Copyright
by
Benjamin Price Shults

1997

DISCOVERIES AND EXPERIMENTS IN THE AUTOMATION
OF MATHEMATICAL REASONING

by

BENJAMIN PRICE SHULTS, B.A.

DISSERTATION
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 1997

DISCOVERIES AND EXPERIMENTS IN THE AUTOMATION
OF MATHEMATICAL REASONING

APPROVED BY
DISSERTATION COMMITTEE:

Supervisor:

Supervisor:

For Alice

Acknowledgements

Even before starting graduate school, I had read about the ATP program at The University of
Texas at Austin and saved the information with the thought that someday I might play with
it. T had sometimes commented to my classmates that proving certain kinds of theorems was
so monotonous that a computer should be able to do it. When Norm McCain gave a guest
lecture on resolution and automated theorem proving in Vladimir Lifschitz’ logic course during
my first year of graduate school, I was inspired but not immediately convinced to change from
my plan to study topology. If it hadn’t been for Norm’s lecture, I may never have considered

it seriously.

Later, when I spoke to Woody Bledsoe about the possibility of working with him, his
encouragement was all I needed. I owe him thanks for encouraging me when I was about to

give up and for giving me a guiding vision for this work. Woody Bledsoe was my supervisor

during the bulk of this work until his death in October of 1995.

After Woody’s death, Larry Hines supervised my work. I am very grateful to him
for his careful reading and thoughts about my work. He was very good at communicating his

intelligent recommendations.

At the same time, Robert Boyer became my co-supervisor pro forma. I thank him for
setting high standards and making excellent recommendations for changes in my dissertation.
Dr. Boyer also has a knowledge of the folklore of the field and I appreciated his passing on

stories from the past.

Working with Benjamin Kuipers on a somewhat unrelated project in artificial intel-
ligence helped to shape me as a writer and a professional researcher. I also thank Benjamin
Kuipers for taking me into his group, giving me the opportunity to work with him and for

being bold enough to give advice. His advice was all excellent and badly needed.

I am very grateful to all of my committee members. I thank Robert Causey for going
far beyond the call of a committee member to get involved in my work. I thank Vladimir
Lifschitz for inspiration and encouragement. I thank Michael Starbird for encouragement and

friendliness throughout my graduate career.

Many visitors to UT and researcher at places I visited helped, inspired and encouraged

me with their own research and with their kind words to me.

I am grateful to my family for their advice and support. My wife, Alice, loved me,
read drafts of almost every paper I wrote, worked full-time and kept me fed. My father and
older brother, who have both been through the process of getting a PhD, gave excellent advice
and support. The rest of my family was available any time I needed them and being with

them 1s always a joy.

With the exception of the period during which I was working with Ben Kuipers and
the summers when I was working on research, I was also teaching and tutoring mathematics.
I am grateful to the administrators of the Department of Mathematics for offering me this

opportunity and support.

I am very thankful to Mark Catalano for running around UT getting signatures for me
after I had moved to Ohio. I am also thankful to the faculty of the math department at Kenyon
College for letting me take the time to defend my dissertation just before classes began.

Finally, I thank Jesus for doing more for me than I could ever ask or imagine.

vi

DISCOVERIES AND EXPERIMENTS IN THE AUTOMATION
OF MATHEMATICAL REASONING

Publication No.

Benjamin Price Shults, Ph.D.
The University of Texas at Austin, 1997

Supervisors: Larry Hines
Robert Boyer

The problem of automatically proving that a statement follows logically from a base
of knowledge is recurrent in artificial intelligence and automated theorem proving research.
It is a problem that mathematicians must handle very well in order to prove theorems in
mathematics. One of the difficulties of proving a statement is choosing when and how to use
the knowledge one has about the topic. Since this is difficult for mathematicians, we can

expect that it will be difficult for machines.

In this dissertation, the author describes a framework for approaching this problem
and illustrates its success on certain kinds of problems. A simple and tractable calculus is
also described for handling parts of set theory and equality. These devices allow for more

complicated mathematical expressions and theories to be handled more easily.

The rules presented here for storing and applying knowledge were designed with the
aim of facilitating human interface. Knowledge is stored in a format that is much more
cognitively sensible than the standard clausal form. Knowledge is applied during the search
for a proof in a way that is very similar to the way humans explain the application of knowledge

in proofs.

The computer program, IPR, uses the advantages of the framework not only to find

proofs of statements in theories under difficult circumstances but also to provide features that

vil

make it easy to be used by someone who knows nothing about automated methods but who
wants to get directly into mathematical reasoning. The method is very easy to implement
and facilitates excellent interactive capabilities including help for the user in understanding an

unfinished proof.

viil

Table of Contents

Acknowledgements
Abstract
List of Figures

Chapter 1. Introduction

1.1 Reasoning in Mathematics
1.1.1 Reasoning with Knowledge
1.1.2 Higher-Order Reasoning

1.2 Interface Issues
1.2.1 Output
1.2.2 Input L
1.2.3 Interaction

1.3 A Survey of the Automation of Reasoning

1.4 An Overview of the Dissertation.

Chapter 2. Formal Reasoning

2.1 Language for a Theory
2.1.1 LanguagelIssues
2.1.2 First-Order Logic

2.2 Reasoningina Theory
2.2.1 Tableaux
2.2.2 Sequent Calculus

2.3 Knowledge ina Theory
2.3.1 Clausal Form
2.3.2 Rules for Transformation into Non-Clausal Form

2.3.3 Soundness and Completeness

1X

vii

xlii

-1 O O Ot W W =

-~

oo

16

Chapter 3. Application of Knowledge 48

3.1 Informal Description 49
3.2 Technical Details 56
3.2.1 Unification Strategies Lo 57
322 Thee-Rule 59
3.2.3 Soundness and Completeness 63
3.3 Selection of Knowledge 67
Chapter 4. Extensions to First-Order Logic 73
4.1 Equality 73
41.1 Brown’s Rule. 74
4.1.2 Congruence Closure e 74
4.1.3 Miscellaneous Equality Rules, 75
4.2 Comprehension and Description in Tableaux 78
4.2.1 The Comprehension Schema in Tableaux 80
4.2.2 Description in Tableaux 83
4.2.3 Axiomsof Set Theory 83
4.2.4 Handling Equality in Set Theory 85
4.2.5 Control Strategies 88
426 Examples 89
427 Remarks 98
Chapter 5. IPR: Control and Interface 101
5.1 Control Issues 102
5.1.1 Breadth-First Unification 102
5.1.2 High-level Control 108
5.2 The User Interface 114
5.2.1 The Input Language 116
5.2.2 Tnput oL 117
5.2.3 Interaction L 120
5.2.4 Output 125
Chapter 6. Examples 127

Chapter 7. Related Work 145

T.1 Reasoning 146
7.2 Interface 149
Chapter 8. Conclusion 151
8.1 Summary 151
8.2 A Brief History of IPR 153
8.3 The Theorem n+ 1 Challenge 155
8.4 Imitating Human Techniques. 159
8.5 Synergistic Effect 160
8.6 Future Work 161
Bibliography 167
Vita 180

x1

2.1
2.2
2.3

3.1
3.2
3.3

4.1
4.2
4.3
44
4.5
4.6
4.7

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

6.1

6.2
6.3

List of Figures

The signed tableau (A) and ordinary tableau (B) for Example 2.2. 30
The signed tableau for Example 2.3. The symbols f; and f5 are Skolem constants. 31
The bottom of the instantiated signed tableau for Example 2.3. The symbols

f1 and fy are Skolem constants. 32
The proof for Example 3.1. 50
The tableau for Example 3.3. The symbols Xy, Ag and ag are Skolem constants. 62
The tableaux for Example 3.4 69
The knowledge base and proof excerpt for Example 4.1. 76
The tableaux for Example 4.1. The symbols a,b,S and T" are constants. 77
Some examples of theorems involving ¢-terms. 84

The proof of a = ¢ in Example 4.4. The symbols a, b, ¢ and d are Skolem constants. 92

The proof of b =d in Example 4.4. 94
Part of the tableau for Example 4.4., . 95
The tableau for Example 4.5. The symbols X, Y, ay and by are Skolem constants. 97

The tableau for Example 5.1 after one step. 110
The tableau for Example 5.1 after two steps. 111
The tableau for Example 5.1. 111
The input for Example 5.3.o 119
The knowledge for Example 5.3 as IPR displaysit. 119
The knowledge for Example 5.4 as IPR displaysit. 121
The interaction for Example 5.4. 122
The condensed proof tree for Example 5.4. 124
The automatically generated English proof for Example 5.5. 125
The first part of the knowledge base formed for Example 6.1. 130
The second part of the knowledge base formed for Example 6.1. 131
The top of the tableau for Example 6.1. 132

X1l

6.4 The middle of the tableau for Example 6.1. 133
6.5 The bottom of the tableau for Example 6.1. 135
6.6 Part of the interaction for Example 6.1. 137
6.7 The tableau for Example 6.2. oL 139
6.8 IPR’s proof of Example 6.2. 139
6.9 The knowledge base sufficient for Example 6.3. 141
6.10 The proof tree for Example 6.3. 142
6.11 The input for Example 6.5. 144
8.1 The knowledge for the challenge. 166

xiil

Chapter 1

Introduction

The following question now arises as a fundamental problem: Is it possible to
determine whether or not a given statement pertaining to a field of knowledge is a
consequence of the axioms? ...[We] are justified in calling it the main problem of

mathematical logic.

—David Hilbert [67]

While automatic methods have had great success in many areas of mathematical
reasoning, large classes of problems remain out of reach for machines. In particular, the process
of establishing the truth of a statement given a large base of knowledge in the theory is very
difficult to automate. Typically, when a computer program is given a large base of knowledge
and asked to prove that some statement is a consequence of the knowledge, the program fails
due to the size and complexity of the search space. The author presents a framework for
storing knowledge and accessing it in the process of finding a proof of a new statement that is
a consequence of the knowledge. The framework includes a calculus for proving theorems and

strategies for controlling the application of rules in the calculus.

The primary high-level motivation behind this work is to have a computer program
that finds the proofs of (i.e., establishes the truth of) theorems in mathematical theories au-
tomatically. The second high-level motivation behind the development of this framework is
that the rules be sensible to non-experts so that the program implementing the rules will be
usable by a person who may be an expert in mathematics but is not an expert at automatic
techniques. These two basic considerations influenced many of the choices made in the de-

velopment of the calculus. A program using the calculus presented in this dissertation can

easily interact with humans and give useful feedback including explanations of proofs and

proof attempts.

The calculus and strategies presented in this dissertation have been demonstrated to
be successful by the fact that a program (IPR) using the framework has proved traditionally
difficult problems with ease. The framework for storing and using knowledge used in IPR give
it an ability to prove theorems in advanced mathematics. The IPR system takes advantage of

the nature of the framework to provide a nice user interface.

We first sum up the novelties in this approach. TPR uses a novel non-clausal form
for storing knowledge in a theory (Section 2.3.) The knowledge is applied using the author’s
e-rule (Section 3.2.) Since the application of knowledge using the e-rule resembles the way a
mathematician might explain the application of knowledge, it i1s easy to invent strategies for
selecting knowledge that agree with common sense. The strategies introduced here try to keep
the search space small while selecting the most closely related knowledge (Section 3.3.) TPR
also uses some novel methods to control the search for a proof (Section 5.1.) In order to allow
easy expression of common mathematical concepts, IPR extends first-order logic to include
the classifier, {z : P}. A new calculus for handling the classifier within a tableau calculus
is described (Section 4.2.) The calculi were developed with human understanding in mind.
Therefore, 1t has been relatively easy to implement an unusually informative interface to the
prover (Section 5.2.) TPR also explains the proofs it finds completely in English (Section 5.2.4.)
All of the novelties mentioned so far were developed by 1994 and published in at least a
primitive form in early technical reports [106, 107]. Since that time, most of the work has gone
into improving the implementation to the point that it could prove theorems that are difficult

for other systems. Some examples of theorems proved are detailed in Chapter 6.

We begin with a discussion of some of the issues related to the main motivations for
this work. We will then give a quick overview of the history of the automation of reasoning
(Section 1.3.) In this overview, many of the basic terms that will be used throughout the

dissertation are introduced.

We divide this discussion into two areas: the type of reasoning that we want the

computer to do (Section 1.1) and the kind of interface we want it to have (Section 1.2.)

1.1 Reasoning in Mathematics

Reasoning in mathematics requires a tremendous variety of types of reasoning. In this project,
we only attack a few of these types of reasoning. There is a discussion of some types of mathe-
matical reasoning that remain out of reach in Section 8.3, and types of reasoning implemented

in other systems in Section 1.3.

The types of reasoning that have been attempted by the IPR system in novel ways
can be divided into two categories: reasoning with knowledge and higher-order (set theo-

retic) reasoning.

1.1.1 Reasoning with Knowledge

When trying to prove a statement in mathematics, a mathematician knows many thousands
of definitions, theorems and axioms. Somehow, the mathematician is often able to select from
that base of knowledge just the information that is needed for the proof. Humans are by no
means perfect at this task: they frequently waste time applying theorems that are not needed
in the proof that is finally found. Sometimes a person will spend years trying to prove some
statement without success. (Fermat’s last theorem comes to mind.) Since reasoning with a lot

of knowledge 1s difficult for people, we can expect that it will be difficult for computers.

Nevertheless, a computer with the ability to reason well with knowledge would be
very useful. Mathematicians, physicists, engineers, economists and others could use it to
verify that their hypotheses are in agreement with the knowledge in their field or with certain
other assumptions. Related technology could be used in artificial intelligence programs that

are used to do common-sense reasoning in particular.

In talking about proving theorems, Solow makes an analogy with solving a maze [114].
One can work forward or backward: one can concentrate on the statement being proved and
try to decide what would be sufficient, or one can concentrate on the assumptions and try to

draw conclusions from them until the goal is reached. As Solow mentions, we usually work

forward and backward alternatively.

It might be necessary to alternate several times between the forward and back-
ward processes before you succeed, for there are likely to be several false starts and

blind alleys.

—Daniel Solow [114]

Consider how complicated this maze is. Suppose that at each step in the proof (maze) there
are only 100 different ways of applying the theorems we know. This means that in each step in
the maze, there are 100 different possible directions we could go. So there are 10,000,000,000
different places we could be after making only five decisions in the maze. In addition, this

maze has many infinitely long corridors that never cycle. This is a very complex maze.

Now there are several different ways computers can be used to solve mazes. One is
called the depth-first method. In this method, the computer follows a single path until it
comes to a dead end. Then it backs up to its last decision and chooses a different direction.
This repeats until a solution is found. This method may not work if our maze has paths that

are infinitely long. The computer may follow a path that goes on forever without a dead end.

A second method computers use to solve a maze is called the breadth-first method.
In this method, the computer tries all corridors at once. It takes one step down each corridor,
then one more step down each corridor until it finds the exit. If there is a finite path through
the maze, this method will find it. But how long will it take? After only five steps, the
computer will have to have considered 10,101,010,101 places in the maze. The number of
places considered grows exponentially. An additional problem for this method is that in some
logics, there are infinitely many different directions one can choose from any given point in

the maze. In these logics, the breadth-first method cannot succeed at all.

A third method is to apply one of the above methods or a combination of them with
some kind of strategy for choosing the direction to go or not to go. At least on the conscious
level, this is what humans do. The IPR, program uses this third approach. Section 3.3 mentions

some of the strategies it uses.

Apart from the sheer immensity of the search space, there are other factors that make
using a large knowledge base difficult. One reason relates to the fact that so much depends on
the choice of knowledge to apply and how to apply it. If a wrong decision is made then the
rest of the proof attempt is pointed in a direction that may not lead to a proof. For instance,
if a variable 1s instantiated in order to apply a known statement, then you have to wonder if
that variable instantiation is what is correct for the rest of the proof. When the application of
a theorem introduces a new predicate then you must wonder if that predicate should become
your focus and perhaps further knowledge selection should trigger on 1t. And so once a wrong

decision is made, the proof becomes much harder to finish.

Briefly, the logical framework presented here is a combination of some novel methods
for reasoning that allow for a sensible strategy to have success in some difficult problems. The
first novelty is the format in which knowledge is stored (Section 2.3.2.) Knowledge is stored in
a sensible and useful non-clausal format that facilitates automatic use and human understand-
ing [110]. This is useful in an automated theorem proving context because it allows humans to
interact if necessary and to understand the output proof. The second novelty is the first-order
calculus used for applying knowledge while constructing tableaux (Section 3.2.) Knowledge
is applied in a way that resembles the way mathematicians explain the use of theorems. The
combination of these two novelties along with the novel control methods discussed in Sec-
tion 5.1 make possible the success of certain strategies for automatically selecting knowledge

for use in the process of finding a proof (Section 3.3.)

The reason the strategy is important is that the maze is very complex. The IPR
program, like the mathematician, tries to narrow down the number of paths that are likely to
lead to success and tries to go in the direction that leads most directly to the proof. This is

accomplished by means of the simple “n + m” strategy and other strategies (Section 3.3.)

1.1.2 Higher-Order Reasoning

While first-order logic (Section 2.1.2) is capable, in theory, of expressing anything in ordinary
mathematics, higher-order logic allows for more convenient and brief expressions to be used.

The TPR system utilizes a novel method for proving some theorems in higher-order logic.

Higher-order logic is very useful in mathematics because it allows more complex sentences to
be more easily expressed and proved. However, when the language is extended in this way,

reasoning typically becomes much more complex.

Several methods have been developed for handling higher-order reasoning. Some have
developed provers for full higher-order logic [2, 4]. Others have implemented Godel’s axioms in
order to keep set theory completely within first-order logic [102]. Others have despaired of han-
dling the problem automatically and resorted to proof checkers [96]. The method used by Frank

Brown [39] turns out to be rather closely related to the method described in this dissertation.

The method used by TPR 1is essentially the implementation of the axiom schema of
comprehension by means of some new tableau branch closure rules and new tableau branch
expansion rules. This will be explained in detail in Section 4.2. This very simple and tractable
mechanism apparently encompasses a great deal of common higher-order reasoning in a rela-

tively expressive language.

The strength of this method is also illustrated by showing that it proves very easily

several examples that have been considered difficult for other automatic methods.

1.2 Interface Issues

One of the barriers that keeps mathematicians from using automated theorem proving software
is the interface. In order to use most systems, the user really must be an expert at the
underlying proof calculus. One of the primary goals in the development of the calculus used
by IPR is that it support an intuitive user interface and allow the user to understand what is

happening without learning a new logic.

1.2.1 Output

In the case of many automatic theorem provers, the output is limited to one of the following
phrases: “the formula is a theorem,” “the formula is not a theorem” or “unable to determine.”
This 1s not very useful information. The mathematician wants to know why it is a theorem.

The mathematician wants to be able to read and verify the proof. If it is not a theorem, the

mathematician wants to see a counter-example. If the program is unable to determine the
truth value of the formula, the mathematician wants to know what was accomplished in the

proof and what was missing.

The use of a tableau calculus (as opposed to a resolution calculus) makes all of these
things possible. In fact, the tableau calculus was invented (in its early form by Gentzen and
Beth [57, 23]) in order to simulate human proofs. The calculus invented for IPR is particularly

designed to make the output sensible to a mathematician.

1.2.2 Input

In most ATP systems, the user needs to adjust various settings, decide certain indexing schemes
on terms and predicates or give the program instructions about how certain information should
be used. In order to give this input to the prover, the user often needs to know a lot about
the underlying logical calculus being used by the system. Since mathematicians often do not

? “resolution”

know what first-order logic is, much less the meaning of terms such as “clause,
or “tableaux,” mathematicians have to climb a long and steep learning curve in order to use

these systems.

In some systems the user must even enter a proof, usually in a very unnatural language,

and the program only checks to see whether it is a correct and complete proof.

The TPR system is designed to avoid these necessities. The user does not need to
know about the underlying calculus. The user simply enters the known facts in a theory and
the formula to be proved. If IPR does not prove the theorem in a reasonable amount of time,

then we get to the topic of the next section.

1.2.3 Interaction

Of course, a theorem prover will be stronger if it enables a human to use expertise to help the
prover. This is completely impossible in the case of most really automatic systems. Existing
automatic systems translate the problem into some form that is not sensible to a non-expert

user. They usually do not attempt to translate an incomplete proof attempt into a form so

that the user can understand what has been done and what remains to be done. Since this 1s
the case, it is practically impossible for the non-expert user to give useful advice or direction

to the program during a proof attempt.

The TPR system can be interrupted at any time or put into a mode in which it takes
a single step at a time. At each step the program shows the user, in English, what has been
done and what remains to be done. It also allows the user to give commands to apply rules in

a way that the prover would not have chosen to do on its own.

1.3 A Survey of the Automation of Reasoning

The idea of the automation of reasoning has been around since Euclid. Aristotle, Leibniz,
Peano, Boole, Frege, Hilbert, many of the greatest mathematicians and computer scientists
of this century including the inventors of the first computers had this dream in mind. For
hundreds of years, many great thinkers have envisioned the automation of reasoning and have
worked toward the realization of that goal. Most of the historical information in the early part

of this section can be found in Martin Davis’ survey article [50].

The reasoning algorithms invented by Euclid, such as the division algorithm, are early
examples of some types of reasoning that were mechanized by the ancients. Aristotle worked
on a system of mechanical rules that he believed would allow their user to draw any true

conclusion from a set of assumptions.

Leibniz is famous for inventing the differential and integral calculus. By using this
calculus, a machine or person could complete calculations in a few minutes that took Kepler
years to figure. Thus, it might be said that human intelligence i1s no longer required to solve

these problems.

Leibniz also developed a “calculus of reasoning”. He wanted disputes in human affairs
to be answered by what he called “calculators,” which were people who knew how the algorithm
for reasoning worked. The question would be stated in the formal language and then the

disputants would simply say: “let us calculate.”

He recognized the three basic elements needed for automatic reasoning: (1) a formal

language, (2) formal rules of inference and (3) knowledge. He worked on a formal, unambiguous
language along with a complete set of rules for drawing conclusions (inference rules.)! He
hoped that the combination of these would allow for any question to be answered finally and

unquestionably. His work in this area was left unfinished.

In the nineteenth century, George Boole developed the propositional calculus (in his
book The Laws of Thought [34]) that provided a language and set of inference rules in which
much ordinary common-sense reasoning can be expressed. An advantage to his language was
that there was a procedure that would determine whether any sentence in the language were
true or false in a finite amount of time. As early as 1869, a machine was constructed that could
verify statements in propositional logic. The language of propositional logic is, unfortunately,

not expressive enough to answer most interesting questions.

In 1879, Gottlob Frege expanded the language to full first-order logic, which allows
much more complex statements to be expressed and verified. In fact, the language of first-order
logic can be used to express almost any question. Frege introduced some rules of inference but

did not develop them fully.

Peano’s work was similar to Frege’s. He invented a similar formal language and said:
“I think that the propositions of any science can be expressed by these signs of logic alone,

provided we add signs representing the objects of that science.”

Russell and Whitehead showed that this was true. They laid a foundation for all of

mathematics (and thus physics and other sciences and fields of reasoning) in logic.

Hilbert was excited by the possibilities and initiated a program of research that had
among its goals the discovery of a systematic procedure that would decide the truth or falsity
of any statement in Frege’s first-order logic. In 1928, Hilbert called the search for this decision
procedure the “main problem of mathematical logic” and stated it as follows, “Is it possible to

determine whether or not a given statement pertaining to a field of knowledge is a consequence

LAn inference rule is a syntactic rule that is applied to a set of sentences to produce a new sentence that
is a logical consequence of the original set of sentences. Modus ponens is an example of an inference rule.
Modus ponens allows us to conclude that the sentence “Q” is a consequence of the two sentences “P” and “P
implies Q.”

of the axioms?” (See Sections 11 and 12 of Chapter TIT of Mathematical Logic [67].) Azioms
are simply the most basic assumptions used in a given field of reasoning. So his question could
be stated: is there a procedure that can always decide whether a statement is a consequence
of some base of knowledge? Given a base of knowledge (which is called a theory) a statement
that follows logically from that knowledge is called a theorem of the theory. Verifying the truth

of a statement using inference rules is called proving a theorem.

Hilbert began a program to find a procedure (algorithm) that could decide whether a
sentence in first-order logic were true or false given some assumptions. Many logicians (e.g.,

Gentzen, Beth, Godel, Church, Turing, Skolem and Herbrand) began working on this problem.

Gentzen and Beth developed algorithms for proving theorems. Their algorithms have
the property that they detect if a sentence is true in a finite amount of time. The procedure

my system uses is a derivative of their work.

In the 1930s, Church and Turing independently discovered, based on the work of Godel,
that there is no procedure that will decide whether any given statement in first-order logic
is true or false. There are, however, procedures that will detect if a statement in first-order
logic is true. A procedure with this property is called a complete procedure or a semi-decision
procedure. Unfortunately, complete procedures may never halt if the statement in question is
not true; and if the statement is true, there is no telling how long the procedure will take to
detect that. So if a complete procedure is followed in an attempt to decide some question, after
some time passes, we will not know whether we should give up and guess that the statement is
false or whether, if we just continued following the procedure for a few more years, we would

find the statement to be true.

But all of these facts apply equally to people and computers. The problem of proving
theorems can be difficult and there is no easy answer. Still people do it reasonably well all the
time and so there seems to be nothing to prohibit computers from doing it. Many of the great

mathematicians and logicians of this century continued to pursue this possibility.

Godel, in 1944, talking about the difficulties of solving “mathematical problems sys-

tematically” said, “But there is no need to give up hope.”

10

The logician and mathematician Hao Wang held the same view.

The writer, however, feels that the nature and the dimension of the difficulties
have been misrepresented through uncontrolled speculation and exaggerated be-
cause of a lack of appreciation of the combined capabilities of mathematical logic
and calculating machines.. ..

Instead of being discouraged by this, however, one should view it as a forceful
reason for experimenting with mechanical mathematics.. ..

It seems, therefore, that the general domain of algorithmic analysis can now
begin to be enriched by the inclusion of inferential analysis as a younger companion

to the fairly well established but still rapidly developing leg of numerical analysis.

—Hao Wang [117]

Woody Bledsoe had a famous dream. He dreamt of a reasoning machine that would

help people solve problems from the mundane to the crucial [27].

Indeed, in the late 1950s and early 1960s, computer implementations of proof proce-
dures began to be reported. In what follows, we will discuss some of the computer theorem
provers that have been developed. Some of the techniques mentioned below will be explained

in more detail in other parts of this dissertation.

In the last forty years tremendous progress has been made and computers have proved

several theorems that have been puzzling mathematicians [89].

Workers in this field approached the problem of automating mathematical reasoning
from many different directions. Some wanted to develop methods for first-order logic in general.
Since almost any area of mathematics (and almost any other area of reasoning) can be framed
in first-order logic, the advantage to this approach is that, if successful, the program could
reason in almost any area of mathematics. These programs are called “general-purpose.” The

framework presented in this dissertation is of this type.

