a
subprogram body which specifies the sequence of actions. The subprogram call specifies the actual
parameters that are to be associated with the formal parameters. A subprogram is one of the kinds of
program unit.

Subtype. A subtype of a type characterizes a subset of the values of the type. The subset is determined
by a constraint on the type. Each value in the set of values of a subtype belongs to the subtype and
satisfies the constraint determining the subtype.

♦

Type. A type characterizes both a set of values, and a set of operations applicable to those values. A type
definition is a language construct that defines a type. A particular type is either an ♦ an array type, a
private type, a record type, or a scalar type ♦.

Use clause. A use clause achieves direct visibility of declarations that appear in the visible parts of
named packages.

Variable. See object.

♦

Visibility. At a given point in a program text, the declaration of an entity with a certain identifier is said
to be visible if the entity is an acceptable meaning for an occurrence at that point of the identifier. The
declaration is visible by selection at the place of the selector in a selected component or at the place of the
name in a named association. Otherwise, the declaration is directly visible, that is, if the identifier alone
has that meaning.

Visible part. See package.

With clause. See compilation unit.

ARM 177
Syntax Summary

Appendix E

Syntax Summary

[This appendix is not part of the standard definition of the AVA
programming language.]

2.1

graphic_character ::= basic_graphic_character
| lower_case_letter | other_special_character

basic_graphic_character ::=
upper_case_letter | digit

| special_character | space_character

basic_character ::=
basic_graphic_character | format_effector

2.3

identifier ::=
letter {[underline] letter_or_digit}

letter_or_digit ::= letter | digit

letter ::= upper_case_letter | lower_case_letter

2.4

numeric_literal ::= decimal_literal | based_literal

2.4.1

decimal_literal ::= integer [exponent]

integer ::= digit {[underline] digit}

exponent ::= E [+] integer

2.4.2

based_literal ::=
base # based_integer # [exponent]

base ::= integer

based_integer ::=
extended_digit {[underline] extended_digit}

extended_digit ::= digit | letter

2.5

character_literal ::= ’graphic_character’

2.6

string_literal ::= "{graphic_character}"

3.1

basic_declaration ::=
inner_declaration

| type_declaration | subtype_declaration
| subprogram_declaration | package_declaration | ♦
| renaming_declaration | deferred_constant_declaration

inner_declaration ::=
object_declaration | number_declaration

3.2

object_declaration ::=
identifier_list : [constant] subtype_indication := expression;

| ♦

number_declaration ::=
identifier_list : constant := universal_static_expression;

identifier_list ::= identifier {, identifier}

3.3.1

type_declaration ::= full_type_declaration | ♦
| private_type_declaration

full_type_declaration ::=
type identifier is type_definition;

type_definition ::=
enumeration_type_definition | ♦

| array_type_definition
| record_type_definition | ♦

3.3.2

subtype_declaration ::=
subtype identifier is subtype_indication;

subtype_indication ::= type_mark [constraint]

type_mark ::= type_name | subtype_name

constraint ::=
range_constraint

| index_constraint
| ♦

3.4

♦

3.5

range_constraint ::= range range

178 ARM
Syntax Summary

range ::= range_attribute
| simple_expression .. simple_expression

3.5.1

enumeration_type_definition ::=
(enumeration_literal_specification

{, enumeration_literal_specification})

enumeration_literal_specification ::= enumeration_literal

enumeration_literal ::= identifier | character_literal

3.5.4

♦

3.6

array_type_definition ::=
unconstrained_array_definition

| constrained_array_definition

unconstrained_array_definition ::=
array(index_subtype_definition

{, index_subtype_definition}) of
component_subtype_indication

constrained_array_definition ::=
array index_constraint of

component_subtype_indication

index_subtype_definition ::= index_type_mark range <>

index_constraint ::= (index_range {, index_range})

index_range ::= integer_subtype_indication | integer_range

discrete_range ::= discrete_subtype_indication | range

3.7

record_type_definition ::=
record

component_list
end record

component_list ::=
component_declaration {component_declaration}

| null;

component_declaration ::=
identifier_list : component_subtype_definition;

component_subtype_definition ::= subtype_indication

3.8.1

♦

3.9

declarative_part ::=

{basic_declarative_item} {later_declarative_item}

basic_declarative_item ::= basic_declaration
| ♦ | use_clause

later_declarative_item ::= subprogram_body | package_body
| subprogram_declaration | package_declaration |♦
| use_clause | ♦

inner_declarative_part ::= {inner_declarative_item}

4.1

name ::= simple_name
| character_literal | operator_symbol
| indexed_component |
| selected_component | attribute

simple_name ::= identifier

prefix ::= name | function_call

4.1.1

indexed_component ::= prefix(expression {, expression})

4.1.3

selected_component ::= prefix.selector

selector ::= simple_name ♦

4.1.4

attribute ::= prefix’attribute_designator

attribute_designator ::=
simple_name [(universal_static_expression)]

4.3

aggregate ::=
(component_association {, component_association})

component_association ::=
[choice {| choice} =] expression

choice ::= simple_expression | discrete_range
| component_simple_name | others

4.4

expression ::=
relation {and relation} | relation {and then relation}

| relation {or relation} | relation {or else relation}
| relation {xor relation}

relation ::=
simple_expression [relational_operator simple_expression]

| simple_expression [not] in range
| simple_expression [not] in type_mark

simple_expression ::=

ARM 179
Syntax Summary

[unary_adding_operator] term
{binary_adding_operator term}

term ::= factor {multiplying_operator factor}

factor ::= primary [** primary] | abs primary | not primary

primary ::=
numeric_literal | ♦ | aggregate | string_literal

| name | function_call | type_conversion
| qualified_expression | (expression)

4.5

logical_operator ::= and | or | xor

relational_operator ::= = | /= | < | <= | > | >=

binary_adding_operator ::= + | - | &

unary_adding_operator ::= + | -

multiplying_operator ::= * | / | mod | rem

highest_precedence_operator ::= ** | abs | not

4.6

type_conversion ::= type_mark(expression)

4.7

qualified_expression ::=
type_mark’(expression) | type_mark’aggregate

5.1

sequence_of_statements ::= statement {statement}

statement ::=
♦ simple_statement

| ♦ compound_statement

simple_statement ::= null_statement
| assignment_statement | procedure_call_statement
| exit_statement | return_statement
| ♦
| raise_statement

compound_statement ::=
if_statement | case_statement

| loop_statement | block_statement

null_statement ::= null;

5.2

assignment_statement ::=
variable_name := expression;

5.3

if_statement ::=
if condition then

sequence_of_statements
{elsif condition then

sequence_of_statements}
[else

sequence_of_statements]
end if;

condition ::= boolean_expression

5.4

case_statement ::=
case expression is

case_statement_alternative
{case_statement_alternative}

end case;

case_statement_alternative ::=
when choice {| choice } =>

sequence_of_statements

5.5

loop_statement ::=
[loop_simple_name:]

[iteration_scheme] loop
sequence_of_statements

end loop [loop_simple_name];

iteration_scheme ::= while condition
| for loop_parameter_specification

loop_parameter_specification ::=
identifier in [reverse] discrete_range

5.6

block_statement ::= ♦
[declare

inner_declarative_part]
begin

sequence_of_statements
[exception

exception_handler ♦]
end ♦;

5.7

exit_statement ::=
exit ♦ [when condition];

5.8

return_statement ::= return [expression];

6.1

subprogram_declaration ::= subprogram_specification;

subprogram_specification ::=
procedure identifier [formal_part]

| function identifier [formal_part] return type_mark

♦

180 ARM
Syntax Summary

formal_part ::=
(parameter_specification {; parameter_specification})

parameter_specification ::=
identifier_list : mode type_mark ♦

mode ::= [in] | in out | ♦

6.3

subprogram_body ::=
subprogram_specification is

[inner_declarative_part]
begin

sequence_of_statements
[exception

exception_handler ♦]
end [identifier];

6.4

procedure_call_statement ::=
procedure_name [actual_parameter_part];

function_call ::=
function_name [actual_parameter_part]

actual_parameter_part ::=
(parameter_association {, parameter_association})

parameter_association ::= actual_parameter

♦
actual_parameter ::=

expression | variable_name
| ♦

7.1

package_declaration ::= package_specification;

package_specification ::=
package identifier is
{basic_declarative_item}

[private
{basic_declarative_item}]

end [package_simple_name]

package_body ::=
package body package_simple_name is

[declarative_part]
[begin

sequence_of_statements
[exception

exception_handler ♦}]]
end [package_simple_name];

7.4

private_type_declaration ::=
type identifier is ♦ private;

deferred_constant_declaration ::=
identifier_list : constant type_mark;

8.4

use_clause ::= use package_name {, package_name};

8.5

renaming_declaration ::=
identifier : type_mark renames object_name;

| ♦
| package identifier renames package_name;
| subprogram_specification renames subprogram_name;

10.1

compilation ::= {compilation_unit}

compilation_unit ::=
context_clause library_unit

| context_clause secondary_unit

library_unit ::=
subprogram_declaration | package_declaration

| subprogram_body

secondary_unit ::= library_unit_body

library_unit_body ::= subprogram_body | package_body

10.1.1

context_clause ::= {with_clause {use_clause}}

with_clause ::=
with unit_simple_name {, unit_simple_name};

10.2 : Removed

11.1

♦

11.2

exception_handler ::=
when others =>

sequence_of_statements

exception_choice ::= exception_name | others

11.3

raise_statement ::= raise program_error;

ARM 181
Syntax Summary

Syntax Cross Reference

abs ...
factor 4.4
highest_precedence_operator 4.5

actual_parameter 6.4
parameter_association 6.4

actual_parameter_part 6.4
function_call 6.4
procedure_call_statement 6.4

aggregate 4.3
primary 4.4
qualified_expression 4.7

all ...
selector 4.1.3

and ...
expression 4.4
logical_operator 4.5

argument_association 2.8

array ...
constrained_array_definition 3.6
unconstrained_array_definition 3.6

array_type_definition 3.6
type_definition 3.3.1

assignment_statement 5.2
simple_statement 5.1

attribute 4.1.4
name 4.1
range 3.5

attribute_designator 4.1.4
attribute 4.1.4

base 2.4.2
based_literal 2.4.2

based_integer 2.4.2
based_literal 2.4.2

based_literal 2.4.2
numeric_literal 2.4

basic_character 2.1

basic_declaration 3.1
basic_declarative_item 3.9

basic_declarative_item 3.9
declarative_part 3.9
package_specification 7.1

basic_graphic_character 2.1
basic_character 2.1

graphic_character 2.1

begin ...
block_statement 5.6
package_body 7.1
subprogram_body 6.3

binary_adding_operator 4.5
simple_expression 4.4

block_statement 5.6
compound_statement 5.1

body 3.9
later_declarative_item 3.9

body ...
package_body 7.1

case ...
case_statement 5.4

case_statement 5.4
compound_statement 5.1

case_statement_alternative 5.4
case_statement 5.4

character_literal 2.5
enumeration_literal 3.5.1
name 4.1
selector 4.1.3

choice 4.3
case_statement_alternative 5.4
component_association 4.3

compilation 10.1

compilation_unit 10.1
compilation 10.1

component_association 4.3
aggregate 4.3

component_declaration 3.7
component_list 3.7

component_list 3.7
record_type_definition 3.7

component_subtype_definition 3.7
component_declaration 3.7

compound_statement 5.1
statement 5.1

condition 5.3
exit_statement 5.7
if_statement 5.3
iteration_scheme 5.5

182 ARM
Syntax Summary

constant ...
deferred_constant_declaration 7.4
number_declaration 3.2
object_declaration 3.2

constrained_array_definition 3.6
array_type_definition 3.6
object_declaration 3.2

constraint 3.3.2
subtype_indication 3.3.2

context_clause 10.1.1
compilation_unit 10.1

decimal_literal 2.4.1
numeric_literal 2.4

declarative_part 3.9
block_statement 5.6
package_body 7.1
subprogram_body 6.3

declare ...
block_statement 5.6

deferred_constant_declaration 7.4
basic_declaration 3.1

designator 6.1
subprogram_body 6.3
subprogram_specification 6.1

digit ...
basic_graphic_character 2.1
extended_digit 2.4.2
integer 2.4.1
letter_or_digit 2.3

discrete_range 3.6
choice 4.3
index_constraint 3.6
loop_parameter_specification 5.5

E ...
exponent 2.4.1

else ...
expression 4.4
if_statement 5.3

elsif ...
if_statement 5.3

end ...
block_statement 5.6
case_statement 5.4
if_statement 5.3
loop_statement 5.5
package_body 7.1
package_specification 7.1
record_type_definition 3.7
subprogram_body 6.3

enumeration_literal 3.5.1
enumeration_literal_specification 3.5.1

enumeration_literal_specification 3.5.1
enumeration_type_definition 3.5.1

enumeration_type_definition 3.5.1
type_definition 3.3.1

exception ...
block_statement 5.6
exception_declaration 11.1
package_body 7.1
subprogram_body 6.3

exception_choice 11.2
exception_handler 11.2

exception_declaration 11.1
basic_declaration 3.1

exception_handler 11.2
block_statement 5.6
package_body 7.1
subprogram_body 6.3

exit ...
exit_statement 5.7

exit_statement 5.7
simple_statement 5.1

exponent 2.4.1
based_literal 2.4.2
decimal_literal 2.4.1

expression 4.4
actual_parameter 6.4
argument_association 2.8
assignment_statement 5.2
attribute_designator 4.1.4
case_statement 5.4
component_association 4.3
component_declaration 3.7
condition 5.3
indexed_component 4.1.1
number_declaration 3.2
object_declaration 3.2
parameter_specification 6.1
primary 4.4
qualified_expression 4.7
return_statement 5.8
type_conversion 4.6

extended_digit 2.4.2
based_integer 2.4.2

factor 4.4
term 4.4

for ...
iteration_scheme 5.5

formal_parameter 6.4

ARM 183
Syntax Summary

parameter_association 6.4

formal_part 6.1
subprogram_specification 6.1

format_effector ...
basic_character 2.1

full_type_declaration 3.3.1
type_declaration 3.3.1

function ...
subprogram_specification 6.1

function_call 6.4
prefix 4.1
primary 4.4

graphic_character 2.1
character_literal 2.5
string_literal 2.6

highest_precedence_operator 4.5

identifier 2.3
argument_association 2.8
enumeration_literal 3.5.1
full_type_declaration 3.3.1
identifier_list 3.2
loop_parameter_specification 5.5
package_specification 7.1
private_type_declaration 7.4
renaming_declaration 8.5
simple_name 4.1
subprogram_specification 6.1
subtype_declaration 3.3.2

identifier_list 3.2
component_declaration 3.7
deferred_constant_declaration 7.4
exception_declaration 11.1
number_declaration 3.2
object_declaration 3.2
parameter_specification 6.1

if ...
if_statement 5.3

if_statement 5.3
compound_statement 5.1

in ...
loop_parameter_specification 5.5
mode 6.1
relation 4.4

index_constraint 3.6
constrained_array_definition 3.6
constraint 3.3.2

index_subtype_definition 3.6
unconstrained_array_definition 3.6

indexed_component 4.1.1

name 4.1

integer 2.4.1
base 2.4.2
decimal_literal 2.4.1
exponent 2.4.1

integer_type_definition 3.5.4
type_definition 3.3.1

is ...
case_statement 5.4
full_type_declaration 3.3.1
package_body 7.1
package_specification 7.1
private_type_declaration 7.4
subprogram_body 6.3
subtype_declaration 3.3.2

