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1 Introduction

Mach [Ras86] is an operating system kernel that has been under development
for a number of years, primarily at Carnegie-Mellon University. It is not a
fully functional operating system. It implements a few basic abstractions like
task, thread, message and port. Usable operating systems are built on top of
the Mach kernel in terms of these abstractions.

This is the first in a series of reports that give a mathematical model of the
functional behavior of the Mach kernel version 3.0. We have several goals
in doing this work. The first is simply to provide mathematically precise
documentation. As documentation, this report supplements existing sources
[Loe91b], [Loe91a]. In them, Keith Loepere writes:

Although it is a goal of the Mach kernel to minimize abstrac-
tions provided by the kernel, it is not a goal to be minimal in the
semantics associated with those abstractions. As such, each of
the abstractions provided has a rich set of semantics associated
with it, and a complex set of interactions with other abstractions.
— [Loe91b], pg 2.

This is an accurate characterization of the microkernel architecture. We
believe that our mathematical formulation clarifies the essential features of
Mach by precisely defining required behavior of the kernel interface, and
ignoring implementation issues. Of course, by leaving out implementation
issues we leave out much of what is interesting about Mach.

Our second goal is to begin the process of defining a contract between
Mach users and implementors. It would be a benefit to the Mach community
if an unambiguous statement of the required features of a Mach implemen-
tation were available. Programs which use only these features would be
completely portable. This would make possible program portability at a
high level of abstraction.

A benefit of having a mathematically precise contract is that it can be
used to resolve disputes about what is compatible with Mach. Is a new feature
purely an extension of Mach — or does it modify existing functionality? Such
questions can be addressed by proof, not only by testing. This contrasts with
programming language based efforts at standardization like [IEE90].

Our third and final goal is to begin research on the formal specification
and proof of correctness of applications programs which run on Mach, and



of programs and hardware which implement Mach. Ultimately, we would
like to have a Mach kernel specification in a form which can be used by a
mechanical proof checker. This report provides a first step in that direction.

This report describes the primitive entities and properties of those en-
tities in a Mach kernel state. It states axioms about a “legal” Mach state.
Subsequent reports will deal with transitions on a Mach state, ultimately
leading to formal specifications for kernel calls.

This report can be viewed as an introduction to Mach, but it assumes
at least a familiarity with the overall design goals of the Mach project. We
have not attempted to provide complete explanations for every concept in-
troduced. We rely heavily on the existing literature, and make frequent
references to [Loe91b] for corroboration.

This report is derived from an annotated “script” of events submitted
to Nqthm, the Boyer-Moore theorem prover [BM88]. A script is a file con-
taining function definitions, axioms and theorems in the Nqthm logic. We
have arranged for Nqthm to process this script as follows. It checks that
all applications of function symbols are syntactically correct, all suggested
theorems are in fact true, and all definitions are well-formed. We have used
the theorem prover to demonstrate the consistency of the axioms introduced
in this report (see Section 10). This report can be thought of as a guide to
the Nqthm script, which contains all of the details of our formalization of a
Mach kernel state. We have suppressed some of the details in this report for
the sake of readability.

Implementation Note. To help motivate and explain our formalization,
we refer to the existing Mach implementation in C. These implementation
notes are set off from the rest of the text, and may be ignored by the reader
who is unfamiliar with, or uninterested in, the Mach implementation.

2 Notation

2.1 Symbols

the set of natural numbers
equality
subset

N1 Z



set intersection

set membership

negation

conjunction

disjunction

implication

bi-implication

existential quantification

universal quantification

,—,%,—  arithmetic operations on natural numbers
Eg,5—2=3, but2—-5=0. Also,7 +-2=3

<,<,>,> inequalities on natural numbers

1] <>14mD>D

+ << w

{a,b,c) a tuple

{a,b,c} a set

IDENT a constant
’ident a scalar constant

2.2 Operator Precedence

We use infix notation for many mathematical expressions. When parentheses
are omitted, this can result in ambiguities. Does a * b + ¢ mean (a * b) + ¢
or ax (b+ ¢)? To resolve such ambiguities, we resort to a convention of
operator precedence. In the absence of parentheses, one associates arguments
to operators according to the following rules.

Minus (—) has the highest precedence. Therefore —a + b means (—a) + b.
Next comes integer quotient (=), remainder (mod) and multiplication (%),
followed by the group consisting of addition (+) and subtraction (—), which
is followed by the group =, <, <, >, >, and €. Negation (—) comes next,
followed by conjunction (A), followed by disjunction (V). The quantifiers V
and 3 are in the next group. Finally, the group consisting of implication (—)
and bi-implication («+) has the lowest precedence.

As a result of these rules, a * b + ¢ means (axb)+c. The logical expression
p A qg— rmeans (pAgq) —r,and = a V b A ¢ means (—a) V (b Ac).



2.3 Declarations

We specity Mach by introducing functions and predicates that represent
Mach concepts, and by stating axioms about them. We introduce a new
function symbol in a number of ways. A defined function is introduced as
follows.

Definition 2.1
f(z, y) = g(z, y)

Here, f is a new function symbol and g is an expression on f’s arguments
involving only previously defined functions.

When we intend only to partially specify a new function symbol, we in-
troduce it with a sequence of declarations. The following form declares a new
function symbol and the names of its formal parameters. This information
determines the function’s arity, that is, the number of its parameters.

Function 2.2

f(z, y)

Subsequent axioms state assumptions about a function symbol, as in the
following example. Sometimes we omit the printing of the function declara-
tion, and let an axiom suffice to introduce a new function.

Axiom 2.3
p(z, 9y, z) — (f(z, y) = 2)

Some function symbols are predicates, i.e., functions whose range is the
set of boolean values {true, false}. Certain predicates have particular promi-
nence in a state-based specification such as this. A relation is a predicate on
several arguments, the last of which is a state variable s. In the Mach spec-
ification, the relations are on one or more Mach entity classes, and optional
additional parameters from other data types. We declare such a predicate in
the following way.

Relation 2.4
p(z, y, s) WHERE
qa(z, s) Ax(y, s)



This declaration introduces a new relation p along with the axiom
p(x,y,s) =true V p(z,y,s) = false.

The expression q (z, s) A r(y, s) can be thought of as a guard. The guard
defines some necessary conditions for the relation; it introduces the axiom

—(q(z,8) A1 (y,s)) = —p(x,9,5)

While the guard can be an arbitrary predicate on the parameters to p, we
typically write only elementary requirements. In our usage the guard looks
like a signature, an expression which states the types of the parameters.

A set of parameters may be a key. As in database terminology, a key
determines the other parameters of any instance of a relation. We indicate
the members of a key with underlining. The state variable is a part of every
key; we refrain from underlining it. For the above example, the following
axiom is introduced for the key .

p(z1,9,8) A p(x2,y,8) — 1 =12

A relation may have more than one key. When there are two keys, we
indicate the second key with overlining. The Mach specification currently
has no relation with more than two keys.

Useful specification functions may be derived from a relation. In the
relation p above, y is a key. That is, in a given state, a single z value may
be p-related to multiple y values. This suggests the following specification
functions. The predicate exists-z-related-to-y holds if some z is related to y
in state s. If so, the function z-related-to-y gives the unique z related to y.
The function all-ys-related-to-x is the set of y values p-related to z in state
s.

Definition 2.5
exists-x-related-to-y (y, s) = 3 z: p(z, vy, s)

Axiom 2.6
exists-x-related-to-y (y, s) — (p (x-related-to-y (v, s), v, s))

Axiom 2.7
q(z, s) — (y € all-ys-related-to-x (z, s) < p(z, y, s))



3 Primitive Entities

The definition of each Mach concept involves a state variable s. One thinks
of a Mach property as holding in a given state. A Mach kernel state contains
entities from the following disjoint classes: tasks, threads, ports, messages,
memories, pages, processors, processor sets, and devices.

A task is the unit of resource allocation. A task holds access to message
ports and to memory. A task may contain one or more threads.

A thread represents a flow of control within a task. One thinks of a thread
as a program counter together with local register state. All threads share
the resources allocated to the task in which they are contained.

A port is container of messages. A task may hold the right to send a
message to a port, and/or to receive a message from a port.

A message is a unit of information which can be passed between two
tasks. Messages can be used to pass data, and to pass rights to ports.

An abstract memory, or just memory, n mapping from offsets to words, a
unit of data. A task cannot directly—i.e., via a machine instruction. It can
only directly access the contents of a page.

A page is the unit of physical memory. A page is a fixed-size sequence of
words. A task accesses a page via a virtual address. The primary purpose of
a page is to hold a snapshot of some segment of an abstract memory.

A processoris a hardware instruction interpreter.
A processor set is a collection of processors.
A device is one of a number of types of peripheral hardware.

We write taskp (z, s) to say that z is a task in state s. We call taskp a
recognizer because it recognizes an element of one of the distinguished classes.
The names of the other recognizers are threadp, portp, messagep, memoryp,
pagep, procp, procsetp, and devicep. Here is the axiom that faskp may not
recognize a member of any of the other entity classes. A analogous constraint
applies to the other recognizers.



Axiom 3.1

taskp (z, )
— - threadp (z, s)
A = portp (z, s)
A — messagep (z, )
A = memoryp (z, s)
A — pagep (z, s)
A = procp (z, )
A = procsetp (z, s)
A = devicep (z, s)

In Mach, the kernel is viewed as a task. We introduce the constant
KERNEL to represent the kernel task.

Axiom 3.2
taskp (KERNEL, S)

x satisfies entityp in state s if it is a member of one of the entity classes.
The function entities gives the set of entities that exist in given state. The
function all-entities contains the set of entities that could exist in a state.
That is, it is the set of potential entities.

Definition 3.3
entityp (z, s)
=  taskp(z, s)
threadp (z, s)
portp (z, s)
messagep (z, s)
memoryp (z, s)
pagep (z, s)
procp (z, )
procsetp (z, s)
devicep (z, s)

KKK LK LK KL

Axiom 3.4
T € entities (s) < entityp (z, s)



Axiom 3.5
entities (s) C ALL-ENTITIES

We assume the existence of the constant NULL-PTR that identifies no
entity.