Other workers concentrated on a type of reasoning that is particularly successful in
some sub-discipline such as algebra or geometry. Some workers believed that imitating some
aspects of the way humans present and consciously discover proofs afforded advantages. Others

came up with methods that are difficult for uninitiated mathematicians to understand, yet that

11

seemed to suit the skill of computers. Some researchers worked on interactive provers that
cooperate with the human. These provers accepted hints or proof sketches from the user and

used these to prove the given statement.

General-purpose methods. In the 1930s and 1940s, Gentzen [57] and Beth [23] worked
on complete systematic proof procedures for first-order logic. These methods are referred to
as sequent or tableau methods. It is a derivative of these methods that is used in the calculus
developed in this dissertation and therefore they will be discussed in detail later. Their methods
were related to the way humans present proofs. It is not difficult to translate proofs in their
systems into readable natural-language proofs (Section 5.2.) Several of the early (late 1950s
and early 1960s) automatic theorem proving programs (such as those of Hao Wang [116]) were
based on the methods developed by Gentzen and Beth. A method called model-elimination,

which is related to tableau methods, was developed by Loveland in the early 1960s [83].

Another group of researchers was working on automatic theorem provers based on
the work of Herbrand and Skolem. In the early 1960s, J. A. Robinson [104] came up with
a new complete procedure for proving theorems in first-order logic called resolution. The
resolution methods are not so closely related to the way humans present or normally think of

proving theorems.

Special-purpose provers. Another vein of work focused on specific types of reasoning or
more specialized areas of mathematics such as geometry or number theory. These techniques
essentially encode shortcuts that are frequently used in some particular field. The general-
purpose provers can prove theorems in these particular fields but it is much more efficient to

use the special-purpose shortcuts.

In the late 1950s, H. Gelernter published his work on a theorem prover for statements
in geometry [56]. Much later, Shang-Ching Chou wrote a geometry prover that used analytical
methods developed by Ritt, Buchberger and Wu [46].

Special provers for elementary number theory and inequality problems were devel-

oped based on the work of Presberger and others. Martin Davis implemented such a prover

12

in 1957 [49]. Larry Hines incorporated systematic procedures for handling certain kinds of

inequality problems in 1980 [31, 70].

Various provers were developed for proving theorems by induction. Boyer, Moore
and Kaufmann have developed a series of provers for this purpose [38]. Alan Bundy’s group
developed their own “rippling” techniques for proving theorems by induction [41]. Recently,
Baaz, et. al. developed the incorporation of induction schemata into the tableau method in a

tractable way [7].

Rewriting and equality. Particularly in algebraic problems, a lot of the work in proving
a statement involves writing terms in a form that is more useful. This kind of reasoning is
called rewriting. This is a special area of reasoning in which very successful techniques have

been developed.

In 1970, Knuth and Bendix wrote a landmark paper describing a method for proving
theorems involving equalities [78]. Supposing that it is known that certain terms are equal,
those equalities are automatically used to decide whether some new pair of terms are equal.
This technique has been expanded, specialized and generalized by Kapur [76, 124], Bachmair [9]

and Dershowitz [51].

Larry Wos and his group incorporated their own rewriting techniques into their reso-

lution provers [122]. These methods are called demodulation and paramodulation.

Another method for handling equality is called the congruence closure technique [85,
92, 105]. This method is complete for ground equality. That is to say that for any set
of equalities without variables, and for any theorem that follows from those equalities, this

method will prove the theorem using the equalities.

In tableau-based methods, some of these techniques do not work the same way because
variables are treated differently in tableaux. Beckert, Gallier, and others have worked on

efficient methods for handling equality in tableaux [18, 55].

13

Set theory and higher-order logic. Reasoning in most mathematical theories (or in most
other realms of reasoning) involves reasoning about sets of objects. Reasoning about sets of
objects in first-order logic is usually done using a well-known yet complex list of axioms called
the axioms of set-theory. Another approach to this kind of reasoning is to use higher-order

logics in which it is easier to express statements about sets of objects.

Bledsoe’s Set- Var method [30] and Bailin and Barker-Plummer’s Z-match method [10]
both used a slight extension to first-order logic in order to allow sets to be expressed and used
more easily. Both of these methods discover sets that have the properties needed to prove

many statements in set theory and real analysis.

Larry Hines developed a prover for a part of the theory of sets based on the ideas used
in his inequality prover (mentioned above) [69]. His techniques handle the transitivity of the
subset relation while avoiding the usual complexity that other systematic methods face when

using that axiom.

David McAllester’s interactive Ontic prover checks proofs in set theory using a combi-

nation of fast procedures and a language that is based on the theory of English grammar [84].

Quaife used the Otter program of Wos and McCune to prove many theorems of set

theory based on Godel’s first-order axioms [102].

Peter Andrews developed a completely automatic theorem prover for full higher-order
logic [4]. The fact that his prover, TPS, uses full higher-order logic allows many complex
statements about sets and functions to be stated more simply than is possible in the language

of first-order logic with set-theory.

Human-like techniques. Solow [114] and Polya [98] studied general heuristics used by
humans in the theorem-proving process. They studied the basic tactics applied by mathemati-
cians in trying to establish a statement as fact. Alan Bundy advocated attempts to encode
some of these human techniques into systematic procedures and computer algorithms [42].
Perhaps the earliest experiment in this direction was conducted by Newell, Simon and Shaw

in the late 1950s [93].

14

Woody Bledsoe, who made substantial contributions to mathematics before dedicating
himself to automating reasoning, tried to encode some of his own techniques into his automatic
theorem provers [26]. Bledsoe and his collaborators also wanted the programs they developed
to be very usable so that the user would not have to be an expert at the underlying proof
procedure in order to use the programs [28, 29]. As a result, the provers needed to be able to

communicate with people in a natural way.

Interactive provers. Many of the systems mentioned so far were interactive to some extent.
Programs that are designed to cooperate with the user are thereby able to prove more theorems
than programs that work completely independently of human help. Some programs of this
type are called “proof checkers” rather than “theorem provers.” In these cases, the user writes
out a proof, with or without all of the details, and the prover makes sure that the proof
is correct or finds some correct proof using the information entered by the user. These are
sometimes called “interactive provers” or “semi-automatic theorem provers.” Probably most
automated reasoning programs lie somewhere between the extremes of completely automatic

theorem proving and proof checking.

Even with all of the work that has been done, the problem of reasoning remains difficult for
computers. Hao Wang, a logician who was aware of the theoretical difficulty of the problem
of the automation of reasoning, was optimistic. He expected that computers would come into
common use as proof assistants for working mathematicians just as they are used today to
solve numerical problems [117]. Woody Bledsoe, an expert not only in mathematical analysis
but in theorem-proving technology, was optimistic. He dreamt of a reasoning machine that
would help people solve problems from the mundane to the crucial [27]. Larry Wos, another
expert with a background in mathematics, is optimistic [121]. The programs developed by his
group have already solved problems that confounded some of the greatest mathematicians of

this century [89].

While great success has been attained, there has been much frustration and disap-

pointment. The lion’s share of the realm of reasoning has not been touched by the computer.

15

One very basic skill that computers have yet to master is that of using successfully an enor-
mous base of knowledge. This is something that humans do rather well. When given a large
base of knowledge, most existing programs get bogged down. This problem is addressed by
the calculus presented in the body of this dissertation. In short, IPR stores knowledge in a
way that 1s more sensible to humans than clausal form. It selects pieces of knowledge to apply

by using strategies. See Section 7.1 for references to some work already existing in this area.

1.4 An Overview of the Dissertation

In Chapter 2, we discuss the components needed for reasoning: a language, inference rules and
assumptions. In each case we discuss some of the existing methods and the method that we

use 1n this framework.

In Chapter 3 the rule for applying knowledge to a problem is given, first very infor-
mally, then formally. We prove that this rule is correct in that it is impossible to draw a
conclusion that 1s not a consequence of the knowledge using it and that it is capable of proving
any true statement. In Section 3.3, we mention the strategies used by the IPR program for
selecting theorems to apply during a proof and explain why these strategies are used. These

strategies are a key to the success of the framework.

In Chapter 4, we describe the extensions to first-order logic that are implemented in
IPR in order to make it easier to get into advanced mathematics. These include some handling

of set theory and equality.

Chapter 5 contains a description of the IPR prover that implements the framework
described in this dissertation. We describe the interface to the program and we present some

technical details about the IPR program and how it works.

In Chapter 6 we give some examples of theorems that IPR has proved including one
that, to my knowledge, has not been proved by any other system even though it has been

widely distributed.

Chapter 7 contains a survey of closely related work including some that has been done

since this calculus was developed. Chapter 8 contains the conclusion of the work and ideas for

16

future research that will improve the reasoner and the interface.

17

Chapter 2

Formal Reasoning

“Contrariwise,” continued Tweedledee, “if it was so, it might be; and if it were

s0, it would be; but as it isn’t, it ain’t. That’s logic.”

—Lewis Carroll [44]

As was mentioned in Section 1.3, and indeed was known by Leibniz, in order to
automate reasoning we need a language, inference rules, and some sentences in the language
that we assume are true. These assumptions are called axioms and definitions and will be
stored in the knowledge base. In this chapter, we discuss issues relating to the selection of

language, inference rules and representation of assumptions.

Consider an example of reasoning about real numbers. We have a language in which
expressions such as 2, 7,4 + e and z? are terms. Some sentences (which may or may not be

true) in the language of the reals are:

2<4
16° = logg 4
We also use some special rules of inference when dealing with the real numbers. If
we know that ¢ < y and that y < z, then we can conclude that x < z. This inference rule
can also be considered an axiom. The same is true of most inference rules that are special to
a particular field of reasoning. The special inference rules are really just shortcuts for using

axioms along with the general inference rules that we will present in Section 2.2.

Finally, in the theory of the reals, we have certain assumptions or knowledge such

as the fact that between any two distinct real numbers there is a third distinct real number.

18

When a program turns a theorem or axiom into an inference rule, that program
is called a special-purpose prover. In this project, we want to stay general-purpose. (See
Section 1.3.) Here we would like to use a language and a set of inference rules such that
we can reason about almost anything rather than only about the real numbers. In order to
reason in special areas, such as the theory of the reals or topology, we will use the appropriate
assumptions about objects in that theory. We will draw conclusions from those assumptions

using general purpose inference rules.

In Section 2.1 we discuss the choice of general purpose language and define the lan-
guage of first-order logic. Once we have a language, we will need a method for establishing
the truth of sentences in the language. In Section 2.2 we mention three different sets of infer-
ence rules, each of which i1s complete in the sense defined in the introduction. We will discuss

advantages of each and why we chose the one we did.

Finally, in Section 2.3, we describe how assumptions in the language are stored in
the knowledge base. We will also mention some advantages to using this format. We argue
that the format for storing knowledge is useful in the reasoning process partly due to the fact
that it resembles the way humans write and prove theorems more closely than more common
computer oriented formats. In Chapter 3, we will describe how the knowledge is selected and

used to prove new statements.

2.1 Language for a Theory

The field of mathematics is a good source of problems in knowledge representation and rea-
soning. Many have searched for a language that is expressive and suitable for use in efficient
automated reasoning in mathematics. Most of the present work was done in the context of
a language called first-order logic. Before defining first-order logic, we briefly mention some

other languages that have been proposed and used by others.

19

2.1.1 Language Issues

The two issues faced when selecting a language are expressiveness and complexity of reasoning.
Languages that are very expressive are accompanied by very complex inference systems, while
languages that allow efficient inference are not very expressive. We use first-order logic because

it balances these two issues relatively well.

The simplest solution to the problem of the complexity of the reasoning is to restrict
the expressiveness of the language in various ways. This solution does not seem satisfactory for
the purposes of proving theorems in classical mathematics because less expressive languages are
not able to make many interesting statements in mathematics. For example, if the language
is restricted to Horn clauses, then reasoning can be very efficient. In this case, there are
procedures that are guaranteed not to allow certain kinds of complexity to arise in a proof.
However, in the language of Horn formulas it is very difficult to express many interesting facts
in mathematics including many very basic definitions. Propositional logic is another example
of a language in which reasoning is very efficient. In propositional logic, there is a decision
procedure. But, in propositional logic, it is impossible even to express the notion of “every”

or “some” in a general way.

David McAllester [58, 59, 86, 87] has developed languages that are more expressive
than first-order logic and for which the subset of the language for which there is a decision
procedure properly contains the subset of first-order logic for which there is a decision pro-
cedure. This is a great advantage. The disadvantages include the unfortunate fact that the
languages are not well-known and the multiplicity of inference rules that must be used in the
languages. McAllester’s languages are unfamiliar not because they are any more difficult to
comprehend or read; in fact, they are easier to read than first-order logic since they are more

closely related to English grammar.

Jaakko Hintikka advocates the use of “independence-friendly” logic since it is more
expressive than ordinary first-order logic [72]. Naturally, reasoning in this logic is more complex
than in ordinary first-order logic. Additionally, Hintikka’s independence-friendly logics do not

obey the law of the excluded middle.

20

Higher-order languages are much more expressive than first-order logic. In these lan-
guages, it is easier to express statements about properties, functions and sets. Reasoning
about sets of objects using first-order logic is not simple. Frequently, sentences that can be
expressed in first-order logic with the axioms of set theory can be expressed in higher-order
logic with less quantification. A disadvantage to higher-order logic is that reasoning is much
more complex. In higher-order logics, the branching factor—that is, the number of choices one

has in taking the next step in the proof—can be infinite.

2.1.2 First-Order Logic

First-order logic is defined in many textbooks [90, 113]. In this dissertation we will remain
rather informal in the definition of first-order logic, particularly regarding semantics. To
see all of the details, one should read the appropriate articles and books mentioned in the
bibliography [113]. In Section 5.2.1 we give a slightly more formal definition of the syntax for

the language that is input to the IPR program.

First we will describe terms in the language. Terms are expressions that stand for
objects in the universe of discourse. Terms in first-order logic correspond to nouns in English.
For example, in the theory of real numbers, 2, 7, e, and log,(3) are terms; they stand for real
numbers. Variables are also terms and they are thought of as ranging over the universe of
discourse. For example, the expression 22 + 1 is a term in the theory of real numbers and it
could stand for any real number greater than or equal to 1. (z* 4+ 1 > 1 because otherwise
z? < 0, which is impossible.) Terms can be constructed from smaller terms by the use of
function symbols. For example, cos is a function symbol in the theory of the reals that takes
one argument. For any term #, we can construct a term cos(¢) where ¢ is the argument of
the function cos. All arguments given to function symbols must be terms. In general, if f is
a function symbol that takes n arguments (where n is a positive integer) then f(¢1,...,5)
denotes a term if £1,...,¢, are terms. Another example is +: given any two terms, s and ¢,
we can construct the expression, +(s,t), (usually denoted s +¢) which is another term in the
language. Here s and ¢ are called arguments of the function symbol 4. If a function symbol, f,

takes no arguments then we call it a constant term. Examples of function symbols in the theory

21

of topology! are top-to-class, which takes one argument, and the-set-inverse-image, which takes
two arguments. Hence, for example, top-to-class(S) and the-set-inverse-image(f, G) are terms

in the language of topology.

The other basic element of the language is the predicate. Predicates construct sentences
that may be true or false. Just like function symbols, predicate symbols can take arguments.
All arguments given to predicate symbols must be terms in the language. For example, < is
a predicate symbol in the theory of the reals and < (2, 7) (usually denoted 2 <) is a (true)
predicate in the language. In logic, the word formula is used to refer to an expression that
may be true or false. A formula that consists entirely of a single predicate symbol and its
arguments is called an atomic formula. Therefore, 2 < 7 is an atomic formula in the language

of the reals.

We can build more complex formulas out of basic ones using the following logical

connectives.

= “not” If A is a formula, then —A is a formula that is true when A is false.

A “and” If A and B are formulas, then A A B i1s a formula that is true when A and B are

both true.

V “or” If A and B are formulas, then AV B is a formula that is true when one of A or B is

true.

D “implies” If A and B are formulas, then A D B is a formula that is true when A is false

or when B 1s true.

< “if and only if” If A and B are formulas, then A <> B is a formula that is true when A

and B are both true or both false.

I Throughout this dissertation, we will be illustrating the methods we introduce by showing how they are
used to establish the truth of statements in particular mathematical theories. Most of these examples will
come from the mathematical theory called topology. Topology is the study of sets with a certain structure and
functions between such sets. If you are not familiar with the particular field of reasoning, such as topology,
just try to follow how the reasoning is being done and don’t worry about what the sentences mean. In other
words, you will only need to be able to see that a certain sentence is a logical consequence of other sentences
and you will not need to understand what any of the sentences mean.

22

V “for all” If A is a formula and z is a variable, then (Yz)A is a formula that is true when

A is true regardless of what element of the universe of discourse z is replaced with in A.

3 “for some” If A is a formula and z is a variable, then (3z)A is a formula that is true when
there is some element of the universe, a, such that if z is replaced by a in A then the

resulting formula is true.

Any occurrence of the variable z in a formula of the form (Vz)A or (3z)A, is called a
bound occurrence of . The variable x is said to be bound in those formulas. Any occurrence
of a variable that i1s not bound is called free. A formula with no free variables is called a closed

formula or a sentence.

There are technical points about renaming bound variables when free variables are
replaced by other terms. The concerned reader should refer to a textbook on first-order logic

for more rigorous definitions [113, 54].

A literal 1s an atomic formula or the negation of an atomic formula. Thus, a literal
can contain no logical connectives other than one occurrence of —. If L is a literal, then we

define the complement, L, of L as follows:

I_ ¢ if L =—¢
| =L otherwise.

For example, if open-in is a predicate symbol that takes two arguments and G and T are
variables, then open-in(G, T) = —open-in(G,T) and —open-in(G,T") = open-in(G, T). We will

say that L and L are complementary literals.

We will also use the atomic formula, 1, which will always be false and the atomic

formula, T, which will always be true.

Example 2.1 Here we give examples of the way formulas are formed. We illustrate this with
one of the axioms of the theory of topology. We will start with atomic formulas and build up
more complex formulas using the rules just introduced. Topology is a field of mathematics that

has its own special assumptions. Here are some of the predicate symbols in the language of

23

topology: open-in, which takes two arguments, and function-from-to and continuous-from-to,

which both take three arguments. Each of the following expressions are atomic formulas.

open-in(G, T) (2.1)
open-in(the-set-inverse-image(f, G), S) (2.2)
function-from-to(f, top-to-class(S), top-to-class(T)) (2.3)
continuous-from-to(f, S, T') (2.4)

Notice that none of these atomic formulas are closed formulas. That is, each of them has some

free variables occurring in it.?

Now we will construct non-atomic formulas from formulas 2.1 and 2.2.
open-in(G, T') D open-in(the-set-inverse-image(f, G), S) (2.5)

Formula 2.5 is not an atomic formula because it 1s formed from two atomic formulas and the

implication symbol. Note that each of the variables, f, G, T and S occur free in formula 2.5.3
(VG)(open-in(G, T') D open-in(the-set-inverse-image(f, G), S)) (2.6)

In formula 2.6, G is now a bound variable and f,T and S are the only free variables.* From

formulas 2.6 and 2.3 we construct a more complex formula.

function-from-to(f, top-to-class(S), top-to-class(7T"))A 97
(VG)(open-in(G, T') D open-in(the-set-inverse-image(f, G), S)) (2.7

And now we take one more step, adding formula 2.4.%
continuous-from-to(f, S, T) +

(function-from-to(f, top-to-class(S), top-to-class(T))A (2.8)
(VG)(open-in(G, T') D open-in(the-set-inverse-image(f, G), S)))

?Formula 2.1 means that G is open in the topology T. (Again, if you don’t know what this means, just
pay attention to the way formulas are formed.) Formula 2.2 means that f~1(G) is open in the topology S.
Formula 2.3 means that f is a function from the class associated with the topology S to the class associated
with the topology T. Formula 2.4 means that f is a continuous function from S to T where S and T are
topological spaces.

3Formula 2.5 means that if G is open in T then f_l(G) is open in the topology S.

4Formula 2.6 is intended to be true only if for any open subset G of T, f_l(G) is open in the topology S.

5Formula 2.7 is true only if f is a function from the class associated with the topology S to the class
associated with the topology T and for any open subset G of T, f_l(G) is open in the topology S.

24

Formula 2.8 still has three free variables. We remedy that situation now.

(VF)(VS)(YT)(continuous-from-to(f, S, T)
(function-from-to(f, top-to-class(S), top-to-class(T))A (2.9)
(VG)(open-in(G, T') D open-in(the-set-inverse-image(f, G), S))))

Now formula 2.9 is a closed formula or a sentence. The closed formula 2.9 1s an axiom of the

theory of topology.®

Formula 2.9 is a special kind of axiom called a predicate definition. A predicate
definition is a sentence that introduces a new predicate to the language, continuous-from-to
in this case, as an abbreviation for a formula already in the language. Definitions are axioms
that we are allowed to assume to be true without danger of introducing a contradiction into a

theory [22].

We will learn, in Section 2.3, how such a formula can be stored in a computer knowledge
base in a form that is useful and, in Section 3.2, how this knowledge can be used in the process
of trying to prove other statements in the theory of topology. In Section 3.3, we discuss

systematic strategies for selecting knowledge from the knowledge base.

The implementation, IPR, of the framework presented in this dissertation uses a lan-
guage slightly more expressive than first-order logic. The extensions are described in Sec-

tion 4.2.

2.2 Reasoning in a Theory

Now that we have selected an expressive language, we need rules of inference for determining
which sentences in the language are true and which sentences are logical consequences of other

sentences.

A proof is a structure that can be built in a finite amount of time using syntactic
rules. In the present case, we follow a procedure by applying certain syntactic rules to the

sentence we want to prove and by this we build a structure. If the structure we build has a

6 The formula is intended to mean that for any function f and topological spaces S and T, f is a continuous
function from S to T if and only if f is a function from the class associated with the topology S to the class
associated with the topology T and for any open subset G of T, f_l(G) is open in the topology S.

25

certain property (if it is closed) then we say that the structure is a proof of the sentence. If
the procedure we use is sound then the existence of a proof implies that the sentence is true.

If the procedure is complete, then for any true sentence, we can find a proof by this procedure.

There are many sets of inference rules that are adequate for this task. The two methods
we present, the sequent calculus (Section 2.2.2) and the tableau calculus (Section 2.2.1), are
very closely related. In fact, the latter can be thought of as a more efficient version of the
former [113]. The reason we present both is merely that some issues are easier to explain in
terms of the sequent calculus even though it is less efficient to use. The technical details and
most examples will be presented in terms of tableaux while the rules for breaking knowledge

into the form in which it is stored are given in sequent form.

The sequent calculus was developed by Gentzen [57] for the purpose of formalizing the
proofs that humans write. The system was intended to be very similar to natural deduction.
As a result, it is relatively easy to translate proofs from this system into natural language.

Further, it is not too difficult for a human to understand an incomplete proof in this system.

Resolution is a third widely used calculus for reasoning in first-order logic. In order
to apply resolution, the negation of the sentence to be proved must first be translated into
a conjunction of formulas in clausal or Kowalski form. A formula in Kowalski form is basi-
cally a sequent in which all of the formulas in the hypotheses and in the goals are atomic
formulas [42, 45]. A formula in Kowalski form is usually called a clause and when a formula is
translated into a conjunction of clauses, it is said to be in clausal form. Once the negation of
a formula is translated into this form, the resolution inference rule is applied in order to find
a proof of the original formula [45]. We do not give the details of the resolution procedure
here. The interested reader should see the apropriate references in the bibliography [45, 122].
In Section 2.3.1, we present the procedure for translating a formula into clausal (or Kowal-

ski) form.

26

2.2.1 Tableaux

Most existing tableau calculi can be divided into two classes: analytic and clausal. IPR’s

method is a hybrid so an understanding of each will be useful in understanding IPR’s method.

IPR uses a non-clausal form for storing knowledge. The novel tableau calculus pre-

sented in Section 3.2 can just as well be applied in the context of clausal tableaux.

The proof procedure of the analytic tableau was developed by Smullyan [113] based on
the work of Beth [22] and Hintikka [71]. The method was extended to allow for free variables
by Prawitz [100]. See Fitting’s book [54] for a formal and rather up-to-date treatment of the
procedure. We do not present all of the details here. We present the signed version in a novel

way for pedagogical reasons, then we describe how to use the more common unsigned version.

The model elimination calculus [83] was the first manifestation of a clausal tableau
calculus. More recently, the theory of clausal tableaux has been studied more thoroughly [81].
The essential difference is that an analytic tableau is built by breaking an initial formula into
pieces. The essential feature of clausal tableaux is that each formula on a branch is a literal

occurring in the input clause set that is formed from the input formula as a preprocessing step.

Analytic Tableaux

We introduce analytic tableaux with signed formulas first for pedagogical reasons. In the rest

of the paper, we will use the unsigned version.

To prove a formula ¢ using the signed analytic tableau method, we will build a signed
tableau (table or tree) of signed formulas rooted at the signed formula Sh ¢. This signed
formula can be pronounced “show ¢.” The other sign 1s Sp and Sp ¢ would be pronounced
“suppose ¢.”” We now give a meaning to the complement of a signed formula: if ¢ is a
formula, then Sh ¢ = Sp ¢ and Sp ¢ = Sh ¢. For any signed formula ®, we say that & and

& are complementary.

A branch of a tableau is closed if it contains a complementary pair of formulas or if 1t

"In the ordinary presentation of the signed tableaux, T is used rather than Sp and F is used rather than Sh.

27

contains one of the formulas =T or L. A tableau is closed if every branch is closed. When we

find a closed analytic tableau rooted at Sh ¢, we say that it is a proof of ¢.

We build the signed tableau down from the initial signed formula using the inference

rules below until all branches of the signed tableau are simultaneously closed.

There are five basic inference rules, called a, 3, § and 7, one for each of the four classes

of non-atomic signed formulas listed here as well as the tableau substitution rule described later.

a I3)
Sh(ADB) | Sp(ADB) | Sp (Fz)A | Sh (Pgm)A
Sp (AAB) | Sh (AAB) | Sh (Vz)A | Sp (Vz)A

Sh (AVvB) | Sp (AV B)
Sh —-A
Sp A

When an a-formula, for example, occurs on a branch of the signed tableau then the
a-rule (given below) can applied to the formula. When any of the inference rules is applied
to a formula, some new formulas are added to the signed tableau. We will use the following

abbreviations for the formulas added to the signed tableau.®

« Qq Q9
Sh(A>B) | SpA|ShB B | B | B
Sp(AAB) |SpA|Sp B Sp(ADB) |SpB|ShA
Sh (AVB) | Sh 4 | Sh B Sh (AAB) | ShA | ShB
Sh -4 Sp A Sp(AVvB) |SpA|SpB
Sp-A |ShA
i | @ v | W)
Sp (3z)A | Sp AY Sh (3z)A | Sh Aj
Sh (Vz)A | Sh A? Sp (Vz)A | Sp Ay

Now we will present the inference rules using this notation. In each of the inference
rules there 1s a horizontal line over which is a formula that is thought of as being a formula
on a branch of the current signed tableau. The formula or formulas below the line are added
to the branch containing the original formula. If more than one formula is listed horizontally
below the line, then more than one branch is added to the signed tableau. The formulas in a

vertical list below the line are all added to the existing branch.