iteration_scheme 5.5
loop_statement 5.5

later_declarative_item 3.9
declarative_part 3.9

letter 2.3
extended_digit 2.4.2
identifier 2.3
letter_or_digit 2.3

letter_or_digit 2.3
identifier 2.3

library_unit 10.1
compilation_unit 10.1

library_unit_body 10.1
secondary_unit 10.1

♦

logical_operator 4.5

loop ...
loop_statement 5.5

loop_parameter_specification 5.5
iteration_scheme 5.5

loop_statement 5.5
compound_statement 5.1

lower_case_letter ...
graphic_character 2.1
letter 2.3

mod ...
multiplying_operator 4.5

mode 6.1
parameter_specification 6.1

multiplying_operator 4.5
term 4.4

184 ARM
Syntax Summary

name 4.1
actual_parameter 6.4
argument_association 2.8
assignment_statement 5.2
component_clause 13.4
exception_choice 11.2
exit_statement 5.7
function_call 6.4
prefix 4.1
primary 4.4
procedure_call_statement 6.4
raise_statement 11.3
renaming_declaration 8.5
type_mark 3.3.2
use_clause 8.4

not ...
factor 4.4
highest_precedence_operator 4.5
relation 4.4

null ...
♦
null_statement 5.1
primary 4.4

null_statement 5.1
simple_statement 5.1

number_declaration 3.2
basic_declaration 3.1

numeric_literal 2.4
primary 4.4

object_declaration 3.2
basic_declaration 3.1

of ...
constrained_array_definition 3.6
unconstrained_array_definition 3.6

operator_symbol 6.1
designator 6.1
name 4.1
selector 4.1.3

or ...
expression 4.4
logical_operator 4.5

other_special_character ...
graphic_character 2.1

others ...
choice 4.3
exception_choice 11.2

out ...
mode 6.1

package ...
package_body 7.1
package_specification 7.1

renaming_declaration 8.5

package_body 7.1
library_unit_body 10.1
proper_body 3.9

package_declaration 7.1
basic_declaration 3.1
later_declarative_item 3.9
library_unit 10.1

package_specification 7.1
package_declaration 7.1

parameter_association 6.4
actual_parameter_part 6.4

parameter_specification 6.1
formal_part 6.1

prefix 4.1
attribute 4.1.4
indexed_component 4.1.1
selected_component 4.1.3

primary 4.4
factor 4.4

private ...
package_specification 7.1
private_type_declaration 7.4

private_type_declaration 7.4
type_declaration 3.3.1

procedure ...
subprogram_specification 6.1

procedure_call_statement 6.4
simple_statement 5.1

proper_body 3.9
body 3.9

qualified_expression 4.7
allocator 4.8
primary 4.4

raise ...
raise_statement 11.3

raise_statement 11.3
simple_statement 5.1

range 3.5
discrete_range 3.6
range_constraint 3.5
relation 4.4

range ...
index_subtype_definition 3.6
range_constraint 3.5

range_constraint 3.5

ARM 185
Syntax Summary

constraint 3.3.2
♦

record ...
record_type_definition 3.7

record_type_definition 3.7
type_definition 3.3.1

relation 4.4
expression 4.4

relational_operator 4.5
relation 4.4

rem ...
multiplying_operator 4.5

renames ...
renaming_declaration 8.5

renaming_declaration 8.5
basic_declaration 3.1

return ...
return_statement 5.8
subprogram_specification 6.1

return_statement 5.8
simple_statement 5.1

reverse ...
loop_parameter_specification 5.5

secondary_unit 10.1
compilation_unit 10.1

selector 4.1.3
selected_component 4.1.3

sequence_of_statements 5.1
block_statement 5.6
case_statement_alternative 5.4
exception_handler 11.2
if_statement 5.3
loop_statement 5.5
package_body 7.1
subprogram_body 6.3

simple_expression 4.4
choice 4.3
range 3.5
relation 4.4

simple_name 4.1
attribute_designator 4.1.4
block_statement 5.6
choice 4.3
formal_parameter 6.4
loop_statement 5.5
name 4.1
package_body 7.1
package_specification 7.1
selector 4.1.3

with_clause 10.1.1

simple_statement 5.1
statement 5.1

space_character ...
basic_graphic_character 2.1

special_character ...
basic_graphic_character 2.1

statement 5.1
sequence_of_statements 5.1

string_literal 2.6
operator_symbol 6.1
primary 4.4

subprogram_body 6.3
library_unit 10.1
library_unit_body 10.1
proper_body 3.9

subprogram_declaration 6.1
basic_declaration 3.1
later_declarative_item 3.9
library_unit 10.1

subprogram_specification 6.1
renaming_declaration 8.5
subprogram_body 6.3
subprogram_declaration 6.1

subtype ...
subtype_declaration 3.3.2

subtype_declaration 3.3.2
basic_declaration 3.1

subtype_indication 3.3.2
component_subtype_definition 3.7
constrained_array_definition 3.6
discrete_range 3.6
object_declaration 3.2
subtype_declaration 3.3.2
unconstrained_array_definition 3.6

term 4.4
simple_expression 4.4

then ...
expression 4.4
if_statement 5.3

type ...
full_type_declaration 3.3.1
private_type_declaration 7.4

type_conversion 4.6
primary 4.4

type_declaration 3.3.1
basic_declaration 3.1

186 ARM
Syntax Summary

type_definition 3.3.1
full_type_declaration 3.3.1

type_mark 3.3.2
actual_parameter 6.4
deferred_constant_declaration 7.4
index_subtype_definition 3.6
parameter_specification 6.1
qualified_expression 4.7
relation 4.4
renaming_declaration 8.5
subprogram_specification 6.1
subtype_indication 3.3.2
type_conversion 4.6

unary_adding_operator 4.5
simple_expression 4.4

unconstrained_array_definition 3.6
array_type_definition 3.6

underline ...
based_integer 2.4.2
identifier 2.3
integer 2.4.1

upper_case_letter ...
basic_graphic_character 2.1
letter 2.3

use ...
use_clause 8.4

use_clause 8.4
basic_declarative_item 3.9
context_clause 10.1.1
later_declarative_item 3.9

when ...
case_statement_alternative 5.4
exception_handler 11.2
exit_statement 5.7

while ...
iteration_scheme 5.5

with ...
with_clause 10.1.1

with_clause 10.1.1
context_clause 10.1.1

xor ...
expression 4.4
logical_operator 4.5

" ...
string_literal 2.6

...
based_literal 2.4.2

& ...
binary_adding_operator 4.5

’ ...
attribute 4.1.4
character_literal 2.5
♦
qualified_expression 4.7

() ...
actual_parameter 6.4
actual_parameter_part 6.4
aggregate 4.3
attribute_designator 4.1.4
enumeration_type_definition 3.5.1
formal_part 6.1
index_constraint 3.6
indexed_component 4.1.1
primary 4.4
qualified_expression 4.7
type_conversion 4.6
unconstrained_array_definition 3.6

* ...
multiplying_operator 4.5

** ...
factor 4.4
highest_precedence_operator 4.5

+ ...
binary_adding_operator 4.5
exponent 2.4.1
unary_adding_operator 4.5

, ...
actual_parameter_part 6.4
aggregate 4.3
discriminant_constraint 3.7.2
enumeration_type_definition 3.5.1
identifier_list 3.2
index_constraint 3.6
indexed_component 4.1.1
unconstrained_array_definition 3.6
use_clause 8.4
with_clause 10.1.1

- ...
binary_adding_operator 4.5
exponent 2.4.1
unary_adding_operator 4.5

. ...
based_literal 2.4.2
decimal_literal 2.4.1
selected_component 4.1.3

.. ...
range 3.5

/ ...
multiplying_operator 4.5

/= ...
relational_operator 4.5

: ...

ARM 187
Syntax Summary

block_statement 5.6
component_declaration 3.7
deferred_constant_declaration 7.4
exception_declaration 11.1
loop_statement 5.5
number_declaration 3.2
object_declaration 3.2
parameter_specification 6.1
renaming_declaration 8.5

:= ...
assignment_statement 5.2
component_declaration 3.7
number_declaration 3.2
object_declaration 3.2

; ...
assignment_statement 5.2
block_statement 5.6
case_statement 5.4
component_declaration 3.7
component_list 3.7
deferred_constant_declaration 7.4
exception_declaration 11.1
exit_statement 5.7
formal_part 6.1
full_type_declaration 3.3.1
if_statement 5.3
loop_statement 5.5
null_statement 5.1
number_declaration 3.2
object_declaration 3.2
package_body 7.1
package_declaration 7.1
private_type_declaration 7.4
procedure_call_statement 6.4
raise_statement 11.3
renaming_declaration 8.5
return_statement 5.8
subprogram_body 6.3
subprogram_declaration 6.1
subtype_declaration 3.3.2
use_clause 8.4
with_clause 10.1.1

< ...
relational_operator 4.5

<= ...
relational_operator 4.5

<> ...
index_subtype_definition 3.6

= ...
relational_operator 4.5

=> ...
case_statement_alternative 5.4
component_association 4.3
exception_handler 11.2
parameter_association 6.4

> ...

relational_operator 4.5

>= ...
relational_operator 4.5

| ...
case_statement_alternative 5.4
component_association 4.3
exception_handler 11.2

188 ARM
Implementation-Dependent Characteristics

ARM 189
Implementation-Dependent Characteristics

Appendix F

Implementation-Dependent Characteristics

This appendix is not part of the standard definition of the AVA
programming language.

23The Ada language definition allows for certain machine-dependences in a controlled manner. No
machine-dependent syntax or semantic extensions or restrictions are allowed. The only allowed
implementation-dependences correspond to implementation-dependent pragmas and attributes, certain
machine-dependent conventions as mentioned in chapter 13, and certain allowed restrictions on
representation clauses. Since most of these are ruled out of AVA, the list of implementation
specific features is short.

24The reference manual of each AVA implementation must include an appendix (called Appendix F) that
describes all implementation-dependent characteristics. The appendix F for a given implementation must
list in particular:

(1) 25Omitted

(2) 26The name and the type of every implementation-dependent attribute.

(3) 27The specification of the package AVA_SYSTEM (see 13).

(4) 28Omitted

(5) 29The conventions used for any implementation-generated name denoting implementation-dependent
components (see 13.4).

(6) 30Omitted

(7) 31Omitted

(8) 32Any implementation-dependent characteristics of the input-output packages (see 14).

190 ARM
INDEX

ARM 191
INDEX

Appendix G

INDEX

This appendix is not part of the standard definition of the Ada programming language.

Abandoning a declaration or sequence of statements
[see: exception, raise statement]

Abnormal termination of a subprogram call 6.2

Abs unary operator 4.5, 4.5.6
[see also: highest precedence operator]

as an operation 3.3.3
as an operation of an integer type 3.5.5
in a factor 4.4
propagating an exception 11.6
raising an exception 11.4.1

Absolute value operation 4.5.6

Actual parameter 6.4.1; D; (of an operator)
6.7; (of a subprogram) 6.4; 6.2, 6.3

[see also: formal parameter,
function call, procedure call statement,
subprogram call]

characteristics and overload resolution 6.6
of an array type 3.6.1
of a record type 3.7.2
which is an array aggregate 4.3.2
which is a loop parameter 5.5

Actual parameter part 6.4
in a function call 6.4
in a procedure call statement 6.4

Adding operator
[see: binary adding operator, unary adding operator]

Addition operation 4.5.3

Aggregate 4.3, D
[see also: array aggregate, overloading

of..., record aggregate]
as a basic operation 3.3.3, 4.3; 3.6.2, 3.7.4
as a primary 4.4
in a qualified expression 4.7
may not be the argument of a conversion 4.6

Aliasing 6.2

Allowed 1.6

Alternative
[see: case statement alternative]

Ambiguities between overloaded subprograms 6.6

Ambiguous
[see: overloading]

Ampersand

[see: catenation]
character 2.1
delimiter 2.2

Ancestor library unit 10.2

And operator
[see: logical operator]

And then control form
[see: short circuit control form]

Anonymous type 3.3.1
anonymous base type [see: first named subtype]
anonymous base type due to derivation 3.4

ANSI (american national standards institute) 2.1

Apostrophe character 2.1
in a character literal 2.5

Apostrophe delimiter 2.2
[see also: identifier after...]

in an attribute 4.1.4
of a qualified expression 4.7

Appropriate for a type 4.1
for an array type 4.1.1, 4.1.2
for a record type 4.1.3
prefix of an attribute 4.1.4

Arithmetic operator 4.5; 3.5.5
[see also: binary adding operator, exponentiating

operator, multiplying operator, predefined
operator, unary adding operator]

as an operation of an integer type 3.5.5

Array aggregate 4.3.2; 4.3, D
[see also: aggregate]

Array assignment 5.2.1

Array bounds
[see: bounds of an array]

Array component
[see: array type, component, indexed component]

Array type 3.6; 3.3, D
[see also: component, composite type, constrained

array, constrained..., index, matching components,
unconstrained...]

appropriate for a prefix of an indexed
component 4.1.1

as a full type 7.4.1
conversion 4.6

192 ARM
INDEX

formal parameter which is of an array type 6.2
indexing 4.1.1
operation 3.6.2; 4.5.2, 4.5.3
operation on an array of boolean components

4.5.1, 4.5.6
subject to an attribute 3.6.2
with a limited component type 7.4.4

Array type definition 3.6; 3.3.1, 12.1.2, 12.3.4
[see also: constrained array definition,

elaboration of..., unconstrained array definition]

Arrow compound delimiter 2.2

ASCII (american standard code for information
interchange) 2.1

ASCII (predefined library package) 3.5.2; 2.6, C
[see also: graphical symbol]

Assignment compound delimiter 2.2; 5.2
in an object declaration 3.2.1

Assignment operation 5.2; D
[see also: limited type]

as a basic operation 3.3, 3.3.3; 3.5.5,
3.5.8, 3.6.2, 3.7.4, 3.8.2, 7.4.2, 12.1.2

not available for a limited type 7.4.4
of an array aggregate 4.3.2
of an initial value to an object 3.2.1
to an array variable 5.2.1; 5.2
to a loop parameter 5.5

Assignment statement 5.2; D
[see also: statement]

as a simple statement 5.1

Association
[see: component association, parameter

association]

Association of a declarative region with
a declaration or statement 8.1

Attribute 4.1.4; D
[see also: predefined attribute, predefined

function]
as a basic operation 3.3.3; 3.5.8, 3.6.2
as a basic operation of a discrete type 3.5.5
as a name 4.1
as a primary 4.4
of a discrete type or subtype 3.5.5
of a static subtype in a static expression 4.9
of a type 3.3
renamed as a function 8.5
starting with a prefix 4.1, 4.1.4

Attribute designator 4.1.4
in an attribute 4.1.4

Bar
[see: vertical bar]

BASE (predefined attribute) 3.3.3; A

for an array type 3.6.2
for a discrete type 3.5.5
for a private type 7.4.2
for a record type 3.7.4

Base type (of a subtype) 3.3
as a static subtype 4.9
as target type of a conversion 4.6
due to elaboration of a type definition 3.3.1
name [see: name of a base type]
of an array type 3.6; 4.1.2
of an integer type 3.5.4
of an integer type is an anonymous predefined type 3.5.4
of a qualified expression 4.7
of a type mark 3.3.2
of a type mark in a membership test 4.5.2
of the discrete range in a loop parameter

specification 5.5
of the expression in a case statement 5.4
of the result subtype of a function 5.8
of the type mark in a renaming declaration 8.5

Based literal 2.4.2
[see also: colon character, sharp character]

as a numeric literal 2.4

Basic character 2.1
[see also: basic graphic character, character]

Basic character set 2.1
is sufficient for a program text 2.10

Basic declaration 3.1
as a basic declarative item 3.9

Basic declarative item 3.9
in a package specification 7.1; 7.2

Basic graphic character 2.1
[see also: basic character, digit, graphic

character, space character, special character,
upper case letter]