Axiom 3.6
- entityp (NULL-PTR, )

One possible interpretation of the formula taskp (z, s) is to think of s
as an association list of names and entities. The predicate taskp holds on z
when it is a name bound in s to an object of type task. One should think of
the first argument to a recognizer as a reference to a unique entity, and not
as an entity itself.

Implementation Note. The C implementation of Mach suggests an in-
terpretation of the formula taskp (z, s) which is similar to the association
list interpretation. Think of s as the memory occupied by the kernel, and
z as the address of a task structure as defined by the C code. taskp (z,
s) is implemented by a pointer to a task structure. The C structures
which implement the other entity classes are thread, ipc_port, ipc_kmsg
(a message), vm object (an abstract memory), vm_page, processor,
processor_set, and device.

Webster [Web87] offers the following as a definition of the word entity.
. the existence of a thing as contrasted with its attributes.

This reflects our attitude about Mach entities. At the level of abstraction
of this specification, a Mach entity has no contents. It is an element of an
abstract data type and may engage in axiomatized relationships with other
entities, and with elements of other sets, e.g., integers. The entity classes are
only a subset of the elementary data types axiomatized in this paper. We
introduce the others, for example port names, as needed in the presentation.

Implementation Note. A relation is typically implemented in the Mach
code with pointers and flags. A field within a C structure which is used
as a pointer to another implements a relation between instances of the
structures. See Section 4 for a particularly simple example.




4 Threads and Tasks

A task contains zero or more threads. The relation task-thread-rel associates
a thread with a task. A thread belongs to at most one task.! The predicate
exists-owning-task holds when a thread has an owning task, and owning-task
identifies that task when such an assignment exists. The function threads is
the set of threads associated with a task.

Relation 4.1
task-thread-rel (¢, th, s) WHERE
taskp (¢, s) A threadp (th, s)

Definition 4.2
exists-owning-task (th, s) = 3 ¢: task-thread-rel (¢, th, s)

Axiom 4.3
exists-owning-task (th, s) — task-thread-rel (owning-task (th, s), th, s)

Axiom 4.4
taskp (¢, s) — (th € threads (¢, s) < task-thread-rel (¢, th, s))

As a result of these axioms, we can conclude that any element of the value
of the function threads must be a thread.

Theorem 4.5
taskp (¢, s) A th € threads (¢, s) — threadp (th, s)

Implementation Note. Tuskp is implemented by a pointer to a task
structure, and threadp is implemented by a pointer to a thread structure.
Task-thread-rel is implemented by the task field of a thread structure.
This is a pointer from a thread to a task. A task contains a header to a
linked list of threads owned by the task. This suggests the implementation
invariant that the task field of a thread th must point to the task in whose
thread list th is linked.

Lef. [Loe91b], pg. 8
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5 Ports and Port Sets

5.1 Port Rights

Let N be a set. A is a set of names used to identify capabilities on ports.
A task has access to a port only via a name in N. We assume the existence
of two distinguished names NULLNAME €N, and DEADNAME €N

There are three access rights which a task can have on a port.? R is the
set of port access rights.

Definition 5.1
R = {’send, ’receive, ’send-once}

A port right identifies a task’s name for a port, and what by rights the
task may access the port. In port-right-rel, t is a task, p is a port, n is a
name and R is a non-empty subset of R. The port right parameter 7 can be
thought of as representing the number of times a given port right has been
granted to a task. This value is called the reference count of the port right.
In any sequence of states, the value of 7 is the number of times the right has
been granted minus the number of times the right has been revoked. The
reference count of a port right is a non-zero natural number less than the
constant MAX-REFCOUNT.

A task and name determine the port in a port right relation, the set of
rights held to it, and the reference count of the right. The predicate port-
right-namep recognizes a task ¢ and name n that represent a port right. The
function named-port identifies the port to which task ¢ holds a right by name
n. The function port-rights identifies the set of rights that task ¢ holds to a
port by name n. The function port-right-refcount is the reference count of a
port right.

Relation 5.2

port-right-rel (¢, p, n, R, i, s) WHERE
taskp (¢, s)

A portp (p, s)

A (neN)

AN (RCTR)

A (0 < i < MAX-REFCOUNT)

2¢f. [Loe91b], pg. 28
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Definition 5.3
port-right-namep (¢, n, s) = 3 p, R, i: port-right-rel (¢, p, n, R, 1, s)

Axiom 5.4
port-right-namep (¢, n, s)
— port-right-rel (¢, named-port (¢, n, s), n, port-rights (¢, n, s),
port-right-refcount (¢, n, s), s)

Neither NULLNAME nor DEADNAME may serve as the name for a port
right. The set of rights in a port right may not be empty.

Axiom 5.5
(n = NULLNAME) V (n = DEADNAME) — - port-right-rel (£, p, n, R, i, s)

Axiom 5.6
- port-right-rel (¢, p, n, 0, 7, s)

The reference count of a receive or send-once port right is exactly 1. A
send right can have multiple references.

Axiom 5.7
port-right-rel (¢, p, n, {’receive}, i, s) — (1 = 1)

Axiom 5.8
port-right-rel (¢, p, n, {?send-once}, i, s) — (i = 1)

Axiom 5.9
port-right-rel (¢, p, n, R, i, s) A (R = {’send, ’receive}) — 2 < i

The predicate s-right holds on a task and a name in state s if and only
if the name represents a send right in the task. The predicates r-right and
so-right recognize names which represent receive and send-once rights, re-
spectively, for a given task.

Definition 5.10
s-right (¢, n, s) = port-right-namep (¢, n, s) A ’send € port-rights (¢, n, s)

Definition 5.11
r-right (¢, n, s)
= port-right-namep (¢, n, s) A ’receive € port-rights (¢, n, s)
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Definition 5.12
so-right (¢, n, s)
= port-right-namep (¢, n, s) A >send-once € port-rights (¢, n, s)

A task has only one name for a send or receive right to a given port.?
This is called name coalescing.

Axiom 5.13
s-right (t, nq, s)
A s-right (t, ng, s)
A (named-port (¢, ny, s) = named-port (¢, ny, s))
— (n1 = TLQ)

Axiom 5.14
s-right (t, nq, s)
A 1-right (, ny, s)
A (named-port (t, ny, s) = named-port (¢, ng, s))
— (TLl = 77,2)

Axiom 5.15
r-right (¢, ny, s)
A r-right (£, ny, s)
A (named-port (t, ny, s) = named-port (¢, ng, s))
— (m = ny)

While send and receive rights to a port coalesce in a single name, a send-

once tight does not combine with others.* A task holding multiple send-once
rights to a given port must hold them with distinct names.

Axiom 5.16
so-right (¢, n, s) — — r-right (¢, n, s) A = s-right (¢, n, s)

At most one task can have a receive right on a port.®

3¢f. [Loe91b], pg. 30
4cf. [Loe91b], pg. 30
Scf. [Loe91b], pg. 25
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Axiom 5.17
r-right (¢1, nq, s)
A 1-right (9, ng, s)
A (named-port (t1, ny, s) = named-port (t3, ng, s))
— (t1 = t3)

From the name coalescing property of receive rights, one can prove that n;
= ny in the constraint above.

The identity of a port’s receiver is a function of a port and a state s. We
call this partial function receiver. The name by which a port’s receive right
is known to the receiver is given by receiver-name.

Definition 5.18
exists-receiver (p, s) = 3¢, n: r-right (¢, n, s) A (named-port (¢, n, s) = p)

Axiom 5.19
exists-receiver (p, s)
—  r-right (receiver (p, s), receiver-name (p, s), s)
A (named-port (receiver (p, s), receiver-name (p, s), s) = p)

Implementation Note. The data type mach_port_t implements N
The constant mach_port_null is the implementation of NULLNAME, and
mach_port_dead is the implementation of DEADNAME. The set of port
rights granted to a task is maintained in an ipc_space structure—each
task owns one and only one ipc_space. A computation on a mach_port_t
and an ipc_space (done by the routine ipc_entry_lookup) identifies an
ipc_entry, where a port capability is recorded. The ie_bits field of an
ipc_entry encodes the right and reference count of a port right. The field
ie_object contains a pointer to the port (an active ipc_port structure)
involved in the right. If the port is inactive, the ipc_entry is interpreted
as a dead right (see Section 5.3).

5.2 Port Sets

A port set is a named aggregation of port right names. The purpose of
collecting these names is to permit a task to receive a message from any one
of a number of ports. A port set is uniquely determined by its name in a
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task. The function port-set identifies the set of receive right names associated
with task ¢ and name n.

Relation 5.20
port-set-rel (¢, n, N, s) WHERE
taskp (¢, ) A (n € N) A (N C N)

Definition 5.21
port-set-namep (¢, n, s) = 3 N: port-set-rel (¢, n, N, s)

Axiom 5.22
port-set-namep (t, n, s) — port-set-rel (¢, n, port-set (¢, n, s), s)

Neither NULLNAME nor DEADNAME may serve as the name of a port set.

Axiom 5.23
(n = NULLNAME) V (n = DEADNAME) — - port-set-rel (¢, n, N, s)

The set of names involved in a port set relation must be a set of receive
rights.®

Axiom 5.24
port-set-rel (¢, n, N, s) A ny € N — r-right (¢, nq, s)

Port sets are mutually disjoint. In [Loe91b]|, page 31, this fact is stated
by saying that a receive right can belong to only one port set.

Axiom 5.25
port-set-rel (¢, ny, N1, s) A port-set-rel (¢, ny, Ny, 8) A ny # ny
— ((Ny N Ny) =0)

If a receive-right belongs to a port set, the function holding-port-set-name
names that port set.