8 The notation A7 represents the expression obtained by replacing every free occurrence of the variable a in
the formula A with the term b.

28

Inference Rule 2.1 (a-rule)

Inference Rule 2.2 (f-rule)

Inference Rule 2.3 (J-rule)

s(f ()
where 3 is the vector of free variables in § and f is a new Skolem function symbol.

Inference Rule 2.4 (y-rule)

where y 1s a new free variable.

With the exception of the ~v-rule, each of these rules is typically applied only once to each
appropriate formula. For example, the f-rule is typically only applied once to any given (-
formula. After the first application, the g-formula is considered used. On the other hand, the

~-rule 1s typically applied any number of times to the same formula.

Example 2.2 We show how to use these rules to prove the propositional formula

(AD(AVB))A(C D (AVCO)).

As we mentioned above, to prove a formula ¢ using the signed tableau method, we will
build a signed tableau of formulas rooted at the formula Sh ¢. We build the signed tableau
up from that formula using the inference rules above. Figure 2.1(A) shows the signed tableau
built from this formula. No more rules may be applied to an unused formula on this signed
tableau. Each edge in the signed tableau is labeled with the rule that was applied to create

the node below it.

29

Sh (AD(AVB))A(CD(AV(O))

i3y NP

30

~((AD (AVB) A (C D (AVC)))

NN

ShA>(AVB) ShC>(AVC) ~(AD(AVB)) =(C>O(AVC))

| o | a | o | o
Sp A Sp C A C

|O! |O,/ |a |Oé

Sh AV B Sh AvC —~(AV B) —(AVC)

| | o | o | a
Sh A Sh A -A -A

| o | o o | o
Sh B Sh C -B -C

Figure 2.1: The signed tableau (A) and ordinary tableau (B) for Example 2.2.

Let us examine in detail how this tableau was constructed. Since we want to prove
the conjunction, we need to prove each conjunct: one on each branch. On the left branch, we
want to show that A implies AV B so we can suppose A and try to show AV B. That is, we

can show A or B. The right branch is similar.

Now notice that each branch contains a complementary pair of formulas. Therefore
the tableau is closed and we have a proof of the formula we started with. The fact that the

tableau procedure is sound [54] tells us that that formula must be true.

The proofs found by the tableau procedure are intended to be comprehensible. How
do we follow this proof? Look at one branch at a time. On the first branch we are supposing
that A is true on that branch and A becomes one of our goals. We can obviously conclude
A from the assumption that A is true. Therefore, we say that that branch is closed, 1i.e.,
that branch of the proof is finished. The same can be done on the right branch with Sp C'

and Sh C'.

Example 2.2 demonstrates the basics of how theorems are proved using the signed

tableau method. But things get more complicated when variables are involved.

Example 2.3 Now we prove the formula

(Vz)(Vy)(P(z) v Q(y)) D ((Va) P(z) V (Vy)Q(y)).

Sh ((Vz)(Vy)(P(z) VQ(y))| D (V) P(z) V (Vy)Q(v)))
Sp (Vz)(Vy)(P(z) vV Q(y))

B

Sh (Vz)P(z) V (Vy)Q(y)

Sp (Vy)(P(z') vV Q(y))
|
Sp P(z') VQ(Y)

RN

Sp P(z') Sp Q(Y)
Figure 2.2: The signed tableau for Example 2.3. The symbols f; and f; are Skolem constants.

We can construct the signed tableau in Figure 2.2. We are allowed to continue to expand the
signed tableau by applying the y-rule any number of times but this will never allow us to close
either branch of the signed tableau. So we introcude a new rule (the tableau substitution rule
below) that allows us to close a branch by applying a substitution of variables for terms. In
this case, since ¥’ and y are free variables, we can close the signed tableau by replacing =’ with
f1 and y with f5. After this, the bottom of the signed tableau becomes the signed tableau in

Figure 2.3, which s closed.

Example 2.3 motivates the definition of a new inference rule that allows us to substitute
terms for free variables when doing so closes the tableau or a branch. We must refer the reader

elsewhere for the technical details of this definition [54].

Inference Rule 2.5 (Tableau Substitution) If T is a properly constructed tableau and
To is the result of applying the substitution ¢ to every formula in 7', then T'o is a properly

constructed tableau.

31

Sh P(f1)
| 6
Sh Q(f2)
| v
Sp (Vy)(P(|f1) vV Q(y))
v
Sp P(fi) VQ(f2)

6,/ \F
Sp P(fi) Sp Q(f)

Figure 2.3: The bottom of the instantiated signed tableau for Example 2.3. The symbols f;
and f are Skolem constants.

So the complete analytic tableau calculus is the combination of the a-, -, 4-, §- and
tableau substitution rules. For completeness, we must have a procedure for applying these
rules that obeys certain fairness restrictions. In particular, the a-, 8- and §-rules must be
applied at least once to each appropriate formula, the v-rule must be applied infinitely many
times to any y-formula and the tableau substitution rule can be applied using a most general
substitution that closes the entire tableau. It is this procedure that is proved complete and

sound elsewhere [113, 54].

This completes the description of the analytic tableau method. The method is com-
plete, i.e., any true sentence can be proved by the method [54], and there are various methods

of making it more efficient [8, 20, 82, 94].

We emphasize how easy it is to translate proofs in this system into natural, readable
proofs. Section 5.2 gives some examples of proofs translated automatically into English by the

IPR program.

Now that the basic method is understood, we want to introduce the more common way
of using tableaux, that is the unsigned method. It is the same as what has gone before except
that every Sh should be replaced by a — and every Sp should be omitted. The reader will
notice that one instance of the a-rule becomes useless because it only translates the formula

-A (Sp —A) into -A (Sh A))

The unsigned version of the tableau for Example 2.2 is given in Figure 2.1(B). Hence-

32

forth, we will deal with unsigned tableaux. Furthermore, we will not label edges with inference
rules except in the case of the new inference rules introduced later or in cases when there might

be confusion.

Clausal Tableauz

We follow Letz’ treatment of clausal tableaux [81]. We refer the reader to Letz’ work for more

details.

A literal i1s an atom or the negation of an atom. A clause is a disjunction of literals.
A clause set is a conjunction of clauses. To prove a formula by the clausal tableau method,
the formula is negated and translated into clausal form by Skolemizing [45]. (Translating to

clausal form is treated in detail in Section 2.3.)

A clausal tableau is initialized by placing the formula T at the initial node. From the
input clause set a clausal tableau is constructed by adding clauses (with free variables possibly
renamed not to conflict with free variables already on the tableau) to the tableau. Each literal
in the input clause is used to extend a new branch. Therefore, a unit clause (a clause consisting
of a single literal) does not cause a splitting in the tableau but any other clause (excluding the

empty clause) does cause a splitting.
A clausal tableau is closed in the same way that an analytic tableau is closed.

A clausal tableau is connected if each inner node N labeled with a literal L has a leaf
node N’ among its immediate successor nodes that is labeled with the literal L. A tableau is

reqular if no two nodes on the same branch are labeled with the same formula.

2.2.2 Sequent Calculus

The sequent calculus was described in 1935 by Gerhard Gentzen [57]. In 1968, Raymond
Smullyan published a beautiful unification of Gentzen’s work with the analytic tableau
method [113]. We will use some of Smullyan’s notation here. We are also using further

extensions to the system that incorporate free variables [54, 100].

A sequent consists of two sets of formulas, denoted U — V', where U and V are sets

33

34

of formulas. We call U the hypotheses, antecedents or suppositions and we call V the goals,
succedents, consequents or conclusions. If one of U or V' are empty, then we simply write — V

or U — | respectively. If A and B are formulas then we use the following abbreviations.

A—= B for {A} - {B}
AU—=V for {AlUU -V

U— BV for U—{B}UV

Suppose U = {A1,...,Ap} and V = {By,..., Bn}. The sequent U — V is true or valid if the
formula (A4 A+~ AA,) D (B V-V By,) is true. In other words, a sequent is thought of as

saying that the conjunction of the hypotheses implies the disjunction of the goals.

To prove a formula ¢, we will build a tree of sequents rooted at the sequent — ¢. We
build the tree up from that sequent using the inference rules below until all leaves of the tree

are closed by the following definition.

Axiom Schema 2.6 Any sequent of one of the forms
AU - AV L. U—>V U->T,V

1s closed.

If a sequent is not closed by this axiom, then we need inference rules to apply to it in order to

reduce it to sequents that are closed by the axiom (if possible.)

In each of the inference rules below there is a horizontal line under which is a sequent
that is thought of as being a leaf of the current sequent tree. The sequent or sequents above
the line are added to the branch containing the original sequent so that the original sequent
is no longer a leaf. If more than one sequent is above the line, then more than one branch is
added to the tree. T' and A represent sets of formulas.

Inference Rules 2.7 (a-rules)

rA—- A B A, B— A r—-AAB
r-AADB IAAB = A r-AAVEHB

rA— A = AA
r - A-A r-4—A

Inference Rules 2.8 (f-rules)

BoA|T—=AA r-AA|T—>AB rA—-A|,B—>A
rA>B—A ' 4 A AAB AvB— A

Inference Rules 2.9 (é-rules)

F—)A,Aﬁ(g) F,Aﬁ(y.)—>A
I'— A, (Vo)A ,(3z)A—> A

where i is the vector of free variables in (Vz)A and f is a new Skolem function symbol.

Inference Rules 2.10 (v-rules)

A7, = A r'— A A7,
I (Vz)A = A I = A (3z)A

where z’ is a new free variable.

So we have a rule to apply to any non-atomic formula in any position in a sequent.
The ~-rules are those that introduce new free variables. The d-rules introduce new Skolem
functions. Among the propositional rules are the a-rules that do not cause branching in the
tree and the f-rules that do cause branching. In the a-rules, the formula to which the rule is

applied (e.g., A D B in the goals) is called an a-formula and similarly for 3, § and ~.

Inference Rule 2.11 (Tree Substitution) If 7 is a properly constructed sequent tree and
T o is the result of applying the substitution ¢ to every formula in 7, then 7o is a properly

constructed sequent tree.

A branch of a sequent tree 1s called closed if its leaf is closed by Axiom Schema 2.6. A
sequent tree is closed if all of its branches are closed. A formula ¢ is proved if there is a tree
of sequents built by these rules based at — ¢ such that each leaf is closed. If a formula, ¢, is

proved in this way, then the formula is true [113, 54].

The relationship between the semantic tableau method and the sequent calculus 1s
close. The formulas in the hypotheses of the sequent correspond to positive formulas on a
branch of a tableau (or the Sp formulas on a signed tableau) and formulas in the goals of a

sequent correspond to negative formulas on a branch of a tableau (or the Sh formulas on a

35

signed tableau.) The unused formulas on any path of a tableau starting at the root correspond
to a sequent whose hypotheses are the positive formulas on the path and whose conclusions
correspond to the negative formulas on the path. Notice also that Axiom Schema 2.6 corre-
sponds to the definition of a closed tableau. Just as is the case for tableaux, we can apply a

substitution across an entire sequent tree in order to apply Axiom Schema 2.6.

We will primarily use the sequent calculus to describe the formation of sequents in
the knowledge base except that some of the rules will be changed for that purpose. This is

detailed in Section 2.3.

2.3 Knowledge in a Theory

Central in all of this is knowledge. We see no satisfactory solution to the ATP
[Automated Theorem Proving] performance problem without a substantial know!l-

edge base, which contains much known mathematics. ..

—Woody Bledsoe [33]

The TPR system is designed with a specific application or challenge in mind. That
is the n + 1 challenge: enter the first n theorems, definitions and axioms from a textbook
and let the system prove the next theorem. Obviously, a system that could succeed at this
problem for many n, should be useful in proving open problems. Also, this design seems to be
something that a mathematician or student of mathematics might find useful. (This challenge

is discussed in more detail in Section 8.3.)

Some systems are built with the intention of going back to a minimal, independent
set of axioms. This approach makes some problems easy and is quite appropriate for certain
applications (such as logic programming) but is not appropriate for the n + 1 problem. For
one thing, the user who wants to prove the next theorem does not know exactly which axioms
will or will not be needed in a proof. There may be certain axioms of equality, set theory,
and various advanced mathematical axioms that may or may not be needed for the proof of

the next theorem. Another problem is that even if a minimal set of axioms were known to be

36

sufficient to prove a certain theorem, a proof built from those axioms will be much longer and

much less readable than a proof that uses the knowledge that has been built up in the theories.

In advanced theories in real applications, there will be unneeded knowledge and infor-
mation other than a set of independent axioms. The presence of unneeded information tends

to make many systems (particularly resolution systems) lose a performance edge.

In most automated theorem proving systems, the axioms, theorems and definitions of
a theory are stored in clausal form. The advantages to clausal form have to do with the fact
that procedures using this form can take various shortcuts without losing completeness. We
describe the translation to clausal form and then discuss some disadvantages to this. We then
present a non-clausal form that has some advantages (and, of course, disadvantages.) The TPR

prover uses the non-clausal form presented in Section 2.3.2.

Example 2.4 Before we get to the details, consider the definition of a continuous function
that we discussed earlier in Example 2.1. This is a piece of knowledge that we want the prover

to use when it attempts to find a proof of other statements in the theory of topology.

A function f : S — T 1s continuous if and only if f is a function from S to T and for every

open set G C T, f~1(G) is open in S.

We will store it in the prover’s knowledge base when it searches for proofs of theorems in
topology. This theorem contains the following three pieces of information:
o if f: S — T is a continuous function then f is a function from S to T,

e if f: S — T is a continuous function and GG is an open subset of T, then f=1(G) is open
mn S and

e if f is a function from S to T and for every open set G C T, f~1(G) is open in S, then

f:S =T is continuous.

37

The rules we present in Section 2.3.2 break the definition into exactly these three bits
of information (Example 2.6.) The fact that theorems are stored in a form that makes sense

logically and cognitively gives the framework some apparent advantages.

e It allows for an intuitive interface since the user can understand the contents of the

knowledge base. See Section 5.2.3.

o It allows the algorithm that selects theorems from the knowledge base to implement
methods that seem to resemble some of the heuristics used by human mathematicians.

See Section 3.3.

Axioms, theorems and definitions are stored in the knowledge base in the form of
non-clausal sequents rather than clauses, formulas or rewrite rules. The sequents are broken
down toward conjunctive normal form, but existential quantifiers are not removed: we do not

Skolemize. Avoiding Skolemization is one of the characteristics that define the IPR framework.

First we explain the widely used clausal form and give rules for transforming any
formula into this form. Then we mention the disadvantages to storing knowledge in clausal
form and the motivation for storing information in the non-clausal form. In Section 2.3.2,
we present the rules for transforming a formula into the non-clausal form. It is the non-
clausal form that is used by IPR and we will concentrate on this form in the bulk of this
dissertation. We also present an illustrative example of a set of sequents being formed from
an input definition. Finally, in Section 2.3.3, we prove certain soundness and completeness

results that are used later.

2.3.1 Clausal Form

Here we present a novel presentation of a method for transforming a formula into clausal form.
It is only novel in that it uses sequent notation and retains the ordinary semantics of sequents.
When Fitting explains the rules for transforming a formula into clausal form he uses something
like a tableau format but he reverses the roles of the a- and f-rules [54]. Smullyan showed a

simple isomorphism between tableaux and trees of sequents [113]. Therefore, in order to make

38

the rules produce output that is easy to explain, we use the sequent form instead of the tableau
form. Also, instead of reversing the roles of the a- and f-rules as Fitting does, we reverse the
roles of the d- and 4-rules. The reason for this is to maintain the semantics of sequents with

which Fitting was not concerned in his presentation.

We stick as closely as possible to Smullyan’s unified notation. Recall that in Smullyan’s
notation (see Chapter XI, Section 1 of First-Order Logic [113]) formulas in the antecedent
of a sequent correspond to positive formulas on a branch of a tableau and formulas in the
consequent of a sequent correspond to negative formulas on a branch of a tableau. Therefore,

an existentially quantified formula in the consequent of a sequent is a y-formula.

Recall that if T' and A are sets of formulas, then a sequent, I' — A, is thought of as
asserting that the disjunction of the formulas in A logically follows from the conjunction of

the formulas in T.

Suppose X is an axiom, definition or theorem of a theory expressed as a sentence.
In order to transform X into clausal form, we build a sequent tableau rooted at the sequent
— X, that is, the sequent that asserts the truth of X. However, we do not use all of the

ordinary sequent calculus rules.

Smullyan’s rules for propositional connectives (a- and f-formulas) work fine in this
context. For example, if we want the formula A O (C' A B) to be in clausal form, we begin
with the sequent — A D (C' A B) and apply the ordinary a- and S-rules from the sequent
calculus so that the sequents A — C' and A — B result. Notice that this is just the clausal or

Kowalski form of the original formula.

However, the quantifier removal rules must be reversed.® Following the semantics of
sequents, if the formula we want to have in clausal form is of the form (V) P(z), then we begin
by asserting — (Vz)P(z) (a d-formula.) Since we are assuming this universal statement to be

true, we want to replace the bound variable with a free variable. That is, we want to apply a

9When Fitting [54] describes clausifying, he takes the opposite approach so that the original formula is
negated, propositional rules are reversed and the quantifier removal rules are left the same. Our approach is
more appropriate to the semantics of sequents with which Fitting was not concerned in this context.

39

~-rule and introduce a new free variable to a formula of this form.

In a similar way, if we want to clausify a formula of the form (3z)P(z), we create
the sequent — (3z)P(z), which contains only a y-formula, and apply the d-rule to it. This

introduces a new Skolem function symbol.

Summarizing, in the context of building a sequent tableau during the construction of
clausal form, in addition to the a- and f-rules (propositional rules), we apply the free variable
~-rule once to each §-formula and eliminate the J-formula from the new sequent. In order to
avoid confusion with other rules, we call this the §~'-rule. Also, to each y-formula, we apply

the é-rule and call this the y~'-rule.

Here are the rules in sequent format. We use the ordinary a- and (-rules from Sec-
tion 2.2.2 but we do not use the - or y-rules of that section. Instead, we use the rules below.
The notation A} represents the expression obtained by replacing every free occurrence of the

variable a in the formula A with the term b.
Definition 2.12 (§~!-rule)

I = A A7 Az T — A
T = A, (Vz)A (Fx)A,T = A

where z’ is a new variable.

Definition 2.13 (y~!-rule)

F%A,Aﬁ(g) Aﬁ(g),F%A
I'—> A, (3z)A (Ve)A, T = A

where f is a new Skolem function symbol and § is the vector of free variables in the y-formula.

When all possible a-, 8-, ¥~ '- and §~'-rules have been applied, we will say that the
conjunction of the sequents on the leaves of the resulting sequent tree is the clausal form for

the input formula.

Example 2.5 Now let us look at the details of the example of the definition of a continuous

function. The procedure begins with the desired definitional formula in the conclusions of a

40

sequent. In other words, the sequent that asserts the truth of formula 2.9 is constructed.

(V) (VS)(VYT)(continuous-from-to(f, S, T) <
— (function-from-to(f, top-to-class(S), top-to-class(T)) A (2.10)
(VG)(open-in(G, T') D open-in(the-set-inverse-image(f, G), S))))

Since the only formula in the sequent is a d-formula, we apply the §~1-rule (three times),

followed by a- and F-rules to obtain the following three sequents.

continuous-from-to(f, S, 7) —

function-from-to(f, top-to-class(S), top-to-class(T)) (2.11)
continuous-from-to(f, S, 7) — (2.12)
(VG)(open-in(G, T') D open-in(the-set-inverse-image(f, G), S)) ’
function-from-to(f, top-to-class(S), top-to-class(T)),
(VG)(open-in(G, T') D open-in(the-set-inverse-image(f, G), S)) -
continuous-from-to(f, S, T')
(2.13)

No more rules apply to sequent 2.11. Since there is a é-formula in the conclusions of se-

quent 2.12, we apply the §~!-rule to it followed by an a-rule and obtain the following sequent.

continuous-from-to(f, S, T),
open-in(G, T)

} — open-in(the-set-inverse-image(f, G), S) (2.14)

No more rules may be applied to this sequent.

1

Sequent 2.13 has a y-formula in the hypotheses and so we apply the v~ "-rule followed

by a §-rule to obtain the following sequents.

open-in(the-set-inverse-image(f, G(f, S, T)), S)
continuous-from-to(f, S, T')

{ function-from-to(f, top-to-class(S), top-to-class(T)), }_}
(2.15)

function-from-to(f, top-to-class(S), top-to-class(T")) —
{ open-in(G(f,S,T),T), } (2.16)

continuous-from-to(f, S, T')

Where G is a new Skolem function of three arguments. No more rules apply to sequents 2.15

or 2.16.

Therefore, the clausal form of the original formula in sequent 2.10 is the conjunction

of clauses 2.11, 2.14, 2.15 and 2.16.

41

Motivations for Rejecting Clausal Form As we mentioned in Chapter 1, the frame-
work presented in this dissertation was developed to support an automated theorem proving
program that is intended to have certain properties. These desired properties influenced the
development of the framework. The two important properties we wanted the program to have
were the ability to prove theorems in mathematics using knowledge and that it be easy to use
by someone who 1s not an expert in ATP techniques. Therefore, we want it to be very easy for
the user to understand the contents of the knowledge base and to understand how knowledge

is applied.

The advantages to clausal form have to do with the fact that procedures using this
form can take advantage of certain restrictions without losing completeness. These restrictions
improve the efficiency of the proof search. However, clausal form has certain disadvantages

that conflict with the motivations behind the IPR project.

The two clauses (2.11 and 2.14) are perfectly readable and sensible.!® However, the
other two (2.15 and 2.16) don’t make sense on their own, logically or cognitively. These two
clauses are not logical consequences of the input formula 2.9. Therefore, if a mathematician
asked to see the set of assumptions stored in the computer in clausal form, he or she would
be very confused by the presence of these two falsifiable items. Not only are these two items
false in most models of the input formula, but they don’t make any sense to the reader. Part
of this comprehension problem has to do with the fact that the clauses are not true but part

has to do with the presence of Skolem terms.

These facts make a formula in clausal form much more difficult to understand and
relate to the formulas that the user input. In Section 2.3.2 we present this example again

using the new rules we introduce there.

This was the initial motivation for avoiding Skolemization and for the use of the non-
clausal form described in Section 2.3.2. Since then, the author has found some other advantages

(and disadvantages) to using non-clausal form.

10The reader who is unfamiliar with these predicates and functions can simply imagine that they are unde-
fined. No knowledge of mathematical topology is assumed.

42

Portability. The presence of Skolem terms in a knowledge base adds difficulty to the propo-
sition of combining knowledge bases because there is a possibility of clash between

the symbols.

Readability. The advantage that most motivated the adoption of the form that knowledge
takes in this framework is readability. Part of the problem non-experts have in reading
formulas in clausal form is easily relieved by writing the clauses in Kowalski or sequent
form. However, this does not take care of the more serious logical problem caused by

Skolem functions.

Cognitive and Logical Relationships. A clause is not necessarily a logical consequence of
the formula from which it was formed. As a result, clauses are not true (in models of the
theory in question) and therefore their presence in a knowledge base is very confusing to

an uninitiated user.

Efficiency. Since formulas are stored at a slightly higher level than clausal form, matching
can occur earlier in the theorem proving process. Also, and for the same reason, the

knowledge base is smaller than if formulas were taken all the way to clausal form.

Completeness. The main disadvantage to this framework is that when we apply the set-of-
support strategy (the weak connection condition) to the theorem application (e-) rule,

completeness is lost. This is explained more in Section 3.3.

2.3.2 Rules for Transformation into Non-Clausal Form

Here we present the rules for breaking formulas into the non-clausal form used by the IPR
system. The rules are the same as the rules for converting into conjunctive normal form (i.e.,

clausal form) with the exception that we do not Skolemize.

The only difference between the rules for non-clausal form and the rules for clausal

1

form is the v~ -rule. In particular, if the top-level quantifier of a y-formula can be “pushed

1

inward” to obtain an equivalent formula, then that may be done. We call this the v~ -rule for

non-clausal form although it has other names such as “anti prenexing.”

43

Definition 2.14 When all possible a-, -, ¥~1- and 6~ *-rules for non-clausal form have been
applied, we will call the resulting sequent tree a finished KB-tree. If the root sequent is — @,

then we say that the tree is a finished KB-tree for ®.

The sequents on the leaves of the finished KB-tree are added to the knowledge base.

In the remainder of the dissertation, when we say that a sequent s is in a knowledge
base we mean that it is a leaf of the finished KB-tree of some first-order formula. We say that

such a sequent is in knowledge base form.

The following example of an application of the method illustrates its effectiveness at

simulating some aspect of the way humans think of theorems.

Example 2.6 Let us look again at the details of the example of the definition of a continuous
function. Suppose we want the definition of a continuous function to be in the knowledge
base. See Section 5.2.2 to see exactly what the user needs to input into the IPR program to
accomplish this. The program begins with the desired definitional formula and puts it into
the conclusions of a sequent. In other words, the sequent that asserts the truth of formula 2.9

1s constructed.

(V) (VS)(VT)(continuous-from-to(f, S, T) <
— (function-from-to(f, top-to-class(S), top-to-class(T")) A (2.17)
(VG)(open-in(G, T') D open-in(the-set-inverse-image(f, G), S))))

Since the only formula in the sequent is a d-formula, the program applies the d~!-rule (three

times), followed by a- and f-rules to obtain the following three sequents.

continuous-from-to(f, S, 7) —

function-from-to(f, top-to-class(S), top-to-class(T)) (2.18)
continuous-from-to(f, S, 7) — (2.19)
(VG)(open-in(G, T') D open-in(the-set-inverse-image(f, G), S)) ’
function-from-to(f, top-to-class(S), top-to-class(T)),
(VG)(open-in(G, T') D open-in(the-set-inverse-image(f, G), S)) -
continuous-from-to(f, S, T')
(2.20)

No more rules apply to sequent 2.18 so it is added to the knowledge base. Sequent 2.20 has
a v-formula in the hypotheses, however, no rule applies to this y-formula since the quantifier

cannot be pushed inward. Therefore, sequent 2.20 is also added to the knowledge base as it is.

44

Since there is a d-formula in the conclusions of sequent 2.19, the program applies the

d~'-rule to it followed by an a-rule and obtains the following sequent.