Basic loop 5.5

Basic operation 3.3.3
[see also: aggregate, assignment, conversion

direct visibility, operation, scope of...,
string literal, visibility by selection,
visibility]

implicitly declared 3.1, 3.3.3
of an array type 3.6.2
of a discrete type 3.5.5
of a limited type 7.4.4
of a private type 7.4.2
of a record type 3.7.4
propagating an exception 11.6
raising an exception 11.4.1
which is an attribute 4.1.4

Becomes compound delimiter
[see: assignment compound delimiter]

Belong

ARM 193
INDEX

to a range 3.5
to a subtype 3.3

Binary adding operator 4.5; 4.5.3, C
[see also: adding operation, arithmetic

operator, overloading of an operator]
in a simple expression 4.4
overloaded 6.7

Binary operation 4.5

Blank skipped by a text_io procedure 14.3.5

Block as an entity 3.1

Block name 5.6
declaration 5.1
implicitly declared 3.1

Block statement 5.6; D
[see also: completed block statement, statement]

as a compound statement 5.1
as a declarative region 8.1
entity denoted by an expanded name 4.1.3
including an exception handler 11.2; 11
including an implicit declaration 5.1
raising an exception 11.4.1, 11.4.2

Body 3.9; D
[see also: declaration, library unit,

package body, proper body, subprogram
body]

as a later declarative item 3.9

BOOLEAN (predefined type) 3.5.3; C
result of an attribute 9.9
result of a condition 5.3
result of an explicitly declared equality

operator 6.7

Boolean expression
[see: relation]

Boolean operator
[see: relational operator]

Boolean types 3.5.3
[see also: predefined type]

operation 3.5.5; 4.5.1, 4.5.2, 4.5.6
subject to an attribute 3.5.5

Bound
[see: error bound, first attribute, last attribute]

Bound of an array 3.6, 3.6.1
[see also: index range]

aggregate 4.3.2
result of a logical operator 4.5.1
result of an operation 4.5.1, 4.5.3, 4.5.6
which is a formal parameter 6.2

Bound of a range 3.5; 3.5.4
of a discrete range is of universal_integer type 3.6.1
of a static discrete range 4.9

Bound of a range constraint

Bound of a subtype
of a static discrete subtype 4.9
returned by first and last attributes

3.5.5, 3.5.10

Box compound delimiter 2.2
in an index subtype definition 3.6

Bracket
[see: label bracket, left parenthesis,

parenthesised expression, right parenthesis,
string bracket]

Call
[see: function call, procedure call

statement, subprogram call]

Carriage return format effector 2.1

Case of a letter
[see: letter, lower case letter, upper

case letter]

Case statement 5.4
[see also: statement]

as a compound statement 5.1

Case statement alternative 5.4

Catenation operation 4.5.3
for a character type 3.5.5
in a replacement of a string literal 2.10

Catenation operator 4.5; 2.6, 3.6.3, 4.5.3, C
[see also: predefined operator]

for an array type 3.6.2

Character 2.1; D
[see also: ampersand, apostrophe, basic

character, colon, divide, dot, equal, exclamation
mark character, graphic character, greater
than, hyphen, less than, minus, other special
character, parenthesis, percent, period,
plus, point character, pound sterling, quotation,
semicolon, sharp, space, special character,
star, underline, vertical bar]

in a lexical element 2, 2.2
names of characters 2.1
replacement in program text 2.10

CHARACTER (predefined type) 3.5.2; C
as the component type of the string type 3.6.3

Character literal 2.5, 4.2; 2.2, 3.5.2
[see also: direct visibility, predefined

function, scope of..., space character literal,
visibility by selection, visibility]

as a basic operation 3.3.3
as an enumeration literal 3.5.1
as a name 4.1
declared by an enumeration literal specification 3.1
in a selector 4.1.3

194 ARM
INDEX

in a static expression 4.9
in homograph declarations 8.3
must be visible at the place of a string

literal 4.2

Character types 3.5.2; 2.5
operation 3.5.5
subject to an attribute 3.5.5

Choice 3.7.3
[see also: exception choice]

in an aggregate 4.3
in an array aggregate 4.3.2
in a case statement alternative 5.4
in a component association 4.3, 4.3.1, 4.3.2
in a record aggregate 4.3.1

Circularity in dependencies between compilation
units 10.5

Class of type 3.3; 12.1.2
[see also: composite type,

private type, scalar type]

Clause
[see: use clause, with clause]

CLOSE (input-output procedure)
in text_io 14.2.1; 14.3.10

Closed file 14.1

COL (text_io function) 14.3.4; 14.3.10
raising an exception 14.4

Colon character 2.1
[see also: based literal]

replacing sharp character 2.10

Colon delimiter 2.2

Column 14.3.4

Comma character 2.1

Comma delimiter 2.2

Comment 2.7; 2.2
in a code procedure body 13.8
in a conforming construct 6.3.1

Comparison
[see: relational operator]

Compatibility (of constraints) 3.3.2
[see also: constraint]

failure not causing constraint_error 11.7
of a discrete range with an index subtype 3.6.1
of index constraints 3.6.1
of range constraints 3.5

Compilation 10.1; 10, 10.4
as a sequence of lexical elements 2

Compilation order
[see: order of compilation]

Compilation unit 10.1; D, 10, 10.4
[see also: library unit, secondary unit]

compiled after library units named in
its context clause 10.3

with a context clause 10.1.1
with a use clause 8.4

Compilation-time evaluation of expressions 4.9

Compile time evaluation of expressions 10.6

Compiler 10.4

Completed block statement 9.4

Completed subprogram 9.4

Component (of a composite type) 3.3; 3.6, 3.7, D
[see also: component association,

component list, composite type,
indexed component, object,
record type, selected component, subcomponent]

as an entity 3.1
combined by aggregate 4.3
name starting with a prefix 4.1
of an array 3.6 [see also: array type,

component, indexed component]
of a constant 3.2.1
of an object 3.2
of a private type 7.4.2
of a record 3.7 [see also: component,

record type, selected component]
of a variable 3.2.1
simple name as a choice 3.7.3
subtype indication 3.7
subtype itself an array type 3.6.1
which is of limited type 7.4.4

Component association 4.3
in an aggregate 4.3
including an expression which is an

array aggregate 4.3.2
positional component association 4.3

Component declaration 3.7
[see also: declaration, record type definition]

as part of a basic declaration 3.1
having an extended scope 8.2
in a component list 3.7
of an array object 3.6.1
of a record object 3.7.2
visibility 8.3

Component list 3.7
in a record type definition 3.7

Component subtype definition 3.7
in a component declaration 3.7

Component type
catenation with an array type 4.5.3

ARM 195
INDEX

object initialization [see: initial value]
of an expression in an array aggregate 4.3.2
of an expression in a record aggregate 4.3.1
operation determining a composite type

operation 4.5.1, 4.5.2

Composite type 3.3; 3.6, 3.7
[see also: array type, class of type, component,

record type, subcomponent]
including a limited subcomponent 7.4.4
object initialization 3.2.1 [see also:

initial value]
of an aggregate 4.3
with a private type component 7.4.2

Compound delimiter 2.2
[see also: arrow, assignment, box, delimiter,

double dot, double star, exponentiation,
greater than or equal, inequality, left label
bracket, less than or equal, right label bracket]

names of delimiters 2.2

Compound statement 5.1
[see also: statement]

Concatenation
[see: catenation]

Condition 5.3
[see also: expression]

as a boolean expression 3.5.3
in an exit statement 5.7
in an if statement 5.3
in a while iteration scheme 5.5

Conditional compilation 10.6

Conflicting names resolved 8.5

Conforming
formal parts 6.3.1
subprogram specifications 6.3.1; 6.3
type marks 6.3.1; 7.4.3

Conjunction
[see: logical operator]

Constant 3.2.1; D
[see also: deferred constant, loop parameter, object]

formal parameter 6.2
in a static expression 4.9
renamed 8.5

Constant declaration 3.2.1
[see also: deferred constant declaration]

as a full declaration 7.4.3
with an array type 3.6.1
with a record type 3.7.2

Constrained array definition 3.6
in an object declaration 3.2, 3.2.1

Constrained array type 3.6
[see also: array type, constraint]

Constrained subtype 3.3; 3.2.1, 3.6, 3.6.1,
3.7, 3.7.2, 6.4.1

[see also: constraint, subtype, type,
unconstrained subtype]

due to elaboration of a type definition 3.3.1
object declarations 3.2.1

Constrained variable 3.7

Constraint (on an object of a type) 3.3, 3.3.2; D
[see also: compatibility,

constrained subtype, elaboration of...,
index constraint, range constraint, satisfy,
subtype, unconstrained subtype]

explicitly specified by use of a qualification 4.7
not considered in overload resolution 8.7
on a formal parameter 6.2
on a renamed object 8.5
on a subcomponent subject to a component

clause must be static 13.4
on a variable 3.2.1, 3.3, 3.6

CONSTRAINT_ERROR
(predefined exception) 11.1
[see also: index_check, range_check]

raised by an actual parameter not in
the subtype of the formal parameter 6.4.1

raised by an assignment 5.2; 3.5.4
raised by an attribute 3.5.5
raised by a component of an array aggregate 4.3.2
raised by a component of a record aggregate 4.3.1
raised by a formal parameter not in

the subtype of the actual parameter 6.4.1
raised by an index value out of bounds

4.1.1, 4.1.2
raised by a logical operation on arrays

of different lengths 4.5.1
raised by a name with a prefix evaluated

to null 4.1
raised by a qualification 4.7
raised by a result of a conversion 4.6
raised by a return statement 5.8
raised by incompatible constraints 3.3.2
raised by integer exponentiation with

a negative exponent 4.5.6
raised by matching failure in an array

assignment 5.2.1
raised by the initialization of an object 3.2.1
raised by the result of catenation 4.5.3
suppressed 11.7

Context clause 10.1.1; D
[see also: use clause, with clause]

determining order of elaboration of
compilation units 10.5

in a compilation unit 10.1
including a use clause 8.4
inserted by the environment 10.4

Context of overload resolution 8.7
[see also: overloading]

Control form
[see: short circuit control form]

196 ARM
INDEX

Conversion
[see: numeric type, subtype conversion,

type conversion, unchecked conversion]
in a static expression 4.9
of a universal type expression 5.2 [see

also: universal type expression]
of the bounds of a loop parameter 5.5

Conversion operation 4.6
[see also: explicit conversion, implicit

conversion, subtype conversion, type conversion]
as a basic operation 3.3.3; 3.3, 3.5.5,

3.5.8, 3.6.2, 3.7.4, 3.8.2, 7.4.2
between numeric types 3.3.3, 3.5.5

Convertible universal operand 4.6

Copy parameter passing 6.2

COUNT (predefined integer type) 14.2, 14.2.5,
14.3.10; 14.2.4, 14.3, 14.3.3, 14.3.4, 14.4

Current column number 14.3; 14.3.1, 14.3.4,
14.3.5, 14.3.6

Current line number 14.3; 14.3.1, 14.3.4, 14.3.5

Current mode of a file 14.1, 14.2.1;
14.2.2, 14.2.4, 14.3, 14.3.5, 14.4

Current page number 14.3; 14.3.1, 14.3.4, 14.3.5

CURRENT_INPUT
(text_io function) 14.3.2; 14.3.10

CURRENT_OUTPUT
(text_io function) 14.3.2; 14.3.10

DATA_ERROR (input-output exception) 14.4;
14.2.2, 14.2.3, 14.2.4, 14.2.5, 14.3.5, 14.3.7,
14.3.8, 14.3.9, 14.3.10, 14.5

Dead code elimination 10.6

Decimal literal 2.4.1
as a numeric literal 2.4

Decimal point
[see: point character]

Declaration 3.1; D
[see also: basic declaration, block name

declaration, body, component declaration,
constant declaration,
deferred constant declaration,
denote, enumeration literal specification,
exception declaration, exception raised during...,
hiding, implicit declaration,
incomplete type declaration,
label declaration, loop name declaration,
loop parameter specification,
number declaration,
object declaration, package declaration,
package specification, parameter specification,

private type declaration, renaming declaration,
scope of..., specification, subprogram
declaration, subprogram specification,
subtype declaration, type declaration,
visibility]

as an overload resolution context 8.7
determined by visibility from an identifier 8.3
made directly visible by a use clause 8.4
of an enumeration literal 3.5.1
of a formal parameter 6.1
of a loop parameter 5.5
optimized 10.6
overloaded 6.6
raising an exception 11.4.2; 11.4

Declarative item 3.9
[see also: basic declarative item, later

declarative item]
in a code procedure body 13.8
in a declarative part 3.9; 6.3.2
in a package specification 6.3.2
in a visible part 7.4
which is a use clause 8.4

Declarative part 3.9; D
[see also: elaboration of..., elaboration]

in a block statement 5.6
in a package body 7.1; 7.3
in a subprogram body 6.3
including a specification and its body 9.1
with implicit declarations 5.1

Declarative region 8.1; 8.2, 8.4, D
[see also: scope of...]

determining the visibility of a declaration 8.3
formed by the predefined package standard 8.6
in which a declaration is hidden 8.3
including a full type definition 7.4.2
including a subprogram declaration 6.3

Declared immediately within
[see: occur immediately within]

Default file 14.3.2; 14.3

Default mode (of a file) 14.2.1; 14.2.3,
14.2.5, 14.3.10

Deferred constant 7.4.3
of a limited type 7.4.4

Deferred constant declaration 7.4; 7.4.3
[see also: private part (of a package),

visible part (of a package)]
as a basic declaration 3.1

Definition
[see: array type definition, component subtype definition,

constrained array definition, enumeration type
definition, index subtype definition,
integer type definition,
record type definition, type definition,
unconstrained array definition]

ARM 197
INDEX

Delimiter 2.2
[see also: ampersand, apostrophe delimiter,

arrow, assignmenty, colon, compound delimiter,
divide, dor, dot delimiter, double dot, equal,
exclamation mark delimiter, exponentiation,
greater than, greather than or equal, inequality,
label bracket, less than or equal, less than,
minus, parenthesis, period, plus, point,
semicolon delimiter, semicolon, star, vertical
bar delimiter, vertical bar]

Denote an entity 3.1, 4.1; D
[see also: declaration, entity, name]

Dependence between compilation units 10.3; 10.5
[see also: with clause]

circularity implying illegality 10.5

Designate 3.8; D
[see also: object designated by...]