Definition 5.26
in-port-set (¢, ny, s)
= 3 n: port-set-namep (¢, n, s) A ny € port-set (¢, n, s)

6¢f. [Loe91b], pg. 31
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Axiom 5.27
in-port-set (¢, ny, s)

—  port-set-namep (¢, holding-port-set-name (¢, ny, s), s)
A ny € port-set (¢, holding-port-set-name (¢, ny, s), s)

Implementation Note. The Mach port set implementation is similar
to the port right implementation. A mach_port_t identifies an ipc_entry
contained in an ipc_space. The ie_bits field of an ipc_entry indicates
whether or not the entry represents a port or port set. If so, the ie_object
field points to an ipc_pset structure, which represents the port set.

5.3 Dead Rights

A task may hold a name which represents neither a port nor a port set. This
is called a dead right. A dead right usually is created when a port involved in
some port right is terminated. The name associated with that right becomes
a dead name. As with a send right, a task can have multiple references to a
dead right; the reference count of a dead right is a non-zero natural number
less than the constant MAX-REFCOUNT. A dead right’s reference count is
unique. Therefore, we define dead-right-refcount to be a function on a task
and a name.

Relation 5.28
dead-right-rel (¢, n, 7, s) WHERE
taskp (¢, s) A (n € N) A (0 < i < MAX-REFCOUNT)

Definition 5.29
dead-right-namep (¢, n, s) = 3 i: dead-right-rel (¢, n, i, s)

Axiom 5.30
dead-right-namep (¢, n, s) — dead-right-rel (¢, n, dead-right-refcount (¢, n, s), s)

Neither NULLNAME nor DEADNAME may serve as the name of a dead
right.

Axiom 5.31
(n = NULLNAME) V (n = DEADNAME) — - dead-right-rel (¢, n, 7, s)
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Implementation Note. A dead right is implemented by an ipc_entry
in which (a) the ie_bits field signals a dead name and the ie_object
field equals ip_null, or (b) the ie_bits field signals a send or send-
once right and the ie_object field points to an inactive ipc_port struc-
ture. Case (b) is lazily converted to (a) when discovered (in the routine
ipc_right _check), so that an inactive port can eventually be reclaimed.

5.4 Local Names

For a given task, a name may be at most one of a port right name, a port
set name or a dead name.

Axiom 5.32
port-set-namep (¢, n, s) — — port-right-namep (¢, n, s)

Axiom 5.33
dead-right-namep (¢, n, s)
— = port-right-namep (¢, n, s) A = port-set-namep (¢, n, s)

A local name for a task is either a port right name, a port set name, or a
dead name.

Definition 5.34
local-namep (t, n, s)

= port-right-namep (¢, n, s)
V port-set-namep (¢, n, s)
V dead-right-namep (¢, n, s)

6 Virtual Memory

6.1 Introduction

Virtual memory is perhaps Mach’s most subtle subsystem. Its implementa-
tion, using copy-on-write techniques to optimize the performance of copying
and sharing memory, is complex. We address here not the implementation
of virtual memory, but only the abstract view of memories, address spaces,
and resident pages.
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A Mach address space is a “sparsely populated indexed set of memory
pages” ([Loe91b], page 36) associated with a task. To explain our formaliza-
tion of Mach virtual memory, let us first take a look at the more familiar Unix
view. In a Unix system, the entity which is “real” is a single virtual memory
M large enough to hold all address spaces. M is, abstractly, a sequence of
pages but it is usually implemented by a combination of RAM and backing
store.

A virtual address va in task t is conceptually associated with a logical
address la in M. Let’s call this mapping vl, for virtual-to-logical translation.

vl:t,va —lav L (1)

L represents failure. vl failure is caused only by the implementation error
that there is not enough RAM and backing store to hold all of M. Abstractly,
vl is a total function from virtual to logical addresses, i.e., there are no
“address holes” in a task’s address space.

In understanding Unix virtual address translation, we do not usually think
about vl. Rather, we think about the mapping vp from virtual addresses to
physical addresses that is part of the implementation of vl.

vp:t,va — paV L

vp maps a task’s virtual address either to a physical address pa or to L,
representing a page fault. vp together with page fault handlers implement
the more abstract mapping vl.

Now let us look at Mach. Mach generalizes the Unix view to permit
multiple memories My, M, etc. A virtual address in a task is conceptually
associated with a logical address in one of the memories. The virtual-to-
logical address translation therefore has the following signature.

vl : t,va — mylaVv L (2)

where m is a memory and la is a logical address in that memory.

The virtual addresses in a Mach address space need not be associated
with logical addresses in a single memory. Rather, different virtual addresses
in a task can be associated with different memories. A virtual address may
be associated with no memory and logical address, i.e., there can be holes in
an address space. This is the sparseness referred to above. A page-aligned
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virtual address always maps to a page-aligned logical address in formula (1)
above. This need not be the case in (2).

(2) suffices to characterize the most abstract view of Mach virtual mem-
ory. This view does not coincide, however, with the Mach kernel interface.
Much of the responsibility for memory management lies outside the kernel,
in so-called external memory managers. Each memory is associated with
a memory manager that is responsible for maintaining the integrity of the
memory’s contents. When a page fault occurs, the kernel enters into a dialog
with a memory manager to initialize the necessary resident pages. This dia-
log is part of the Mach 3.0 kernel interface. We have included in our model
of Mach the idea of a resident page, and the notion that a resident page
represents a segment of an abstract memory.

In the remainder of this section we present our model Mach virtual mem-
ory. Section 6.2 explains properties of abstract memories. We define relations
that model a memory’s contents, its control ports, and issues pertaining to
its management — shadows and temporary bits. Section 6.3 explains how
an abstract memory is mapped into a task’s address space. Section 6.4 ex-
plains how a physical page may represent a region of an abstract memory, i.e.,
when the memory region is mapped in. Finally, in Section 6.5 we compose
the aspects of the virtual memory model to specify a task’s memory reference
through its address map, through the mapped memory, to the appropriate
representing page.

6.2 Abstract Memories
Memory Contents

Let W be a finite set of words. In this document a word is an undefined
concept, but we assume that a representation of the number 0 occurs in
W. W is implemented by hardware bytes or words. The function number-
to-word gives the representation of a non-negative number as a word, and
word-to-number is its inverse.

The relation memoryp recognizes an abstract memory known to the ker-
nel. (We consider a file that exists in a Mach system but is not open to some
process not to be an abstract memory in the current state. It becomes an
abstract memory when it is made known to the kernel.)

The content of an abstract memory is defined by the store relation. Store
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is a mapping from natural numbers to words. A natural number in the
domain of a memory is called an offset.

It is either the case that a memory m and an offset o determine a word
w, or else there is no word associated with m and o. We do not axiomatize
a memory as a sequence of words, where every offset in some range is guar-
anteed to be associated with a word. If we did so, then store-rel would give
the semantics of a Unix file. This constraint allows us to think of a memory
as a partial function from natural numbers (offsets) to words. The function
mglo] denotes the word associated with offset o in memory m and state s.
For ms[o] to be defined, 0 must be in the domain of the memory.

Relation 6.1
store-rel (m, o, w, s) WHERE
memoryp (m, s) A (0 € N) A (w € W)

Definition 6.2
exists-mem-word (m, o, s) = 3 w: store-rel (m, o, w, s)

Axiom 6.3
exists-mem-word (m, o, s) — store-rel (m, o, mglo], s)

In general, the contents of abstract memories are not implemented by the
Mach kernel. They are implemented, rather, by user processes called ezternal
memory managers, or just memory managers. The kernel enters into a dialog
with a memory manager to handle various aspects of memory management
such as page faults, memory creation, and memory termination. Part of the
purpose of a dialog is to maintain consistency between a memory and the
kernel’s cache.

We place no further constraints on a store-rel relation, since it is beyond
the scope of this document to specify any processes above the level of the
kernel. It is useful in specifying the kernel to have store-rel declared so that
the dialog with an external memory manager can be described. In some
cases, the kernel is responsible for initializing all or part of a memory’s store.
This occurs, for instance, when a range of zero-filled pages is allocated by
the kernel call vm_allocate.
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Control Ports

Managed memory is paged by some memory manager. It is associated with
some special ports: an object port, a control port and a name port. These
ports are important in the kernel/memory manager dialog. A memory man-
ager holds a receive right on a memory’s object port, and a send right on
a memory’s control port.” The kernel holds a send right on the object port
and a receive right on the control and name ports.

A managed memory determines its object port, and vice versa. Simi-
lar constraints hold for control and name ports. We introduce object-port,
control-port and name-port to be functions on a memory and a state that
give a memory management port.

The functions object-memory, control-memory, and name-memory give
the memory associated with a port.

Relation 6.4
object-port-rel (m, P, s) WHERE
memoryp (m, s) A portp(p, s)

Relation 6.5
control-port-rel (m, 7, s) WHERE
memoryp (m, s) A portp(p, s)

Relation 6.6
name-port-rel (m, 7, s) WHERE
memoryp (m, s) A portp(p, s)

Definition 6.7
exists-object-port (m, s) = 3 p: object-port-rel (m, p, s)

Axiom 6.8
exists-object-port (m, s) — object-port-rel (m, object-port (m, s), s)

Definition 6.9
exists-object-memory (p, s) = 3 m: object-port-rel (m, p, s)

"It may be the case that the actual EMM is on a different host. In this case the net
message server is the receiver of the object port. The kernel does not treat this case
specially — as far as the kernel is concerned, the net message server is the EMM for this
memory entity.
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Axiom 6.10
exists-object-memory (p, s) — object-port-rel (object-memory (p, s), p, )
A memory is managed if and only if it has an object port.

Definition 6.11
managed (m, s) = exists-object-port (m, s)

No task other than the kernel task may hold a receive right on a control
or name port.

Axiom 6.12
control-port-rel (m, p, s) A exists-receiver (p, s)
— (receiver (p, s) = KERNEL)

Axiom 6.13
name-port-rel (m, p, s) A exists-receiver (p, s) — (receiver (p, s) = KERNEL)

Implementation Note. Memoryp is implemented by a pointer to a
vm_object structure. The pager, pager_request and pager_name fields
of a vm_object name the object, control and name ports, respectively, of
an abstract memory. The ipc_kobject field of one of these ports contains
a back pointer to a vm_object. (The back pointer from a name port was
added to the Mach 3.0 implementation in 1992.)