{ continuous-from-to(f, S, T),

open-in(G, T) } — open-in(the-set-inverse-image(f, G), S) (2.21)

Since no more rules may be applied to this sequent, it is also added to the knowledge base.

Therefore, the finished KB-tree for the original formulain sequent 2.17 has three leaves

(the sequents 2.18, 2.20 and 2.21) that are added to the knowledge base.

Notice that sequents 2.18 and 2.21 are exactly the first two clauses from Example 2.5
while sequent 2.20 encodes the information from the last two clauses in Example 2.5 in a more
comprehensible, readable and logical way. In particular, sequent 2.20 is a logical consequence

of the input formula and 1s quite sensible.

Also notice that these are just the three bits of information mentioned in Example 2.4

2.3.3 Soundness and Completeness

We want to be sure that we do not lose any information when we put formulas into the
knowledge base. We also want to be sure that we do not add any new information or change
the meaning of the formula in any way. To do this, we prove that this procedure for creating a
knowledge base is both complete and sound. By completeness we mean that the conjunction
of the leaves of a finished KB-tree logically imply the formula at the root. By soundness
we mean that the original formula logically implies all of the sequents that are leaves of its

finished KB-tree.

Theorem 2.15 (Soundness of the Knowledge Base) If a sequent s is a leaf of a finished
KB-tree rooted at — ¢ then every model of ¢ satisfies the universal closure of s. (We use the

notation ¢ = s to indicate this.)

Proof: Suppose s is a leaf of a finished KB-tree rooted at the sequent — ¢. There is a

0 .1 m

sequence — ¢ =s°,s,...,8" = s of the sequents between s and the root of the tableau. We

will prove ¢ = s by induction on m.

45

The base case (m = 0) is trivial.

Now suppose that ¢ = s’ and show that ¢ = s'*t'. Suppose s* = U — V and
si*tl = /' — V'. There are four cases to consider depending on the rule that was applied
to construct s't! from s'. The cases for y7'-, a- and f-rules are merely tedious and left to

the reader.
§~1-rule: Suppose (3z)A € U and U’ = (U U {A%}) \ {(Fz)A} where z’ is a new variable.
We will prove this case in detail and leave the case in which the d-formula occurs in V to

the reader.

Let A be a grounding substitution for s'+1. We will show that ¢ = s'**X. We know

that ¢ = s'A by the induction hypothesis.

First suppose that ¢ /\ulEU u;A and hence ¢ |= v for some v € V. Clearly V! = V
s0 ¢ &= vvleV' v; A and hence ¢ &= sit1)

Now suppose that for some u € U, ¢ £ uX. If u # (3z) A, then ¢ |= s\ since u € U,
Otherwise, ¢ £ (3z)AX. But this implies that ¢ = A%, A where 2’ is a new variable. Hence

¢ = Nu,co uid and so ¢ = s'HIA

Q.E.D.

Theorem 2.16 (Completeness of the Knowledge Base) Suppose ¢ is a closed formula
and S is the set of leaves of the finished KB-tree for ¢. Then every model of the universal

closure of S satisfies ¢.

Proof: We prove by induction the stronger result that at every stage in the construction of a

KB-tree, any model of (the conjunction of) the leaves satisfies the initial formula ¢.
This is clearly true in the base case.

Now suppose that ¢ steps have been applied in constructing a KB-tree for 7 > 0 and
that at each of these steps any model of the universal closure of the set of leaves of the tree

satisfied the formula at the root. This time, we will prove the case where a 6~ !-rule is applied

46

to a 6-formula in the conclusions of a sequent. We leave the case where a 6~ 1-rule is applied to

1

a d-formula in the hypotheses and the case where an a-, 8- or ¥~ *-rule is applied to the reader.

Suppose S; is the set of leaves after step i and step i+ 1 is the application of a ~'-rule
to the formula (Va)A in the conclusions of the sequent st € S;, where s = U — V. Thus,
st = U — A%, V \ {(Vz)A} where ' is a new variable and S; 1 = (S; U {s't1}) \ {s'}. We
must show that every model of the universal closure of S;;1 is a model for ¢. It is enough to
show that every model of the universal closure of s°*' is a model of s*. Suppose M is a model
for the universal closure of si*!. If M satisfies the universal closure of A%, then it satisfies
(V) A since 2’ is a variable not occurring in A. If M is not a model of AZ,, then M is a model

for the universal closure of U — V' \ {(Vz)A} and hence for the universal closure of U — V.

Q.E.D.

47

Chapter 3

Application of Knowledge

The proposed method for doing logic always begins from scratch for each the-
orem. This is quite different from the type of proof we encounter in Euclid, where
it is essential that later theorems are proved with the help of earlier ones. While
this problem of selecting relevant earlier theorems to apply appears unimportant
in the domain of logic as dealt with by the method to be described, it has to be

faced at some stage, and the writer does not have a ready general solution of it.

—Hao Wang [116]

Mathematicians select and apply lemmas from an enormous knowledge base. The
fact that this is a difficult task even for mathematicians can be seen by the fact that they
sometimes go off in the “wrong” direction when trying to prove a theorem and sometimes
make several tries before they come up with a proof. The extreme complexity of this problem
overwhelms existing automated methods. We have already discussed the difficulty of this

problem in Section 1.1.

At this point we have described a formal language and the basic rules of inference
used in this language. In Section 2.3 we described how sentences in this language are stored

in the knowledge base.

It remains to explain how knowledge stored in this form (or in clausal form) is se-
lected and used in search for the proof of a new sentence. The strategy for selecting a piece of
knowledge from a knowledge base makes more sense with the understanding of how the knowl-
edge 1s used. Therefore, we begin by illustrating the way knowledge is used in an example

from topology. Then we introduce examples of the theorem application rules informally using

48

the sequent calculus. In Section 3.2, we give the formal details of the rule using the tableau
calculus. The single e-rule given in Section 3.2 subsumes all of the rules in Section 3.1. We
also prove that the rule is sound and that there 1s a complete procedure associated with the
rule. Finally, in Section 3.3, we describe some strategies and restrictions that the IPR program

implements in order to use the rule more intelligently.

The strategies incorporate the intuition that the knowledge applied should finish the
proof if possible. If it does not finish the proof, then it should not add more complexity to the

proof. The knowledge applied should definitely be related to the theorem at hand.

Throughout this chapter, we concentrate on the non-clausal form. All of the methods

apply equally to a library of information in clausal form.

3.1 Informal Description

First, examine an English proof that uses knowledge so that we can have examples of some of
the ways knowledge can be applied in a proof. The reader who is very familiar with tableau
methods might want to read Section 3.2 before reading this one because that section presents

the technical details that this section describes loosely.

Example 3.1 Let us consider a simple example of the proof of a theorem taken from John
Kelley’s text, General Topology [77]. This is the first part of Theorem 19 in Chapter 5 of that
text. Here is what we want to prove to be true assuming that the axioms and theorems given

earlier in the text are true.
If a product space is locally compact then every coordinate space is locally compact.
To capture the context, we need to write it like this:?

If [T}y X is locally compact then for every a, X, is locally compact.

1Here, H;X represents the product topology where X is a bijection from the index set A to a set of
topologies. We use HT rather than H to distinguish the topology from the underlying set. If you are not
familiar with these terms, just try to follow how this sentence is proved to be a consequence of the assumptions.
The proofs are completely syntactic and do not rely on the meanings of the formulas.

49

Proof: Suppose that [T}, X is locally compact and show that for every a, X, is locally compact.
Since we know that H; X is locally compact and we are trying to show that X, is locally
compact we can apply a statement on page 147 of Kelley.

Now we only need to show that =, : H; X — X, is open and onto and m, : HZ X = X, 1s
continuous and onto.

1. Since we are trying to show that m, : []} X — X, is open and onto we can apply Theorem
3.2 in Kelley which finishes that branch of the proof.

2. Since we are trying to show that m, : H; X — X, is continuous and onto we can apply a
statement on page 90 of Kelley which finishes that branch of the proof.

Figure 3.1: The proof for Example 3.1.

In Figure 3.1, we present a proof of the theorem above, expanded to show all of the details.
In fact, the proof is the output of the computer program, IPR, that implements the methods
presented in this paper. (See Section 5.2 for the details on how IPR produces English output.)
This example of a proof demonstrates some of the ways known information may be used in

the process of proving a new sentence.

In the proof, there are three references to earlier statements from Kelley’s text. Here
are the three statements needed for the proof, each labeled with the description we will use to

refer to them in the proof.

a statement on page 147 of Kelley:
If S is a locally compact space and there is an open, continuous function from S onto T, then

T s locally compact.

Theorem 3.2 in Kelley:

The projection function, m,, 1s an open, onto function.

a statement on page 90 of Kelley:

The projection function, w4, is continuous and onto.

Notice that the application of a statement on page 147 of Kelley splits the proof
into two parts. Let us examine the reason this happened. The theorem being applied, a
statement on page 147 of Kelley, had four basic parts. It would be stored, as described

in Section 2.3, as follows:

50

If f : S — T s open and onto and

f:S =T s continuous and onto and

S is locally compact,

then T 1is locally compact.
The TPR program would display the theorem as follows:

Description: a statement on page 147 of Kelley
Suppose all of the following:

1. F is an open function from S onto T’

2. F' is a continuous function from S onto T

3. S is locally compact

Then T 1is locally compact

At the point in the proof when this theorem is used, we know that [[, X is locally compact
and we are trying to show that X, is locally compact. According to the theorem, all that is
needed is a continuous, open function from H; X onto X,. Once an onto function is selected
as a candidate—in this case, m,—it must be proved to be both continuous and open. So, the
reason the proof is split into two parts is that there are two hypotheses of the theorem being
applied that are not known to be true at the current stage of the proof. So these two hypotheses
must be proved separately. Fortunately, these two subgoals are finished immediately by the

application of the other two theorems.

Clearly, the difficulty of the proof is not in its complexity, but in selecting the knowl-
edge from a large base of knowledge. Typically, a student might apply the definition of locally
compact and the definition of the product topology before thinking of this shorter proof. We
discuss some strategies for automating the selection of knowledge from a large knowledge base

in Section 3.3.

This example only shows a couple of the ways theorems can be used. In this section

we present rules that implement these and other ways by which theorems can be applied. For

51

the moment, we will hide some of the technicalities. We present the e-rule informally in several
parts below in order to show how it relates to the way mathematicians use theorems and write

proofs. The technical details are presented in Section 3.2.

These rules for applying theorems depend on two basic facts: (1) the theorems are
stored as sequents as described in Section 2.3 and (the sequents may be in clausal or non-
clausal form) (2) a tableau-related proof procedure is being used to prove the new sentence. In
this section, we assume that the proof procedure being used is the sequent calculus, whereas

when we give the technical details, we use the tableau calculus.

Suppose that the theorem T from the knowledge base, which is stored as the sequent

U — V', has been selected for use in proving S, a sequent in the proof tree written as ' — A.

We try to match formulas in U with formulas in T' and we try to match formulas in
V with formulasin A. All of the formulas matched must agree on what their shared variables

are replaced with.

In general, not all of the formulas in U will be unifiable with formulas from I'; so also
for V and A. However, if all of the formulas in U and V' are unified with formulas from the
sequent being proved, then the sequent is true in any model of the theorem from the knowledge
base. This is the special case of the e-rule that we will want to apply when possible since it

immediately finishes a branch of the proof.

Theorem Application Rule 3.1 Suppose U and V' are the sets of antecedents and conse-
quents of a sequent in knowledge base form and T' — A is a leaf of sequent tree in the process
of being expanded for finding a proof. If all of the formulas in U and V are unified with
formulas in T' and A respectively, then the sequent I' — A is true assuming U — V is true.

(The substitution o must be applied.?)

The second and third theorem applications in the example above were instances of the

application of this form of the theorem application rule. In those two cases, the branches of

2In this presentation, for the sake of simplicity, we have eliminated the details about when and to what the
substitution ¢ must be applied. A complete discussion of this is given in Section 3.2.

52

the proof on which the theorems were applied were immediately finished by the application of
the theorem. We will present the example again in its entirety using these theorem application

rules at the end of this section and again after the formal definition of the e-rule.

We are not always fortunate enough to have a theorem in the knowledge base that

immediately finishes the branch of the proof (i.e., closes the sequent) we are working on.

In order to state other special cases of the e-rule, we let U’ stand for the subset of
U that was successfully matched (unified, technically) with a subset T of T. Let V’ stand
for the subset of V' that was successfully matched (unified, technically) with a subset A’ of
A. Suppose that o is the substitution (assignment of variables) that matches these formulas.
Therefore, U’ contains the hypotheses of the theorem, T, that are known to be true in the
current sequent, S, and V' contains the conclusions of the theorem, T, that are known to be

false in the current stage of the proof, S.

Let M =V \ V' and N = U\ U’ so that M is the set of conclusions of the theorem,
T, that are not successfully unified with goals of the sequent, S, being proved and N is the
set of suppositions of the theorem, 7', that are not successfully unified with hypotheses of the

sequent, S, being proved.

The rules for applying the theorem, T', will make use only of the sets M, N and the

substitution o. So the information needed for the application of the theorem is readily available.

Sometimes, when proving a statement, a person goes through the following reasoning

process.

I know A and I am trying to conclude B. I know a true sentence that says that
if I know A and C' then I will know that B is true. So, if I only knew that C were

true, then I would know that B were true.

This says, under our notation, that S = A — B and T'= {A,C} — B and thus M = {§ and

N = {C}. Therefore, we only need to prove C'. The following rule is applied in that situation.

Theorem Application Rule 3.2 Suppose M and N are the sets of formulas from the se-

quent in the knowledge base that are not successfully unified with formulas in the sequent being

53

proved as described above. If M is empty and N = {N;} is a singleton then the following rule

may be applied.
I —> Nl,A
r—-A

To illustrate another case, humans frequently go through the following thought process

when proving a theorem:

I know A and I am trying to prove B. I have a theorem that says that if A is
true and B is false then C' must be true. So if C' were false, then B would be true

and I would be done. So I can assume that C' is true.

Under our notation, this says that S = A — B and T = A — {B,C}, thus N = § and
M = {C}. In this case, we add C to the hypotheses of S. The following rule applies in

this case.

Theorem Application Rule 3.3 Suppose M and N are the sets of formulas from the se-
quent in the knowledge base that are not successfully unified with formulas in the sequent being
proved as described above. If N is empty and M = {M; } is a singleton then the following rule
may be applied.
M, T = A
r—-A

Many times, humans apply theorems in more complicated ways than these. As in the
example we gave above of the proof in topology, sometimes there are more than one formula
that remain to be proved when we apply a theorem. This and any other more complicated
theorem application is covered by the following rule that adds more than one sequent to the

sequent tree.

Theorem Application Rule 3.4 Suppose M =V and N = U as described above.

M, T—>A| - | Mp, T —-A|T—=AN | | —= N, A
r—=A

where M = {M;,..., My} and N = {Ny,...,N,}.

It is this rule that was applied first in the proof of the example above. See Section 3.2 for all

of the details of these rules.

Notice that this rule adds n + m branches to the tree. In fact, in all of these rules
the amount of branching caused by the application of the rule will be n + m: the sum of the
cardinalities of N and M. In Section 3.3, when we talk about how to select a sequent from the
knowledge base to apply at a particular point in the theorem proving process, we will use this

measure, n + m, as a major indicator of the usefulness of a sequent in the knowledge base.

Example 3.2 Now let us reconsider how the previous example from topology would be han-

dled in this semi-formalized framework. The framework is completely formalized in Section 3.2.
If H; X 1s locally compact then for every a, X, is locally compact.

We will prove this in the knowledge base containing the following sequents that correspond to

the three theorems needed in the proof given earlier.

T

— continuous-from-onto(m,, H X, Xq) (3.1)
A
— open-from-onto(m,, H X, Xq) (3.2)
A

open-from-onto(f, A, B),
continuous-from-onto(f, A, B), 3 — locally-compact(B) (3.3)
locally-compact(A)

Section 5.2.3 shows how these sequents are displayed in plain English by the IPR program and

in that section, this example is explained in terms of the actual interaction with the program.

To prove the theorem, we begin by posting the following sequent, which is the state-

ment of the theorem in first-order logic.
— (VX)(VA)(locally—compact(H X) D (Va)locally-compact(X,))
A
The ordinary sequent calculus rules are applied to this until we obtain the following sequent.

locally—compact(H Xy) — locally-compact(Xq,,)
Ao

55

Here, Xy, Ag and ag are Skolem constants. No more ordinary first-order logic rules may be
applied so we must apply a theorem. We will apply the instance of sequent 3.3 obtained by
applying the substitution o = {H;D Xo/A, Xo4,/B}. Applying Theorem Application Rule 3.4,

we split the tableau into the following two branches.

T locally-compact(Xo,,), ;
locally—compact(lA_[Xo) = { continuous-from-onto(f, H;\D Xo, Xoa,) 4
T locally-compact(Xg,,), ;
locally—compact(lA_[Xo) = { open-from-onto(f, H;D Xo, Xoa,) (3:5)

Sequent 3.4 is closed by applying Theorem Application Rule 3.1 with the known sequent 3.1 and
the substitution o = {Ag/A, Xo/X, a0/a,ma,/f}. Sequent 3.5 is closed by applying Theorem
Application Rule 3.1 with the known sequent 3.2 and the same o as was used on sequent
3.4. Both of these applications of the theorem application rule close the respective branches
and the substitutions used are identical. Therefore the tableau is closed by the substitution
o' = {ma,/f}.

The question that naturally arises in the context of the automation of reasoning is
how to select, not only the proper sequent from a large knowledge base, but how to select
exactly the proper way to apply the selected sequent. We address this question in Section 3.3.
The strategies we develop there make exactly the selection of the sequents we used in the
common-sense proof above even from a relatively large knowledge base. Not only are the
correct sequents selected, but they are applied by those strategies exactly as we have applied

them here in our proof.

3.2 Technical Details

In this section, we present the formal details of the theorem application rule (e-rule.) We then

prove that the rule is sound and that there is a complete procedure using the rule.

The procedure we prove complete here is complete regardless of whether the knowledge
base is made of clauses or the non-clausal form described in Section 2.3 [64]. In Section 3.3
we mention how completeness is lost if certain strategies are used in conjunction with the

non-clausal form but is retained if a clausal form is used in the knowledge base.

56

The definition of a closed tableau does not presuppose any particular method for
determining when a tableau is closed. Since the depth-first backtracking strategy is so widely
used® and since the provisions of the theorem application (e-) rule depend on the unification
strategy being used, we discuss the three common unification strategies here briefly. It is
important that we mention breadth-first unification since that is the method used by the
current implementation of IPR. Section 5.1.1 goes into more detail on the topic of breadth-

first unification.

3.2.1 Unification Strategies

For each of these strategies, there are certainly refinements that make it more efficient. For ex-
ample, Beckert’s mixed universal and rigid unification [18] or Oppacher and Suen’s condense al-

gorithm [94] can be incorporated into any of these strategies with some additional bookkeeping.

Depth-First Backtracking Unification. In this strategy, we use a limit, ¢, on the number
of times the v-rule may be applied to a single formula. An implementation of this strategy
expands the first branch until a substitution is found that closes that branch. That substitution
is applied across the entire tree (in a way so that it can be retracted later if necessary) and
then the next branch is expanded. This process continues until the entire tree is closed or
the g-limit is reached. If the g¢-limit is reached when no branches have been closed then the
procedure halts with failure. Suppose the ¢-limit 1s reached and B is the last branch to be
closed and o is the substitution that closed it. Then the application of the substitution o 1s
undone and the branch B is expanded further until a different closing substitution is found or
the g-limit is reached. When the procedure halts with failure, then we know that there 1s no
proof of the formula with the given ¢-limit. At this point, the user may raise the ¢-limit and

try again.

3TPR is widely believed to be the only tableau based prover that does not use depth-first unification. This
comment was made by Ulrich Furbach at the most recent TABLEAUX conference.

57

Depth-First Non-Backtracking Unification. Our description will follow Frank Brown’s
description of the strategy [39]. With each y-formula, we associate a replica instance list, which
is the list of instantiations of the variables introduced by the application of a 4-rule to the
formula. Each y-formula is initialized with an empty replica instance list. On each application
of a y-rule to the y-formula, the variable introduced by the application of the rule is put in

the replica instance list of the y-formula.

The first branch of the tree is expanded until a substitution is found that closes the
branch and that does not violate the instantiation restriction. The wnstantiation restriction
states that a variable may not be instantiated with a term that already occurs in the replica
instance list of the y-formula that introduced the variable. After the substitution is applied
to the entire tree, the next branch is expanded. In this case, the substitution may be applied
to the tree in a permanent way since it will never be undone. The substitution is even applied
to the replica instance lists of the y-formulas. Therefore, the replica instance lists are, as was
mentioned, lists of instantiations of the variables introduced by the formula. This process

continues until some resource is exhausted or every branch is closed.

Breadth-First Unification. The breadth-first strategy expands all branches of the tree.
When a substitution is found that closes some branch, the substitution is stored at the highest
node, N, such that every branch through N is closed by the substitution. Notice that a
branch is expanded further even after a substitution is found that closes it. At certain times,
the implementation must pass through the tree trying to find a composition of substitutions
that will close every branch of the tree. No substitution is applied until a substitution is found

that closes every branch.

The breadth-first method requires more bookkeeping but allows all strategies that are
allowed by the depth-first search plus many other strategies, such as easy subgoal selection,

dynamic lemma creation, etc.

58

3.2.2 The e-Rule

Here we describe the technical details of a general and complete rule for applying sequents
from a knowledge base in the context of a free-variable semantic tableau proof [54, 113]. We
prove soundness and completeness and illustrate the use of the rule by using it to prove the

theorem of topology we have been discussing.

If the e-rule is used in the context of a clausal form knowledge base, then the rule is
very similar to other clausal tableau expansion rules but it adds fewer branches to the tableau
even in the clausal case. In that sense, S-tableaux (defined below) are similar to hyper-
tableaux [15] and tableaux constructed by MGTP [66], which are clausal tableaux. However,
the present calculus is more symmetric and has other differences discussed in Chapter 7. The
¢-rule was developed in 1994 [106, 107], but since the author was not using clausal form, the
relation between this work and the similar work done at that time and since that time in

clausal tableaux was not immediately noticed. Further comparison is given in Chapter 7.

In the rules of the analytic tableau calculus, the symbol naming the rule (e.g., @) is
also used to represent the formula to which the rule is to be applied. Since the e-rule is applied
to a set of formulas, we let € stand for a (possibly empty) set of formulas on a branch of a
tableau. Each element of ¢ must be either a y-formula or a literal (if clausal form is being used,
then £ will contain only literals.) The e-rule is the application of a sequent in the knowledge

base to the formulas in €.

Let s = U — V be the selected sequent from the knowledge base. In order to apply

the e-rule, € and s must satisfy the following conditions:

e s must have its free variables renamed so that they are disjoint from the free variables

in the tableau,

e ¢ = H UG where H is the set of positive formulas in € and G is the set of negative

formulas in ¢ and

e there are subsets U’ and V' of U and V respectively and an idempotent substitution, o,

59

such that*

— Ho=Ulo,
— Yol € G} =V'o,

— o is a most general substitution with these properties.

For the statement of the e-rule, we let M = Vo \ V'o and N = Uo \ U'c. Loosely speaking,
M contains exactly the formulasin V' (the conclusions in s) that were not successfully unified
with any formula in G (the negative formulas in ¢) and similarly for N with respect to the
hypotheses and positive formulas. We will also let o’ denote the subset of o containing only

those substitutions of variables in €.

Definition 3.5 (e-rule) Where M = {My,..., My}, N = {Ny,..., Ny} and ¢’ have been
determined as described above we apply the following tableau expansion rule to every branch

containing €.

3
M1| |Mm|_‘Nl| |_‘Nn

with the following provisions (for depth-first unification):

e none of the new formulas already occurs on the branch,
e the tableau substitution rule must be applied with ¢’ and

e if M = N = () then the branch is closed by the application of the rule.

The provisions are stated assuming that depth-first unification is being used. We will
discuss below how they need to be restated if breadth-first unification is being used. The first
provision is not needed for soundness but it does not take away any first-order completeness
and is generally useful. This is what is called the regularity condition [82]. The e-rule would

be unsound without the second provision.

4 A substitution, o, is idempotent if for any formula, F, Fo = Foo.

60

If breadth-first unification is being used, then the provisions change. It goes against
the idea of breadth-first unification to apply o’ across the entire tree until it is known to be the
substitution that finishes the proof. However, it is not enough simply to apply the substitution

o' to the formulas being introduced by the e-rule because soundness is lost.

Here 1s a solution that works and maintains the goals of breadth-first unification: the
substitution o’ need not be applied across the entire tree but it must be associated with the
formulas added by the rule and their descendents. In subsequent applications of the e-rule,
the substitution formed must be composed with the substitutions associated with each of the
formulas in € and the composition of those substitutions must be associated with the formulas
created by the e-rule. Furthermore, if a contradiction is sought between two formulas on a
branch, the substitution that unifies them must be composed with the substitutions associated

with the two formulas.

We do not apply the first provision given in the é-rule because it may destroy com-
pleteness if breadth-first unification is used since the two identical formulas may have different
substitutions associated with them. Keeping track of regularity during breadth-first unifica-
tion is an interesting topic for further research. Regarding the third provision, it should be
understood that instead of closing a branch we label the appropriate node with ¢’. Please see

Section 5.1.1 for more details about breadth-first unification.

Example 3.3 Here we illustrate the use of the e-rule in our running example. Here the proof

will be given in tableau format.
If [T} X is locally compact then for every a, X, is locally compact.

We will prove this in the knowledge base containing the same sequents given in Example 3.2.

We construct the tableau in Figure 3.2 using the ordinary free-variable tableau rules

until we reach node 2.

After node 2 has been added, no more ordinary tableau rules may be applied so we

apply an e-rule. The set ¢ will contain the only two literals in the tableau (1 and 2.) We

61

62

=(VX)(VA)(locally-compact([], X) D (Va)locally-compact(X,))

=(VA)(locally-compact([]7 Xo) D (Va)locally-compact(Xo,))

ﬂ(locally—compact(H;D Xo) D (Ya)locally-compact(Xo,))

(1) locally—compauct(H;D Xo)

—(Va)locally-compact(Xg,)

(2) —locally-compact(Xo,,)

/

(3) —open-from-onto(f, H;O Xo, Xoa,)
(4) —continuous-from-onto(f, H;D Xo, Xog,)

Figure 3.2: The tableau for Example 3.3. The symbols Xy, Ay and ag are Skolem constants.

will apply the sequent 3.3 with the substitution ¢ = {H;U Xo/A, Xo,4,/B}. Applying the
e-rule, we split the tableau into two branches as shown. The left branch is closed by applying
the e-rule with £ containing only formula 3. We use the sequent 3.2 and the substitution
o = {Ao/A, Xo/X,a0/a,7a,/f}. The right branch is closed by applying the e-rule with ¢
containing formula 4. We use sequent 3.1 and the same ¢ as was used on the left branch. Both
of these applications of the e-rule close the respective branches and the substitutions used are

identical. Therefore the tableau is closed by the substitution ¢’ = {m,,/f}.