Designator
[see: attribute designator, name of a function,

name of an operator, name of a subprogram,
operator, overloading of ...]; (of a function) 6.1

in a function declaration 4.5
in a subprogram body 6.3
in a subprogram specification 6.1; 6.3
of a library unit 10.1
overloaded 6.6

DEVICE_ERROR (input-output exception) 14.4;
14.2.3, 14.2.5, 14.3.10, 14.5

Digit 2.1
[see also: basic graphic character, extended

digit, letter or digit]
in a based literal 2.4.2
in a decimal literal 2.4.1
in an identifier 2.3

Dimensionality of an array 3.6

Direct input-output 14.2.4; 14.2.1

Direct visibility 8.3
[see also: basic operation, character literal,

operation, operator symbol, selected component,
visibility]

due to a use clause 8.4
of a library unit due to a with clause 10.1.1

Discrete range 3.6, 3.6.1
[see also: range, static discrete range, static...]

as a choice 3.7.3
as a choice in an aggregate 4.3
for a loop parameter 5.5
in a choice in a case statement 5.4
in an index constraint 3.6
in a loop parameter specification 5.5

Discrete type 3.5; D
[see also: basic operation of..., enumeration

type, index, integer type, iteration scheme,

operation of..., scalar type]
expression in a case statement 5.4
of a loop parameter 5.5
of index values of an array 3.6
operation 3.5.5; 4.5.2
subject to an attribute 3.5.5

Disjunction
[see: logical operator]

Divide
character 2.1
delimiter 2.2

Division operation 4.5.5

Division operator
[see: multiplying operator]

Division_check
[see: numeric_error, suppress]

Dot
[see: double dot]

character 2.1 [see also: double dot,
point character]

delimiter 2.2
delimiter of a selected component 8.3; 4.1.3

Double dot compound delimiter 2.2

Double hyphen starting a comment 2.7

Double star compound delimiter 2.2
[see also: exponentiation compound delimiter]

Effect
[see: no other effect]

ELABORATE (predefined pragma) 10.5; B

Elaborated 3.9

Elaboration 3.9; 3.1, 3.3, D, 10.1
[see also: exception raised during...,

no other effect, order of elaboration]
optimized 10.6

Elaboration of
an array type definition [see: elaboration

of a constrained array definition]
a component declaration 3.7
a component subtype specification 3.7
a constrained array definition 3.6; 3.2.1
a context clause 10.1
a declaration 3.1
a declaration raising an exception 11.4
a declarative item 3.9
a declarative part 3.9; 5.6, 6.3
a declarative part raising an exception 11.4.2
a deferred constant declaration 7.4.3
an enumeration type definition 3.5.1
a formal part 9.5
a full type declaration 3.8.1, 7.4.1

198 ARM
INDEX

an incomplete type declaration 3.8.1
an index constraint 3.6.1; 3.6
an integer type definition 3.5.4
a loop parameter specification 5.5
a number declaration 3.2.2
an object declaration 3.2.1; 9.2
a package body 7.3
a package body raising an exception 11.4.2
a package body terminated by an exception

11.4.1, 11.4.2
a package declaration 7.2
a package declaration raising an exception 11.4.2
a private type declaration 7.4.1
a range constraint 3.5.4
a record type definition 3.7
a renaming declaration 8.5
a subprogram body 6.3; 7.3
a subprogram declaration 6.1
a subtype declaration 3.3.2
a subtype indication 3.3.2; 3.2.1, 3.4,

3.6, 3.7, 3.8, 4.8, 11.7
a subtype of an object 3.2.1
a type declaration 3.3.1
a type definition 3.3.1; 3.3, 7.4.1
an unconstrained array definition 3.6
a use clause 8.4

Elaboration_check
[see: program_error exception, suppress]

Element in a file 14, 14.1; 14.2

Else part
of an if statement 5.3

Empty string literal 2.6

End of line 2.2
as a separator 2.2
due to a format effector 2.2
terminating a comment 2.7

END_ERROR (input-output exception) 14.4;
14.2.2, 14.2.3, 14.2.4, 14.2.5, 14.3.4, 14.3.5,
14.3.6, 14.3.10, 14.5

END_OF_FILE (input-output function)
in text_io 14.3.1, 14.3.10

END_OF_LINE (text_io function) 14.3.4; 14.3.10
raising an exception 14.4

END_OF_PAGE (text_io function) 14.3.4;
14.3.10, 14.4

Entity 3.1; 3.2, D
denoted by a name 4.1

Enumeration literal 3.5.1, 4.2; D
[see also: overloading of..., predefined function]

as an operation 3.3.3
as an operator 3.5.5
as result for image attribute 3.5.5
as the parameter for value attribute 3.5.5

implicitly declared 3.3.3
in a static expression 4.9
overloaded 8.3
renamed as a function 8.5

Enumeration literal specification 3.5.1
as part of a basic declaration 3.1
made directly visible by a use clause 8.4

Enumeration type 3.5.1; 3.3, 3.5, D
[see also: discrete type, scalar type]

as a character type 3.5.2
boolean 3.5.3
operation 3.5.5
subject to an attribute 3.5.5

Enumeration type definition 3.5.1; 3.3.1
[see also: elaboration of...]

Environment of a program 10.4
environment task calling the main program 10.1

Equal
character 2.1
delimiter 2.2

Equality operation 4.5.2
for a limited type 4.5.2
not available for a limited type 7.4.4

Equality operator 4.5; 4.5.2
[see also: limited type, relational operator]

explicitly declared 4.5.2, 6.7; 7.4.4
for an array type 3.6.2
for a record type 3.7.4

Erroneous 1.6
[see also: program_error]

Erroneousness due to
an unchecked conversion violating properties

of objects of the result type 13.10.2
dependence between initial values of

subcomponents 3.2.1
dependence on parameter-passing mechanism 6.2
suppression of an exception check 11.7

Error detected at
compilation time 1.6
run time 1.6

Error situation 1.6, 11, 11.1; 11.6

Error that may not be detected 1.6

Evaluation (of an expression) 4.5
[see also: compile time evaluation, expression]

at compile time 10.6
of an actual parameter 6.4.1
of an aggregate 4.3; 3.3.3
of an array aggregate 4.3.2
of a condition 3.5.3, 5.3
of a discrete range 3.5; 9.5
of a discrete range used in an index

ARM 199
INDEX

constraint 3.6.1
of an expression in an assignment statement 5.2
of an expression in a constraint 3.3.2
of an indexed component 4.1.1
of an initial value
of a literal 4.2; 3.3.3
of a logical operation 4.5.1
of a name 4.1; 4.1.1, 4.1.2, 4.1.3, 4.1.4
of a name in a renaming declaration 8.5
of a primary 4.4
of a qualified expression 4.7; 4.8
of a range 3.5
of a record aggregate 4.3.1
of a short circuit control form 4.5.1
of a static expression 4.9
of a type conversion 4.6
of a universal expression 4.10
of the bounds of a loop parameter 5.5
of the name of a variable in an assignment

statement 5.2

Evaluation order
[see: order of evaluation]

Exception 11; 1.6, D
[see also: constraint_error, name of...,

numeric_error, predefined .., program_error,
raise statement, raising of ..]

as an entity 3.1
causing a loop to be exited 5.5
causing a transfer of control 5.1
due to an expression evaluated at compile time 10.6
in input-output 14.4; 14.5
renamed 8.5

Exception choice 11.2

Exception declaration 11.1; 11
as a basic declaration 3.1

Exception handler 11.2; D
in a block statement 5.6
in a package body 7.1; 7.3
in a subprogram body 6.3
including a raise statement 11.3
including the name of an exception 11.1
not allowed in a code procedure body 13.8
raising an exception 11.4.1
selected to handle an exception 11.4.1; 11.6

Exception handling 11.4; 11.4.1, 11.4.2, 11.5

Exception propagation 11
from a declaration 11.4.2
from a predefined operation 11.6
from a statement 11.4.1

Exception raised during
a declaration 11.4.2; 11.4
a raise statement 11.3
a statement 11.4.1; 11.4
a subprogram call 6.3; 6.2

Exclamation character 2.1

replacing vertical bar 2.10

Exclusive disjunction
[see: logical operator]

Execution
[see: sequence of statements, statement]

Exit statement 5.7
[see also: statement]

as a simple statement 5.1
causing a loop to be exited 5.5
causing a transfer of control 5.1
completing block statement execution 9.4

Expanded name 4.1.3; D
denoting a loop 5.5
in a static expression 4.9

Explicit conversion 4.6
[see also: conversion operation, implicit

conversion, subtype conversion, type conversion]

Explicit declaration 3.1; 4.1
[see also: declaration]

Explicit initialization
[see: object declaration, qualified

expression]

Exponent part
of a based literal 2.4.1, 2.4.2
of a decimal literal 2.4.1

Exponentiating operator 4.5; 4.5.6
[see also: highest precedence operator]

in a factor 4.4
overloaded 6.7

Exponentiation compound delimiter 2.2
[see also: double star compound delimiter]

Exponentiation operation 4.5.6

Expression 4.4; D
[see also: compile time evaluation, evaluation,

qualified expression, simple expression,
static expression, universal type expression]

as an actual parameter 6.4, 6.4.1
as a condition 5.3
in an assignment statement 5.2
in an attribute designator 4.1.4
in a case statement 5.4
in a case statement as an overload resolution

context 8.7
in a choice in a case statement 5.4
in a component association 4.3
in a component declaration 3.7
in a constraint 3.3.2
in a conversion 4.6
in an indexed component 4.1.1
in a name 4.1
in a name of a variable 5.2, 6.4.1
in a number declaration 3.2

200 ARM
INDEX

in an object declaration 3.2, 3.2.1
in a parameter specification 6.1
in a primary 4.4
in a qualified expression 4.7
in a return statement 5.8
in a type conversion as an overload

resolution context 8.7
including the name of a private type 7.4.1
specifying the value of an index 4.1.1
with a boolean result [see: condition]

Extended_digit in a based literal 2.4.2

External file 14.1
[see also: file]

Factor 4.4
in a term 4.4

FALSE boolean enumeration literal 3.5.3; C

Feed
[see: form feed, line feed]

File (object of a file type) 14.1
[see also: external file]

File management 14.2.1
in text_io 14.3.1

File terminator 14.3; 14.3.1, 14.3.4,
14.3.5, 14.3.6, 14.3.7, 14.3.8, 14.3.9

FILE_MODE (input-output type)
in text_io 14.1, 14.2.1; 14.3.10

FILE_TYPE (input-output type)
in text_io 14.1, 14.2.1; 14.2, 14.3.3,

14.3.4, 14.3.6, 14.3.7, 14.3.8, 14.3.9, 14.3.10

FIRST (predefined attribute) A
[see also: bound]

for an array type 3.6.2
for a discrete type 3.5.5

First named subtype 13.1
[see also: anonymous base type]

Font design of graphical symbols 2.1

For loop
[see: loop statement]

Form feed format effector 2.1

Formal parameter 6.1; D; (of a function) 6.5; (of
an operator) 6.7; (of a subprogram) 6.1,
6.2, 6.4; 3.2, 3.2.1, 6.3

[see: actual parameter,
mode, object, subprogram]

as a constant 3.2.1
as an entity 3.1
as an object 3.2
as an object renamed 8.5

as a variable 3.2.1
characteristics and overload resolution 6.6
names and overload resolution 6.6
of a main program 10.1
of an operation 3.3.3
of a renamed subprogram 8.5
which is of an array type 3.6.1
which is of a limited type 7.4.4
which is of a record type 3.7.2

Formal part 6.1; 6.4
[see also: parameter type profile]

conforming to another 6.3.1
in a subprogram specification 6.1

Format effector 2.1
[see also: carriage return, form feed,

horizontal tabulation, line feed, vertical
tabulation]

as a separator 2.2
in an end of line 2.2

Format of text_io input or output 14.3.5,
14.3.7, 14.3.8, 14.3.9

Formula
[see: condition, expression]

Frame 11.2
in which an exception is raised 11.4.1, 11.4.2

Full declaration
of a deferred constant 7.4.3

Full type declaration 3.3.1
of an incomplete type 3.8.1
of a limited private type 7.4.4
of a private type 7.4.1; 7.4.2

Function 6.1, 6.5; 6, D, 12.3
[see also: name of a function, operator,

parameter and result type profile, parameter,
predefined function, result subtype, return
statement, subprogram]

as a main program 10.1
renamed 8.5
result [see: returned value]
which is an attribute 4.1.4; 12.3.6

Function body
[see: subprogram body]

Function call 6.4; 6
[see also: actual parameter, subprogram call]

as a prefix 4.1
as a primary 4.4
in a static expression 4.9

Function specification
[see: subprogram specification]

Functional nature of an enumeration literal 3.5.1

GET (text_io procedure) 14.3.5; 14.3, 14.3.2,

ARM 201
INDEX

14.3.4, 14.3.10
for character and string types 14.3.6
for enumeration types 14.3.9
for integer types 14.3.7
raising an exception 14.4

GET_LINE (text_io procedure) 14.3.6; 14.3.10

Global declaration 8.1

Graphic character 2.1
[see also: basic graphic character, character,

lower case letter, other special character]
in a character literal 2.5
in a string literal 2.6

Graphical symbol 2.1
[see also: ascii]

not available 2.10

Greater than
character 2.1
delimiter 2.2
operator [see: relational operator]

Greater than or equal
compound delimiter 2.2
operator [see: relational operator]

Group of logically related entities
[see: package]

Handler
[see: exception handler, exception handling]

Hiding (of a declaration) 8.3
[see also: visibility]

and renaming 8.5
due to an implicit declaration 5.1
impossible due to a use clause 8.4
of a library unit 10.1
of a subprogram 6.6
of the package standard 10.1

Highest precedence operator 4.5
[see also: abs, arithmetic operator, exponentiating

operator, not, overloading of an operator,
predefined operator]

as an operation of a discrete type 3.5.5
overloaded 6.7

Homograph declaration 8.3
[see also: overloading]

preventing direct visibility due to
a use clause 8.4

Horizontal tabulation
as a separator 2.2
character in a comment 2.7
format effector 2.1

Hyphen character 2.1
[see also: minus character]

starting a comment 2.7

Identifier 2.3; 2.2, D
[see also: direct visibility, loop parameter,

name, overloading of..., scope of..., simple
name, visibility]

and an adjacent separator 2.2
as an attribute designator 2.9, 4.1.4
as a designator 6.1
as a reserved word 2.9
as a simple name 4.1
can be written in the basic character set 2.10
denoting an object 3.2.1
denoting a value 3.2.2
in an attribute 4.1.4
in a deferred constant declaration 7.4.3
in an exception declaration 11.1
in an incomplete type declaration 3.8.1
in a number declaration 3.2.2
in an object declaration 3.2.1
in a package specification 7.1
in a private type declaration 7.4; 7.4.1
in a renaming declaration 8.5
in a subprogram specification 6.1
in a type declaration 3.3.1; 7.4.1
in its own declaration 8.3
of an enumeration value 3.5.1
of a library unit 10.1
of a subprogram 6.1
of a subtype 3.3.2
of homograph declarations 8.3
overloaded 6.6
versus simple name 3.1

Identifier list 3.2
in a component declaration, 3.7
in a deferred constant declaration 7.4
in a number declaration 3.2
in an object declaration 3.2
in a parameter specification 6.1

Identity operation 4.5.4

If statement 5.3
[see also: statement]

as a compound statement 5.1

IMAGE (predefined attribute) 3.5.5; A

Immediate scope 8.2; 8.3

Immediately within (a declarative region)
8.1; 8.3, 8.4, 10.2

Implementation dependent
[see: system dependent]

Implicit conversion 4.6
[see also: conversion operation, explicit

conversion, subtype conversion]
of an integer literal to an integer type 3.5.4
of a universal type expression 3.5.4, 3.5.6

Implicit declaration 3.1; 4.1
[see also: scope of...]

at instantiation 12.3

202 ARM
INDEX

by a type declaration 4.5
hidden by an explicit declaration 8.3
of a basic operation 3.1, 3.3.3
of a block name, loop name, or label 5.1; 3.1
of an enumeration literal 3.3.3
of an equality operator 6.7
of an exception due to an instantiation 11.1
of a library unit 8.6
of a predefined operator 4.5

In membership test
[see: membership test operation, membership

test relation]

In mode
[see: mode in]

In out mode
[see: mode in out]

In some order that is not defined 1.6
[see also: incorrect order dependency,

program_error]

IN_FILE (input-output file_mode enumeration
literal) 14.1

Inclusive disjunction
[see: logical operator]

Incompatibility (of constraints)
[see: compatibility]

Incomplete type 3.8.1
corresponding full type declaration 3.3.1

Incomplete type declaration 3.8.1; 3.3.1, 7.4.1
as a portion of a declarative region 8.1

Incorrect order dependence 1.6; 3.5
[see also: program error]

between expressions of a record aggregate 4.3.1
between expressions or choices of an

array aggregate 4.3.2
copying back of out and in out formal

parameters 6.4
in expression evaluation 4.5, 5.2

Index 3.6; D
[see also: array, discrete type]

Index constraint 3.6, 3.6.1; D
ignored due to index_check suppression 11.7
in a constrained array definition 3.6
in a subtype indication 3.3.2
violated 11.1

Index range 3.6
matching 4.5.2

Index subtype 3.6

Index subtype definition 3.6

Index subtype definition in an unconstrained
array definition 3.6

Index type
of a choice in an array aggregate 4.3.2

Index_check
[see: constraint_error, suppress]

Indexed component 4.1.1; 3.6, D
as a basic operation 3.3.3; 3.3, 3.6.2, 3.8.2
as a name 4.1

Indication
[see: subtype indication]

Inequality compound delimiter 2.2

Inequality operation 4.5.2
not available for a limited type 7.4.4

Inequality operator 4.5; 4.5.2
[see also: limited type, relational operator]

cannot be explicitly declared 6.7
for an array type 3.6.2
for a record type 3.7.4

Initial value (of an object) 3.2.1
[see also: composite type]

of an array object 3.6.1
of a constant 3.2.1
of a constant in a static expression 4.9
of a limited private type object 7.4.4
of an object declared in a package 7.1
of an out mode formal parameter 6.2
of a record object 3.7.2

Initialization
[see: assignment, initial value]

INOUT_FILE (input-output file_mode enumeration
literal) 14.1

Input-output 14
[see also: io_exceptions, text_io]

at device level 14.6
exceptions 14.4; 14.5
with a text file 14.3

INTEGER (predefined type) 3.5.4; C
as base type of a loop parameter 5.5
as default type for the bounds of a

discrete range 3.6.1; 9.5

Integer literal 2.4
[see also: based integer literal, universal_integer type]

as a bound of a discrete range 9.5
as a universal integer literal 3.5.4
in based notation 2.4.2
in decimal notation 2.4.1

Integer part
as a base of a based literal 2.4.2
of a decimal literal 2.4.1

ARM 203
INDEX

Integer predefined types 3.5.4
[see also: INTEGER]

Integer subtype
[see: priority]

due to an integer type definition 3.5.4

Integer type declaration
[see: integer type definition]

Integer type definition 3.5.4; 3.3.1
[see also: elaboration of...]