Temporary Memories

A memory may be temporary. This affects the behavior of the kernel, for
example, when flushing dirty pages. A temporary memory may or may not
be managed. A persistent memory is not temporary.

Relation 6.14
temporary-rel (m, s) WHERE
memoryp (m, s)

We’ve presented two orthogonal properties of abstract memories. A mem-
ory may or may not be managed and may or may not be temporary. A
memory therefore falls into one of the following four categories.
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. Unmanaged, Temporary. A temporary memory is typically un-

managed. The kernel provides the initial represented values in physical
memory. The kernel can cause an unmanaged temporary memory to
become managed when there is a shortage of physical memory.®

. Managed, Temporary. A managed temporary memory is usually

managed by the default memory manager, but the identity of the de-
fault memory manager may change. Regardless of the identity of the
manager of a managed, temporary memory, the kernel assumes that
the pages representing such a memory need not be flushed back to the
manager when the memory is deallocated.

. Managed, Persistent. A persistent memory in always initially man-

aged. The initial represented values for a persistent memory are pro-
vided through a dialog between the kernel and an external memory
manager.

. Unmanaged, Persistent. A persistent memory becomes unmanaged

when its object port is terminated. Anomalous behavior of an external
memory manager can cause this situation, for example, if the memory
manager terminates or destroys its object port before the memory it
manages is deallocated.

Implementation Note. A temporary memory can be created in the
kernel, for example, by vm_allocate. A temporary memory is indicated
by the logical Or of the internal and temporary bits of a vm_object
structure. The temporary bit indicates that the object contents are of
no interest after the object is unmapped, and can be discarded at that
time instead of being returned to the manager. The internal bit indicates
that the kernel created the object as opposed to it being mapped in from
an external manager. Internal and temporary are currently duplicates
(always have the same value).

Shadow Memories

When a memory m; backs a memory msy, the kernel asks m;’s manager for a
page if my’s manager fails to supply it. This supports Mach’s copy-on-write

8This is done in the routine vm_pageout_scan.
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mechanism. Memory m; backs my at an offset within m;. We say that ms
shadows m;.

A memory may shadow at most one memory. Thus, backing-rel is a
one-to-many relation on memories. The function backing-memory gives a
memory’s backing memory if one exists. The function backing-offset gives a
memory’s backing offset. WORDSIZE is the least upper bound on non-negative
numbers that can be represented in a word.

Relation 6.15
backing-rel (bm, sm, o, s) WHERE
memoryp (bm, s) A memoryp (sm, s) A (0 < 0 < WORDSIZE)

Definition 6.16
shadow-memoryp (sm, s) = 3 bm, o: backing-rel (bm, sm, o, s)

Axiom 6.17
shadow-memoryp (sm, s)
— backing-rel (backing-memory (sm, s), sm, backing-offset (sm, s), s)

The predicate backing-memoryp is true if bm is a backing memory for
a particular sm. The function shadow-memories gives the set of memories
backed by a given memory.

Definition 6.18
backing-memoryp (bm, sm, s) = 3 o: backing-rel (bm, sm, o, s)

Axiom 6.19
backing-memoryp (bm, sm, s) <+ sm € shadow-memories (bm, s)

The backing chain of a memory m is the finite sequence of memories
transitively related to m via backing-rel. When m shadows no memory, then
the sequence is empty. Mach requires that there are no cycles in a backing
chain. In other words, no memory is in its own backing chain.

Axiom 6.20
memoryp (sm, s) A (bc = backing-chain (sm, s))
—  (shadow-memoryp (sm, s) — backing-memoryp (bcqg, sm, s))
A (0<i< (|be] — 1))
— (backing-chain (bc;, s) = bC(i n 1)..|bc|))
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Axiom 6.21
m ¢ backing-chain (m, s)

Implementation Note. The shadow field of a vm_object points to
a memory’s backing object. The shadow_offset field of a vm_object
contains the offset into the backing object. The shadowed bit indicates
that this memory is a backing object for some other memory. The Mach
implementation guarantees that whenever a page must be copied from
a backing memory m to its shadow memories, m has only one shadow
memory. (See Section 4.4.5 of [You89] for a discussion of virtual memory
copying.) The function shadow-memories is implemented by the copy
field of a vm_object, which points to the vm_object which is its only
shadow-memory.

6.3 Address Spaces

The map relation associates a virtual page address (that is, a page-aligned
virtual address less than ADDRESS-SPACE-LIMIT) vpa in task ¢ with a number
of attributes:

1. the contents of a memory m at offset o,
2. an inheritance value, and

3. a current and maximum protection.

The association with a memory and offset formalizes the virtual-to-logical
mapping described in Section 6.1. The inheritance attribute is used to de-
termine which regions of a parent task are mapped into a child task upon
creation. The protection attributes enforce access control on regions of a
virtual address space.

The task and virtual address of a map relation determine the other values
in a map-rel. The function mapped-memory is the memory associated with
task ¢t at virtual address wpa. The function mapped-offset is the memory
offset associated with task t at virtual address vpa.

The function inheritance gives the inheritance attribute of an instance of
a map relation.

We define protection and maz-protection to be the set of current and
maximum protection attributes, respectively, for a virtual address in a task.
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Relation 6.22

map-rel (t, m, vpa, o, inh, CP, M P, s) WHERE
taskp (t, )

A memoryp (m, s)

A (0 < vpa < ADDRESS-SPACE-LIMIT)

A (0 < 0 < WORDSIZE)

A inh €T

N (CP C P)

A (MP CP)

Axiom 6.23
vpa mod PAGESIZE # 0 — — map-rel (¢, m, vpa, o, inh, CP, MP, s)

The set Z defines the various inheritance options.

Definition 6.24
T = {’share, ’copy, ’none}

The set P defines the protection attributes.’

Definition 6.25
P = {’read, ’write, ’execute}

The current protection on a virtual address must not exceed its maximum
protection.

Axiom 6.26
map-rel (¢, m, vpa, o, inh, CP, MP, s) — (CP C MP)

The task and virtual page address make a key.

Definition 6.27
allocated-vpa (¢, vpa, s) = 3 m, o, inh, CP, M P: map-rel (¢, m, vpa, o, inh, CP, MP, s)

Axiom 6.28
allocated-vpa (¢, vpa, s)
— map-rel (¢, mapped-memory (¢, vpa, s), vpa, mapped-offset (¢, vpa, s),
inheritance (¢, vpa, s), protection (¢, vpa, s),
max-protection (¢, vpa, s), s)

9The same set is used to define locks on physical pages. See Section 6.4.
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In the remainder of this section we introduce some useful derived func-
tions. We say that a virtual address va is allocated within a task if the virtual
address computed by truncating va to a page boundary occurs in a map re-
lation. (The predicate allocated-vpa, above, is only true of a page-aligned
virtual page address.)

Definition 6.29
trunc-page (va) = (va + PAGESIZE) * PAGESIZE

Definition 6.30
allocated (¢, va, s) = allocated-vpa (¢, trunc-page (va), )

A memory m is mapped if some offset o is mapped to an address within
some task. (For a given task t, there may be several addresses where the
memory is mapped.) Mapping-tasks returns the set of tasks which are cur-
rently mapping m.

Definition 6.31
task-maps-memoryp (t, m, s)
= 3 wvpa: allocated-vpa (¢, vpa, s) A (mapped-memory (¢, vpa, s) = m)

Axiom 6.32

memoryp (m, s) — (¢t € mapping-tasks (m, s) <> task-maps-memoryp (¢, m, s))

Definition 6.33
mapped (m, s) = mapping-tasks (m, s) # 0
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Implementation Note. A task’s address space is represented by a col-
lection of data structures. The map field of a task structure is a pointer
to a vm_map, which contains the topmost description of an address space.
Conceptually, each page index is associated with a vm_object (the kernel’s
representation of an abstract memory). In fact, the information concern-
ing consecutive indices that share the same vm object, and protection
and inheritance attributes (see subsequent sections of this paper), is co-
alesced into a single data structure called a vm_map_entry. The object
field of vm_map_entry contains a pointer to a vm_object. The offset field
is an offset into the abstract memory. The (m, o) pair of a map relation
is determined by these two fields. The inheritance attribute of a virtual
page index is contained in the inheritance field of a vm_map_entry. The
protection attributes of a page index are contained in the protection and
m_protection fields of a vm_map_entry.

6.4 Pages

A page is a finite sequence of words. The primitive relation that associates a
page, offset and word is page-word-rel. All pages have the same size, a con-
stant PAGESIZE, where 0 < PAGESIZE. We use the notation pg-contents (pg,
s); to denote the ith word of page pg in state s, where 0 < 7 < PAGESIZE.

Relation 6.34
page-word-rel (pg, i, w, s) WHERE
pagep (pg, s) A (0 < i < PAGESIZE) A (w € W)

Axiom 6.35
pagep (pg, s) A (0 < i < PAGESIZE)
— (pg-contents (pg, s); = w « page-word-rel (pg, ¢, w, s))

A page may represent a portion of length PAGESIZE of a memory at a
given offset. We say that a page represents memory if and only if it occurs
in a represents relation with some memory and offset. A memory and offset
are represented if they occur in a represents relation with some page. The
page occuring in a represents relation uniquely determines a memory and
an offset. The converse holds as well. A given offset within a memory may
be represented by at most one page. Because of these uniqueness axioms,
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we can introduce the functions represented-memory, represented-offset and
representing-page.