This proof is found by the IPR implementation even in the presence of a knowledge
base containing over 100 sequents related to the concepts of products, product topologies,

(locally) compact spaces, etc. See Section 3.3 for a description of the strategies used by TPR.

Definition 3.6 (S-tableau) If S is the set of sequents from the knowledge base used in ap-

plications of the e-rule in the construction of a tableau, then the tableau is called an S-tableau.

If we let S denote the set of sequents used in this proof, (i.e., sequents 3.1, 3.2 and 3.3)
then our soundness result will show that since the S-tableau is closed, the theorem proved is

true in every model of the formulas input to create the sequents in S.

3.2.3 Soundness and Completeness

In this section we prove that the theorem application rule (the e-rule) is sound and that there
is a complete procedure using the rule. That the rule is sound means that we can only prove
sentences that are true in every model of the sentences input into the knowledge base. That
a set of rules using the e-rule is complete means that any sentence that is true in every model

of the knowledge base can be proved using the rules.

Here is the formal statement of the soundness theorem.

Theorem 3.7 (Soundness) Suppose @ is a finite set of first-order sentences and S is a subset
of the leaves of the finished KB-trees for the sentences in ®. If an S-tableau with root labeled

—¢ is closed, then ¢ is true in every model of ®.

The proof will use the following lemma.

Lemma 3.8 Suppose @ is a finite set of first-order sentences and S is a subset of the leaves
of the finished KB-trees for the sentences in ®. Further, suppose that 7" is an S-tableau whose
root is labeled by a sentence . If the universal closure of S is true under an interpretation,

M, and =g ¢, then the universal closure of T is true under M.

Proof: Let S, M and T be as in the hypotheses. Since the root of T"is labeled by), there
is a sequence ¢ = T9, Tt ..., T™ = T of tableaux, where T°t! is constructed from 7% by a

single tableau expansion or substitution rule. By induction on m, we will prove that = T™.
By hypothesis, Eam 1, so the case m = 0 is finished.

Now suppose that every ground instance of 7% is true under M. We will show that
every ground instance of 7%%! is true under M. The case for the soundness of the a-, §-, 4-,
v- and tableau substitution rules is made elsewhere [54, 20]. We will show that this holds in

the case that the e-rule was applied.

Let A be a grounding substitution for 7%+'. We will show that T%*') is true under

M. By induction, any ground instance of 7% is true under M. If ¢ is the substitution that

63

is applied to 7%%! in the application of the e-rule, then o) is a grounding substitution for 7%.

Therefore, there is some branch, B? in T%, such that =p BioA.

Let B! be such a branch. First, suppose that ¢ ¢ B. Then the e-rule was not applied
to the branch B?. Thus B’ is a branch in 7°*' and since B*) is true under M, we know that

g TN,

Now suppose that ¢ C B'. Let ¢ = H UG where H is the set of positive formulas
in € and GG 1s the set of negative formulas in €. Suppose that s € S is the sequent used in
this application of the e-rule where s = U — V. By the definition of the e-rule, there are
sets U’, V' subsets of U/ and V respectively and a substitution ¢ such that Ho = U’c and
{¢Y|=¢ € Go} = V'o. We also have the sets M = Vo \ Ve and N =Uc \U'o.

By hypothesis, the universal closure of s is true under M, since s € S. In particular,

E=am so . Since ¢ C B' and |=aq BioA, we know that =aq o).
It will help to write soX as HoAU NX — {p|-~p € GoA} U M.

Since =aq g0 X and =g so A, we know that =aq v for some v € MAU{—f : f € N}
This is enough because the branch, B, is extended to n + m new branches each containing a
unique one of the formulasin MAU{—f : f € NA}. If M satisfies one of these formulas, then
Ea T

Q.E.D.

The proof of soundness will use the contrapositive of this lemma. In particular, we
use the fact that if ® is a finite set of first-order sentences and S is a subset of the leaves of
the finished KB-trees for the sentences in ® and T is an S-tableau whose root is labeled by a

sentence 1 and T is not satisfiable, then no model of S satisfies 1.

Proof of Soundness: We suppose @ that is a finite set of first-order sentences and S is a
subset of the leaves of the finished KB-trees for the sentences in ®. Further suppose that 7" 1s

a closed S-tableau with root labeled —¢. We must show that ¢ is true in every model of ®.

Since T is closed, T is not satisfiable. Therefore, —¢ cannot be satisfied by any model

of S by the contrapositive of Lemma 3.8. Thus every model of S satisfies ¢. Since every model

64

of @ satisfies S by Theorem 2.15, every model of ® satisfies ¢.

Q.E.D.

Now we present a simple systematic tableau procedure using the e-rule that is complete
for any first-order theory. The procedure given here is not recommended for implementation
since 1t is very inefficient compared to other existing procedures. The IPR program does not

use the procedure given here and, in fact, TPR is incomplete because it insists that ¢ # 0.

The completeness proof is completely routine and follows the well-known proofs [54].

We will outline the ordinary proof using Hintikka’s Lemma.

The procedure given below is complete regardless of whether clausal or non-clausal
form is used. If clausal form is used, then certain restrictions such as set-of-support (Sec-
tion 3.3) can be applied without losing completeness. The systematic procedure given here
makes no effort to be efficient. See Section 3.3 for a description of a restriction to the rule that

destroys completeness in the non-clausal case but gives good success.

Suppose we are given a finite set @ of first-order sentences and that they have been
used to create a knowledge base, S. That is, S is the set of leaves of the finished KB-trees
for the formulas in ®. Suppose that each sequent in the knowledge base, S, is labeled with a
counter initialized to 0. To prove that ¢ is a logical consequence of ® we build a systematic
tableau following these steps. At step 0, we initialize the tableau with the formula —¢ and
we set ¢ = 1. Every formula in the tableau has two labels on it: {used|unused} and a copies
label that holds an integer. Each new formula starts out unused and with its copies set to 0.
At step n + 1, if there is an unused a-, §- or S-formula, then we apply the appropriate rule
to the highest such formula and label the formula used. Otherwise, if there is a y-formula
whose copies label is less than ¢, then we apply the v-rule to the highest such formula and
increment the copies label of the v-formula. Otherwise, if there is a sequent in the knowledge
base, S, whose counter is less than ¢, then we apply the most general e-rule for that sequent to
every branch of the tableau on which it is permissible by the provisions of the e-rule. Then we

increment the counter of that sequent. If none of these rules can be applied, then we increment

65

q and continue. An S-tableau constructed by these rules is finished if it is infinite or if ¢ is

incremented twice without any other rule being applied.

Now we make the definition of the appropriate type of Hintikka set so that the proper

form of Hintikka’s Lemma will follow.

Definition 3.9 (Hintikka set for a knowledge base) Let L be a first-order language and
S be the set of leaves of the finished KB-trees for the sentences (in the language) in the finite
satisfiable set, ®. A set H of formulas of L is a Hintikka set for the knowledge base S (with

respect to L) provided H satisfies the following conditions:

Hy No complimentary pair occurs in H
H L -T¢gH
Hs If a € H then aj,as € H
Hs If € H then 8y € Hor 35 € H
H, If vy € H then v(t) € H for every closed term ¢ of L
Hs If 6 € H then 6(t) € H for some closed term ¢ of L
Hg For every sequent s € S if & is the vector of free variables in s and
s= U@ <i < ul » K@ <i < 0)
then for every vector £ of closed terms in L, some element of {=U;(f)]1 < i < u} U

(Vi1 <i<w}isin H.

Lemma 3.10 (Hintikka’s Lemma) If ® is a finite satisfiable set of sentences (in a language
with a non-empty set of closed terms) and S is the set of leaves of the finished KB-trees for
the sentences in @, then every Hintikka set for S (with respect to the language) is satisfiable

by some model of S.

66

The ordinary proof of Hintikka’s Lemma goes through [54, 113]. First build an interpretation
which makes the literals in H true, then show that this interpretation makes every other
formula true by induction. The interpretation constructed in this way is easily seen to be a

model for S because every ground instance of every sequent in S will be true in the model.

Theorem 3.11 (Completeness) If @ is a set of first-order sentences and ¢ is a sentence
that is true in any model of @, then the systematic procedure given above will find a proof of

¢ using the knowledge base built from ®.

Proof: Since every model of S satisfies ® by the completeness of the knowledge base (Theo-
rem 2.16), every model of S satisfies ¢. If the finished S-tableau for =¢ has an open branch
B, then we claim that there is a ground substitution, o, such that Bo is a Hintikka set for
S. This must be so because of the fact that our procedure guarantees that there are infinitely
many variants of the y-formulas and the formulas from the sequents in the knowlege base and
that the a-, 3- and Jd-rules will always be applied to the appropriate formulas. Therefore, o
can be constructed in a way that every term in the language will appear as the argument to

every y-formula and similarly for the formulas from the sequents.

Thus some model of S satisfies Bo by Hintikka’s Lemma. Because —=¢ € B and —¢
is a closed formula, this model satisfies —¢. But this contradicts the fact that every model
of S satisfies ¢. Thus there can be no open branch on the finished S-tableau for —¢. So the

finished S-tableau for —¢ must be closed.

Q.E.D.

3.3 Selection of Knowledge

Therefore, one major (THE major) research activity is to devise methods
(strategies) for guiding the program so that it makes enough of the right deductions

and not too many of the wrong ones.

—Bledsoe and Henschen [25]

67

In the foregoing sections, we have introduced a method for storing knowledge in a
formal language and a method for using this knowledge in the process of establishing the truth
of new sentences in the language. The method has been demonstrated to be quite compatible
with human methods. (In Chapter 5 we give more examples showing how easy this method is
to explain in human terms.) In this section, we discuss methods for selecting knowledge from
a knowledge base for use in the theorem-proving process. The problem of selecting knowledge
intelligently is very difficult. In a way, it is an impossible problem that even humans cannot

solve perfectly.

We discussed in Chapter 1 the problems associated with selecting knowledge from a
large knowledge base. But let us not give up before we begin. Indeed, computer systems have
already been developed that use rather large knowledge bases and make selections automat-
ically [11, 13, 62, 84, 123]. These systems show their strength in and, to a large extent, are
limited to Horn theories and theories that have the nature of rewrite rules. Other systems exist
that apply knowledge based on hints or other information from the user [36, 53, 61, 84]. There
are also existing systems that use analogy: given a proof that is expected to be similar to the

proof of the problem at hand, the prover is able to revise or expand the analogous proof [95].

So a problem that remains largely open is that of automatically discovering a proof in
a large non-Horn theory when we have no idea what the proof is supposed to look like. It is in
these circumstances that the application of knowledge can add a great deal of complexity to
the proof. It is this seemingly impossible problem that mathematicians solve, sometimes with

little conscious effort and sometimes with great difficulty.

We obviously want to apply knowledge that is related to the problem at hand. But
how 1s this measured? And what happens when there is a tremendous amount of related
knowledge? When trying to prove a theorem of mathematics, a mathematician prefers to use
knowledge that is a bargain. He or she wants the statement to take the proof forward (or
backward) as far as possible without paying for it with added complexity and without having

to make a variable instantiation that he or she is not sure about.

68

ADRB ADB ADB ADB
\ \ \ \
| | | |
-B -B -B -B
| | / \ AN
-D -F -C -F vl -G -H
lemma 1 lemma 2 lemma 3 lemma 4

Figure 3.3: The tableaux for Example 3.4

Example 3.4 In order to get a naive idea of some of the heuristic decisions made by a human,
consider a very abstract example. Suppose we want to prove that A D B and we know, among

other things, that each of the following are true.

1. (AAD) D B,
2. F D B,
3. (CANE)D B,

4. INGANH) DB,
5. B,
6. = A and

7. AD B.

See Figure 3.3 to see the result of applying each of the first four lemmas using the e-rule.
Notice that after applying lemma 1 or 2, the tableau consists of a single branch. Lemma 3
causes a two-way branch and lemma4 causes a three-way branch. Other things being equal, we
would rather apply lemma 1 or 2 than lemma 3 because afterwards, we would only be required
to prove D or F respectively whereas if we apply lemma 3, we would have to prove both C
and F separately. This is the kind of complexity we want to avoid, if possible, because every

branch is another case to consider. We would prefer to apply lemma 3 rather than lemma 4

69

since lemma 4 causes even more branching. It also seems that we would be more likely to use
lemma 1 than lemma 2 in this case since lemma 1 appears to have more to do with what we
are trying to prove than does lemma 2: lemma 1 has A and B in it whereas lemma 2 only

mentions B.

Obviously we will prefer to apply one of the lemmas 5-7 (probably the last one) since

any of these lemmas finishes the proof instantly.

Recall also the comments we have made about not wanting to make a variable instan-
tiation while applying a theorem unless we have to. Summing up the simple observations we
have made in this section, we obtain the following heuristics that seem sensible for selecting

and applying lemmas:

1. Prefer to apply knowledge in a way that finishes the proof instantly.
2. Prefer to apply knowledge in a way that does not cause branching.
3. Prefer to apply knowledge in a way that causes as little branching as possible.

4. Prefer to apply knowledge in a way for which more of the parts in the statement match

appropriately signed parts in the conjecture we are trying to prove.

5. Prefer to apply knowledge in a way that does not bind many variables.

Given the framework we have set up for storing and applying knowledge, it is very easy
to implement these strategies. FEach of these strategies can be reworded in terms of the

information available to the theorem application (e-) rule.

Items 1-3 are implemented simply by preferring to apply theorems for which n + m,
the number of branches added by the theorem application, 1s small. This is the criterion
that is given the most weight by IPR. It can be thought of as saying, “if applying a sequent
this way causes the search space to grow too much, then don’t apply the sequent that way.”
This “n + m” strategy, together with the framework for storing knowledge, seem to be major

contributors to the success of IPR.

70

Item 4 is implemented by preferring to apply lemmas for which the sum of the cardi-
nalities of U’ and V' is large. Finally, item 5 is implemented by preferring to apply theorems
in such a way that o is small and not complex. We especially do not want too many variables
from £ to be bound by the substitution o’. This last strategy helps us keep our options open.
We will find more ways to keep our options open when we study other aspects of the IPR

implementation in Section 5.1.

The TPR program applies a restriction to the e-rule that is not explicitly men-

tioned above.

Restriction 3.12 (Set-of-support) With the exception of the application of theorems in-

volving equality (see Section 4.1.3), when a theorem is applied, ¢ # 0.

That is to say that some formula from the theorem being applied must be unified with some
formula in the tableau. (The handling of equality introduces a possible exception to this rule
in TPR and is discussed in Section 4.1.) This restriction is called the weak connection condition
in more recent work [64]. The set-of-support strategy was apparently first implemented in the

context of tableau in the IPR prover and first described in an early technical report [106].

This restriction destroys completeness because of the fact that theorems are not stored
in the form of clauses. However, examples that demonstrate this incompleteness are generally

unnatural syntactic tricks.

Example 3.5 Suppose the axiom (3z)(P(z)AQ(z)) is entered into the knowledge base. With-
out using an empty ¢ (i.e., the most general e-rule), we can prove neither (3z)(Q(z) A P(z))

nor (3z)Q(z) from this knowledge base even though they are logical consequences.

However, by giving up a bit of completeness and resigning degenerate examples as these, a
method may be found that is very successful on more natural examples. In addition, the

framework facilitates human interaction.

It appears to follow from Hahnle’s results that the e-rule with this set-of-support

restriction is complete in the context of a clausal knowledge base [64].

71

These are the strategies used by IPR in selecting lemmas. It is remarkable that the
framework allows for such simple strategies to have impressive results (Chapter 6.) The kind
of reasoning that TPR handles seems to be representative of a large area of reasoning that has
been difficult for other methods. In Section 8.3 we discuss some limitations of the current

method and how those can be overcome.

72

Chapter 4

Extensions to First-Order Logic

We need also, methods, procedures, and tricks of the trade, which have been

used so successfully by the great mathematicians over the years. ..

—Woody Bledsoe [33]

It has been mentioned that first-order logic is an extremely expressive language and es-
sentially all of mathematical or other reasoning can be framed in it. However, this is sometimes
very tedious and inconvenient. Therefore, certain shortcuts are frequently used by mathemati-
cians. In this chapter, we describe the implementation of some of these common shortcuts in a
tableau based system. Except as indicated, the inference rules discussed here are implemented

in the IPR prover.

The IPR program extends first-order logic to handle some equality reasoning and some
higher-order (set theoretic) reasoning, which help it prove theorems in mathematics more easily

and which make it easy to use.

The program IPR has shown its worth by proving many theorems independently.
Simple examples illustrating the ideas are given throughout this chapter. Interesting examples

of proofs using relatively large knowledge bases are provided in Chapter 6.

4.1 Equality

There are two basic ways of handling equality in a logic. One way is to include the axioms
of equality in the knowledge and the second is to use special inference rules for equality. The

first method is rarely used since the use of the axioms without special guidance introduces

73

tremendous complexity. Therefore, many special inference systems have been developed to

handle equality [51].

IPR uses a combination of equality inference rules. The combination of the equality
techniques used by IPR does not make IPR complete for equality problems. However, the

rules presented here have proved to be extremely useful and powerful in practice.

By interacting, the user can force IPR to apply any equality from the knowledge base
or from the hypotheses in various ways. Therefore, the user can use IPR to prove any theorem
in an equality theory. In the remainder of this section, we describe only the equality techniques

that TPR applies automatically.

4.1.1 Brown’s Rule

Brown’s Rule is a restricted equality substitution method [39].

Inference Rule 4.1 (Brown’s Rule) If a branch contains a formula of the form s = ¢,
where one side of the equality (say s) is a Skolem term that does not occur in the term on the
other side (¢), then add to the branch a copy of every unused formula on the branch containing

s and replace all occurrences of s in the new formulas with ¢.

Brown’s Rule alone has proved to be sufficiently powerful for most of the problems in
Chapter 6. Apparently, eliminating Skolem terms when possible is all of the equality reasoning
that is needed for a large class of problems in mathematics. However, problems in theories

with an algebraic flavor will need more powerful methods.

A more liberal, yet still tractable restricted equality substitution rule for proving
theorems in set theory 1s discussed in Section 4.2.4. The method mentioned there has not yet

been implemented in IPR but has proved useful in examples proved by hand.

4.1.2 Congruence Closure

At an early stage in the development of IPR, it also used an incomplete E-unification algorithm
incorporating the ground congruence closure technique [85, 92, 105]. This part of the code has

not been kept current.

74

To use this technique, a grammar is built from the positive equalities on a branch and
the simple equalities in the knowledge base. That grammar is used any time unification is

performed between clashing terms.

The congruence closure method can be extended to handle class- and ¢-terms. (See
Section 4.2.) That is to say that to check for equality between such terms, the formulas in
the terms need merely be alpha-congruent. If desired, this can be strengthened by equating
two class expressions if the formulas in them are known (by a quick look-up method) to be

equivalent in the branch.

In general, the congruence closure technique gives IPR power for more algebraic proofs.
The congruence closure technique proves the following formulas easily. In each case, two
tableau expansion rules (§ and a) are applied and then the congruence closure technique

closes the tableau.
(Ve)(z = f(=) D f() = FF(SF(F(F (=)
(Ve)(z = f(=) Dz = F(F(f(f(=))))
With a little interaction, IPR can prove the following example as well. The user must manually

tell IPR to make the substitutions of @ and & for z.

(Va)(vb)(Ve) (V) (g(f (=) = e A f(z) = g(2)) D g(g(a)) = g(f (b))

4.1.3 Miscellaneous Equality Rules

If a formula s # t occurs on a branch of a tableau, then IPR tries to unify s with ¢. If it
succeeds, then that substitution can be used to close the branch. (See Section 5.1.1 for the

handling of breadth-first unification.)

IPR also applies equality reasoning when it is searching for applications of the e-rule.
In particular, if a formula s = ¢ is in N, the set of suppositions of the theorem that are going
to be added negatively to the tree, then IPR tries to unify s and ¢ in a way compatible with
the substitution, o, constructed already. If it i1s successful, then s = ¢ is removed from N and
the substitution that unified s and ¢ 1s composed into o. This i1s the only case in which it 1s

possible for IPR to apply a theorem even though £ = .

75

76

Description: a basic fact about products.
Suppose

reSxT

Then

for some a and b, a € S and b € T and = = (a, b)

Description: a basic fact about products.
Suppose

l.ae s

2.beT

3. 2 ={a,b)

Then

reSxT

Proof: Since we know that a is a member of S and b is a member of T" and we are trying
to show that (a,b) is a member of the product of S and T" we can apply a basic fact about
products which finishes that branch of the proof.

Figure 4.1: The knowledge base and proof excerpt for Example 4.1.

When a formula is eliminated from N in this way and the e-rule is applied, we call

this an application of the e—-rule.

The purpose of applying this rule is to keep the tableau small and narrow the search
space. By removing a formula from N, n 4+ m decreases, which makes the sequent application

more attractive.

Example 4.1 Here is a very simple example intended only to show how the e—-rule works.

Suppose the following is loaded into the knowledge base.
r€SXT e (Fa)(Fb)(ae SAbeT Az = (a,b))

This is the definition of the cross product of two sets and it produces in the knowledge base
the sequents in Figure 4.1. (They are displayed as output by TPR.) Tt will be given the label

“a basic fact about products.”

The following theorem is proved completely automatically with the knowledge of the
theorem above.

(aeSAbET)D (a,b)eSxT

77

~(Ya)(V0)(YS)(YT)((a € SAb € T) D (a,b) € S x T)

|
—((ae SAbeT)D{a,byeSxT)

a€S

beT

(a,by ¢ SxT
(4)

~(Ya)(V0)(YS)(YT)((a € SAb € T) > (a,b) € S x T)

|
—((ae SAbeT)D{a,byeSxT)

a€S

beT

(a,b) ¢ SxT
|
v # {a.b)

{(a, b)/}

(B)
Figure 4.2: The tableaux for Example 4.1. The symbols a, b, S and T are constants.

This proof requires some equality reasoning. Either of the methods mentioned above
will suffice. We show a proof in Figure 4.2(A) that uses the e=-rule and in Figure 4.2(B) a

proof that merely unifies terms in negative equality formulas.

In Figure 4.2(A), the proof is finished without adding the formula z # (a, b) because
those two terms are unified during the application of the e—-rule. In Figure 4.2(B), the
extra formula is added to the tableau and later the terms are unified. Both tableaux are
closed. The first is closed by the e—-rule with ¢/ = (. The second tableau is closed by the

indicated substitution.

In this very simple case, the use of the e—-rule made very little difference. However,

recall the importance of the n+m strategy. In more interesting examples, the use of this short-
cut can eliminate entire subtrees from the tableau. This occurs, for instance, in Example 6.1.
If equality reasoning does not occur during the application of the e-rule in that example, then
IPR is unable to find the proof in a reasonable amount of time because the proof tree becomes

too complex.

Figure 4.1 also contains an excerpt of the proof as it is explained by IPR. Notice that

the application of the e-rule finishes the proof easily and in a way that is easy to explain.

4.2 Comprehension and Description in Tableaux

An inference rule that “builds in” set theory at the inference level is the objec-
tive of Research Problem 8. More precisely, just as the employment of paramod-
ulation permits one to avoid using any equality axioms other than reflexivity, the
sought-after inference rule for set theory would permit one to avoid using a number

of the axioms in Godel’s approach.

—TLarry Wos [120]

Various approaches have been invented for enabling an automated theorem proving
program to find proofs in set theory. Some take a small fragment of set theory and develop
decision procedures [43]. Others prove theorems using a variant of Godel’s axioms of set
theory [101]. Some invent special rules for handling properties such as the transitivity of the
C-relation [69]. In proof-checking systems, of course, there is no limit to what a patient person
with a great deal of expertise at the system can prove [96]. Probably the most closely related

work to that presented here is the work of Frank Brown [39].

We build a strong but safe comprehension schema into the tableau calculus. The rules
developed here are consistent with the comprehension schema of Kelley [77] or Bernays [21].
The method is compatible with various axiomatizations of set theory and is also useful in
reasoning in more advanced theories in which the particular axiomatization of set theory is
unimportant. The present approach is completely automatic and quite successful on many

problems that are showcased as challenge problems for provers in set theory. In fact, this

78

procedure finds proofs of several of these examples without search. The method proposed here

is also compatible with English explanation [110].

We implement the comprehension schema by means of tableau reduction (i.e., branch
closure) and expansion rules. We also discuss the implementation of the definite descriptor in

tableaux and special rules for handling equality effectively and in a tractable way in set theory.

The calculus described here is a step in an unusual direction toward a solution to Wos’
eighth basic research problem—an inference rule for set theory [120]. It will be clear that the
direction is very promising and that there is plenty of room for more work in this direction. It
might be said that the rules here solve the problem in one direction (the easy direction.) That
is, classes are easily deconstructed. The construction of classes is a much harder problem.

Nevertheless, it will be shown that deconstruction is very powerful.

The focus of this work has not been completeness but efficiency and strength. A
set of inference rules i1s presented for a subset of set theory and equality that is effective yet
minimal (in a non-technical sense.) This results in a remarkably tractable and successful set

of inference rules.

The comprehension schema is implemented by new tableau reduction and expansion
rules. These rules were first described in an early technical report on the IPR prover [106] that
implements the comprehension schema described here. Using these rules, the IPR system has
proved many examples. The use of these rules allows the TPR user to express many commonly-
used mathematical constructs much more easily than is possible with first-order logic. IPR

also incorporates the ¢-operator and has proved theorems involving it.

Some of the calculus described here has not yet been implemented in TPR. Unless
otherwise indicated, all of the rules in Sections 4.2.1 and 4.2.2 are currently implemented. In

those sections, we give many examples of theorems that IPR has proved using those rules.

None of the equality rules presented in Section 4.2.4 are currently implemented, except
those that we described in Section 4.1. In Section 4.2.6, we describe some examples of theorems
and discuss their proofs that can be found using the comprehension schema (Section 4.2.1)

and the equality rules from Section 4.2.4.

79

80

4.2.1 The Comprehension Schema in Tableaux

The predicates handled by the built-in mechanism are ¢ € C, an-element(t) and a-class(C).
The formula ¢ € C is interpreted as meaning that ¢ is “small” (i.e., an-element(t)) and C' is
a class (i.e., a-class(C)) and that ¢ is an element of the class C'. The formula an-element(#)
means that ¢ is either a (small) set or an ur-element. The formula a-class(C') means that C' is

a (possibly large) class.

The term constructor handled by the mechanism is the classifier, {y : A}, where A is
a formula and y is a variable bound by the term. The term {y : A} represents the class of all
“small” objects, ¢, that satisfy the predicate A when every free occurrence of y in A 1s replaced
by . We will use the notation A} to represent the formula that results from replacing every

free occurrence of y in A by ¢.