Integer types 3.5.4; 3.3, 3.5, D
[see also: discrete type, numeric type,

predefined type, scalar type, system.max_int,
system.min_int, universal_integer type]

operation 3.5.5; 4.5.3, 4.5.4, 4.5.5, 4.5.6
result of a conversion from a numeric type 4.6
result of an operation out of range

of the type 4.5
subject to an attribute 3.5.5

Interrupt 13.5

IO_EXCEPTIONS (predefined input-output package)
14.4; C, 14, 14.1, 14.2.3, 14.2.5, 14.3.10

specification 14.5

IS_OPEN (input-output function)
in text_io 14.2.1; 14.3.10

ISO (international organization for standards) 2.1

ISO seven bit coded character set 2.1

Item
[see: basic declarative item, later declarative item]

Iteration scheme 5.5
[see also: discrete type]

Labeled statement 5.1
as an entity 3.1

Language interface to other language systems 13.9

LARGE (predefined attribute) 3.5.8, 3.5.10; A

LAST (predefined attribute) A
[see also: bound]

for an array type 3.6.2
for a discrete type 3.5.5

Later declarative item 3.9

Layout recommended for programs 1.5

LAYOUT_ERROR (input-output exception) 14.4;
14.3.4, 14.3.5, 14.3.7, 14.3.8, 14.3.9, 14.3.10, 14.5

Leading zeros in a numeric literal 2.4.1

Left label bracket compound delimiter 2.2

Left parenthesis
character 2.1
delimiter 2.2

Legal 1.6

LENGTH (predefined attribute) 3.6.1, 3.6.2; A

Length of a string literal 2.6

Length of the result
of an array comparison 4.5.1
of an array logical negation 4.5.6
of a catenation 4.5.3

Length_check
[see: constraint_error, suppress]

Less than
character 2.1
delimiter 2.2
operator [see: relational operator]

Less than or equal
compound delimiter 2.2
operator [see: relational operator]

Letter 2.3
[see also: lower case letter, upper case letter]

e or E in a decimal literal 2.4.1
in a based literal 2.4.2
in an identifier 2.3

Letter_or_digit 2.3

Lexical element 2, 2.2; 2.4, 2.5, 2.6, D
as a point in the program text 8.3
in a conforming construct 6.3.1
transferred by a text_io procedure 14.3,

14.3.5, 14.3.9

Lexicographic order 4.5.2

Library package
[see: library unit, package]

Library package body
[see: library unit, package body]

raising an exception 11.4.1, 11.4.2

Library unit 10.1; 10.5
[see also: compilation unit, predefined

package, predefined subprogram, program unit,
standard predefined package]

compiled before the corresponding body 10.3
included in the predefined package standard 8.6
named in a use clause 10.5
named in a with clause 10.1.1; 10.3, 10.5
recompiled 10.3
scope 8.2
visibility due to a with clause 8.3
which is a package 7.1
whose names are needed in a compilation

unit 10.1.1

204 ARM
INDEX

Limited private type 7.4.4
[see also: private type]

Limited type 7.4.4; 9.2, D, 12.3.1
[see also: assignment, equality operator, inequality

operator, predefined operator]
as a full type 7.4.1
component of a record 3.7
in an object declaration 3.2.1
limited record type 3.7.4
operation 7.4.4; 4.5.2
parameters for explicitly declared equality

operators 6.7

Line 14.3.4; 14.3

LINE (text_io function) 14.3.4; 14.3.10
raising an exception 14.4

Line feed format effector 2.1

Line length 14.3.3; 14.3, 14.3.1, 14.3.4,
14.3.5, 14.3.6

Line terminator 14.3; 14.3.4, 14.3.5,
14.3.6, 14.3.7, 14.3.8, 14.3.9

LINE_LENGTH (text_io function) 14.3.3,
14.3.4; 14.3.3, 14.3.10

raising an exception 14.4

List
[see: component list, identifier list]

Literal 4.2; D
[see also: based literal, character literal,

decimal literal, enumeration literal, integer
literal, null literal, numeric literal, overloading
of..., string literal]

as a basic operation 3.3.3
specification [see: enumeration literal

specification]

Local declaration 8.1

Logical negation operation 4.5.6

Logical operation 4.5.1

Logical operator 4.5; 4.4, 4.5.1, C
[see also: overloading of an operator,

predefined operator]
as an operation of boolean type 3.5.5
for an array type 3.6.2
in an expression 4.4
overloaded 6.7

Logical processor 9

Logically related entities
[see: package]

Loop

[see: basic loop]
as an entity 3.1

Loop name 5.5
declaration 5.1
implicitly declared 3.1
in an exit statement 5.7

Loop parameter 5.5
[see also: constant, object]

as an entity 3.1
as an object 3.2

Loop parameter specification 5.5
[see also: elaboration of...]

as an overload resolution context 8.7
is a declaration 3.1

Loop statement 5.5
[see also: statement]

as a compound statement 5.1
as a declarative region 8.1
entity denoted by an expanded name 4.1.3
including an exit statement 5.7

Lower bound
[see: bound, first attribute]

Lower case letter 2.1
[see also: graphic character]

a to f in a based literal 2.4.2
e in a decimal literal 2.4.1
in an identifier 2.3

Machine dependent attribute 13.7.3

Main program 10.1
execution requiring elaboration of library units 10.5
included in the predefined package standard 8.6
raising an exception 11.4.1, 11.4.2
termination 9.4

Mark
[see: type_mark]

Matching components
of arrays 4.5.2; 4.5.1, 5.2.1
of records 4.5.2

Mathematically correct result of a numeric
operation 4.5; 4.5.7

MAX_INT
[see: system.max_int]

Maximum line length 14.3

Maximum page length 14.3

Meaning
of a based literal 2.4.2
of a decimal literal 2.4.1
of a designator 6.7
of an identifier 6.6, 6.7, 8.3 [see

ARM 205
INDEX

also: overloading of..., visibility]
of a literal 4.2

Membership test 4.4, 4.5.2
cannot be overloaded 6.7
in a relation 4.4

Membership test operation 4.5
[see also: overloading of...]

as a basic operation 3.3.3; 3.3, 3.5.5,
3.5.8, 3.5.10, 3.6.2, 3.7.4, 3.8.2, 7.4.2

MEMORY_SIZE (predefined named number)
[see: system.memory_size]

MIN_INT
[see: system.min_int]

Minus
character [see: hyphen character]
character in an exponent of a numeric

literal 2.4.1
delimiter 2.2
operator [see: binary adding operator,

unary adding operator]
unary operation 4.5.4

Mod operator
[see: multiplying operator]

MODE (input-output function)
in text_io 14.2.1; 14.3.3, 14.3.4, 14.3.10

Mode (of a file) 14.1; 14.2.1
of a text_io file 14.3.1; 14.3.4

Mode (of a parameter) 6.1; D
[see also: formal parameter]

of a formal parameter of a renamed subprogram 8.5
of a parameter 12.1.1

Mode in out for a formal parameter 6.1,
6.2; 3.2.1

of a function is not allowed 6.5

Mode in for a formal parameter 6.1, 6.2; 3.2.1
of a function 6.5

Mode out for a formal parameter 6.1, 6.2
of a function is not allowed 6.5

MODE_ERROR (input-output exception) 14.4;
14.2.2, 14.2.3, 14.2.4, 14.2.5, 14.3.1, 14.3.3,
14.3.4, 14.3.5, 14.3.10, 14.5

Modulus operation 4.5.5

Multidimensional array 3.6

Multiple
component definition 3.7
object declaration 3.2

Multiplication operation 4.5.5

Multiplying operator 4.5; 4.5.5, C
[see also: arithmetic operator, overloading

of an operator]
in a term 4.4
overloaded 6.7

Must (legality requirement) 1.6

Mutually recursive types 3.8.1; 3.3.1

Name of
an attribute 4.1.4
a base type 3.3; 12.1.1
a block 5.6
a character 2.1
a component of an array 4.1.1
a component of a record 3.7, 4.1.3
a component system dependent record

component 13.4
a delimiter 2.2
an exception 11.1; 11
an exception in an exception choice 11.2
an exception in a raise statement 11.3
an exception in a renaming declaration 8.5
a formal parameter 6.1
a formal parameter and overload resolution 6.6
a function [see: designator]
a function in a function call 6.4
a function which is the current instantiation 12.1
a library unit 10.1, 10.1.1
a loop 5.5
a numeric value 3.2
an object 3.2
an object as a primary 4.4
an object in a renaming declaration 8.5
an object starting with a prefix 4.1.3
an operator [see: designator]
a package 7.1
a package in a renaming declaration 8.5
a package in a use clause 8.4; 10.1.1
a parameter of a predefined operator 4.5
a private type 7.4.1; 3.3
a procedure in a procedure call statement 6.4
a procedure which is the current instantiation 12.1
a program unit 8.6
a subcomponent of an unconstrained variable 12.3.1
a subprogram 6.1; 6.3.2, 12.1.3 [see

also: designator]
a subprogram in a renaming declaration 8.5
a subtype 3.3.1, 3.3.2; 12.1.1, 12.1.3

[see also: type_mark of a subtype, type_mark]
a type 3.3.1; 3.3.2, 12.1.1, 12.1.3

[see also: type_mark of a type, type_mark]
a variable 5.2
a variable as an actual parameter 6.4, 6.4.1

NAME (input-output function)
in text_io 14.2.1

NAME (predefined type)
[see: system.name]

206 ARM
INDEX

Name (of an entity) 4.1; 2.3, 3.1, D
[see also: attribute, block name, denote,

evaluation of..., function call, identifier,
indexed component, label, loop name, loop
parameter, loop simple name, operator symbol,
renaming declaration, selected component,
simple name, type_mark, visibility]

as a prefix 4.1
as a primary 4.4
as the expression in a case statement 5.4
declared by renaming is not allowed

as prefix of certain expanded names 4.1.3
denoting an entity 4.1
starting with a prefix 4.1; 4.1.1, 4.1.3, 4.1.4

Name string (of a file) 14.1; 14.2.1,
14.2.3, 14.2.5, 14.3, 14.3.10, 14.4

NAME_ERROR (input-output exception) 14.4;
14.2.1, 14.2.3, 14.2.5, 14.3.10, 14.5

Named association 6.4.2, D
[see also: component association, parameter

association]

Named block statement
[see: block name]

Named loop statement
[see: loop name]

Named number 3.2; 3.2.2
as an entity 3.1
as a primary 4.4
in a static expression 4.9

NATURAL (predefined integer subtype) C; 14.3.6

Negation operation 4.5.4

Negative exponent
in a numeric literal 2.4.1
to an exponentiation operator 4.5.6

NEW_LINE (text_io procedure) 14.3.4; 14.3.5,
14.3.6, 14.3.10

raising an exception 14.4

NEW_PAGE (text_io procedure) 14.3.4; 14.3.10
raising an exception 14.4

No other effect of elaboration 3.9

Not defined by the language
[see: incorrect order dependence]

Not equal
compound delimiter [see: inequality

compound delimiter]
operator [see: relational operator]

Not in membership test
[see: membership test]

Not unary operation 4.5.6

Not unary operator
[see: highest precedence operator]

as an operation of an array type 3.6.2
as an operation of boolean type 3.5.5
in a factor 4.4

Not yet elaborated 3.9

Null array 3.6.1; 3.6
aggregate 4.3.2
and relational operation 4.5.2
as an operand of a catenation 4.5.3

Null component list 3.7

Null literal 3.8, 4.2
[see also: overloading of...]

as a basic operation 3.3.3; 3.8.2
as a primary 4.4
may not be the argument of a conversion 4.6

Null range 3.5
for a loop parameter 5.5

Null record 3.7
and relational operation 4.5.2

Null statement 5.1
[see also: statement]

as a simple statement 5.1

Null string literal 2.6

Number
[see: based number, decimal number]

Number declaration 3.2, 3.2.2
as a basic declaration 3.1

NUMBER_BASE (predefined integer subtype)
14.3.7; 14.3.10

Numeric literal 2.4, 4.2; 2.2, 2.4.1, 2.4.2
[see also: universal type expression]

and an adjacent separator 2.2
as a basic operation 3.3.3
as a primary 4.4
as the parameter of value attribute 3.5.5
as the result of image attribute 3.5.5
assigned 5.2
can be written in the basic character set 2.10
in a conforming construct 6.3.1
in a static expression 4.9

Numeric operation of a universal type 4.10

Numeric type 3.5
[see also: conversion, integer type,

scalar type]
operation 4.5, 4.5.2, 4.5.3, 4.5.4, 4.5.5

Numeric value of a number declaration 3.2

ARM 207
INDEX

NUMERIC_ERROR (predefined exception) 11.1
[see also: division check, overflow check]

not raised due to lost overflow conditions 13.7.3
raised by a numeric operator 4.5
raised by a predefined integer operation 3.5.4
raised by a universal expression 4.10
raised by integer division remainder

or modulus 4.5.5
raised due to a conversion out of range

3.5.4, 3.5.6
suppressed 11.7

Object 3.2; 3.2.1, D
[see also: collection, component, constant,

formal parameter, initial value,
loop parameter, name of..., size attribute,
subcomponent, variable]

as an actual parameter 6.2
as an entity 3.1
created by elaboration of an object

declaration 3.2.1
of a file type [see: file]
renamed 8.5

Object declaration 3.2, 3.2.1
[see also: elaboration]

as a basic declaration 3.1
as a full declaration 7.4.3
in a package specification 7.1
of an array object 3.6.1
of a record object 3.7.2
with a limited type 7.4.4

Object module
from another language system 13.9

Obsolete compilation unit (due to recompilation) 10.3

Occur immediately within
[see: immediately within]