Relation 6.36
represents-rel (pg, 7, 0, s) WHERE
pagep (pg, s) A memoryp (m, s) A (0 < 0 < WORDSIZE)

Definition 6.37
represented (m, o, s) = 3 pg: represents-rel (pg, m, o, s)

Axiom 6.38
represented (m, o, s) — represents-rel (representing-page (m, o, s), m, o, s)

Definition 6.39
represents-memory (pg, s) = 3 m, o: represents-rel (pg, m, o, s)

Axiom 6.40
represents-memory (pg, s)
— represents-rel (pg, represented-memory (pg, s), represented-offset (pg, s), s)

Implementation Note. We consider an entity that satisfies pagep to
be a resident page. A pagep is implemented by a pointer to a vm_page
structure. A vm_page contains the address of a physical page. The fields
object and offset of a vm_page implement the (m, o) pair of a represents
relation. The pages which represent segments of a given abstract mem-
ory are linked together. The header of this linked list is the memq field
of a vm_object. This arrangement suggests two implementation invari-
ants. First, the object field of a vm_page must point to the vm_object
in which the vm_page is linked. Second, the offset field of a vm_page
must be distinct from the offset of each other linked page. Failure to
satisfy these invariants would imply violation of the constraints on the
represents relation.

A page may be dirty, precious or wired. These attributes affect the dialog
between the kernel and the external memory manager.

The dirty attribute characterizes the situation in which a value has been
written to a page by a task, but the page is not yet flushed back to a memory
manager. If space is short, pages that are not dirty can be deallocated at the



29

whim of the kernel. The kernel assumes that the external memory manager
has a copy of the unaltered page on its backing store. Dirty pages must be
passed back to the external memory manager before they can be deallocated,
so the external memory manager can update its store.

Relation 6.41
dirty-rel (pg, s) WHERE
pagep (pg, s)

In practice, the external memory manager might not retain a copy of
information which is represented in a page. The external memory manager
can mark a page as prectous, which instructs the kernel that it must pass the
page back to the external memory manager whether it is dirty or not.

Relation 6.42
precious-rel (pg, s) WHERE

pagep (pyg, s)

A page which is wired cannot be evicted from memory under any circum-
stances. Only privileged tasks, for example device handlers and the default
memory manager, can wire pages. A page can be wired multiple times up
to an implementation-defined maximum MAX-WIRE-COUNT. A page’s wire
count is unique. Therefore, we define wire-count to be a partial function on

a page.

Relation 6.43
wired-rel (pg, i, s) WHERE
pagep (pg, s) A (0 < i < MAX-WIRE-COUNT)

Definition 6.44
wired (pg, s) = 3 i: wired-rel (pg, i, s)

Axiom 6.45
wired (pg, s) — wired-rel (pg, wire-count (pg, s), )

Implementation Note. A dirty page is identified by the dirty bit of a
vm_page structure. The precious attribute is implemented by a precious
bit, and the wired attribute is implemented by the wired_count field.
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The Mach kernel provides a locking mechanism on pages. A lock associ-
ated with a page prevents access of the indicated type. Page locks are applied
on request of an external memory manager. The set P defines the locking
attributes which can be associated with a physical page.!® The function
page-locks gives the unique, non-empty set of locks applied to a page.

Relation 6.46
page-lock-rel (pg, PR, s) WHERE
pagep (pg, s) A (PR C P)

Definition 6.47
exists-page-locks (pg, s) = 3 PR: page-lock-rel (pg, PR, s)

Axiom 6.48
exists-page-locks (pg, s) — page-lock-rel (pg, page-locks (pg, ), s)

Definition 6.49
P = {’read, ’write, ’execute}

Implementation Note. The page_lock field of a vm_page records a
page’s lock attribute.

In the remainder of this section we define the notions of a zero page, and
of page equality.

A zero segment is a range of addresses within a page, each of which
contains 0. The segment is identified by an offset o and length .

Definition 6.50
zero-segment (pg, o, [, s)
= pagep(pg, s)
A (0o € N)
A (I €N)
A 0 + | < PAGESIZE
ANNMi( (o<i<(o+1)
— (pg-contents (pg, s); = number-to-word (0))))

10The same set is used to define protection attributes on virtual addresses. See Section
6.3.



31

A zero page is one in which every location contains 0.

Definition 6.51
zero-page (pg, s) = zero-segment (pg, 0, PAGESIZE, s)

Two pages are equal in the range of offsets [o. .. 0+1) if pg-read is identical
for both pages in that range. We call this notion page-segment-equal.

Definition 6.52
page-segment-equal (pg1, pga, 0, [, s)
=  pagep (pg1, )
A pagep (pga, 5)
A (0 € N)
A (I € N)
A 0 + | < PAGESIZE
NNV (0<i<(o+1)
— (pg-contents (pg, s)j = pg-contents (pgs, s)j)))

Two pages are equal of they are page-segment-equal in the segments rang-
ing from O to PAGESIZE.

Definition 6.53
page-equal (pg1, pga, s) = page-segment-equal (pgi, pgs, 0, PAGESIZE, s)

6.5 Task Memory Reference

In the abstract view of Mach’s virtual memory system, a task does not
have direct access to memory. Rather, it indirects through its address map,
through the mapped memory, to an appropriate representing page. To sum-
marize, we provide two partially specified state predicates m-wordp and va-
wordp. The former is true of a memory entity, offset and word when there
is a page and an index, related to the memory and offset, which contains
the word at that index. The predicate va-wordp is true of a task, virtual
address, and a word when the mapped memory of the task/address pair is
in the m-wordp relation with the word.!!

1Tf there is no such page, a page fault occurs.
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Definition 6.54
m-wordp (m, og, 0, w, s)

= page-word-at-memory-offsetp (m, og, 0, w, s)
V page-word-in-shadow-chainp (m, og, 0, w, s)

In the direct case, a page represents the memory at an offset oy that
contains the offset o of interest. It is not a Mach requirement that the
represented-offset of a page be at a page boundary, so it is possible for several
pages to represent a given word. The offset oy identifes the particular page
desired.

Definition 6.55
page-word-at-memory-offsetp (m, og, 0, w, s)
= represented (m, oy, S)
A page-word-rel (representing-page (m, oy, s), 0 — 0g, W, S)

If the memory/offset pair does not have a directly representing page, m
may be a shadow memory. In this case we follow the memory’s backing chain.

In a given state, if a shadow memory does not have the desired page in
memory, but it is managed, then we cannot immediately follow the backing
chain. The kernel must first query the external memory manager to deter-
mine if the page is swapped out at this point in the chain. We introduce the
unspecified predicate swapped-out to indicate that, prior to this state, the
kernel has queried the external memory manager. It is this quasi-temporal
aspect that causes m-wordp to be partially specified.

Definition 6.56
page-word-in-shadow-chainp (m, og, 0, w, $)
= page-word-at-memory-offsetp (m, og, 0, w, s)
Vv — represented (m, oy, s)
A shadow-memoryp (m, s)
A (= managed (m, s) V = swapped-out (m, o, s))
A page-word-in-shadow-chainp (backing-memory (m, s),
0o + backing-offset (m, s),
o + backing-offset (m, s), w, s)
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Definition 6.57
va-wordp (¢, va, w, )
=  allocated (¢, va, s)
A m-wordp (mapped-memory (¢, trunc-page (va), s),
mapped-offset (¢, trunc-page (va), s),
mapped-offset (¢, trunc-page (va), s)
+ (va — trunc-page (va)), w, s)

Implementation Note. The mechanism described by va-wordp is op-
timized by the hardware page maps. These are managed by the pmap
module, which is the interface between machine-dependent and machine
independent operations. When a page fault occurs, the kernel follows data
structures in a manner similar to those specified here.

7 Message Queues and Messages

7.1 Message Queues

A port contains a queue of messages. The relation message-in-port asserts
that mg is the ¢th message in port p. The messages in a port are distinct,
and a message occurs in at most one port. The function containing-port is
a function on a message that gives its containing port if such a port exists,
and message-posn gives the position of the message in its containing port.
The sequence of messages associated with a port is given by the function
messages, and the length of the sequence is given by the function port-size.
We use the notation messages (p, s); to denote the ith message in port p.

Relation 7.1
message-in-port-rel (mg, P, 7, s) WHERE
messagep (mg, s) A portp (p, s) A (i € N)

Definition 7.2
exists-containing-port (mg, s) = 3 p, i: message-in-port-rel (mg, p, i, s)

Axiom 7.3
exists-containing-port (mg, s)
— message-in-port-rel (mg, containing-port (mg, s), message-posn (mg, s), s)
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Axiom 7.4

portp (p, s)
— ( (0 < < port-size (p, s)) A (messages (p, s); = mg)
— message-in-port-rel (mg, p, i, s))

A port may be assigned a maximum message queue size. This is called
the port’s qlimit. The relation message-qlimit-rel associates a port with its
glimit. A port’s glimit is less than the constant MAX-QLIMIT.!?

Relation 7.5
message-glimit-rel (p, ¢, s) WHERE
portp (p, s) A (0 < i < MAX-QLIMIT)

Definition 7.6
exists-qlimit (p, s) = 3 i: message-glimit-rel (p, 4, s)

Axiom 7.7
exists-qlimit (p, s) — message-qlimit-rel (p, glimit (p, s), s)

Implementation Note. When a message is sent, the kernel creates a
copy of the caller’s data in an ipc_kmsg data structure.* We consider this
internal representation of a message to be the implementation of messagep.
The ipc_mqueue field of an ipc_port is a message queue. This field’s data
type is a structure that contains a header for a linked list of ipc_kmsgs.

¢cf. [Loe91b], pg. 32

7.2 Reply Ports

A message may be associated with a reply port. A reply port is the port to
which the receiver of a message may send a reply. To do so, of course, the
receiver must have a send right to the reply port. The relation indicates the
transferred right. A message may be associated with at most one reply port.
As a result, the functions reply-port and reply-right can be defined.

12Note that it is not a requirement that a port’s size be less than its qlimit. Sending to
a send-once right ignores the queue limit. Also, the queue limit may be decreased below
its current value.
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Relation 7.8
reply-port-rel (mg, p, r, s) WHERE
messagep (mg, s) A portp (p, s) A r € {’send, ’send-once}

Definition 7.9
exists-reply-port (mg, s) = 3 p, r: reply-port-rel (mg, p, r, s)

Axiom 7.10
exists-reply-port (mg, s)
— reply-port-rel (mg, reply-port (mg, s), reply-right (mg, s), s)

Implementation Note. A pointer to the reply port of a message is
carried in the msgh local _port field of a message header.