IPR implements a version of the comprehension schema that can be stated as follows:

If y is a variable and A is a formula, then {y : A} is a class. Further, if t is a term that is

known to be a set or an ur-element then t € {y : A} if and only if AY.

Below we give the most general form of this schema presented here in tableau format.

teC te{y: A} tg{y: A}

an-element(?) Af —an-element(t) | =AY

where ¢ and C' are terms, y is a variable and A is a formula. Any branch containing a formula
of the form

-a-class({y : A})
is closed.

Another possible rule, which is not currently used in the IPR system, is the following.

teC
a-class(C)

1'We often fail to mention the fact that no free variable in ¢ can be bound in A since these problems are easy
to handle by variable renaming, by keeping the sets of free and bound variables disjoint (as in Bernays [21])
or by some other method (as in Quine [103].) The reader who wants to implement this rule should be warned
that this point is necessary for soundness.

This rule could also be stated as a branch closure rule. That is, any branch containing the

formulas

teC
—a-class(C')

is closed. Which of these two rules is used by any particular implementation of this calculus

depends on the control and other strategies used.

In a similar way, the first comprehension tableau expansion rule could be implemented

as a branch closure rule: any branch containing a pair of formulas of the form

teC
—an-element(¢)

1s closed.

The following rules, which are simple combinations of the previously mentioned ex-

pansion rules and closure rules, might help to keep the search space small.

an-element () teC
td{y: A} t¢{y: A}
—AY - A7

These rules are redundant but may be useful in practice depending on the other strategies

combined with the method. See Example 4.5.

Baaz, Egly and Fermiiller have illustrated the usefulness of tableaux in the context
of applying axiom schemata by applying the idea to induction and similar schemata [7]. In
their paper, they argue the advantages of analytic or on-the-fly methods such as tableaux over
preprocessed normal-form methods such as resolution. The same argument applies here. Using
analytic tableau expansion and reduction rules to implement axiom schemata turns out to be
very efficient and to have other advantages over methods that use preprocessing techniques

such as resolution.

Other rules could be wired into a system [39] but those given here allow proofs to be
found for an important and useful class of theorems. In the case of the comprehension schema,
it is easy to see that other rules related to the ones described here may also be useful for some

problems. For example, some rules related to the empty set might be useful. In Section 4.2.7

we mention some related work that involved this kind of thing. Except as specified, only the

rules implemented in IPR are presented in this section.

Example 4.2 Here are some examples of set-theoretic facts that are proved without using
any extra knowledge. That is to say, these are proved by IPR with an empty knowledge base.

The proofs only use the comprehension rules that are wired into the prover.

Given a procedure for proving theorems and a theorem, we say that the procedure
proves the theorem without search if the procedure proves the theorem with no waste and if
no decisions are made in the proof. This definition is not very formal but the examples should
make the meaning clear. Except as indicated, the proofs of these examples are found by IPR,

without search.

The only equality reasoning needed for these examples is the unification of the argu-

ments of formulas of the form s # ¢.

This first example says that if @ is small, then a is in the pair {a,b}.
an-element(a) Dae{z:z=aVa =1>b}
an-element(c) D (c € {z : U(c)} & Ul(c))

—(32)(z € {a: x = a}) & —-an-element(z)

The next example says that z € X UY ifand onlyif z € X or z € Y.

z€{a:a€XVaeY} o zeXVzeY

The next example says that the union of the power sets of X and Y is a subset of the
power set of the union of X and Y.

tefa:ac{s: (Vb)(besDbe X))}V
ac{s:(Vb)(besDbeY)}}D
tefa: (Vb)(beaDbe{s:s€ XVseY}}

This example is also proved without search using only the comprehension rules. We discuss
in later examples how this is proved in its more ordinary forms such as Pow(X)UPow(Y) C

Pow(X UY) and what we mean by “without search.”

82

83

A stronger version of the dual is also proved easily using only the comprehension rules.

te{a: (VW)beadbe{s:seXAseY}} &
te{a:ae{s:(Vb)(besDdbeX)}Aa€e {s: (Vb)(besDbeY)}}

This says that Pow(X NY) =Pow(X)NPow(Y") [32]. This is the only example so far that
requires search. This proof requires search due to the fact that more than one variant must

be made from a single y-formula.

4.2.2 Description in Tableaux

Another common term constructor in set theory is the “definite descriptor” or the “s-operator.”
The term ¢, (A) represents the unique small object that satisfies A if such a thing exists. Here z
is a variable bound in the term and A is a formula. If there is no unique small object satisfying

A, then ¢, (A) =undefined. Here “undefined” is a special non-logical term in the language.?

In order to handle this term, we add one tableau expansion rule. Any formula P on

a branch containing a term ¢, (A) is replaced by the formula3

if (3r)(AZ A an-element(r) A (Vn)((AZ A an-element(n)) D r = n))
then (Ve)((AZ A an-element(c)) D pér(A))

Lz (A)
else Pundeﬁned

The user of the IPR system can add axioms specifying more information about “un-

defined.” These axioms will be applied automatically using the e-rule.

Example 4.3 Figure 4.3 contains some examples of theorems that are proved without using
any extra knowledge. That is to say, these are proved by IPR with an empty knowledge base.
The proofs only use rules that are wired into the prover. Each of these theorems requires the

use of the t-removal rule.

4.2.3 Axioms of Set Theory

Notice that these schemata do not bind the user to a particular choice of axioms of set theory.
The rules are most useful and easy to use in a set theory like Kelley’s [77] or Bernays’ [21]. The

author recommends the use of such a set of axioms for use in problems in low-level set theory.

2There are other ways of handling the case when the «-term is undefined [21].
3The “if...then...else" logical operator can be handled by S3-rules [99].

84

(an-element(b) Aa = 1p(z =b)) Da=1b
an-element(a) D tp(z = a) = a
—an-element(b) D 1,(s = b) = undefined
(an-element(c) A U(c) A (¥r)(U(r) D 7 =¢)) D ¢ = 1, (U(r))

(3r)(an-element(r) A U(r) A (Vn)((an-element(n) A U(n)) D r = n))V
te(U(€)) = undefined

=(32)U(z) D ¢y(U(y) = undefined

(an-element(a) A an-element(b) AU (a) AU(b) Aa #b) D
tr(U(r)) = undefined

(an-element(c) A U(c) A (Vr)((an-element(r) AU(r)) Dr=1¢)) D

U(es(U()))

(Vr)(U(r) & B(r)) D tz(U(2)) = 15 (B(y))

Figure 4.3: Some examples of theorems involving ¢-terms.

The comprehension schema bypasses many of Godel’s axioms because Godel’s set

theory is a first-order theory [60]. (The idea of bypassing the axioms is suggested by Wos as

the better way to solve his eighth research problem [120].) If the user is proving theorems in

Godel’s theory, then the comprehension schema will never be applied since there is no classifier

in Godel’s set theory. To prove theorems in Gédel’s theory, an ordinary (or special purpose)

first-order logic prover should be used.

However, in a proof system using the present rules, the user may make various decisions

about the axioms to be used.

The user may choose to allow ur-elements or not. To disallow ur-elements, the user

only needs to put the axioms

(Vy)a-class(y)

(Vz)(z =0V (Jy)y € 2)

into the knowledge base. To disallow proper classes, the user only needs to put the axiom
(Vy)an-element (y)

into the knowledge base. Disallowing proper classes in this way is very dangerous for consis-
tency. In such a case, the user must take precautions about when the comprehension schema
is applied. The user might assure that all of the formulas used in such a rule are stratified
as described by Quine in his “new foundations” [103]. Or the user might be sure that each
application of the rule is an instance of Zermelo and Fraenkel’s axiom of subsets [21]. Of
course, 1t is the duty of the user who puts axioms into the knowledge base to take care of

consistency concerns.

The symbol, (), is a special non-logical constant in the language interpreted as the

empty set.

The user may also be unspecific about the low-level axioms and work in an advanced

mathematical theory without worrying about the low-level axioms.

4.2.4 Handling Equality in Set Theory

There are many theorems of set theory for which the comprehension schema described above 1s
sufficient to find a proof. However, if some equality reasoning can be handled without adding
too much complexity to the inference system, then more theorems can be proved and even
those theorems that were proved without equality reasoning can then be proved in a more
natural way. However, including a complete equality procedure can cause several problems in

this context.

First, in this calculus, some kind of substitution of equals is necessary. For example,
suppose we have the formulas z = {y : A} and a € z on a branch. Then the comprehension
schema cannot be applied unless the substitution of {y : A} for z is made in the second
formula. However, implementing a complete procedure that makes substitutions can be very

inefficient [18].

Therefore, we introduce restricted equality substitution and extensionality rules here

that are not terribly expensive to apply in realistic examples and that give more strength to

85

a prover. The idea is to have a set of rules that apply equalities on-the-fly just when they are
needed. This helps an interface by keeping terms written in a nice abbreviated form until the

definitions are needed.

Before giving the restricted substitution rule, we describe a rule that incorporates

some of the strength of the axiom of extensionality.

These rules have not yet been implemented in TPR but they have proved successful

and useful in examples done by hand.

Restricted Extensionality Rule The restricted extensionality rule applies only in the case
of an equality (or the negation of an equality) occurring on a branch such that both arguments
are class terms. These rules are nothing more than shortcuts to the use of the first-order
axiom of extensionality in this special case. This allows for the full axiom of extensionality
to be absent from the knowledge base while still allowing it to be applied in the special cases
described here. The advantage to this is that applying the full axiom of extensionality in other
cases can add a great deal of complexity to the proof search.
{z: A} ={z: B}

an-element(z’) | an-element(z’) | —an-element(z’)

zl _‘Ail
;‘/ _‘B£/

{z: A} # {z: B}

an-element(f(Z)) | an-element(f(%))

”‘i}(f) §£f>
B FHE) -B F(&)

Here 2’ is a new free variable and f(Z) is a Skolem term where Z is the vector of free variables

occurring in the formula {z : A} # {z : B}.

A similar restricted extensionality rule can be written for the subset predicate, C. This

rule also applies only in the case of a subset predicate (or the negation of a subset predicate)

86

occurring on a branch such that both arguments are class terms.

{z: A} C {z: B}
an-element(z’) | an-element(z’) | —an-element(z’)
B;‘/ _|A£I

{z: A} ¢ {z: B}
an-element(f(Z))
@)
~Bi)

Here 2’ is a new free variable and f(Z) is a Skolem term where Z is the vector of free variables

occurring in the formula {z : A} ¢ {z : B}.

Notice that both in the case of equality and subset, the version of the rule that applies
to positive formulas introduces a new free variable. The reason for this is that these rules
abbreviate a sequence of rules, one of which is the y-rule. Because of this, we must allow these

rules to be applied more than once to a single formula.

Neither of the above rules for equality or C are currently wired into the IPR, program.
Currently, IPR handles reasoning about C by including the definition of C in the knowledge

base and fetching it automatically using the e-rule [109].

Restricted Paramodulation It appears that some sort of controlled paramodulation (i.e.,
equality substitution) rule would be very useful in order to trigger the application of compre-
hension and extensionality. The IPR program uses a very restricted version of paramodulation
called Brown’s rule [39, 109] that only eliminates Skolem terms. A specific liberalization of
this rule would be useful. In particular, in addition to Brown’s rule, paramodulation should
be applied any time its application will allow the application of one of the comprehension or

extensionality rules described above.

Such a well controlled paramodulation rule is still relatively inexpensive and should
be very powerful in practice. This rule has not yet been implemented in TPR but experiments

by hand have illustrated its usefulness.

The use of this restricted paramodulation rule would let us prove the examples men-

tioned previously even if they are written in their more familiar form. For example, if the

87

definition
{a,b} ={y:y=avy=10}

is in the knowledge base, then we can prove
an-element(a) D a € {a, b}
whereas without this rule, we proved the uglier formula
an-element(a) Da € {y:y=aVy=>b}.

The formula, an-element(a) D a € {a,b}, can be proved in first-order logic if the following
axiom is used.

z € {a,b} & an-element(z) A(z =aVz =1b)

We will discuss the comparison of first-order proofs with proofs in the current calculus more

in Section 4.2.6.

Notice that this restricted paramodulation rule is applied only when its application
allows the application of the comprehension schema or one of the extensionality axioms. There-
fore, in the example proofs in this section, we do not always show this step in detail. We will
leave terms in their abbreviated form and the reader should be able to understand that the

rule is applied in preparation for the application of extensionality or comprehension.

4.2.5 Control Strategies

Now that we have a set of inference rules, we should discuss what strategies should be used in
applying them. We will follow the ordinary strategy for applying the a-, §-, 5- and 4-rules.
However, any time one of the restricted paramodulation rules or a non-splitting comprehension
rules applies, we always apply it. After all of these rules have been applied as much as possible,

we apply the splitting comprehension and extensionality rules.

Since y-rules and the extensionality rules that introduce variables can be and some-
times must be applied more than once to a single formula, for more complex proofs we will need

some strategies for deciding when to do this. We will handle these decisions in some simple and

fair manner. For example, after all other rules are applied, then apply a rule that introduces a
free variable to the formula to which such a rule has been applied the fewest number of times.
When such a decision has to be made, then we say that the proof involves search.

In tableaux and related methods, the problem of deciding which lemmas to generate is
well known. Most of the examples we discuss here are provable without any lemma generation.*

However, in some examples we generate lemmas in order to find shorter proofs. It turns out

that if only equality lemmas are generated, then the proof is easy to find in these examples.

4.2.6 Examples

Here we present some examples of theorems whose proofs are found very easily using a sys-
tematic application of the rules presented in this dissertation including the rules mentioned in
Section 4.2.4, which are not yet implemented in the IPR, prover. In each case, we make clear

exactly which rules were needed in the proof.

These examples help to illustrate that the comprehension schema described here 1s

very tractable and yet very strong.

Each of these examples can be proved in various ways. We will concentrate here on
the proof in the calculus just described. However, we should mention some other techniques

for comparison.

Consider a hypothetical example. Suppose that the goal is to prove that
VX)(VY)P(X,Y) = P(YV,X)
for some function symbol P that is defined as a set as follows
VX)VY)P(X,Y)={z: Az, X,Y)}

where A(z, X,Y) is a formula containing z, X and Y free. In our current approach, we would
apply the extensionality rule from Section 4.2.4 followed by the comprehension schema from

Section 4.2.1. (We give detailed examples below.)

4What we call “lemma generation” is elsewhere called “optimistic folding down” [81].

89

A second approach is to replace the equality definition with an axiom of the following
form.

(VX)(VY)(V2)(z € P(X,Y) & an-element(z) A A(z, X,Y))

In order to prove the theorem this way, the axiom of extensionality is also needed. This device

brings the theorem down to the level of first-order logic.

If this method is used along with a theorem application rule such as the e-rule, then
the proofs of many of these theorems look very similar to the proofs shown in the examples in
this section. However, the proofs are longer and harder to find in first-order logic. The proofs
are longer in the first-order case because the rules presented here are just short cuts for the
application of the theorems mentioned. The fact that the proofs are slightly longer doesn’t
seem terrible until you consider what this does to the proof search. The fact that the proofs
are longer is one of the reasons that they are harder to find. The proofs are harder to find
in the first-order case also in part due to the complexity of equality reasoning that would be

needed if the restricted paramodulation rules were not used.

Another commonly used approach is to apply the equality definitions and compre-
hension schema as a preprocessing step rather than on-the-fly when needed as in the current
approach [69]. One disadvantage to this approach is that in an interactive prover, the output

becomes ugly immediately rather than only becoming ugly when necessary.

Example 4.4 The following theorem has been used as an example for showing the strength
of various systems.

(a=cAb=d) & (a,b)=(cd)

For example, Paulson uses this example to illustrate his ability to write long and somewhat

difficult proofs in the Isabella language [96].

This is proved using the following definitions.

(z,y)
{=}

{z,y} = {w:rw=zvVw=y}

{{z}, {2, y}}

{y y==x}

90

If this theorem is entered into a prover that implements the rules described in this
dissertation, as well as some automatic lemma generation, then the proof is found directly.’?
The user of such a program does not need to be an expert at some unnatural proof language.
In fact, the IPR prover prints out an explanation of the proof in English once it is found. In
short, rather than requiring the user to learn a new proof language and spend a tremendous
amount of time becoming an expert at this language and debugging a proof, a prover using
the rules given in this dissertation can explain the proof of this theorem to the user in less

than one second.

If the restricted paramodulation rule is used, then the definitions are expanded at just
the right time on-the-fly during the proof. For the sake of space, we have omitted the details
of the definition expansion steps from the figures. We leave terms in their abbreviated form

in Figures 4.4, 4.5 and 4.6.

The theorem can be proved left to right using only Brown’s rule. However, in order

to prove the direction from right to left, more rules than these are needed.

In the proof of @ = b, one automatically-generated lemma is also needed for this proof.
See Figure 4.4. We indicate automatically generated lemmas by displaying them in brackets
as in [z # {a}].

The first four formulas in Figure 4.4 come from the input by applying a-rules. The

first two are needed for the theorem to be provable in this system.

The first split in the tree 1s the application of the restricted extensionality rule. The

next two splits in the tree are applications of the ordinary F-rule.

Formula 3 comes from formulas 1 and 2 by the restricted paramodulation rule. The

next splitting is the restricted extensionality applied to formula 3.

Formula 5 comes from formulas 1 and 4 by the restricted paramodulation rule. The

next splitting is from the application of the restricted extensionality rule.®

5The hypotheses an-element(c), an-element(b), an-element(d), an-element({a,b}), an-element({c,d}), and
an-element({a}) need to be added before this formula becomes provable in this system. See Figures 4.4, 4.5
and 4.6.

6 The reader may notice that oppositely signed equalities are considered complementary even if the matching

91

92

an-element(c)

an-element({a})

|
(a,b) = {(c,d)
)
] T~

ﬂan—eleinent(x) z 7é*{a} r={a}Vve=/{ab}

HHa}/=} {Ha}/=} |
z={c}vae={cd}

(1)
/

(2) &= {c} (4) 2 = {c,d) Ha}/7}
| |
(3) {a} ={c} (5) {a} = {c,d}

ﬂan—eleinent(y) ysa Y iké c —an-element(w) w=a w Zé c

{c/y} fefyy Ae/u} {C/*w} {e/w} {e/w}

Figure 4.4: The proof of a = ¢ in Example 4.4. The symbols a, b, ¢ and d are Skolem constants.

Before we continue to the explanation of Figures 4.5 and 4.6, we want to show how
closely this system relates to the way humans write or explain proofs [110]. Here we describe

Figure 4.4 in ordinary language.

We know that (a,b) = (¢, d) and we want to show that a = ¢. Since {a} € (a,b)
we know that {a} € (c,d) by extensionality. Therefore, {a} = {¢} or {a} = {¢,d}
by comprehension.

Suppose {a} = {c}. Since ¢ € {c}, we know that ¢ € {a} by extensionality.
Therefore, ¢ = a and we are done.

Now suppose {a} = {c,d}. Since ¢ € {¢,d}, we know that ¢ € {a} by exten-

sionality. Therefore, ¢ = a and we are done.

In Section 5.2, we describe how IPR writes proofs in English. Once the rules from this section

are implemented, something like the proof above will be generated automatically from the

terms are on opposite sides of the equalities. This can be handled easily by a unification procedure that
recognizes the symmetry of equality or by a ground congruence closure technique. This can also be handled
by repeated application of Brown’s rule in some cases. None of these methods are expensive.

tableau in a similar way.
The proof of b = d is more complex in this system. See Figure 4.5.

The first formula is the automatically generated lemma from the first part of the proof
(i.e., the tableau in Figure 4.4.) The next formulas come from the a-rules applied to the input.
The first splitting is the application of the restricted extensionality rule to formula 2. On the
middle branch we apply the F-rule and close the leftmost branch using the automatically
generated lemma. Then we apply the §-rule again. This time we put the right branch on a

separate figure and continue on the left.

Formula 6 comes by the restricted paramodulation rule applied to formulas 4 and 5.
Next we apply the restricted extensionality rule followed by a (-rule. Formulas 3 and 12 are
complementary. On the left, we apply the restricted extensionality again to formula 6 followed
by the §-rule. Formula 9 is formed by Brown’s rule applied to formulas 8 and 1. Formula 10

is formed by Brown’s rule applied to formulas 7 and 9. Formulas 10 and 3 are complementary.

The first two formulas on Figure 4.6 are repeated from Figure 4.5. They are the
automatically generated lemma and the result of the f-rule. Formula 15 comes by the restricted
paramodulation rule applied to formulas 14 and 4. Formula 16 comes from the restricted

paramodulation rule applied to formulas 13 and 4.

We apply restricted extensionality first to formula 15, then to formula 16. Here yq
is a Skolem constant. On the left, under formula 18, we apply the f-rule. Formula 24 is the
result of Brown’s rule applied to formulas 20 and 1. Formulas 18 and 24 are complementary.

Formula 25 comes from Brown’s rule applied to formulas 18 and 21.

Now, under formula 25, we apply restricted extensionality to formula 2. We apply the
(G-rule to the two g-formulas. On the left, under formula 29, we apply restricted extensionality.

Formulas 31 and 25 are complementary as are formulas 30 and 16.

Under formula 19, we apply the f-rule again. On the left, we use Brown’s rule, which
makes formulas 26 and 19 complementary. On the right, we apply Brown’s rule, which makes

formulas 27 and 17 complementary. So the entire tree is closed.

93

94

(1) [a |=]

an-element({a, b})

|
an-element({c, d})
|

an-element(d)

an-element(b)
|
(2) (a,b) T (e, d)
/(?)L e
|\~

—an-element(z) z={a}VvVze=/{ab} z#£ ia, b}

{{a, b}/=} | {{a,b}/=}
z={c}Vva={cd}
— T~
[z # {a, b} () & = {a,b)
{{a,b}/a} — T
(5) = Tc, d} (13) [x # Tc, d}]
(6) {c,d} ={a,b} (14) = = {c}
_—— 7 T~ Figure 4.6
—an-element(w) w -f b w=cVw=d

{v/w} vh _—

\ﬂ
S
1
9}
—
S
= 8
=
-

—an-element(w’) w=aVuw =b w’ ié d

(/') (djw')
(8) w' =a (11) w’*:b
| {d/w'}
(9) w' |: c
(10) w' Fw
{d/w' b/ w}

Figure 4.5: The proof of b = d in Example 4.4.

(13) [& # {c, d}]
(14) 2 = {c}
(15) {a, b} = {c}
(16) {a, b} # {c,d}

e o
/o) /17) . o)
(18) 4o £ (19) |o o
Yyo=cVyo=d Yyo=aVyo=~>b
(20) w0 =c/<21) yo =d (22) J =a\<23) yp=b
(24) yo = a (25) |d;é a (26) 3|,0 =c COREE

*

\

() 2 ={a}Vva :h £ {c,d} {b/v}

—an-element x

e d}/x'}/lzc} v =fedy ot/

(2" # {c, d}] (28) 2’ = {c,d}

{fe,d} /') (20) o = 3] T

(30) 2’ = {a, b}

/‘1} :.{C’d} {{67;}/$I}
|

—an-element(u) Blu=a u#td

{d/u} {d/u} {d/u}

/

/A

Figure 4.6: Part of the tableau for Example 4.4.

95

Here again we give a description of the proof in ordinary English.

We know a = ¢ and (a,b) = {c¢,d) and we want to show that b = d. Since
{a,b} € {(a,b), we know that {a,b} € (c,d) by extensionality. Therefore, {a,b} =
{c} or {a,b} = {c¢,d} by comprehension.

Suppose {a,b} = {c,d}. Since b € {a, b}, we know that b € {c,d} by extension-
ality. Therefore, b = ¢ or b = d by comprehension.

If b = d then we are done so suppose b = ¢. Since d € {c,d}, we know that
d € {a,b} by extensionality. Therefore, d = a or d = b by comprehension.

If b = d then we are done so suppose d = a. Since d = a and a = ¢, we know
that d = ¢. Since b = ¢ and d = ¢, we know that d = b and we are done.

Now suppose {a,b} = {c} and {a, b} # {c,d} (Figure 4.6.) Since b € {a,b}, we
know that b € {c} by extensionality. Therefore, b = ¢ by comprehension.

We will use extensionality to show that {a, b} # {c¢,d}, and hence we will have
a contradiction.

First suppose yo € {c,d} and show that yo € {a,b}. By comprehension, we
know that yo = ¢ or yg = d.

Suppose yg = ¢. Since a = ¢ and yg = ¢, we know that yo = a.

Now suppose yg = d. If we can show that d = a then we will be done.

Since {c,d} € (a,b), we know that {c,d} € (a,b) by extensionality. There-
fore, {c,d} = {a} or {¢,d} = {a,b} by comprehension. But, {c,d} # {a,b} by
hypotheses. Since {¢,d} = {a}, then d = a and we are done.

Once the rules from this section are implemented, something like the proof above will

be generated automatically from the tableaux in Figures 4.5 and 4.6.

Example 4.5 Now reconsider an example mentioned previously.

Pow(X) UPow(Y) C Pow(X UY)

We mentioned that this is proved without search by the comprehension schema if it is translated
down to the language of the classifier without equality as a preprocessing step in Example 4.2.

Now we discuss how this abbreviated form is handled in detail.

We will add the following definitions to the knowledge base:

Pow(X) = {a:(Vb)(becaDbe X)}

XUY = {a:a€eXVaeY}

96

Pow(X) UPow(Y) ¢ Pow(X UY)
ag € Pow(X) \l/ao € Pow(Y)
=(Vb)(b € ag lD be XUY)
bo El ag

bod XUY

|

bo & X
|

bo @Y

— ™~
ag € Pow(X) ag € Pow(Y)
| |
(Vh)(b€ag Dbe X) (Vb)(beagDbeY)

bcayDbe X VecayDdDb ey
7\ VRN

be X b&(lo b/EY blgao
* * * *

{bo/b} {bo/b} {bo/b’} {bo/b'}
Figure 4.7: The tableau for Example 4.5. The symbols X, Y, ag and by are Skolem constants.

The proof in Figure 4.7 shows the proof that is found without search using the rules

presented in this dissertation as well as the ordinary analytic tableau rules.”

The first formula is the only input. As in the previous example, we do not show all
of the definition expansions. Each definition expansion is applied automatically by the very

restricted paramodulation rule described in Section 4.2.4.

The next pair of formulas come from the application of the restricted extensionality
rule for C from Section 4.2.4. A d-rule and an a-rule are applied in order to create the next
pair of formulas. The last pair of formulas on the center branch are created by the application
of one of the more efficient comprehension rules. The effect of the application of the more

efficient comprehension rule is that the branch containing the formula —an-element(bg) is not

7The restricted extensionality rule for C from Section 4.2.4 is not needed if the definition of C is included
in the knowledge base. The proof looks almost exactly the same in either case. Proofs using the rule from
Section 4.2.4 are slightly shorter.