Omitted parameter association for a subprogram
call 6.4.2

Open file 14.1

Operation 3.3, 3.3.3; D
[see also: basic operation, direct visibility,

operator, predefined operation, visibility
by selection, visibility]

as an entity 3.1
classification 3.3.3
of an array type 3.6.2
of a discrete type 3.5.5
of a limited type 7.4.4
of a private type 7.4.2; 7.4.1
of a record type 3.7.4
of a subtype 3.3
of a subtype of a discrete type 3.5.5
of a type 3.3
of a universal type 4.10
propagating an exception 11.6

Operator 4.5; 4.4, C, D

[see also: binary adding operator, designator,
exponentiating operator, function, highest
precedence operator, logical operator,
multiplying operator, overloading of...,
predefined operator, relational operator,
unary adding operator]

as an operation 3.3.3 [see also: operation]
implicitly declared 3.3.3
in an expression 4.4
in a static expression 4.9
overloaded 6.7; 6.6
renamed 8.5

Operator declaration 6.1; 4.5, 6.7

Operator symbol 6.1
[see also: direct visibility, overloading

of .., scope of..., visibility by selection,
visibility]

as a designator 6.1
as a designator in a function declaration 4.5
as a name 4.1
before arrow compound delimiter 8.3
declared 3.1
in a renaming declaration 8.5
in a selector 4.1.3
in a static expression 4.9
not allowed as the designator of a library unit 10.1
of homograph declarations 8.3
overloaded 6.7; 6.6

Optimization 10.6
and exceptions 11.6

Or else control form
[see: short circuit control form]

Or operator
[see: logical operator]

Order
[see: Lexicographic order]

Order not defined by the language
[see: incorrect order dependence]

Order of application of operators in an
expression 4.5

Order of compilation (of compilation units)
10.1, 10.3; 10.1.1, 10.4; (of compilation
units) creating recompilation dependence 10.3

Order of copying back of out and in
out formal parameters 6.4

Order of elaboration (of compilation units)
10.5; 10.1.1

Order of evaluation 1.6
[see also: erroneous]

and exceptions 11.6
of conditions in an if statement 5.3

208 ARM
INDEX

of expressions and the name in an assignment
statement 5.2

of operands in an expression 4.5
of parameter associations in a subroutine call 6.4
of the bounds of a range 3.5

Ordering operator 4.5; 4.5.2

Ordering relation 4.5.2
[see also: relational operator]

of a scalar type 3.5

Other effect
[see: no other effect]

Other special character 2.1
[see also: graphic character]

Others 3.7.3
as a choice in an array aggregate 4.3.2
as a choice in a case statement alternative 5.4
as a choice in a component association 4.3
as a choice in a record aggregate 4.3.1
as an exception choice 11.2

Out mode
[see: mode out]

OUT_FILE (input-output file_mode enumeration
literal) 14.1

Overflow_check
[see: numeric_error, suppress]

Overlapping scopes
[see: hiding, overloading]

Overlaying of objects or program units 13.5

Overloading 8.3; D
[see also: designator, homograph declaration,

identifier, operator symbol, scope, simple
name, subprogram, visibility];

in an assignment statement 5.2
in an expression 4.4
resolution 6.6
resolution context 8.7
resolved by explicit qualification 4.7
sources of 6.6, 8.3
subject to visibility 8.3

Overloading of
an aggregate 4.3; 3.4
a declaration 8.3
a designator 6.6; 6.7
an enumeration literal 3.5.1; 3.4
an explicitly converted expression 4.6
an identifier 6.6
an implicitly converted expression 4.6
a library unit by a locally declared

subprogram 10.1
a library unit by means of renaming 10.1
a literal 4.2
a membership test 4.5.2

a null literal 4.2; 3.8
an operator 4.5, 6.7; 4.4, 6.1
an operator symbol 6.6; 6.7
a string literal 4.2
a subprogram 6.6; 6.7
the expression in a case statement 5.4

Package 7, 7.1; D
[see also: deferred constant declaration,

library unit, name of..., predefined package,
private part, program unit, visible part]

as an entity 3.1
including a raise statement 11.3
named in a use clause 8.4
renamed 8.5
with a separately compiled body 10.2

Package body 7.1, 7.3; D
as a proper body 3.9
as a secondary unit 10.1
as a secondary unit compiled after the

corresponding library unit 10.3
in another package body 7.1
including an exception handler 11.2; 11
including an exit statement 5.7
including an implicit declaration 5.1
must be in the same declarative part

as the declaration 3.9
raising an exception 11.4.1, 11.4.2
recompilation does not affect other

compilation units 10.3
recompiled 10.3

Package declaration 7.1, 7.2; D
and body as a declarative region 8.1
as a basic declaration 3.1
as a later declarative item 3.9
as a library unit 10.1
determining the visibility of another

declaration 8.3
elaboration raising an exception 11.4.2
in a package specification 7.1
must be in the same declarative part

as the body 3.9
recompiled 10.3

Package identifier 7.1

Package specification 7.1, 7.2

Page 14.3.4; 14.3

PAGE (text_io function) 14.3.4; 14.3.10
raising an exception 14.4

Page length 14.3.3; 14.3, 14.3.1, 14.3.4, 14.4

Page terminator 14.3; 14.3.3, 14.3.4, 14.3.5

PAGE_LENGTH (text_io function) 14.3.3,
14.3.4; 14.3.10

raising an exception 14.4

ARM 209
INDEX

Paragraphing recommended for the layout
of programs 1.5

Parameter D
[see also: actual parameter,

formal parameter, formal part, function,
loop parameter, mode, procedure,
subprogram]

of a main program 10.1

Parameter and result type profile 6.6; 8.5
of homograph declarations 8.3

Parameter association 6.4, 6.4.1
named parameter association 6.4
named parameter association for selective

visibility 8.3
omitted for a subprogram call 6.4.2
positional parameter association 6.4

Parameter declaration
[see: parameter specification]

Parameter part
[see: actual parameter part]

Parameter specification 6.1
[see also: loop parameter specification]

as part of a basic declaration 3.1
having an extended scope 8.2
in a formal part 6.1
visibility 8.3

Parameter type profile 6.6

Parenthesis
character 2.1
delimiter 2.2

Parenthesized expression
as a primary 4.4; 4.5
in a static expression 4.9

Part
[see: actual parameter part, declarative

part, formal part]

Partial ordering of compilation 10.3

Percent character 2.1
[see also: string literal]

replacing quotation character 2.10

Period character 2.1
[see also: dot character, point character]

Physical processor 9; 9.8

Plus
character 2.1
delimiter 2.2
operator [see: binary adding operator,

unary adding operator]
unary operation 4.5.4

Point character 2.1
[see also: dot]

in a based literal 2.4.2
in a decimal literal 2.4.1
in a numeric literal 2.4

Point delimiter 2.2

Point in the program text 8.3

Pool of logically related entities
[see: package]

POS (predefined attribute) 3.5.5; A, 13.3

Position number
as parameter to val attribute 3.5.5
of an enumeration literal 3.5.1
of an integer value 3.5.4
of a value of a discrete type 3.5
returned by pos attribute 3.5.5

Positional association 6.4.2, D
[see also: component association, parameter

association]

POSITIVE (predefined integer subtype) 3.6.3;
C, 14.3.7, 14.3.8, 14.3.9, 14.3.10

as the index type of the string type 3.6.3

POSITIVE_COUNT (predefined integer subtype)
14.2.5, 14.3.10; 14.2.4, 14.3, 14.3.4

Potentially affected compilation unit
(due to a recompilation) 10.3

Potentially visible declaration 8.4

Pound sterling character 2.1

Power operator
[see: exponentiating operator]

Precedence 4.5

PRED (predefined attribute) 3.5.5; A, 13.3

Predecessor
[see: pred attribute]

Predefined attribute
[see: base, callable, constrained,

count, first, image, last,
pos, pred, range, size, small,
succ, terminated, val, value, width]

Predefined constant 8.6; C
[see also: system.system_name]

for CHARACTER values [see: ascii]

Predefined exception 8.6, 11.1; C, 11.4.1
[see also: constraint_error, io_common,

numeric_error, program_error]

210 ARM
INDEX

Predefined function 8.6; C
[see also: attribute, character literal,

enumeration literal]

Predefined identifier 8.6; C

Predefined library package 8.6; C
[see also: predefined package, ascii,

input-output, package,
system, text_io]

Predefined named number
[see: system.max_int, system.min_int]

Predefined operation 3.3, 3.3.3; 8.6
[see also: operation, predefined operator]

of a discrete type 3.5.5
of a universal type 4.10
propagating an exception 11.6

Predefined operator 4.5, 8.6; C
[see also: abs, arithmetic operator, binary

adding operator, catenation, equality,
exponentiating operator, highest precedence
operator, inequality, limited type, logical
operator, multiplying operator, operator,
predefined operation, relational operator,
unary adding operator]

applied to an undefined value 3.2.1
as an operation 3.3.3
for an array type 3.6.2
for a record type 3.7.4
implicitly declared 3.3.3
in a static expression 4.9
of an integer type 3.5.4
raising an exception 11.4.1

Predefined package 8.6; C
[see also: ascii, input-output package,

library unit, predefined library package, standard]
for input-output 14

Predefined subprogram 8.6; C
[see also: input-output subprogram, library

unit]

Predefined subtype 8.6; C
[see also: field, natural, number_base,

positive, priority]

Predefined type 8.6; C
[see also: boolean, character, count,

integer, string, system.name, universal_integer]

Prefix 4.1; D
[see also: appropriate for a type, function

call, name, selected component, selector]
in an attribute 4.1.4
in an indexed component 4.1.1
in a selected component 4.1.3
which is a function call 4.1
which is a name 4.1

Primary 4.4

in a factor 4.4
in a static expression 4.9

Private part (of a package) 7.2; 7.4.1, 7.4.3, D
[see also: deferred constant declaration,

private type declaration]

Private type 3.3, 7.4, 7.4.1; D
[see also: class of type, limited private type,

type with discriminants]
corresponding full type declaration 3.3.1
formal parameter 6.2
of a deferred constant 7.4; 3.2.1
operation 7.4.2
with discriminants subject to an attribute 3.7.4

Private type declaration 7.4; 7.4.1, 7.4.2
[see also: private part (of a package),

visible part (of a package)]
acting as an incomplete type declaration 3.8.1
as a portion of a declarative region 8.1
determining the visibility of another

declaration 8.3
including the word ’limited’ 7.4.4

Procedure 6.1; 6
[see also: name of a procedure, parameter

and result type profile, parameter, subprogram]
as a main program 10.1
renamed 8.5

Procedure body
[see: subprogram body]

Procedure call 6.4; 6, D
[see also: subprogram call]

Procedure call statement 6.4
[see also: actual parameter, statement]

as a simple statement 5.1

Procedure specification
[see: subprogram specification]

Processor 9

Profile
[see: parameter and result type profile,

parameter type profile]

Program 10; D
[see also: main program]

Program legality 1.6

Program library 10.1, 10.4; 10.5
creation 10.4; 13.7
manipulation and status 10.4

Program text 2.2, 10.1; 2.10

Program unit 6, 7, 9, 12; D
[see also: library unit, package, subprogram]

entity denoted by an expanded name 4.1.3

ARM 211
INDEX

with a separately compiled body 10.2

PROGRAM_ERROR (predefined exception) 11.1
[see also: elaboration_check, erroneousness,

storage_check]
raised by an erroneous program or incorrect

order dependence 1.6; 11.1
raised by a subprogram call before elaboration

of the body 3.9; 7.3
raised by reaching the end of a function body 6.5
suppressed 11.7

Propagation of an exception
[see: exception propogation]

Proper body 3.9
as a body 3.9
of a library unit separately compiled 10.1

PUT (text_io procedure) 14.3.5; 14.3, 14.3.2, 14.3.10
for character and string types 14.3.6
for enumeration types 14.3.9
for integer types 14.3.7
raising an exception 14.4

Qualification operation 4.7
as a basic operation 3.3.3; 3.3, 3.5.5,

3.6.2, 3.7.4, 3.8.2, 7.4.2
as a basic operation, 3.5.8
using a name of an enumeration type

as qualifier 3.5.1

Qualified expression 4.7; D
as a primary 4.4
in a case statement 5.4
in a static expression 4.9
qualification of an array aggregate 4.3.2
to resolve an overloading ambiguity 6.6

Quotation character 2.1
in a string literal 2.6
replacement by percent character 2.10

Raise statement 11.3; 11
[see also: exception, statement]

as a simple statement 5.1
including the name of an exception 11.1

Raising of an exception 11, 11.3; D
[see also: exception]

causing a transfer of control 5.1

Range 3.5; D
[see also: discrete range, null range]

as a discrete range 3.6
in a relation 4.4
of an index subtype 3.6
of an integer type containing the result

of an operation 4.5
of a predefined integer type 3.5.4
yielded by an attribute 4.1.4

RANGE (predefined attribute) 3.5; 4.1.4, A
for an array type, 3.6.2

Range constraint 3.5; D
[see also: elaboration of...]

ignored due to range_check suppression 11.7
in an integer type definition 3.5.4
in a subtype indication 3.5; 3.3.2
violated 11.1

Range_check
[see: constraint_error, suppress]

Reading the value of an object 6.2

Reciprocal operation in exponentiation
by a negative integer 4.5.6

Recompilation 10.3

Record aggregate 4.3.1; 4.3, D
[see also: aggregate]

in a code statement 13.8

Record component
[see: component, record type, selected component]

Record type 3.7; 3.3, D
[see also: component, composite type

matching components, subcomponent]
formal parameter 6.2
including a limited subcomponent 7.4.4
operation 3.7.4

Record type declaration
[see: record type definition, type declaration]

as a declarative region 8.1
determining the visibility of another

declaration 8.3

Record type definition 3.7; 3.3.1
[see also: component declaration]

Recursive
call of a subprogram 6.1, 12.1; 6.3.2
types 3.8.1; 3.3.1

Reentrant subprogram 6.1

Reference parameter passing 6.2

Relation 4.4
in an expression 4.4

Relational expression
[see: relation, relational operator]

Relational operation 4.5.2
of a boolean type 3.5.3
of a discrete type 3.5.5
of a scalar type 3.5

Relational operator 4.5; 4.5.2, C
[see also: equality operator, inequality

operator, ordering relation, overloading
of an operator, predefined operator]

for an array type 3.6.2

212 ARM
INDEX

for a private type 7.4.2
for a record type 3.7.4
in a relation 4.4
overloaded 6.7

Rem operator
[see: multiplying operator]

Remainder operation 4.5.5

Renaming declaration 8.5; 4.1, 12.1.3
[see also: name]

as a basic declaration 3.1
as a declarative region 8.1
for an array object 3.6.1
for a record object 3.7.2
name declared is not allowed as a prefix

of certain expanded names 4.1.3
to overload a library unit 10.1
to resolve an overloading ambiguity 6.6

Replacement of characters in program text 2.10

Reserved word 2.9; 2.2, 2.3
must not be declared 2.9

Resolution of overloading
[see: overloading]

Result of a function
[see: returned value]

Result subtype (of a function) 6.1
of a return expression 5.8

Result type and overload resolution 6.6

Result type profile
[see: parameter and...]