7.3 Messages

A message is used to transmit port rights and data. A message is thought of
as a finite sequence of data types induced by the relations discussed below.
The index into the sequence (i in the relations below) is bounded by the
constant MAX-MSG-SIZE.

A transit right is a relation on a message and a port. An assertion of a
transit right means that message mg contains an access right r to port p (at
index 7 of the message). A message and index determine a transit right.

Relation 7.11
transit-right-rel (mg, p, r, i, s) WHERE
messagep (mg, s) A portp (p, s) Ar € R A (0 < i < MAX-MSG-SIZE)

Definition 7.12
exists-transit-right (mg, i, s) = 3 p, r: transit-right-rel (mg, p, r, i, s)

Axiom 7.13
exists-transit-right (mg, 1, s)
— transit-right-rel (mg, trans-port (mg, i, s), trans-right (mg, 1, s), i, s)

No task may hold a receive right on a port whose receive right is being
transmitted.
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Axiom 7.14
transit-right-rel (mg, p, ’receive, i, s) — — exists-receiver (p, s)

Data can be transmitted in two ways: in line and out of line. In line
transmission means that the data is placed in the destination task’s message
buffer and is copied in word by word. Out of line transmission means that
pages containing the data are mapped somewhere into the destination task’s
address space.

Data is copied at the time a message is sent. In fact, data that is in
transit conceptually is copied into a temporary abstract memory. An abstract
memory that is in transit may not be mapped into any address space. (We
state this constraint below.)

A transit memory is a relation on a message and a memory. An assertion
of a transit memory means that message mg contains an abstract memory
m to be inserted in-line or out-of-line in the receiving task. The offset and
length parameters indicate a region of the memory which is “of interest” to
the receiver. For out of line transmission the entire memory is mapped into
the receiver’s address space, but the receiver is informed that the data at
offset o for length [ is what was sent. The offset is smaller than PAGESIZE
— it tells how much of the first page of data is to be ignored. The transit
memory is the ith element of the message. A message and index determine
a transit memory.

Relation 7.15

transit-memory-rel (mg, m, a, o, [, i, s) WHERE
messagep (mg, s)

A memoryp (m, s)

A a € {’in-line, ’out-of-line}

A (0 < 0 < PAGESIZE)

A (0 <1 < WORDSIZE)

A (0 < i < MAX-MSG-SIZE)

Definition 7.16
exists-transit-memory (mg, i, s)
= 3 m, a, o, [: transit-memory-rel (mg, m, a, o, [, i, s)



37

Axiom 7.17
exists-transit-memory (mg, i, s)
— transit-memory-rel (mg, trans-memory (mg, i, s), trans-attribute (mg, i, s),
trans-offset (mg, 1, s), trans-length (mg, 1, s), 1, s)

No abstract memory occuring in a transit memory may be mapped into
an address space. Furthermore, such a memory is temporary.

Axiom 7.18
transit-memory-rel (mg, m, a, o, l, i, s) — — mapped (m, s) A temporary-rel (m, s)

There are several flavors of null message elements. Because a message is
used to transmit arguments to a remote procedure, there is a need at times
to provide a null port right or null data as an argument. Additionally, a
transit right may turn into a dead transit right if the port is killed while the
message is queued. We define M to be the set of null message element types.

Definition 7.19
M = {’null-right, ’null-memory, ’dead-right}

The null message element relation identifies a component of a message
that is null, and what flavor of null element the component is. The function
null-msg-tag gives the tag associated with a null message element.

Relation 7.20
null-message-element-rel (mg, tag, i, s) WHERE
messagep (mg, s) A tag € M A (0 < i < MAX-MSG-SIZE)

Definition 7.21
exists-null-msg-element (mg, i, s)
= 7 tag: null-message-element-rel (mg, tag, i, s)

Axiom 7.22
exists-null-msg-element (mg, i, )
— null-message-element-rel (mg, null-msg-tag (mg, i, s), i, s)

A message is a finite sequence of transit rights, transit memories and null
message elements. The function message-contents gives a representation of
the sequence, and the function message-size (mg, s) gives number of elements
in a message.
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Axiom 7.23
messagep (mg, s) A (0 < i < message-size (mg, s))
—  ( message-contents (mg, s); = (p, )
— transit-right-rel (mg, p, r, i, s))
A ( message-contents (mg, s); = (m, a, o, [)
> transit-memory-rel (mg, m, a, o, l, i, s))
A ( message-contents (mg, s); = tag
> null-message-element-rel (mg, tag, i, s))

Implementation Note. When a message is sent, the kernel creates a
copy of the caller’s data in an ipc_kmsg data structure.” We consider this
internal representation of a message to be the implementation of messagep.
Each element of a message is represented by a type descriptor, either the
data structure mach msg type_t or the structure mach msg type_long t.
A type descriptor contains fields which determine the type of the element.
The msgt_name field indicates whether an element is a port right or is data.
If a port right, then msgt_name indicates which right is being transferred.
If the element is data, then the msgt_inline bit indicates whether it is
in line or out of line data.

¢cf. [Loe91b], pg. 32
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Implementation Note. A transit memory is implemented by a
vm_map_copy-t, which is a variant record of one of three structures:

a list of vm_entrys. This data structure has the appearance of a segment
of a task address space. Each entry has an associated vm_object
data structure, which typically is a shadow memory backed by the
memory object in the corresponding region of the sending task’s
address space.

a single vm_object. This option is an optimization used by the external
memory manager pageout path.

a list of pages. This option is an optimization used by the external
memory manager pagein path and by device drivers.

Note that our formalism most accurately describes the second option,
which is not the typical case. If a sender sends a region of its address space
mapped from several different memories, then (in the implementation)
the receiver’s address space has several memories mapped into it. This
is visible through the vm_region kernel call. This possible inadequacy of
our model deserves further thought.

The implementation also allows the transfer of an out-of-line array of port
rights. Our formalization does not allow this.

We say that a port p; transmits a receive right for port py if p; contains a
message m that contains the transit right (py, receive). The transmission
set of a port p is the set of ports closed under transmission of a receive right.

Definition 7.24
transmits-r-right (py1, pa, $)
= dmyg, 1, j:  message-in-port-rel (mg, p1, i, s)
A transit-right-rel (mg, py, ’receive, j, s)

Axiom 7.25
p1 € transmission-set (p, s)
~  transmits-r-right (p, p1, s)
V (I py: pa € transmission-set (p, s)
A transmits-r-right (py, p1))
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One can think of a port’s transmission set as identifying a subgraph on
the ports in a Mach state. Mach requires that there be no cycles in such a
subgraph. In other words, a port is not in its own transmission set.

Axiom 7.26
p ¢ transmission-set (p, s)

Implementation Note. Mach detects cycles in a transmission graph at
the time a receive right is transmitted. All ports involved in the cycle are
destroyed, since once a cycle is created no task can gain a right to any
port in the cycle.

8 Physical Resources

8.1 Processor Sets and Processors

A processor set is a collection of processors. A processor set is a first class en-
tity because of its relationships with other entities. For example, a processor
set has a self port (see Section 9.4). Tasks and threads are also assigned to
processor sets for scheduling purposes. The identity of a processor’s processor
set is a function of a processor and a state s. The function proc-assigned-
procset is defined to be the unique processor set to which a processor is
assigned, when such an assignment exists. The function processors is the set
of processors associated with a processor set.

Relation 8.1
procset-proc-rel (procset, proc, s) WHERE
procsetp (procset, s) A procp (proc, s)

Definition 8.2
exists-proc-assigned-procset (proc, s)
= 3 procset: procset-proc-rel (procset, proc, s)

Axiom 8.3
exists-proc-assigned-procset (proc, s)
— procset-proc-rel (proc-assigned-procset (proc, s), proc, s)
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Axiom 8.4
procsetp (procset, s)
— (proc € processors (procset, s) < procset-proc-rel (procset, proc, s))

As a result of these axioms, we can conclude that any element of the value
of the function processors must be a processor.

Theorem 8.5
procsetp (procset, s) A proc € processors (procset, s) — procp (proc, s)

Implementation Note. A procset entity is implemented by a pointer to
a processor_set structure, and procp is implemented by a pointer to a
processor structure. We consider procp to be implemented by the kernel
data structure, not the actual hardware. procset-proc-rel is implemented
by the processor_set field of a processor structure. A processor_set
contains the header of a linked list of processors assigned to this processor
set. This suggests the implementation invariant that the processor_set
field of a processor proc must point to the processor set in whose processor
list proc is linked.

A processor set is assigned zero or more threads. The relation procset-
thread-rel associates a thread with a processor set.

A thread belongs to at most one processor set. The identity of a thread’s
assigned processor set is a function of a thread and a state s. The function
thread-assigned-procset is defined to be the unique processor set to which a
thread is assigned, when such an assignment exists. The function procset-
threads is the set of threads associated with a processor set.

Relation 8.6
procset-thread-rel (procset, th, s) WHERE
procsetp (procset, s) A threadp (th, s)

Definition 8.7
exists-thread-assigned-procset (th, s)
= J procset: procset-thread-rel (procset, th, s)

Axiom 8.8
exists-thread-assigned-procset (th, s)
— procset-thread-rel (thread-assigned-procset (th, s), th, s)
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Axiom 8.9
procsetp (procset, s)
— (th € procset-threads (procset, s) < procset-thread-rel (procset, th, s))

Implementation Note. procset-thread-rel is implemented by the
processor_set field of a thread structure. This is a pointer from a
thread to a processor set. A processor set contains a header to a linked
list of threads owned by the processor set. This suggests the implementa-
tion invariant that the processor_set field of a thread ¢th must point to
the processor set in whose thread list th is linked.