97

formed since it would be immediately closed by the application of one of the comprehension

branch closure rules.

Now we apply the B-rule to cause the splitting. The proof on each branch goes the

same way. We apply comprehension followed by a v-rule and a §-rule.

The important thing to notice in this example is that there is no search. That is to
say, there are no choices and no waste. No formulas are created that are not needed in the

proof. There was no wasted time and no choices needed to be made in this example.

Example 4.6 This example is from Paulson’s article on the development of set theory in his
Isabella prover [96].
ANB=BnNA

Only the definition of intersection is needed in the proof.

AnNB={z:z€ ANz € B}

The definition of intersection is applied automatically by the restricted paramodulation rule
mentioned in Section 4.2.4. After that, the proof is found without search by the application of

restricted extensionality and the comprehension schema.

See Example 6.5 for a description of a proof of this theorem that does not use any

higher-order logic.

4.2.7 Remarks

We first mention that Frank Brown used a very similar rule in his prover for set theory [39]. His
rule was more like the one used in Quine’s [103] or Zermelo-Fraenkel’s [21] set theory. Brown,
however, went all the way and implemented all of the axioms of Quine’s set theory as inference
rules. In the present work, we have tried to be a bit more general purpose by implementing
only the comprehension schema. This allows the user to take a step out of first-order logic,
and to decide what other axioms of set theory are to be used. With IPR, any selection of set

theoretic axioms can be added to the knowledge base and used automatically by the prover.

98

The method proposed here is a completely automatic method that is tractable, strong
and compatible with English explanation [110]. In particular, we build a strong but safe
comprehension schema into the tableau calculus. Using the comprehension schema is a much
stronger and more direct way of proving theorems than using Godel’s axioms to deconstruct
classes. The rules developed here are consistent with the comprehension schema of Kelley [77]
or Bernays [21]. The method is compatible with various axiomatizations of set theory and is
particularly useful in reasoning in more advanced theories in which the particular axiomatiza-

tion of set theory is unimportant.

The fact that this rule only goes in one direction makes it unable to solve some difficult
problems in set theory. For example, Wos [120] puts forward a challenge for any inference rule
claiming to have solved his eighth research problem. This is the proof that G/Ker(f) = H
where f : G — H is an onto homomorphism. The reason this proof is not within the power
of the current calculus is that the 1somorphism must be constructed or discovered. The rules

presented here only deconstruct classes.

However, Wos’ explanation of the challenge might be interpreted in such a way that

the current calculus would be strong enough.

If. . .one were able to suggest a general approach that succeeds in proving various
theorems of this type in a reasonable amount of computer time, starting with a fixed
database of axioms and a set of lemmas, then we would consider the achievement
most notable, whether or not the approach relies on an inference rule for set theory.
After all, the rules of the game certainly permit proceeding as mathematicians
do: start with some axioms, extend one’s knowledge by proving various basic
lemmas and by proving various theorems, and then attack diverse questions by
selecting what is needed from the accumulated knowledge. Other appropriate test
problems include theorems from elementary group theory, point set topology, and

number theory.

—TLarry Wos [120]

If the usual definitions and lemmas pertaining to this theory were present in the knowledge

base of a prover using the e-rule [109] as well as the rules for set theory presented here and

99

some slightly more sophisticated equality rules, then the prover could find a proof if the set
of lemmas included a mention of the function that is needed in the proof. For example, if the

following lemma were included, then the proof could be found.

If f : G — H is an onto homomorphism then there is a function, ¢ : G/Ker(f) = H such that

for every & € G and every z € xKer(f), ¢(xKer(f)) = f(2).

In this case, the prover would fetch this lemma, which includes a mention of the needed
function. Once the needed function is present in the tableau, a prover can prove that it has
all of the desired properties. That is to say, the prover can prove that the function is a one-
to-one, onto homomorphism. The lemma itself is provable in the current system with more

sophisticated equality techniques added.

It does not seem unreasonable to this author to expect to find in a knowledge base
theorems such as the one needed to help a prover find this proof. There are, of course, proofs
in textbooks that require the prover to construct classes with certain properties when no such
class has been mentioned previously in the text. These proofs remain challenging for this

approach, other approaches and humans.

100

Chapter 5

IPR: Control and Interface

Excellent software is needed to conduct such experimentation adequately. In-
deed, the three—theory, software, and applications—are interconnected, and each

plays an indispensable role in automated reasoning.

—TLarry Wos [119]

The main goal of research in automated theorem proving is to build programs
that are effective in finding or helping to find proofs of theorems from mathematics

and other fields of application.

—Bledsoe and Henschen [25]

IPR is the name of a computer program that uses the calculi described in this disserta-
tion. The interface to IPR has some nice features that have been relatively easy to implement
due to the fact that the framework for storing and using knowledge is comprehensible. The use
of the breadth-first unification strategy in tableau proofs also facilitates human understanding.
We describe here the flow of the program when it is working without interaction. Then we
describe the interface and what the user can do if he or she desires to be involved during the

proof search.

In Section 5.2, we go into some detail about the input, output and interface to the IPR,
program. We define the language that is used to input formulas to the prover. We describe
the possibility for interaction during the theorem-proving process and how to get the output

to be in readable English.

Until now, we have discussed an abstract logical calculus for first-order logic. The

definition of the calculus does not absolutely determine how the rules will be implemented

101

102

and controlled. Below, we address the question of how best to control the search for a proof
in this calculus beyond the strategies discussed in Chapter 3. For example, the use of the
breadth-first unification strategy in tableau proofs facilitates human understanding and seems

to improve the reasoning abilities on some examples.

At the time of this writing, the source code for IPR as well as the input for most of

the examples mentioned in this dissertation are available at the following URL.

ftp://ftp.cs.utexas.edu/pub/bshults/provers/IPR/

5.1 Control Issues

Question: Given a specific problem to solve—bearing in mind the tight cou-
pling of representation, inference rule, and strategy—what metarules enable one
to simultaneously choose the best representation to use, the most effective infer-
ence rule(s) to employ, and the most powerful strategy or strategies to control the

chosen inference rule(s)?

—Larry Wos [120]

Until now, we have discussed an abstract logical calculus for first-order logic. The
definition of the calculus does not absolutely determine how the rules will be implemented and
controlled. In this section, we want to discuss how best to control the search for a proof in

this calculus beyond the strategies discussed in Chapter 3.

First we review breadth-first unification. We mention some of its advantages and we
describe how to implement Oppacher and Suen’s condense strategy with it. Afterward, we

discuss strategies for the high-level control of the calculi described in this dissertation.

5.1.1 Breadth-First Unification

IPR uses breadth-first unification for several reasons. In this section, we discuss some of
those reasons and explain in some detail how to implement certain strategies with breadth-

first unification.

Breadth-first unification allows the proof to be built without ever needing to undo

anything that has been done. This is possible due to proof confluence of the tableau-based

procedure. This seems worthwhile since frequently time is the problem and not space. Search-
ing for theorems to apply can take more time than other aspects of reasoning and it seems a

shame to waste that time.

Breadth-first unification allows the prover to apply a theorem without applying the
substitution ¢’ across the entire tree until it is discovered that that theorem application is
involved in the final proof. In this way, even when IPR does apply the wrong sequent, or
the right sequent in the wrong way, it is not prevented from applying the right sequents

properly later.

If the user wants to interact with the prover, breadth-first unification provides more
flexibility. For example, the interface can present to the user the possible pairs of formulas that
may be used to close a particular branch along with the associated substitutions.! From this
information, the user can use his or her intelligence to choose one of the current possibilities or
to allow the prover to expand the branch and find more. This is only possible if the prover does

not automatically apply the first branch closure it finds as is done in depth-first strategies.

Another advantage that breadth-first unification provides the interface i1s that the
terms that the user looks at resemble much more closely the terms that the user entered.
Since the variables are not instantiated until the entire proof is found, the user never sees

terms in places where they will not appear in the final proof.

Breadth-first unification also allows strategies to be applied that cannot be applied
if depth-first unification is used. For example, subgoal (or branch) selection [75] becomes a
completely different issue. Suppose that for each branch of the tableau, there is a substitution
that closes it, however, there is no substitution that closes the entire tableau. In such a case,
the prover decides which branch of the tableau to expand further in order to find more closing
substitutions. So the branches are sorted dynamically and one is selected. Currently, IPR
works on the lightest branch where branches are weighed by the number of closing substitutions

but short, simple substitutions are heavier.

1 This part of the interface has not yet been implemented but these structures all exist when the prover is
running. All that is lacking is to give the user easy access to this information.

103

Implementing strategies with breadth-first unification. As an example, we will show
how to implement Oppacher and Suen’s condense algorithm [94] using breadth-first unification.
With this understanding, it should be easy to see how other strategies would be implemented.
There is definitely room for interesting research in the area of applying strategies in the context

of breadth-first unification.

First, we show how the basic breadth-first unification can be implemented, then we

show what extra bookkeeping is needed to apply the condense strategy.

The following information must be associated with each formula, F':

bindings(F) The substitution on which the existence of F' depends. This substitution will
have already been applied to F' but there may be variables in bindings(F) that did not

occur in F' before the substitution was applied.

The unification algorithm makes two passes over the tree. During the first pass, all
branch closures are found. This pass creates data structures called wnitial substitutions. For
simple breadth-first unification, the initial substitution, 7, only needs to store the substitution,
subst(/), that closes the branch and the node, node(7), at which I is stored. The initial
substitution is stored at the highest node possible, that is at the node of the lowest formula

mvolved 1n the branch closure.

During the second pass, a combination of one initial substitution from each branch of
the tableau 1s sought such that the substitutions associated with the initial substitutions are
compatible (i.e., composable.) During this process, a structure that we call a unification is

formed. For each unification, U, the following information is needed.

full-subst(U) The substitution associated with U. This is the composition of the substitutions
in the initial substitutions used from each branch.
init-subs(U) The list of initial substitutions associated with U.

If a unification is found that combines an initial substitution from each branch, then

the entire tableau 1s closed by that unification.

104

In order to implement certain strategies, more bookkeeping must be done. Here is one
way to implement the condense strategy with breadth-first unification. We will distinguish
between two ways that a unification object may take care of a branch of a tableau: a unification
may close a branch (this has the ordinary meaning) or a unification may cut a branch. A branch
is cut by a unification object if that branch does not need to be closed by the unification. We

will define the notion of cut formally later.

We will sometimes confound a formula and the node on which it resides. We will also

need the following definition.

Definition 5.1 (Dominate) We say that a node N dominates a node N’ if (N, N’} is in the

transitive closure of the immediate predecessor relation.

The following information needs to be associated with (or computable from) each

formula, F.

ancestors-of(F) The formulas on which the existence of this formula depends. For example,

any aj-formula will have the a-formula in this list as well as the ancestors-of(«).

splits(F) The list of nodes in the tableau that dominate F', each of which, N, satisfies the
following: (1) N has more than one immediate successor, (2) an element of ancestors-
of(F) or F itself occurs on the immediate successor of N that is on the same branch as

F'. These are the splits in the tableau on which the existence of F' depends.

Furthermore, each initial substitution, I, must have the following information acces-

sible or easily computable.

used-formulas(7) The list of formulas involved in this branch closure. For example, if the
branch closure is due to a connection on the branch, then the two connected literals
are in used-formulas(7); if the branch closure is due to the unification of the terms
in a formula of the form s # ¢, then only that formula is in used-formulas(7); if the

branch is closed due to some equality reasoning, then the formulas in the equality theory

105

are in used-formulas(7); if the branch is closed by the application of the e-rule, then

¢ = used-formulas(7).

init-splits(7) The union of splits(F) for F € used-formulas(7).

We also need functions to compute or look up the following information about a

unification, U.

closed(U) The list of branches closed by U.

need-to-close-up(U) These are the splits of the formulas involved in the unification so far,
i.e., the union of init-splits(7) for I € init-subs(U). FEach immediate subnode of the

nodes in this list must be labeled with a formula, 7 such that for some I € init-subs(U)
(IF')(I € init-subs(U) A F’ € used-formulas(I) A (F = F' V F € ancestors(F’))) (5.1)
before we say that U closes the entire tableau.

need-to-close-down(U) This is the list of immediate successors of elements of need-to-close-
up(U) that do not yet satisfy condition 5.1 for any I € init-subs(U'). The list is ordered

left to right.

So every immediate successors N of an element of need-to-close-up(U) is either an
element of need-to-close-down(U) or is labeled by a formula satisfying condition 5.1 and not
both. We know that U closes the tableau when need-to-close-down(U) is empty and closed (U)

1s not empty.

Now we can define cut more formally.

Definition 5.2 (cut) A branch B is cut by an initial substitution I if B does not pass through
the node on which I is stored and the split at which B departs from the branch on which 7 1s
stored is not in init-splits(7). A branch B is cut by a unification U if it is cut by every initial

substitution in init-subs(U).

106

Now the second pass becomes more complicated. The algorithm is best described
recursively. The loop invariants for the main function, Unification-complete(U), include the

following.

e There is no element of need-to-close-down(U) above or to the left of any element of

closed(U).

e Every branch to the left of the first node in need-to-close-down(U) is either cut or closed

by U.

e For each immediate successor, N, of an element of need-to-close-up(U), if N ¢
need-to-close-down(U7), then the formula at N satisfies condition 5.1 for some I €

init-subs(U7).

Pass two This function makes a depth-first left to right survey of all of the initial substi-
tutions in the tableau. For each initial substitution, I, that is found, we first see if all of the
branches of the tree to the left of node(I) are cut by I. This is true if and only if none of
the immediate successors of the init-splits(7) are to the left of node(7). In this case, we can

construct a new unification, U/, based on I as follows.

full-subst(U) = subst(7)

init-subs(U) = {7}

closed(U) = {node(I)}

need-to-close-up(U) = init-splits(/)

need-to-close-down(U) = {N : (GN')(N' € need-to-close-up(U) and N is an immediate
successor of N’ and no branch containing node(7) passes through N}

need-to-close-down(U7) is sorted left to right.

Once this unification, U, is constructed, we check need-to-close-down(U7). If need-to-close-
down(U) is empty, then U closes the entire tableau and we are done. Otherwise we call the

function Unification-complete(U).

107

Unification-complete(U) We are given a unification, U, that satisfies the loop invariant.
Let N be the first element of need-to-close-down(U). We do a depth-first left to right search
for initial substitutions, 7, at or under N. For each such I, let ¢ = Compatible(U, I, N).
If o #fail, then let U’ be a copy of U and then set U’ = Combine(U’, I,). If need-to-
close-down(U”) is now empty, then U’ closes the tableau so we return U’. Otherwise, call

Unification-complete(U”).

Compatible(U, I, N) If the formula, F', at N satisfies condition 5.1 for I and every node
to the left of node(7) that is not cut by I is closed by U, then return the composition of

full-subst(U) and subst([7) if they are compatible, otherwise return fail.

Combine(U, I, o)

push(Z, init-subs(U))

push(node(7), closed (U))

full-subst(U) = o

merge-into(init-splits(7), need-to-close-up(U))

merge-into({z : (Jy)(y € init-splits(I) A z is an immediate successor of y A
z is to the right of node(7))}, need-to-close-down (U))

sort need-to-close-down(U7) left to right.

The TPR program implements this strategy. Once a unification i1s found that closes
the entire tableau, all branches that are cut by the unification are cut from the tableau. By
keeping track of the used formulas, IPR is also able to eliminate all formulas that were not

directly involved in closing the tableau.

5.1.2 High-level Control

Assuming that IPR has been given a knowledge base and a formula that it is expected to

prove with that knowledge, here we describe what IPR does with no interaction from the user

108

at a very high level. IPR first applies all possible a-rules,? then all d-rules until no more a-
or é-rules apply.? If there is a S-rule to be applied, then that is done at this point. After all
a-, §- and F-rules have been applied, TPR applies the breadth-first unification algorithm. If
the search for a unification that closes the tableau fails, then ITPR selects the branch that it
determines needs the most work (according to the discussion at the beginning of Section 5.1.1)
and applies a 4-rule to a formula on that branch, if possible. After all a-, §-, §- and v-rules
(up to a certain limit) have been applied, IPR applies the breadth-first unification algorithm.
If this fails to find a closing substitution for the tableau, then TPR selects the branch that
it determines needs the most work, ranks all of the possible ways theorems apply to that
branch (according to the strategies described in Section 3.3) and applies the theorem that it

determines is the most useful using the e-rule.

After any rule is applied, IPR checks to see if Brown’s Rule for equality (Section 4.1)
is applicable to one of the new formulas introduced and, if so, applies the rule. Instead of
searching the knowledge base when it is time to apply the e-rule, IPR searches for connections

into the knowledge base each time a new literal or y-formula is introduced.

If the breadth-first unification algorithm finds a proof then the proof discovery proce-
dure stops and the post-processing begins: all formulas and branches that were not involved in

the found proof are removed from the tableau and the user is informed that a proof is found.

Example 5.1 Here we proceed through the example of the proof of Theorem 5.19 in Kelley’s
General Topology [77]. Recall that the following three sequents in the knowledge base are

sufficient to find the proof.

T

— continuous-from-onto(m,, H X, Xq) (5.2)
A
— open-from-onto(m,, H X, Xq) (5.3)
A

2Recall that a-rules simplify a formula and put the simplificants on the same branch. B-rules cause a
splitting in the tableau. é-rules introduce a Skolem term. ~y-rules introduce a new variable.

3Tf the theorem involves formulas of the form a € {z : P} or terms such as ¢z(P), then rules related to
higher order logic are applied after all a- and §-rules are applied. See Section 4.2.

109

—|(loc::mlly—compact(H;D Xo) D (Ya)locally-compact(Xq,))

(1) locally-compact([], Xo)

—(Va)locally-compact(Xg,)
Figure 5.1: The tableau for Example 5.1 after one step.

open-from-onto(f, A, B),
continuous-from-onto(f, A, B), » — locally-compact(B) (5.4)
locally-compact(A)

The user instructs the prover to prove the following formula:

(VX)(VA)(locally—compact(ﬁ X) D (Va)locally-compact(X,)) (5.5)

IPR begins by constructing a tableau rooted at the negation of this formula. It then
applies the d-rule twice converting the universally bound variables in the formula into Skolem
constants. Since an a-rule applies to the resulting formula it is applied and the tableau in

Figure 5.1 results (with the first few formulas omitted.)

Since formula 1 is a literal, the knowledge base is searched for connections to this
formula. (The knowledge base is also searched when a y-formula is introduced.) Thus, before
any more tableau expansion rules are applied, formula 1 is unified with the third formula
in the antecedent of sequent 5.4. The substitution needed is {J]} Xo/A}. Therefore, the
information about this connection into the knowledge base is associated with formula 1. We
store this information so that we will not have to search the knowledge base using that formula
again. If there were other sequents in the knowledge base, then all of them would be searched

for formulas that unify with the new formula.

The other new formula in the tableau in Figure 5.1 is a §-formula and so IPR next

applies a d-rule to produce the tableau in Figure 5.2.

Since the formula introduced by this rule, formula 2, is a literal, the knowledge base is
searched for connections to this formula. The only one found is the consequent of sequent 5.4.

The substitution needed is {Xg,,/B}. Therefore, this information is associated with formula 2.

110

111

—|(loc::mlly—compact(H;D Xo) D (Ya)locally-compact(Xo,))

(1) locally-compact([], Xo)

—(Va)locally-compact(Xg,)

(2) locally-compact(Xq,,)
Figure 5.2: The tableau for Example 5.1 after two steps.

—|(loc::mlly—compact(H;D Xo) D (Ya)locally-compact(Xq,))

(1) locally—compact(H;D Xo)

—(Va)locally-compact(Xg,)

(2) —locally-compact(Xo,,)
(3) —open-from-onto(f, H;D Xo, Xoa,)

(4) —continuous-from-onto(f, H;D Xo, Xog,)

Figure 5.3: The tableau for Example 5.1.

No more a-, 3- or §-rules apply because the only unused formulas in the tableau are

literals. IPR now computes the best application of the e-rule. At this time, the knowledge base

itself is not searched. Instead, the unifications already found are searched and all compatible

combinations are formed and compared. It is easy to see that the best combination, according

to the strategies described in Section 3.3, is the combination of the two unifications already

mentioned. In this application of the e-rule, n+m = 2 and U’ has two elements. In this sense,

this application is maximal among the possible e-rule applications satisfying the set-of-support

restriction. The set ¢ will contain the only two literals in the tableau (1 and 2.) We will apply

the sequent 5.4 with the substitution o = {H;D Xo/A, Xo4,/B}. Applying the e-rule, we split

the tableau into two branches as shown in Figure 5.3.

Since the two new formulas added to the tableau are literals, the knowledge base is

searched using these formulas. Formula 3 unifies with the formulain sequent 5.3 and Formula 4

unifies with the formula in sequent 5.2. The substitution is o = {[};, Xo/A, Xo4,/B, 7as/f}-

Since no logical rules may be applied, a search 1s made for a sequent to apply.
Both of the current possibilities are equally good and, since the application of either of
these sequents closes a branch, both are applied. The left branch is closed by applying
the e-rule with £ containing only formula 3. We use the sequent 5.3 and the substitution
o = {Ao/A, Xo/X,a0/a,ma,/f}. Therefore, the fact that the left branch is closed by the
substitution, o/ = {m,,/f}, using the sequent 5.3 is associated with that node of the tableau
in the form of an initial substitution (Section 5.1.1.) The right branch is closed by applying
the e-rule with £ containing only formula 4. We use the sequent 5.2 and the substitution
o = {Ao/A, Xo/X,a0/a,7a,/f}. Therefore, the fact that the right branch is closed by the
substitution, o/ = {m,,/f}, using the sequent 5.2 is associated with that node of the tableau

in the form of an initial substitution.

Finally, the breadth-first unification procedure (pass two) searches for a compatible
combination of substitutions that will close the entire tree. It finds that the substitutions
associated with the nodes on the two branches are identical (¢ = {m,,/f}) and therefore the

tree is closed.

At this point, the condense algorithm looks to see if any rule was applied that was
not needed for this proof. Since every step was involved in the proof, nothing is done and the

user 1s informed that a proof has been found.

This concludes our discussion of the example. Now we continue to discuss more issues

of the high-level control of the calculus.

The TPR prover implements some other methods that seem to be unusual among
tableau-based provers. The reason that some of these methods are not used elsewhere is that
they only seem to be needed or useful in the context of applying knowledge from a knowledge

base or in the context of a prover that aims at ease of use.

TPR also applies non-splitting rules as high (in the semantic tableau sense) in the tree

112

as possible. That is, it actually splices new formulas into the tree at the first point possible so
that it 1s as if they were added to the tree before certain branches were formed. This conserves
space, avoids duplication of work and can even allow proofs to be found in the context of using
knowledge that could not easily be found otherwise. For example, if a theorem application
is applied separately on each branch rather than being spliced in, and that application adds
a d-formula to each branch, then a distinct Skolem function will be created on each branch.
From there, it will be impossible for those Skolem functions to be unified to the same variable.
However, if the theorem is applied as high as possible and the new §-formula is spliced into the
tree at the highest possible spot, then only one Skolem function is created and the proof can
be found. This actually occurs in ordinary examples such as in the proof that the diagonal of

a product of a Hausdorff space with itself is closed. (See Example 6.1.)%

When IPR applies a theorem, rather than applying some depth-first search of the
knowledge base (as in Gazer [11]), IPR ranks the various ways all theorems can be applied.®
This also differs from the usual method in clausal tableaux in which some fair procedure is

applied 1n clause selection.

If the user is interacting, then he or she can force IPR to apply a theorem in a way that
IPR does not consider ideal.® The combination of the sensible framework for storing, accessing
and applying knowledge allows a human to interact easily. The fact that all IPR output is
in English, including formulas in the formal language, facilitates the interaction further. (See

Section 5.2.)

Unless the user interacts and tells the prover to undo something, it is not until IPR is
completely finished with the proof that the unneeded theorem applications and other unneeded
work are undone. At that point the proof is condensed, using Oppacher and Suen’s technique

[94], and output in English as described in Section 5.2.4.

4Beckert, Hahnle and Schmitt’s 5T _rule could also be used to solve the problem of too many Skolem
functions in this particular case [20].

5This is implemented in a rather efficient way by storing at each formula in the tableau a list of the formulas
in the knowledge base with which it has a connection. Therefore, the knowledge base is only searched once for
each new formula in the tableau.

6 This part of the interface has not yet been implemented. Although the needed information is present when
the prover is running, there is not yet an easy way for the user to access it.

113

It is difficult or impossible to detect waste perfectly, even for humans, except in retro-
spect. In other words, there is no easy way to be certain that the path that we found through
the magze is the shortest. However, it is sometimes not difficult to see that a certain part of
our work was really not helpful once we see a solution. This is just as true for mathematicians
proving theorems as it is for computers. Only in retrospect—after one or more proofs have
been found—can the question of the shortest proof be asked. Even in retrospect, it is difficult

to guarantee that the condensed proof is the shortest proof possible.

5.2 The User Interface

We begin by surveying the flow of interaction with the prover. After giving the overall idea of

how the prover is used, we give some examples and details of each aspect.

Typically, a person who wants to prove a theorem using IPR goes through a process
something like the following. First, he or she should make sure that IPR has enough knowledge
to prove the theorem.” To do this, he or she either finds the axioms of the theory in the knowl-
edge library that comes with IPR or writes them out himself. Then the user commands IPR
to load this knowledge into its knowledge base. With this knowledge is included information

that helps IPR to format its output in English.

Now the prover has the needed knowledge and the user can give the statement of the
theorem to be proved to IPR. The user may command IPR to stop after each step so that he
or she can watch and possibly redirect the efforts of the program. The user may let the prover
go and only interrupt it if it seems to take too long. After interrupting, the user can navigate
the proof tree that IPR has created and read what rules and theorems were applied. The proof
tree navigation process enables the user to understand what has been done and what remains

to be done.

Since all of the logical rules applied by IPR, including the theorem application rule

(the e-rule), are related to the way humans explain proofs, the program is able to explain its

"We discuss in Section 5.2.3 how the user can sometimes easily detect when there is not enough knowledge
in the knowledge base.

114

reasoning to the user easily.

The user may also take a more active role in the process. The user can even tell
IPR every step to take. The user can interact with the prover and find out what some of the
possibilities are for the next step and select what he or she thinks is best. The user can also

select from the various ways of assigning terms to variables.®

If a proof is finally found, the proof tree is condensed [94] to remove all formulas
and branches that were not involved in the proof and TPR instantiates the variables in the
closing substitution. At this point, the user can continue to navigate the condensed tree. Since
the condensed tree only has the information that is needed, it is easy to follow the proof by

navigating this tree.

The user can also command IPR to produce an English proof that explains the steps
taken and the theorems applied. This English explanation of the proof flows like a proof that
a mathematician might write, only with much more detail. This proof explains when a known

theorem was applied, which theorem was applied and how i1t was applied.