Return
[see: carriage return]

Return statement 5.8
[see also: function, statement]

as a simple statement 5.1
causing a loop to be exited 5.5
causing a transfer of control 5.1
completing block statement execution 9.4
completing subprogram execution 9.4
expression which is an array aggregate 4.3.2
in a function body 6.5

Returned value
[see: function call]

of a function call 5.8, 6.5; 8.5
of a main program 10.1
of an operation 3.3.3
of a predefined operator of an integer type 3.5.4

Right label bracket compound delimiter 2.2

Right parenthesis
character 2.1

delimiter 2.2

Run time check 11.7; 11.1

Satisfy (a constraint) 3.3; D
[see also: constraint, subtype]

an index constraint 3.6.1
a range constraint 3.5

Scalar type 3.3, 3.5; D
[see also: class of type, discrete type,

enumeration type, integer type, numeric type,
static Expression]

formal parameter 6.2
of a range in a membership test 4.5.2
operation 3.5.5; 4.5.2

Scheme
[see: iteration scheme]

Scope 8.2; 8.3, D
[see also: basic operation, character literal,

declaration, declarative region,
identifier, immediate scope, implicit
declaration, operator symbol, overloading,
visibility]

of a use clause 8.4

Secondary unit 10.1
[see also: compilation unit, library unit]

Selected component 4.1.3; 8.3, D
[see also: direct visibility, prefix, selector,

visibility by selection, visibility]
as a basic operation 3.3.3; 3.3, 3.7.4,

3.8.2, 7.4.2
as a name 4.1
for selective visibility 8.3
in a conforming construct 6.3.1
starting with standard 8.6
using a block name 5.6
using a loop name 5.5
whose prefix denotes a package 8.3
whose prefix denotes a record object 8.3

Selection of an exception handler 11.4,
11.4.1, 11.4.2; 11.6

Selective visibility
[see: visibility by selection]

Selector 4.1.3; D
[see also: prefix, selected component]

Semicolon character 2.1

Semicolon delimiter 2.2

Separate compilation 10, 10.1; 10.5
of a proper body 3.9
of a proper body declared in another

compilation unit 10.2

Separator 2.2

ARM 213
INDEX

Sequence of statements 5.1
in a basic loop 5.5
in a block statement 5.6; 9.4
in a case statement alternative 5.4
in an exception handler 11.2
in an if statement 5.3
in a package body 7.1; 7.3
in a subprogram body 6.3; 9.4, 13.8
including a raise statement 11.3
raising an exception 11.4.1

Sequential access file 14.2; 14.1, 14.2.1

Sequential execution
[see: sequence of statements, statement]

Sequential input-output 14.2.2; 14.2.1

SET_COL (text_io procedure) 14.3.4; 14.3.10

SET_INPUT (text_io procedure) 14.3.2; 14.3.10
raising an exception 14.4

SET_LINE (text_io procedure) 14.3.4; 14.3.10

SET_LINE_LENGTH
(text_io procedure) 14.3.3; 14.3.10

raising an exception 14.4

SET_OUTPUT (text_io procedure) 14.3.2; 14.3.10
raising an exception 14.4

SET_PAGE_LENGTH
(text_io procedure) 14.3.3; 14.3.10

raising an exception 14.4

Sharp character 2.1
[see also: based literal]

replacement by colon character 2.10

Short circuit control form 4.5, 4.5.1; 4.4
as a basic operation 3.3.3; 3.5.5
in an expression 4.4

Short-circuit control form cannot be overloaded 6.7

Simple expression 4.4
as a choice 3.7.3
as a choice in an aggregate 4.3
as a range bound 3.5
in a relation 4.4

Simple name 4.1; 2.3, D
[see also: block name, identifier, label,

loop name, loop simple name, name of...,
name, overloading, visibility]

as a choice 3.7.3
as an enumeration literal 3.5.1
as a formal parameter 6.4
as a name 4.1
before arrow compound delimiter 8.3
in an attribute designator 4.1.4
in a conforming construct 6.3.1
in a package body 7.1

in a package specification 7.1
in a selector 4.1.3
in a with clause 10.1.1
versus identifier 3.1

Simple name of...
[see: name of...]

Simple statement 5.1
[see also: statement]

Single
component definition 3.7
object declaration 3.2

SKIP_LINE (text_io procedure) 14.3.4; 14.3.10
raising an exception 14.4

SKIP_PAGE (text_io procedure) 14.3.4; 14.3.10
raising an exception 14.4

Some order not defined by the language
[see: incorrect order dependence]

Space character 2.1
[see also: basic graphic character]

as a separator 2.2
in a comment 2.7
not allowed in an identifier 2.3
not allowed in a numeric literal 2.4.1

Space character literal 2.5; 2.2

Special character 2.1
[see also: basic graphic character, other

special character]
in a delimiter 2.2

Specification
[see: declaration,

enumeration literal specification,
loop parameter specification,
package specification, parameter specification,
subprogram specification]

STANDARD (predefined package) 8.6; C
[see also: library unit]

as a declarative region 8.1
enclosing the library units of a program

10.1.1; 10.1, 10.2

STANDARD_INPUT
(text_io function) 14.3.2; 14.3.10

STANDARD_OUTPUT
(text_io function) 14.3.2; 14.3.10

Star
[see: double star]

character 2.1
delimiter 2.2

Statement 5.1; 5, D
[see also: abort statement

214 ARM
INDEX

assignment statement,
block statement, case statement,
compound statement, exit statement,
if statement, label, loop statement, null
statement, procedure call statement, raise
statement, return statement,
sequence of statements, simple statement,
target statement]

allowed in an exception handler 11.2
as an entity 3.1
as an overload resolution context 8.7
optimized 10.6
raising an exception 11.4.1; 11.4
that cannot be reached 10.6

Statement alternative
[see: case statement alternative]

Static constraint 4.9
on a subcomponent subject to a component

clause 13.4
on a type 3.5.4, 3.5.6, 3.5.9, 13.2

Static discrete range 4.9
as a choice of an aggregate 4.3.2
as a choice of a case statement 5.4

Static expression 4.9; 8.7, D
as a bound in an integer type definition 3.5.4
as a choice in a case statement 5.4
for a choice in a record aggregate 4.3.2
in an attribute designator 4.1.4
in a number declaration 3.2, 3.2.2
which is of universal type 4.10

Static others choice 4.3.2

Static subtype 4.9
of the expression in a case statement 5.4

STATUS_ERROR (input-output exception) 14.4;
14.2.1, 14.2.2, 14.2.3, 14.2.4, 14.2.5, 14.3.3,
14.3.4, 14.3.5, 14.3.10, 14.5

STORAGE_ERROR (predefined exception)
raised by an elaboration of a declarative item 11.1
raised by the execution of a subprogram call 11.1

STRING (predefined type) 3.6.3; C
[see also: predefined type]

as the parameter of value attribute 3.5.5
as the result of image attribute 3.5.5

String bracket 2.6; 2.10

String literal 2.6, 4.2; 2.2, 3.6.3
[see also: overloading of..., percent mark

character, quotation character]
as a basic operation 3.3.3, 4.2; 3.6.2
as an operator symbol 6.1
as a primary 4.4
may not be the argument of a conversion 4.6
replaced by a catenation of basic characters 2.10

Subaggregate 4.3.2

Subcomponent 3.3; D
[see also: component, composite type,

object]
of a component for which a component

clause is given 13.4
of an unconstrained variable 12.3.1
renamed 8.5
which is of a private type 7.4.1
which is of limited type 7.4.4

Subprogram 6; D
[see also: actual parameter, completed

subprogram, formal
parameter, function, library unit, name of
a subprogram, name of..., overloading of...,
parameter and result type profile, parameter,
predefined subprogram, procedure, program unit]

as an entity 3.1
as a main program 10.1
as an operation 3.3.3; 7.4.2
including a raise statement 11.3
overloaded 6.6
renamed 8.5
with a separately compiled body 10.2

Subprogram body 6.3; 6
as a library unit 10.1
as a proper body 3.9
as a secondary unit 10.1
as a secondary unit compiled after the

corresponding library unit 10.3
in a package body 7.1
including an exception handler 11.2; 11
including an exit statement 5.7
including an implicit declaration, 5.1
including a return statement 5.8
must be in the same declarative part

as the declaration 3.9
not yet elaborated at a call 3.9
raising an exception 11.4.1, 11.4.2
recompilation does not affect other

compilation units 10.3
recompiled 10.3

Subprogram call 6.4; 6, 6.3, 12.3
[see also: actual parameter, function call, procedure

call statement, procedure call]
before elaboration of the body 3.9
with no elaborated body 11.1

Subprogram declaration 6.1; 6
and body as a declarative region 8.1
as a basic declaration 3.1
as a later declarative item 3.9
as a library unit 10.1
as an overloaded declaration 8.3
implied by the body 6.3
in a package specification 7.1
made directly visible by a use clause 8.4
must be in the same declarative part

as the body 3.9
of an operator 6.7

ARM 215
INDEX

recompiled 10.3

Subprogram specification 6.1
conforming to another 6.3.1
for a function 6.5
in a renaming declaration 8.5
in a subprogram body 6.3
including the name of a private type 7.4.1

Subtraction operation 4.5.3

Subtype 3.3, 3.3.2; D
[see also: attribute of..., base attribute,

constrained subtype, constraint, first named
subtype, name of..., operation of..., result
subtype, satisfy, size attribute, static
subtype, type, unconstrained subtype]

as an entity 3.1
declared by an integer type declaration 3.5.4
in a membership test 4.5.2
name [see: name of a subtype, type_mark

of a subtype]
not considered in overload resolution 8.7
of an actual parameter 6.4.1
of an array type [see: constrained array

type, index constraint]
of a component of an array 3.6
of a component of a record 3.7
of a constant in a static expression 4.9
of a formal parameter 6.4.1
of a formal parameter or result of a

renamed subprogram 8.5
of an object [see: elaboration of...]
of a private type 7.4, 7.4.1
of a record type [see: constrained record

type, discriminant constraint]
of a scalar type 3.5
of a variable 5.2

Subtype conversion 4.6
[see also: convertion operation, explicit

conversion, implicit conversion, type conversion]
in an array assignment 5.2.1; 5.2
in a static expression 4.9

Subtype declaration 3.3.2; 3.1, 3.3.2
[see also: elaboration of...]

as a basic declaration 3.1
including the name of a private type 7.4.1

Subtype definition
[see: component subtype definition,

index subtype definition]

Subtype indication 3.3.2
[see also: elaboration of...]

as a component subtype indication 3.7
as a discrete range 3.6
in an array type definition 3.6
in a component declaration 3.7
in a constrained array definition 3.6
in an object declaration 3.2, 3.2.1
in an unconstrained array definition 3.6
with a range constraint 3.5

SUCC (predefined attribute) 3.5.5; A, 13.3

Successor
[see: succ attribute]

Symbol
[see: operator symbol]

Syntactic category 1.5

Syntax notation 1.5

Syntax rule 1.5; E

SYSTEM (predefined library package) 13.7; C

System dependent F
attribute 13.4
constant 13.7
input output 14.1
named number 13.7, 13.7.1
record component 13.4
type 13.7

SYSTEM.MAX_INT
(predefined named number)

13.7.1; 3.5.4
exceeded by the value of a universal

expression 4.10

SYSTEM.MIN_INT (predefined named number)
13.7.1; 3.5.4

greater than the value of a universal
expression 4.10

SYSTEM.NAME (predefined type) 13.7

SYSTEM.SYSTEM_NAME (predefined constant) 13.7
[see also: system_name]

Tabulation
[see: horizontal tabulation, vertical tabulation]

Target type of a conversion 4.6

Term 4.4
in a simple expression 4.4

Terminator
[see: file terminator, line terminator,

page terminator]

Text input-output 14.3; 14.2.1

Text of a program 2.2, 10.1

TEXT_IO (predefined input-output package)
14.3; C, 14, 14.1, 14.3.9, 14.3.10

exceptions 14.4; 14.5
specification 14.3.10

Times operator
[see: multiplying operator]

216 ARM
INDEX

Transfer of control
[see: exception, exit statement,

return statement]

Transitive closure of dependencies of compilation
units 10.5

Transliteration
[see: replacement]

TRUE boolean enumeration literal 3.5.3; C

Type 3.3; D
[see also: appropriate for

a type, array type, attribute of..., base
attribute, base type, boolean type, character
type, class of type, composite type, constrained
type, discrete type,
enumeration type,
integer type, limited private type, limited
type, name of..., numeric type, operation
of..., predefined type, private
type, record type, scalar type, size attribute,
subtype, unconstrained subtype,
unconstrained type, universal type]

as an entity 3.1
due to elaboration [see: elaboration]
name [see: name of a type, type_mark of a type]
of an actual parameter 6.4.1
of an aggregate 4.3.1, 4.3.2
of a case statement expression 5.4
of a condition 5.3
of a declared object 3.2, 3.2.1
of an expression 4.4
of a file 14.1
of an index 4.1.1
of a loop parameter 5.5
of a named number 3.2, 3.2.2
of a primary in an expression 4.4
of a universal expression 4.10
of a value 3.3; 3.2
renamed 8.5
yielded by an attribute 4.1.4

Type conversion 4.6
[see also: conversion operator, conversion,

explicit conversion, subtype conversion,
unchecked_conversion]

as an actual parameter 6.4, 6.4.1
as a primary 4.4
in a static expression 4.9

Type declaration 3.3.1; D
[see also: elaboration of..., incomplete

type declaration, private type declaration]
as a basic declaration 3.1
as a full declaration 7.4.1
implicitly declaring operations 3.3.3
in a package specification 7.1
including the name of a private type 7.4.1
of an integer type 3.5.4
of a subtype 13.1

Type definition 3.3.1; D

[see also: array
type definition,
elaboration of..., enumeration type definition,
integer type definition]

Type mark (denoting a type or subtype) 3.3.2
[see also: name of a subtype, name of a type]

in a conversion 4.6
in a deferred constant declaration 7.4
in an index subtype definition 3.6
in a parameter specification 6.1; 6.2
in a qualified expression 4.7
in a relation 4.4
in a renaming declaration 8.5
in a subprogram specification 6.1
of a static scalar subtype 4.9

Unary adding operator 4.4, 4.5, C; 4.5.4
[see also: arithmetic operator, overloading

of an operator, predefined operator]
as an operation of a discrete type 3.5.5
in a simple expression 4.4
overloaded 6.7

Unary operator 4.5; 4.5.4, 4.5.6, C
[see also: highest precedence operator,

unary adding operator]

Unconstrained array definition 3.6

Unconstrained array type 3.6
as an actual to a formal private type 12.3.2
formal parameter 6.2

Unconstrained subtype 3.3, 3.3.2
[see also: constrained subtype, constraint,

subtype, type]

Unconstrained type 3.3; 3.2.1, 3.6, 3.6.1, 3.7, 3.7.2
formal parameter 6.2

Unconstrained variable 3.2.1, 3.3, 3.6,
3.7; 12.3.1

as a subcomponent [see: subcomponent]

Underline character 2.1
in a based literal 2.4.2
in a decimal literal 2.4.1
in an identifier 2.3

Unhandled exception 11.4.1

Unit
[see: compilation unit, library

unit, program unit]

Universal expression 4.10
assigned 5.2
in an attribute designator 4.1.4
which is static 4.10

Universal type 4.10
[see also: conversion, implicit conversion]

expression [see: expression, numeric literal]

ARM 217
INDEX

of a named number 3.2.2; 3.2
result of an attribute [see: attribute]

UNIVERSAL_INTEGER
(predefined type) 3.5.4, 4.10; C
[see also: integer literal]

argument to a conversion 3.3.3, 4.6
attribute 3.5.5, 13.7.1, 13.7.2, 13.7.3; 9.9
bounds of a discrete range 3.6.1
bounds of a loop parameter 5.5
converted to an integer type 3.5.5
of integer literals 2.4, 4.2
result of an operation 4.10; 4.5

Updating the value of an object 6.2

Upper bound
[see: bound, last attribute]

Upper case letter 2.1
[see also: basic graphic character]

A to F in a based literal 2.4.2
E in a decimal literal 2.4.1
in an identifier 2.3

Use clause (to achieve direct visibility)
8.4; 8.3, D

[see also: context clause]
as a basic declarative item 3.9
as a later declarative item 3.9
in a context clause of a compilation

unit 10.1.1
inserted by the environment 10.4

USE_ERROR (input-output exception) 14.4;
14.2.1, 14.2.3, 14.2.5, 14.3.3, 14.3.10, 14.5