A processor set is also assigned zero or more tasks. This is used only for
the default assignment for newly created threads in the task. The relation
procset-task-rel and the derived functions task-assigned-procset and processor-
set-tasks are developed in an analogous manner to the threads relations.

Relation 8.10
procset-task-rel (procset, t, s) WHERE
procsetp (procset, s) A taskp (¢, s)

Definition 8.11
exists-task-assigned-procset (t, s)
= 3 procset: procset-task-rel (procset, t, s)

Axiom 8.12
exists-task-assigned-procset (t, s)
— procset-task-rel (task-assigned-procset (t, s), t, )

Axiom 8.13
procsetp (procset, s)
— (t € procset-tasks (procset, s) < procset-task-rel (procset, t, s))

Implementation Note. The relation procset-task-rel is implemented by
the processor_set field of a task structure. This is a pointer from a task
to a processor set. A processor set contains a header to a linked list
of tasks owned by the processor set. This suggests the implementation
invariant that the processor_set field of a task tk must point to the
processor set in whose task list ¢k is linked.
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One processor set is known as the default processor set. It cannot be
destroyed. The function default-procset is defined to return the default pro-
cessor set, when one is set.

Relation 8.14
default-procset-rel (procset, s) WHERE
procsetp (procset, s)

Definition 8.15
exists-default-procset (s) = 3 procset: default-procset-rel (procset, s)

Axiom 8.16
exists-default-procset (s) — default-procset-rel (default-procset (s), s)

Implementation Note. The default processor set is initialized at boot-
strap time in the global variable default_pset and is never changed.

One processor is known as the master processor. It is responsible for
keeping time on a host. It may not be reassigned to a different processor
set. The function master-processor is defined to return the master processor,
when one is set.

Relation 8.17
master-processor-rel (proc, s) WHERE

procp (proc, s)

Definition 8.18
exists-master-processor (s) = 3 proc: master-processor-rel (proc, s)

Axiom 8.19
exists-master-processor (s) — master-processor-rel (master-processor (s), s)

Implementation Note. The master processor is initialized at bootstrap
time in the global variable master_processor and is never changed.
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8.2 Devices

The kernel interface to devices is very generic. A task gets access to a device
port via a device master port. Thereafter, access to the port is via the device
port in a device-specific protocol. We display the relation on devices and
their special ports in Section 9.5.

Relation 8.20
master-device-port-rel (p, s) WHERE

portp (p, s)

Definition 8.21
exists-master-device-port (s) = 3 p: master-device-port-rel (p, s)

Axiom 8.22
exists-master-device-port (s)
— master-device-port-rel (master-device-port (s), s)

Only the kernel task may hold a receive right to the master device port.

Axiom 8.23
master-device-port-rel (p, s) A exists-receiver (p, s)
— (receiver (p, s) = KERNEL)

Implementation Note. A pointer to a device structure is the imple-
mentation of devicep. The master device port is initialized at bootstrap
time in the global variable master_device_port and is never changed.

8.3 Hosts

We consider a state s to be the configuration of a given host. We may define
functions on a state for obtaining information about a given host. For now,
we are content merely to identify the function host-time that gives the global
time kept by a host.

Axiom 8.24
host-time (s) € N
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Implementation Note. A host data structure contains only pointers
to the two host special ports (Section 9.6). The remainder of the data
relevant to a host is distributed in global variables in the kernel task’s
address space.

9 Special Purpose Ports

The kernel assigns special meaning to some of its ports. Many of the spe-
cial ports described in this section are used to make service requests on the
kernel. The kernel holds the receive right in these ports. In other cases, the
kernel holds a send right on a port, allowing it to asynchronously provide
information to a user task. There are other special ports to which the kernel
has no rights. These port relations are maintained by the kernel in support
of higher-level protocols.

We have already seen three special purpose ports: the memory manage-
ment ports described in Section 6.2.

9.1 Task Special Ports

A task may be associated with a set of special ports.!> A task self port (also
called a task kernel port) identifies a task to the kernel and is used to request
actions in behalf of a task. The task bootstrap port is typically used for
locating services. An task’s sself port typically is identical to its self port.
When task A’s sself port differs from its self port, a debugging task holds
a receive right on the sself port. The debugging task is said to interpose
between the kernel and task A. The task exception port'? is used by the
kernel to convey information about exceptions.

The special ports of a task are unique. Additionally, a task’s self port is
related to only one task. We introduce the function task-self to be the self
port associated with a task, and the function self-task to be the task with
which a self port is associated.

The other kinds of task special ports need not be related to only one task.
The functions task-bport, task-sself, and task-eport have axioms analogous to
task-self.

13We are currently ignoring the registered ports.
14Tn later versions of Mach 3.0, the single exception port was replaced by a set.
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Relation 9.1
task-self-rel (£, 7, s) WHERE
taskp (¢, s) A portp (p, s)

Relation 9.2
task-bport-rel (¢, p, s) WHERE
taskp (¢, s) A portp (p, s)

Relation 9.3
task-sself-rel (¢, p, s) WHERE
taskp (¢, s) A portp (p, s)

Relation 9.4
task-eport-rel (¢, p, s) WHERE
taskp (¢, s) A portp (p, s)

Definition 9.5
exists-task-self (¢, s) = 3 p: task-self-rel (¢, p, s)

Axiom 9.6
exists-task-self (¢, s) — task-self-rel (¢, task-self (¢, s), s)

Definition 9.7
exists-self-task (p, s) = 3 ¢: task-self-rel (¢, p, s)

Axiom 9.8
exists-self-task (p, s) — task-self-rel (self-task (p, s), p, )

Only the kernel task may hold a receive right to a task self port.

Axiom 9.9
task-self-rel (¢, p, s) A exists-receiver (p, s) — (receiver (p, s) = KERNEL)

Implementation Note. Pointers to a task’s special ports exist in a task
structure. The ip_kobject field of an ipc_port is a back pointer from
a special port to the entity that it represents. The ip_kotype of a port
gives a scalar value indicating what the type of special port. A port may
play at most one special port role as defined by ip_kotype. Section 9.7
discusses this further.
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9.2 Thread Special Ports

A thread has a self port, a sself port and an exception ports.*?

The special ports of a thread are unique, and, additionally a self port is
related to at most one thread. Therefore, we introduce the function thread-
selfto be the self port associated with a thread, and the function self-thread to
be the thread with which a self port is associated. The functions thread-eport
and thread-sself have axioms analogous to thread-self.

Relation 9.10
thread-self-rel (th, P, s) WHERE
threadp (th, s) A portp (p, s)

Relation 9.11
thread-sself-rel (th, p, s) WHERE
threadp (th, s) A portp (p, s)

Relation 9.12
thread-eport-rel (th, p, s) WHERE
threadp (th, s) A portp (p, s)

Definition 9.13
exists-thread-self (th, s) = 3 p: thread-self-rel (h, p, s)

Axiom 9.14
exists-thread-self (th, s) — thread-self-rel (th, thread-self (¢4, s), s)

Definition 9.15
exists-self-thread (p, s) = 3 th: thread-self-rel (th, p, s)

Axiom 9.16
exists-self-thread (p, s) — thread-self-rel (self-thread (p, s), p, s)

Only the kernel task may hold a receive right to a thread self port.

Axiom 9.17
thread-self-rel (th1, p, s) A exists-receiver (p, s)
— (receiver (p, ) = KERNEL)

15In later versions of Mach 3.0, the single exception port was replaced by a set.
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9.3 Processor Special Ports

A processor has one special port - its self port. The self port of a processor
is unique. Conversely, a self port is related to at most one processor. We
introduce the function proc-self to be the self port associated with a proces-
sor, and the function self-proc to be the processor with which a self port is
associated.

Relation 9.18
proc-self-rel (proc, p, s) WHERE
procp (proc, s) A portp (p, s)

Definition 9.19
exists-proc-self (proc, s) = 3 p: proc-self-rel (proc, p, s)

Axiom 9.20
exists-proc-self (proc, s) — proc-self-rel (proc, proc-self (proc, s), s)

Definition 9.21
exists-self-proc (p, s) = 3 proc: proc-self-rel (proc, p, s)

Axiom 9.22
exists-self-proc (p, s) — proc-self-rel (self-proc (p, s), p, s)

Only the kernel task may hold a receive right to a processor self port.

Axiom 9.23
proc-self-rel (th1, p, s) A exists-receiver (p, s)
— (receiver (p, s) = KERNEL)

9.4 Processor Set Special Ports

A processor set has two special ports, a self port and a name port. A send
right to the former gives a task the ability to change the processor set, but
the latter may be used only to get information about the processor set.

The special ports of a processor set are unique. Conversely, a special port
is related to at most one processor set. We introduce the function procset-
self to be the self port associated with a processor-set, and the function
self-procset to be the processor-set with which a self port is associated. The
pair of functions procset-name-port and name-port-procset have analogous
axioms.
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Relation 9.24
procset-self-rel (procset, p, s) WHERE
procsetp (procset, s) A portp (p, s)

Relation 9.25
procset-name-port-rel (procset, p, s) WHERE
procsetp (procset, s) A portp (p, s)

Definition 9.26
exists-procset-self (procset, s) = 3 p: procset-self-rel (procset, p, s)

Axiom 9.27
exists-procset-self (procset, s)
— procset-self-rel (procset, procset-self (procset, s), s)

Definition 9.28
exists-self-procset (p, s) = 3 procset: procset-self-rel (procset, p, s)

Axiom 9.29
exists-self-procset (p, s) — procset-self-rel (self-procset (p, s), p, s)

Only the kernel task may hold a receive right to a processor set’s service
ports.