VAL (predefined attribute) 3.5.5; A

Value
[see: assignment, evaluation, expression,

initial value, returned value, subtype,
type]

in a constant 3.2.1; 3.2
in a variable 3.2.1, 5.2; 3.2
of an array type 3.6; 3.6.1
of a based literal 2.4.2
of a boolean type 3.5.3
of a character literal 2.5
of a character type 3.5.2; 2.5, 2.6
of a decimal literal 2.4.1
of a record type 3.7
of a string literal 2.6; 2.10
of a string type 3.6.3; 2.6
returned by a function call [see: returned value]

VALUE (predefined attribute) 3.5.5; A

Value set
of a subtype 3.3, 3.3.2
of a type 3.3

Value-return parameter passing 6.2

Variable 3.2.1; D
[see also: name of..., object, unconstrained...]

as an actual parameter 6.2
declared in a package body 7.3
formal parameter 6.2
in an assignment statement 5.2
name [see: name of a variable]
of an array type as destination of an

assignment 5.2.1
of a private type 7.4.1
renamed 8.5

Variable declaration 3.2.1

Vertical bar character 2.1
replacement by exclamation character 2.10

Vertical bar delimiter 2.2

Vertical tabulation format effector 2.1

Violation of a constraint
[see: constraint_error exception]

Visibility 8.3; 8.2, D
[see also: basic operation, character literal,

direct visibility, hiding, identifier, name,
operation, operator symbol, overloading,
scope of..., selected component, simple name]

and renaming 8.5
determining multiple meanings of an

identifier 8.4, 8.7; 8.5
determining order of compilation 10.3
due to a use clause 8.4
of a library unit 8.6
of a library unit due to a with clause 10.1.1
of a name for an enumeration literal 3.5.1
of a name of an exception 11.2
of an operation declared in a package 7.4.2
of a renaming declaration 8.5
of a subprogram declared in a package 6.3
of declarations in a package body 7.3
of declarations in a package specification 7.2
of declarations in the package system 13.7
of the simple name of a named number 3.2
of the simple name of an object 3.2
of the simple name of a subtype 3.3.2
of the simple name of a type 3.3.1

Visibility by selection 8.3
[see also: basic operation, character literal,

operation, operator symbol, selected component]

Visible part (of a package) 7.2; 3.2.1,
7.4, 7.4.1, 7.4.3, D

[see also: deferred constant declaration,
private type declaration]

declaration having an extended scope 8.2
determining the visibility of a declaration 8.3
entity denoted by an expanded name 4.1.3
named in a use clause 8.4

While loop
[see: loop statement]

218 ARM
INDEX

WIDTH (predefined attribute) 3.5.5; A

With clause 10.1.1; D
[see also: context clause]

determining order of compilation 10.3
determining the implicit order of library units 8.6
in a context clause of a compilation

unit 10.1.1
inserted by the environment 10.4
leading to direct visibility 8.3

Writing an output file 14.1, 14.2.1, 14.3.4

Xor operator
[see: logical operator]

& operator
[see: binary adding operator, catenation operator]

* operator
[see: multiplying operator]

+ operator
[see: binary adding operator, unary adding operator]

- operator
[see: binary adding operator, unary adding operator]

/= operator
[see: inequality operator, relational operator]

/ operator
[see: multiplying operator]

<= operator
[see: relational operator]

< operator
[see: relational operator]

= operator
[see: equality operator, relational operator]

>= operator
[see: relational operator]

> operator
[see: relational operator]

ARM 219
Postscript : Submission of Comments

Appendix H

Postscript : Submission of Comments

This appendix is not part of the standard definition of the AVA programming language.

We would appreciate comments on this AVA reference manual to be submitted by Internet to the
address

mksmith@cli.com

If you do not have Internet access, please send the comments by mail

Michael K. Smith
Computational Logic Inc.
1717 W 6th, Suite 290
Austin, TX 78703

All comments may someday be sorted and processed mechanically in order to simplify their
analysis and to facilitate giving them proper consideration. To aid this process, you are
requested to precede each comment with a three-line header:

!section ...
!version Technical Report 64
!date ...
!topic ...

The section line includes the section number, the paragraph number enclosed in parentheses,
your name or affiliation (or both), and the date in ISO standard form (year-month-day).
Paragraph numbers in section identifiers are optional, but very helpful. For example, here is the
section line of comment #1194 on a previous version of the Ada Manual:

!section 03.02.01(12) D. Taffs 82-04-26

The version line, for comments on this document, should only contain "!version Technical Report
64". Its purpose is to distinguish comments that refer to different versions of this report.

The topic line should contain a one-line summary of the comment. This line is essential, and
you are kindly asked to avoid topics such as "Typo" or "Editorial comment" which will not convey
any information when printed in a table of contents. An example of an informative topic line is:

!topic Subcomponents of constants are constants

Note also that nothing prevents the topic line from including all the information of a comment, as
in the following topic line:

!topic Insert: "... are {implicitly} defined by a subtype declaration"

As a final example here is a complete comment received on a version of the Ada manual:

220 ARM
Postscript : Submission of Comments

!section 03.02.01(12) D. Taffs 82-04-26
!version 10
!topic Subcomponents of constants are constants

Change "component" to "subcomponent" in the last sentence.

Otherwise the statement is inconsistent with the defined use of subcomponent in 3.3,
which says that subcomponents are excluded when the term component is used instead of
subcomponent.

ARM 221
Postscript : Submission of Comments

References

[ARTEWG 87] Catalogue of Ada Runtime Implementation Dependencies
ACM, Special Interest Group on Ada, Runtime Environment Working Group, 1987.

[Carre 88] B. A. Carre and T. J. Jennings.
SPARK - The SPADE Ada Kernel (Version 1.0).
Technical Report, University of Southampton, March, 1988.

[DDC 87] The Draft Formal Definition of Ada
Denmark, 1987.

[DoD 83] Reference Manual for the Ada Programming Language
United States Department of Defense, 1983.
ANSI/MIL-STD-1815 A.

[NYU 83] Ada Project.
Ada/Ed Semantic Actions (Version 1.1).
Technical Report, Courant Institute, New York University, 1983.

[NYU 84] Ada Project.
Executable Semantic Model for Ada (Version 1.4).
Technical Report, Courant Institute, New York University, 1984.

[Polak 88] Wolfgang Polak.
A Technique for Defining Predicate Transformers.
Technical Report 17-4, Odyssey Research Associates, Ithaca, NY, October, 1988.

[Ramsey 88] Norman Ramsey.
Developing Formally Verified Ada Programs.
Technical Report 17-3, Odyssey Research Associates, Ithaca, NY, October, 1988.

[SmithMK 88] Michael K. Smith, Dan Craigen, and Mark Saaltink.
The nanoAVA Definition.
Technical Report 21, Computational Logic, Inc., June, 1988.

[SmithMK 90] Michael K. Smith.
A Formal Static Semantics for Part of AVA: ACL2 Version.
Technical Report 191, Computational Logic, Inc., May, 1990.

[Wichmann 89a] Wichmann, B. A.
Low-Ada: An Ada validation Tool.
NPL Report DITC 144/89, National Physical Laboratory, Teddington, Middlesex,

United Kingdom, August, 1989.

[Wichmann 89b] Wichmann, B. A.
Insecurities in the Ada Programming Language.
NPL Report DITC 137/89, National Physical Laboratory, Teddington, Middlesex,

United Kingdom, January, 1989.

i

Table of Contents

Chapter 1. Introduction . 3

1.1. Scope of the Standard . 3
1.1.1. Extent of the Standard . 3
1.1.2. Conformity of an Implementation With the Standard . 4

1.2. Structure of the Standard . 4
1.3. Design Goals and Sources: Omitted . 5
1.4. Language Summary . 5
1.5. Method of Description and Syntax Notation . 7
1.6. Classification of Errors . 8

Chapter 2. Lexical Elements . 11

2.1. Character Set . 11
2.2. Lexical Elements, Separators, and Delimiters . 13
2.3. Identifiers . 14
2.4. Numeric Literals . 14

2.4.1. Decimal Literals . 15
2.4.2. Based Literals . 15

2.5. Character Literals . 16
2.6. String Literals . 16
2.7. Comments . 17
2.8. Pragmas: Removed . 18
2.9. Reserved Words . 18
2.10. Allowable Replacements of Characters . 19

Chapter 3. Declarations and Types . 21

3.1. Declarations . 21
3.2. Objects and Named Numbers . 22

3.2.1. Object Declarations . 23
3.2.2. Number Declarations . 25

3.3. Types and Subtypes . 25
3.3.1. Type Declarations . 26
3.3.2. Subtype Declarations . 27
3.3.3. Classification of Operations . 28

3.4. Derived Types : Removed . 30
3.5. Scalar Types . 30

3.5.1. Enumeration Types . 31
3.5.2. Character Types . 33
3.5.3. Boolean Types . 33
3.5.4. Integer Types . 33
3.5.5. Operations of Discrete Types . 35
3.5.6. Real Types: Removed . 37
3.5.7. Floating Point Types: Removed . 37
3.5.8. Operations of Floating Point Types: Removed . 37

ii

3.5.9. Fixed Point Types: Removed . 38
3.5.10. Operations of Fixed Point Types: Removed . 38

3.6. Array Types . 38
3.6.1. Index Constraints and Discrete Ranges . 40
3.6.2. Operations of Array Types . 42
3.6.3. The Type String . 43

3.7. Record Types . 44
3.7.1. Discriminants: Removed . 45
3.7.2. Discriminant Constraints: Removed . 46
3.7.3. Variant Parts: Removed . 46
3.7.4. Operations of Record Types . 46

3.8. Access Types: Removed . 46
3.9. Declarative Parts . 47

Chapter 4. Names and Expressions . 49

4.1. Names . 49
4.1.1. Indexed Components . 50
4.1.2. Slices: Removed . 51
4.1.3. Selected Components . 51
4.1.4. Attributes . 52

4.2. Literals . 53
4.3. Aggregates . 54

4.3.1. Record Aggregates . 55
4.3.2. Array Aggregates . 56

4.4. Expressions . 58
4.5. Operators and Expression Evaluation . 59

4.5.1. Logical Operators and Short-circuit Control Forms . 61
4.5.2. Relational Operators and Membership Tests . 62
4.5.3. Binary Adding Operators . 63
4.5.4. Unary Adding Operators . 64
4.5.5. Multiplying Operators . 65
4.5.6. Highest Precedence Operators . 66
4.5.7. Accuracy of Operations with Real Operands: Removed . 67

4.6. Type Conversions . 67
4.7. Qualified Expressions . 69
4.8. Allocators: Removed . 70
4.9. Static Expressions and Static Subtypes . 71
4.10. Universal Expressions . 72

Chapter 5. Statements . 75

5.1. Simple and Compound Statements - Sequences of Statements 75
5.2. Assignment Statement . 76

5.2.1. Array Assignments . 77
5.3. If Statements . 78
5.4. Case Statements . 79
5.5. Loop Statements . 80
5.6. Block Statements . 82
5.7. Exit Statements . 83
5.8. Return Statements . 83
5.9. Goto Statements: Removed . 84

iii

Chapter 6. Subprograms . 85

6.1. Subprogram Declarations . 85
6.2. Formal Parameter Modes . 86
6.3. Subprogram Bodies . 87

6.3.1. Conformance Rules . 89
6.3.2. Inline Expansion of Subprograms: Removed . 90

6.4. Subprogram Calls . 90
6.4.1. Parameter Associations . 91
6.4.2. Default Parameters: Removed . 93

6.5. Function Subprograms . 93
6.6. Parameter and Result Type Profile - Overloading of Subprograms 94
6.7. Overloading of Operators: Removed . 95

Chapter 7. Packages . 97

7.1. Package Structure . 97
7.2. Package Specifications and Declarations . 98
7.3. Package Bodies . 99
7.4. Private Type and Deferred Constant Declarations . 100

7.4.1. Private Types . 101
7.4.2. Operations of a Private Type . 102
7.4.3. Deferred Constants . 104
7.4.4. Limited Types: Removed. 105

7.5. Example of a Table Management Package . 105
7.6. Example of a Text Handling Package: Removed . 106

Chapter 8. Visibility Rules . 107

8.1. Declarative Region . 107
8.2. Scope of Declarations . 108
8.3. Visibility . 109
8.4. Use Clauses . 112
8.5. Renaming Declarations . 114
8.6. The Package Standard . 116
8.7. The Context of Overload Resolution . 117

Chapter 9. Tasks: Removed . 119

Chapter 10. Program Structure and Compilation Issues . 121

10.1. Compilation Units - Library Units . 121
10.1.1. Context Clauses - With Clauses . 123
10.1.2. Examples of Compilation Units . 125

10.2. Subunits of Compilation Units : Removed . 127
10.3. Order of Compilation . 127
10.4. The Program Library . 129
10.5. Elaboration of Library Units . 129
10.6. Program Optimization . 130

iv

Chapter 11. Exceptions . 133

11.1. Exception Declarations . 133
11.2. Exception Handlers . 134
11.3. Raise Statements . 135
11.4. Exception Handling . 136

11.4.1. Exceptions Raised During the Execution of Statements . 136
11.4.2. Exceptions Raised During the Elaboration of Declarations . 138

11.5. Exceptions Raised During Task Communication: Removed 139
11.6. Exceptions and Optimization: Removed . 139
11.7. Suppressing Checks: Removed . 139

Chapter 12. Generic Units: Removed . 141

Chapter 13. Representation Clauses and Implementation-Dependent Features 143

13.1. Representation Clauses: Removed . 143
13.2. Length Clauses: Removed . 143
13.3. Enumeration Representation Clauses: Removed . 144
13.4. Record Representation Clauses: Removed . 144
13.5. Address Clauses: Removed . 144

13.5.1. Interrupts: Removed . 145
13.6. Change of Representation: Removed . 145
13.7. The Package AVA . 145

13.7.1. System-Dependent Named Numbers . 146
13.7.2. Representation Attributes: Removed . 146
13.7.3. Representation Attributes of Real Types: Removed . 147

13.8. Machine Code Insertions: Removed . 147
13.9. Interface to Other Languages: Removed . 147
13.10. Unchecked Programming: Removed . 147

Chapter 14. Input-Output . 149

14.1. External Files and File Objects . 149
14.2. Sequential and Direct Files . 150

14.2.1. File Management . 151
14.2.2. Sequential Input-Output . 151
14.2.3. Specification of the Package Sequential_IO: Removed . 151
14.2.4. Direct Input-Output: Removed . 151
14.2.5. Specification of the Package Direct_IO: Removed . 152

14.3. Text Input-Output . 152
14.3.1. File Management . 152
14.3.2. Default Input and Output Files . 153
14.3.3. Specification of Line and Page Lengths: Omitted . 154
14.3.4. Operations on Columns, Lines, and Pages . 154
14.3.5. Get and Put Procedures . 154
14.3.6. Input-Output of Characters and Strings . 155
14.3.7. Input-Output for Integer Types: Removed . 156
14.3.8. Input-Output for Real Types: Removed . 156
14.3.9. Input-Output for Enumeration Types: Removed . 156
14.3.10. Specification of the Package AVA_IO . 157

14.4. Exceptions in Input-Output . 158

v

14.5. Specification of the Package IO_Exceptions: Removed 159
14.6. Low Level Input-Output: Removed . 159
14.7. Example of Input-Output (Rewritten Example) . 159

Appendix A. Predefined Language Attributes . 161

Appendix B. Predefined Language Pragmas: Removed . 165

Appendix C. Predefined Language Environment . 167

Appendix D. Glossary . 171

Appendix E. Syntax Summary . 177

Appendix F. Implementation-Dependent Characteristics . 189

Appendix G. INDEX . 191

Appendix H. Postscript : Submission of Comments . 219

vi

List of Figures

vii

List of Tables