Axiom 9.30
procset-self-rel (procset, p, s) A exists-receiver (p, s)
— (receiver (p, s) = KERNEL)

Axiom 9.31
procset-name-port-rel (procset, p, s) A exists-receiver (p, s)
— (receiver (p, s) = KERNEL)

9.5 Device Special Ports

A device has a special port called the device port. The device port of a device
is unique. Conversely, a device port is related to at most one device. We
introduce the function device-port to be the device port associated with a
device, and the function port-device to be the device with which a device
port is associated.
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Relation 9.32
device-port-rel (dev, p, s) WHERE
devicep (dev, s) A portp(p, s)

Definition 9.33
exists-device-port (dev, s) = 3 p: device-port-rel (dev, p, s)

Axiom 9.34
exists-device-port (dev, s) — device-port-rel (dev, device-port (dev, s), s)

Definition 9.35
exists-port-device (p, s) = 3 dev: device-port-rel (dev, p, s)

Axiom 9.36
exists-port-device (p, s) — device-port-rel (port-device (p, s), p, s)

Only the kernel task may hold a receive right to a device’s device port.

Axiom 9.37
device-port-rel (th, p, s) A exists-receiver (p, s)
— (receiver (p, s) = KERNEL)

A task gets access to a device port by making a kernel request via the
master device port (Section 8.2).

9.6 Host Special Ports

For hosts, the terms host name port and host self port are synonyms referring
to the information port. The terms host control port or privileged host port
refer to the port with which changes can be affected. We define the relations
host-name-port-rel and host-control-port-rel, and the functions host-name-
port and host-control-port. The relations are between a port and a state, and
the functions have only a state argument.

Relation 9.38
host-control-port-rel (p, s) WHERE

portp (p, s)
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Definition 9.39
exists-host-control-port (s) = 3 p: host-control-port-rel (p, s)

Axiom 9.40
exists-host-control-port (s) — host-control-port-rel (host-control-port (s), s)

Relation 9.41
host-name-port-rel (p, s) WHERE

portp (p, )

Definition 9.42
exists-host-name-port (s) = 3 p: host-name-port-rel (p, s)

Axiom 9.43
exists-host-name-port (s) — host-name-port-rel (host-name-port (s), s)

Only the kernel task may hold a receive right to host service ports.

Axiom 9.44
host-control-port-rel (p, s) A exists-receiver (p, s)
— (receiver (p, s) = KERNEL)

Axiom 9.45
host-name-port-rel (p, s) A exists-receiver (p, s)
— (receiver (p, s) = KERNEL)

9.7 Uniqueness of Special Port Roles

We have identified a number of special roles to which a port can be assigned.
There is a subset of these roles for which the kernel guarantees a port’s
assignment is unique - the kernel service ports plus memory control ports.
For example, a port that is some task’s self port may not also be the device
master port. We state this axiom for the task self port as follows. Analogous
axioms hold for the other relations.
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Axiom 9.46

task-self-rel (¢, p, s)
— - thread-self-rel (z, p, s)

A = proc-self-rel (z, p, s)

A = procset-self-rel (z, p, s)

A = procset-name-port-rel (z, p,

A = master-device-port-rel (p, s)
A — device-port-rel (z, p, s)
A = host-control-port-rel (p, s)
A = host-name-port-rel (p, s)
A
A
VAN

s)

- object-port-rel (z, p, s)
- control-port-rel (z, p, s)
name-port-rel (z, p, s)

J

9.8 Notification Ports

A notification port is used for queuing notifications for certain classes of
events. The kernel holds a send-once right on the notification port. Mach
currently implements the following notification classes.

Port-Destroyed. A port-destroyed notification prevents a port from being
destroyed. When an operation attempts to destroy the port, it is in-
stead queued as a transit receive right in the notification message.

Dead-Name. A task is notified when a port is destroyed to which a task has
a send right. The local name of the right is included in the notification.

No-Senders. A task is notified when a port to which it has a receive right
has no send rights.

Message-Accepted. A task is notified when a message that it wishes to be
sent to a port is finally delivered to the message queue.

Port-destroyed and message-accepted notifications will be deleted in sub-
sequent versions of Mach. Therefore, we do not model them here.
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Dead-Name Notifications

A dead-name notification is modeled by a relation on a port, a task, and
a name. In dn-notification-rel, destruction of the port denoted by name n
in task ¢ causes a message containing n to be sent to port p. When the
name of a task’s capability on a port is changed (via mach_port_rename),
the dead-name notification relation is modified to reflect the new name. At
most one dead-name notification port is associated with a (task, name) pair.
The function dn-notification-port gives this port.

Relation 9.47
dn-notification-rel (p, t, n, s) WHERE
portp (p, s) A taskp (¢, s) A (n € N)

Definition 9.48
exists-dn-notification-port (¢, n, s) = 3 p: dn-notification-rel (p, t, n, s)

Axiom 9.49
exists-dn-notification-port (¢, n, s)
— dn-notification-rel (dn-notification-port (¢, n, s), t, n, s)

Implementation Note. The ip_dnrequests field of an ipc_port is an
array of (port, name) pairs. Each element of the array identifies a port
to which a dead-name notification is to be sent when the port denoted
by the containing ipc_port is destroyed. The notification contains the
given name. An ipc_entry that represents a name for which there is a
dead-name notification request contains an index into the ip_dnrequests
field of the port denoted by the ipc_entry. When a task’s name for a
port is changed via the kernel call mach_port_rename the corresponding
entry in ip_dnrequests is updated to contain the new name.

No-Senders Notifications

A no-senders notification is a relation on two ports. The first is the notifica-
tion port. The second is the port for which notification of no senders is to
be made. A port may have at most one no-senders notification port. The
function ns-notification-port gives this port.
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Relation 9.50
ns-notification-rel (np, p, s) WHERE

portp (np, s) A portp (p, s)

Definition 9.51
exists-ns-notification-port (p, s) = 3 np: ns-notification-rel (np, p, s)

Axiom 9.52
exists-ns-notification-port (p, s)
— ns-notification-rel (ns-notification-port (p, s), p, s)

Implementation Note. The ip_nsrequest field of an ipc_port contains
a pointer to a port’s no-senders notification port.

10 Consistency of the Specification

This formalization of the Mach kernel contains over 400 axioms about some
250 functions. It is important to demonstrate that the axioms are not con-
tradictory, i.e., that they are consistent. One does this by displaying known
concepts that satisfy the axioms.

We have used Ngthm!® to demonstrate the consistency of this specifi-
cation. An Nqthm constrain event permits the introduction of a collection
of new function symbols, and axioms which they must satisfy. The Nqthm
user must also supply a “witness” to the axioms — that is, a collection of
previously defined concepts that provide an interpretation of the new func-
tion symbols, and which satisfy the axioms. In this way, consistency of the
axioms is proved, since it is demonstrated that there is some collection of
concepts that satisfies the axioms.

We have supplied a very simple witness for the Mach state axioms. Inter-
pret each of the relations as a predicate that returns the constant false. The
only entity in the state is the kernel task. The axioms follow from this inter-
pretation. This amounts to showing that an (almost) empty state satisfies
the axioms. In other work, we hope to demonstrate that a more interesting
witness — one that closely models the Mach implementation in C — satisfies
the axioms, as well.

16The Boyer-Moore theorem prover. See the introduction of this report.
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11 Conclusion

This report provides an axiomatic model of the primitive entities in a Mach
kernel, and the relations on those entities which a Mach kernel must support.
We have partially characterized nine primitive entities: task, thread, port,
message, page, memory, processor, processor set, and device. This report
represents an axiomatization in the Nqthm logic that contains over 400 ax-
ioms on approximately 250 functions. We have proved the consistency of
these axioms by giving an interpretation of the new function symbols that
satisfies the axioms. If this seems complicated one must remember that even
S0, it is an abstraction and simplification of the Mach kernel implementation
in C.

There are several ways in which the reader may find fault with our math-
ematical model of Mach. First, we may have omitted some primitive entities
which are deemed essential to Mach. Second, we may have omitted some
relations on the included entities which are deemed essential. Finally, we
may have made an error with respect to the intentions of the Mach designers
in describing some relation. We hope that review of this paper will result in
elimination of errors and a convergence of opinion on what must be described
at the Mach interface.

Figures 1 and 2 give a visual representation of the entities and relations in
a Mach kernel state. There is a node for each entity class. (Some nodes are
duplicated in the two figures. This is done merely to minimize the number of
intersecting lines. Three dimensions are required to do justice to the picture.)
There is a link between nodes for each relation on two entities. Dangling
labeled lines represent a relation involving only members of a single entity
class. A Mach state can be thought of as a graph linking nodes (representing
instances of the entity classes) via relations.

Alternatively, one may think of the axiomatization of a Mach kernel state
in terms of a relational database. (See [KS86] for background on relational
databases.) Each Mach relation introduced in in this report corresponds
to a relation in the database. Each instance of a Mach relation (i.e., an
application of a relation predicate to specific arguments) may be thought of
as a tuple in the database.

In sum, we may think about the relations in several ways. For example,
a task’s ownership of a thread in a kernel state may be thought of as the
assertion of some predicate, the existence of a tuple in a relational database,
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or as a link between two nodes in a state graph.

predicate  task-thread(t,th)

tuple [t,th] in a task-thread relation

graph < : ) < :>

The predicate approach is useful for formal reasoning, and the graph ap-
proach for is useful for visualizing a state. As explored in [BS93], the database
analogy is useful for addressing atomicity of transitions and concurrency.

We believe that this model of a legal state will make it possible to achieve
more thorough analysis of Mach implementations and applications. A com-
panion report [BS93| describes the identification of a collection of fine-grained
atomic transitions in terms of which Mach kernel calls can be implemented.
We intend to use this model as a basis for studying the correctness of the
parallel implementation of Mach kernel calls. As a result of this work we ex-
pect the model to evolve somewhat as we fill in omissions, correct mistakes,
and respond to design changes in Mach.

The ultimate source of information about Mach, as for many software
systems, has been the source code. Description of the system and its un-
derlying design principles exist in a number of published papers and CMU
technical reports, e.g., [FR86], [Ras86], [Tev87].

The authors would like to thank the following for their input on this
report: Todd Fine, Secure Computing Corporation (SCC), Sue Landauer,
Trusted Information Systems (TIS), Spence Minear (SCC), Tim Redmond
(TIS), Ed Schneider (SCC), and Matt Wilding (CLI).
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