In what follows, you will notice that, in its output, IPR maintains certain conventions
that allow the user to distinguish between bound variables, free variables and Skolem constants.
The conventions assure that the names given to objects introduced by IPR will be distinctly
named from the objects introduced by the user. Bound variables and Skolem function symbols
will be preceded by the underscore character (_), although free variables are not preceded
by the underscore character. In order to further distinguish bound variables from Skolem
constants (both of which are preceded by the underscore character), Skolem constants are
surrounded by parentheses. Free variables are simply symbols not preceded by the underscore
character. A free variable or Skolem function is given a name similar to the name of the bound

variable from which it was produced.

These conventions are followed both in the interface and in the English proof output.

The author believes that some convention is necessary to avoid confusion between symbols

8Not all of this code has been kept up to date since the author has concentrated on using the system as an
automatic prover. Therefore, some of these features do not work properly in the latest implementation.

115

with similar names. With time, the interface should be written to produce KTEX [80] output.

Ingo Dahn [48] has demonstrated the use of ILF technology to translate the output
of IPR into KTEX source and thence into typeset English. In many of the examples shown in
this dissertation, we have applied such a transformation to the IPR output. However, in this

section, we show the exact output without such a translation.

5.2.1 The Input Language

Since IPR is not yet able to translate from English into a formal language, the user must enter
formulas to be proved in the formal syntax described below.® Once these formulas are input,

IPR is able to translate everything into English.

Formulas in the input language need to be in fully parenthesized prefix notation. This
notation is sometimes called “s-expression syntax” [88]. Here we describe the syntax of the in-

put language including the handling of the classifier, {z : A}, and the definite descriptor, ¢, (A).

Definition of term and predicate in the input language. The words “term” and “pred-

icate” are defined recursively in terms of each other.

Definition 5.3 (symbol) A string of characters is a symbol provided that every character
is either alphabetic, numeric or in the list: (+,-, % /,@,$ ~ & _ = < >) and provided the first

symbol in the string is not a number or _.

A symbol is a term in the input language. If ¢1,%5,...,¢, are terms in the input lan-
guage and f is a function symbol of n arguments in the input language, then (f ¢; t2 - ,)
is a term in the input language. For example, (the-ordered-pair x (f x)) is a term in the
input language where x 1s a variable and the-ordered-pair and f are function symbols of

two and one arguments, respectively.

If t1,ts,...,t, are terms in the input language and P is a predicate symbol of n argu-

ments in the input language, then (P t; 3 --- t,) i1s a formula in the input language. For

9Other researchers have worked on the problem of translating English into a formal language for use in
automated theorem proving [112].

116

example, (a-member-of (the-ordered-pair x (f x)) S) is a formulain the input language

where x and S are variable symbols and the-ordered-pair and £ are function symbols.

Certain symbols are reserved as predicate symbols: a-member-of and = are predicate
symbols of two arguments and an-element and a-class are predicate symbols of one argu-
ment. The predicate symbol a-member—of is the membership predicate symbol. The predicate
symbol = is the identity predicate symbol. The predicate symbol an-element distinguishes
objects that can be elements, such as sets or ur-elements, from proper classes. The predicate

symbol a-class distinguishes classes (including sets) from ur-elements.

If P is a formulain the input language and z is a variable symbol in the input language,
then (the-class-of-all (z) P) and (the (z) P) are terms in the input language. The
term constructor the-class-of-all is the classifier. The term constructor the is the ¢-

operator. IPR has mechanisms for handling these predefined operators. See Section 4.2.

If p1,p2,...,pn are formulas in the input language and zi,zs,..., 2, are variable
symbols in the input language, then (and p; ps -+ pn), (or p1 pa -+ pn), (not p1),
(implies p1 ps), (if p1 py p3), (iff py p2), (forall ((z1) (z9) -+ (xy)) p1) and
(for-some ((z1) (z3) - - (2,,)) p1) are formulas in the input language. (if p1 p2 p3)

stands for “if p; then ps otherwise p3.”

5.2.2 Input

In order for IPR, to format formulas and present proofs in English, it must be given instructions
on how non-logical terms and formulas should be formatted. This information can be provided
by the user who creates a new theory. The theories that are included with the IPR package
already have this information with them. The user is able to change the existing theories to

suit his or her tastes.

Description strings. Any formula—be it a theorem, axiom or definition—that is to be
loaded into the knowledge base should be accompanied by a description string. This is the
string IPR will use in the English output of the proof to tell the reader which theorem from

the knowledge base was used.

117

Example 5.2 Suppose we want the definition of a continuous function to be in the knowledge
base. The description string might be “the definition of a continuous function.” When IPR
uses one of the sequents in the knowledge base that was formed from this definition, it refers
to the definition using this string. An excerpt of a proof in which IPR uses this definition

might look like this:'0

Since we know that f is a continuous function from A to B and we are trying to
show that f is a function from the class associated with A to the class associated
with B we can apply the definition of a continuous function which finishes this

branch of the proof.

So the reader can tell which fact in the knowledge base was used at this point in the proof

because TPR uses the description string that the user recognizes.

Defining predicates and terms. When a term or predicate is defined, IPR needs to know
how to format occurrences of the term or predicate in English. Therefore, the user should
accompany definitional formulas with a second string called the format string. This string

tells IPR how to format any occurrence of the predicate or term being defined.

Example 5.3 In the example of the definition of a continuous function (Example 2.6), the
format string might be "“a is a continuous function from “a to ~a'". The ~a symbols

are placeholders for the format strings of the corresponding arguments of the predicate.

Continuing our example, we might have the definition in Figure 5.4(A) loaded into
the knowledge base from a file. The only allowed free variables are those occurring in the
predicate being defined. When the above definition is evaluated, three sequents are entered
into the knowledge base. TPR displays the three sequents as shown in Figure 5.5 (assuming

that the other predicates and terms have already had their format strings entered.)

10Notice that A and B are topological spaces and hence f is really a function from the class associated
with A to the class associated with B. Throughout this dissertation we discuss formulas relating to point-set
topology and the reader needs to keep in mind the distinction between the topological space and the class
associated therewith. The reader who is not familiar with this branch of mathematics may treat all such terms
as undefined and concentrate on the reasoning process.

118

(def-predicate (a-continuous-function-from-to f a b)
(and (a-function-from-to f (top-to-class a) (top-to-class b))
(forall ((g))
(implies (open-in g b)
(open—-in (the-set-inverse-image f g) a))))
(description "the definition of a continuous function')
(format ""a is a continuous function from “a to “a"))

(A)

(def-term (the-pair a b)
(the-class-of-all (x) (or (= x a) (= x b)))
(description "the definition of pair")
(format "{"a, "a}"))

(B)

Figure 5.4: The input for Example 5.3.

Suppose

F is a continuous function from A to B
Then

F is a function from A to B

Suppose all of the following:

1 F is a continuous function from A to B
2 G is open in B

Then

F~{-1}(G) is open in A

Suppose all of the following:

1 F is a function from A to B

2 forall _G if _G is open in B then F"{-1}(_G) is open in A
Then

F is a continuous function from A to B

Figure 5.5: The knowledge for Example 5.3 as IPR displays it.

119

The definition of a term looks like Figure 5.4(B). This definition adds an equality to

the knowledge base.

If the user wants to load the format strings without putting the definitional formula
into the knowledge base, that is also possible. Examples are given in the knowledge base that

comes with the program.

Ingo Dahn [48] is able to use his ILF technology to translate the output of IPR as
shown above into ETEX source and thence into typeset English. This sort of technology could
be incorporated into the TPR system. In many of the examples shown in this dissertation, we

have applied such a transformation to the IPR output.

5.2.3 Interaction

The TPR prover is intended to be usable by people who do not know about computer theorem
proving techniques. It has accomplished this in several remarkable ways. One very important
aspect of this is that it is possible for the user to follow along while a proof is being constructed

and understand what has been done and what remains to be done.

The TPR prover also allows the user to give commands about what proof step should be
taken next. This would be a hollow statement if it were very difficult for a user to understand
what has been happening in the proof so far. However, since the user can navigate the proof
that has been constructed so far and understand what has happened and what still needs to

be done, the user really can make use of his or her knowledge and expertise to guide the proof.

Being able to understand an incomplete proof has other advantages. For example, if
the user has not put enough information into the knowledge base to prove a theorem, it is
possible to detect this. I have experienced this first hand. If IPR is not proving a theorem
that I think it should prove, I can look at the proof attempt and get to the point where I think
it should be finished. At that point, I have been able to see that there is some trivial bit of

knowledge that is needed for the proof but that I neglected to enter into the knowledge base.

All this is accomplished by translating each branch of the tableau into a sequent as in

Smullyan [113]. All of the unused positive formulas on a branch are put into the antecedent of

120

121

Description: a statement near the bottom of page 147 of Kelley
Suppose all of the following:

1 F is an open function from A onto B

2 F is a continuous function from A onto B

3 A is locally compact

Then B is locally compact

Description: Theorem 3.2 of Kelley

the Bth projection function of X over A is an open function from
the product of X over the index set A onto the Bth coordinate space

Description: a statement on the top of page 90 of Kelley
the Bth projection function of X over A is a continuous function
from the product of X over the index set A onto the Bth coordinate space

Figure 5.6: The knowledge for Example 5.4 as IPR displays it.

the sequent and all of the unused negative formulas on the branch are put into the consequent
of the sequent. Thus the tableau is translated into a tree of sequents. IPR allows the user to

” o«

navigate this tree of sequents by hitting keys such as “up,” “down,” “next sibling,” etc.

Each sequent is printed to the screen as an English explanation of the current hy-

potheses and goals.

IPR can show the contents of the knowledge base to the user in English. See Fig-
ures 6.1, 6.2 and 6.9 for examples of the format IPR uses to display its knowledge. The

example of the continuous function was given in the previous section.

Example 5.4 Here we present a simple example of a theorem proved by IPR to give the flavor
of the interface and the output. The theorem is taken from John Kelley’s General Topology [77]

(See Example 3.3 in this dissertation.)

Theorem: If the product of X over the index set A is locally compact then for every a, X, is

locally compact.

The three sequents shown in Figure 5.6 are in the knowledge base and are used in the

proof. They are displayed as IPR displays them.

If the user asks IPR to stop and display after each step taken in the proof, the following

sequents will be displayed in sequence each time the user strikes the space key. If IPR is in

122

[1]

Show that

if the product of (_X) over the index set (_A) is locally compact
then for every _B the _Bth coordinate space is locally compact

[2] PROMOTE

Suppose that

the product of (_X) over the index set (_A) is locally compact
and show that

for every _B the _Bth coordinate space is locally compact

[3] CONSIDER

Suppose that

the product of (_X) over the index set (_A) is locally compact
and show that

the (_B)th coordinate space is locally compact

[4] (1) APPLY-THEOREM-SPLIT

Suppose that

the product of (_X) over the index set (_A) is locally compact

and show that one of the following is true:

1. F is an open function from the product of (_X) over the index set
(_A) onto the (_B)th coordinate space

2. the (_B)th coordinate space is locally compact

[4] (2) APPLY-THEOREM-SPLIT

Suppose that

the product of (_X) over the index set (_A) is locally compact

and show that one of the following is true:

1. F is a continuous function from the product of (_X) over the index
set (_A) onto the (_B)th coordinate space

2. the (_B)th coordinate space is locally compact

Figure 5.7: The interaction for Example 5.4.

interaction mode, then the space key instructs IPR to take a single step in the proof. After
the n'? step, IPR would display the n'? sequent in Figure 5.7 except that the last two sequents
are generated at the same time. At any time the user can navigate up and down the tree to

understand what is happening in the proof.

At each sequent, the depth of the sequent in the tree is given in brackets and the branch
label—(1) and (2) on the last two sequents—is given in parentheses. In complex trees, these
labels take forms such as (1.2.1.1.3). This label gives a history of decisions made at choice

points to reach the current branch.

The user can navigate this tree and see all of the current hypotheses and all of the

current goals. Since the name of the rule used to obtain the sequent is written above the
sequent, the user can tell what changed and how the new formulas were formed. By doing

this, the user can tell what has been done in the proof and what remains to be done.

The last two sequents in this proof were formed by the application of the first sequent
in the knowledge base. The last two sequents are closed by the application of the last two
sequents in the knowledge base with the substitution the Bth coordinate function for the

variable F [109].

The user who runs the program interactively can decide to apply a certain substitution
to the tree, to apply a certain bit of knowledge or logical rule, or simply to watch the decisions

made by the prover.

Upon finding a proof, the prover condenses it as much as possible (Section 5.1.1),
removing steps that were not needed, and explains in English the steps taken including how
and when knowledge was applied. This is possible because the rule used for applying knowledge
is related to the way humans explain the application of theorems. Once the irrelevant steps
have been removed, the user can also navigate the condensed sequent tree and understand the

proof by looking at that.
After the proof is found, the proof tree is transformed into what is shown in Figure 5.8.

Notice that on the last two sequents, those formulas that were no longer needed in
the proof from that point on are no longer displayed. This minimalist view of the proof tree

is much easier to understand than in the presence of the irrelevant formulas.

After the proof is finished, the user can continue to navigate the condensed tree to
understand just what was needed in the proof. Since only the needed information is displayed
at this point, it is easy to understand how the proof worked. For more details, the user can

ask IPR to explain the proof in English.

By interacting, the user can force IPR to apply any known equality, either in the
knowledge base or in the hypotheses, in various ways. One common way to force an equality

substitution is in the case that a term is defined in the knowledge base and the user wants the

123

[1]

We have shown

if the product of (_X) over the index set (_A) is locally compact
then for every _B, the _Bth coordinate space is locally compact

[2] PROMOTE

If we suppose

the product of (_X) over the index set (_A) is locally compact
then we have shown

for every _B, the _Bth coordinate space is locally compact

[3] CONSIDER

If we suppose

the product of (_X) over the index set (_A) is locally compact
then we have shown

the (_B)th coordinate space is locally compact

[4] (1) APPLY-THEOREM-SPLIT

We have shown that

the (_B)th projection function is an open function from the product of
(_X) over the index set (_A) onto the (_B)th coordinate space

[4] (2) APPLY-THEOREM-SPLIT

We have shown that

the (_B)th projection function is a continuous function from the

product of (_X) over the index set (_A) onto the (_B)th coordinate space

Figure 5.8: The condensed proof tree for Example 5.4.

124

125

Since we know that
the product of (_X) over the index set (_A) is locally compact
and we are trying to show that
the (_B)th coordinate space is locally compact
we can apply a statement near the bottom of page 147 of Kelley
Now we only need to show that
the (_B)th projection function of (_X) over (_A) is an open
function from the product of (_X) over the index set (_A) onto
the (_B)th coordinate space
and
the (_B)th projection function of (_X) over (_A) is a continuous
function from the product of (_X) over the index set (_A) onto
the (_B)th coordinate space.

1. Since we are trying to show that

the (_B)th projection function of (_X) over (_A) is an open
function from the product of (_X) over the index set (_A) onto
the (_B)th coordinate space

we can apply Theorem 3.2 of Kelley
which finishes that branch of the proof.

2. Since we are trying to show that

the (_B)th projection function of (_X) over (_A) is a continuous
function from the product of (_X) over the index set (_A) onto
the (_B)th coordinate space

we can apply a statement on the top of page 90 of Kelley
which finishes that branch of the proof.

Figure 5.9: The automatically generated English proof for Example 5.5.

definition to be expanded at an occurrence of the term. The interface makes this very easy.
The user simply tells IPR the formula and the occurrence of the term that is to be replaced

in the formula. Other equalities in the current hypotheses can be applied in the same way.

5.2.4 Output

When a proof is found, it is condensed and can be output in English.

Example 5.5 Figure 5.9 shows an excerpt (the end) of the English proof output by TPR after

the proof in Example 5.4 completed.

This is not intelligent natural language generation but merely the application of tem-
plates. Each logical rule, as well as each of the various manifestations of the e-rule, has a

template associated with it. The particular formulas involved in a particular application of a

126

rule are put into the template and the proof is written. Over the years, as IPR has developed,
the templates have changed in order to improve the look of the proofs it produces. The proof
example given above was produced by one of the oldest templates. The examples in Chapter 6

use newer templates.

Chapter 6

Examples

Real problems must be used as test problems to evaluate the worth of an idea;
syntactic problems can be used as illustrations, and can also be used for experiments

that may lead to important discoveries.

—TLarry Wos [120]

IPR has independently found the proofs of many theorems in various fields of math-
ematics in the presence of relatively interesting knowledge bases. By independently, we mean
that the user only entered the needed formulas and the formula to be proved. The user pro-
vided no guidance during the proof. That is to say, IPR has been rather successful in solving
the kind of problem we have been discussing in this dissertation. As evidenced by the exam-
ples in this section, IPR’s methods of storing, selecting and applying knowledge as well as the

methods for controlling search have promise.

In this chapter, several examples are given of problems solved by the IPR prover from
various areas of mathematics. This will give an idea of the kind of reasoning that IPR is able

to do.

There are many theorems that IPR cannot prove independently within a reasonable

amount of time and memory. Some of the difficulties that remain are discussed in Section 8.3.

In some of the examples, we give some detail about the input and output of the prover.
Please see other sections for examples pertaining to specific rules or interface issues as they are
dealt with. For example, Section 4.2.6 contains many examples of proofs found automatically

in set theory.

127

128
Several of these examples were published previously [108].

Example 6.1 The first example we present was one of the main motivating challenges during
the recent development of the prover. The proof itself is quite complex and there is some

necessary branching involved.
Here is the statement in English.
If S 1s Hausdorff, then the diagonal of S x S is closed.

Although this example has been published and an input file has been distributed to
many researchers, no other prover has successfully proved this theorem.! Among others, Ingo
Dahn has tried to prove this example using several resolution and tableau automated theorem

proving systems including Otter and Setheo.?

The theorem can be found, for example, as an exercise in Chapter 1 of Abraham-

Marsden-Ratiu’s text Manifolds, Tensor Analysis, and Applications [1]. We want to prove

(VS)(Hausdorff(S) D closed-in(top-to-class(diagonal(S x, S)), S X, S))

We present here a simple and natural formalization of the needed knowledge. The
following eight textbook-level theorems turn into 12 sequents in the knowledge base. These
sequents are all needed in the shortest proof that TPR (or this author) could find in the
given theory.3

the definition of Hausdorff:
(VX)(Hausdorff(X) D (YA)(VB)((A € top-to-class(X) A B € top-to-class(X)A
A # B) D (3G1)(3G2)(open-in(G1, X) A open-in(G2, X) A A € G1A
B € G2 Adisjoint(G1, G2))))

the definition of closed:
(VX)(VA)((Yy)(y € top-to-class(X) Ay & A) D
(3G)(y € G A open-in(G, X) Adisjoint(G, A))) D
closed-in(A4, X)

1Tn the published version of this example, there was an error that had to be corrected in an errata. However,
the distributed input file was correct.

2Ingo Dahn: personal communication.

3Notice that x, is the product topology on the product of topological spaces, whereas x is the simple
cartesian product of sets. Also diagonal(S X S) represents a subspace (rather than a subset) of S x, S.

part of the definition of product of topological spaces:
(VX)(VS)(VT)(X € top-to-class(S x; T) D
(3A)(IB)(A € top-to-class(S) A B € top-to-class(T) A X = (A, B)))

the definition of product topology:
(VX)(VY)(VA)(VB)((open-in(A, X) A open-in(B,Y)) D
open-in(A x B, X x,; Y))

the definition of diagonal:
(VX)(VS)(X € top-to-class(diagonal(S x; S)) +
(3A)(A € top-to-class(S) A X = (A, A)))

the axiom of ordered pairs:

(YA)(YB)(YC)(YD)({A, B) = (C,D) > (B= DA A=C))

the definition of disjoint:
(VA)(VB)(disjoint(A, B) & =(FY)(Y € AAY € B))

the definition of product:
VX)VS)VTH (X € SxT & (3A)EB)(A e SABeTAX =(A,B)))

These formulas turn into the sequents shown in Figures 6.1 and 6.2. They are displayed there

as IPR displays them when given the appropriate format strings. (See Section 5.2.2.)

To handle the equality reasoning in this proof, only Brown’s rule and the e—-rule are
required (Section 4.1.3.) This equality reasoning in the fetcher is not absolutely needed for the

proof but its use helps cut down the size of the search space in this case.

The very impressive fact is that IPR is still able to find a proof even when more
information is added to the knowledge base. For example, if the high-level D symbol is replaced
by the symbol < in the first three formulas (the definitions of Hausdorff, closed and product of
topological spaces) then TPR is still able to find the proof. These changes add three sequents
to the knowledge base and each of these sequents is very closely related to the proof but none
of the information is used in the proof. The addition of this information makes the problem

much more difficult.

The condensed version of the shortest proof found by IPR is complex and involves 4
branches and gets to a depth of 29. No cut rule or any simulation thereof is used in the proof.
During the search, the tree created by IPR becomes enormous and branches tremendously.

This proof requires a little thought for a mathematician and particularly for a student.

130

Description: the definition of Hausdorff

Suppose all of the following:

1. X is a Hausdorff space

2. A is a member of the class associated with X

3. B is a member of the class associated with X

Then one of the following is true:

1. for some G1 and G2, G'1 i1s open in X and G2 is open in X and A is a member of G1 and
B is a member of G2 and G1 and G2 are disjoint

2. A=B

Description: the definition of closed

Suppose

for every Y, if Y is a member of the class associated with X and it is not the case that Y is
a member of A then for some GG, Y is a member of G and G is open in X and G and A are
disjoint

Then A is a closed subset of X

Description: part of the definition of product of topological spaces

Suppose

X is a member of the class associated with the product topological space of S and T’

Then

for some A and B, A is a member of the class associated with S and B is a member of the
class associated with T and X = (A, B)

Description: the definition of product topology

Suppose all of the following:

1. Aisopen in X

2. BisopeninY

Then

the cartesian product of A and B is open in the product topological space of X and Y

Description: the definition of diagonal

Suppose all of the following:

1. A is a member of the class associated with S

2. X =(AA)

Then X is a member of the class associated with the diagonal of the product topological space

of S and S

@ Description: the definition of diagonal

Suppose

X is a member of the class associated with the diagonal of the product topological space of S
and S

Then

for some A, A is a member of the class associated with S and X = (A, A)

Figure 6.1: The first part of the knowledge base formed for Example 6.1.

Description: the axiom of ordered pairs
Suppose

(A,B) =(C,D)

Then

B=D

Description: the axiom of ordered pairs
Suppose

(4, B) = (C, D)

Then

A=C

@ Description: the definition of disjoint

One of the following is true:

1. A and B are disjoint

2. for some Y, Y is a member of A and Y is a member of B

Description: the definition of disjoint
The following are contradictory:

1. A and B are disjoint

2. Y is a member of A

3. Y is a member of B

Description: the definition of product

Suppose all of the following:

1. A is a member of S

2. B is a member of T

3. X =(A, B)

Then

X is a member of the cartesian product of S and T’

Description: the definition of product

Suppose

X is a member of the cartesian product of S and T

Then

for some A and B, A is a member of S and B is a member of 7' and X = (A, B)

Figure 6.2: The second part of the knowledge base formed for Example 6.1.

131

(1) Hausdorff(Sp)
|
(2) —closed-in(top-to-class(diagonal(Sg x; So)), So X+ So)

| e={2)},s=
(VYY) ((Y € top-to-class(Sg x; Sg) AY ¢ top-to-class(diagonal(Sy x; Sp))) D
(3G)(Y € G A open-in(G, So x; Sp) A disjoint(G, top-to-class(diagonal(Sy X Sp)))))
|
(3) Yo € top-to-class(Sg - So)

|
(4) Yo ¢ top-to-class(diagonal(Sy x - Sg))

|
=(3G) (Yo € G A open-in(G, So x; Sp) A disjoint(G, top-to-class(diagonal(Sy x; Sp))))

—(Yo € G A open-in(G, Sy x; Sp) A disjoint(G, top-to-class(diagonal(Sy x; Sp))))

| e = {®)}s=[3]

(3A)(3B)(A € top-to-class(Sp) A B € top-to-class(So) A Yo = (A, B))
|

(5) Ao € top-to-class(Sp)

(6) Bg € top-to-class(Sp)

|
(7) Yo = (Ao, Bo)
| (4), (7), Brown
(8) (Aq, Bo) ¢ top-to-class(diagonal(Sy x - Sg))

| e ={(8),5)},s =[5]

(9) (Ao, Bo) # (Ao, Ao)

Figure 6.3: The top of the tableau for Example 6.1.

In Figures 6.3-6.5, we show the condensed tree constructed by IPR after proving this
theorem automatically. IPR often applies a-rules as a processing step. Therefore, sometimes

a-formulas will not appear in the tableaux.

In the following description, we do not specify the substitutions that are applied for
each e-rule. Tt will always be clear from the context. We only indicate when there is a

nontrivial o’.

In Figure 6.3, formulas 1 and 2 are constructed by applying the ordinary analytic
tableau rules to the input formula. The next formula is added to the tableau by the application
of the definition of a closed set. The next three formulas are formed by the application of the

d-rule (creating the constant Yy) and the a-rule. Next, the variable G is created by the

(9) (Ao, Bo) # (Ao, Ag)
T e ={(1),(5),(6)},s =[1]
(10) Ao = Bo
e ={(1),(5),(6)},s = | (10), (9), Brown
(11) (Bo, Bo) # (Bo, Bo)

(3G1)(3G2) (open-in(G1, Sp) A open-in(G2, So) A Ag € G1 A By € G2 A disjoint(G1, G2))
(12) open—iln(Glo,So)
(13) open—iln(G20, So)
(14) Aol € Glg
(15) BJ € G2
(16) disjoinlt(Glo,G20)

| e ={(12), (13)},s =[4]

(17) open-in(G'lg x G2q, Sy X+ So)

M | p \ﬁ (20)

(18) Yo € G (19) —open-in(&, So x» So) Figure 6.5
| (7), (18), Brown *
(o, Bo) ¢ G o = [y x G2/}

*

{(14), (15), (20)}
=

{Glo X Gzo/G}

€=

/
a

Figure 6.4: The middle of the tableau for Example 6.1.

application of the y-rule. We will wait to apply the $-rule to this formula.*

Then we apply part of the definition of product of topological spaces followed by the
creation of formulas 5, 6 and 7 by the application of the J-rule (creating the constants Ag
and Bg) and the a-rule. Now we make an equality substitution and then apply the definition

of diagonal.

This tableau is continued in Figure 6.4.

4In fact, IPR applies the 3-rule right away but then splices as many new formulas as possible above the
split. This gives IPR more flexibility, keeps the space requirements down and makes the output look better.

133

Figure 6.4 begins with the application of the definition of Hausdorff. The right-hand
branch is immediately closed by applying Brown’s rule and then unifying the terms in the

equality goal with the empty substitution.

On the left-hand branch, we apply the d-rule (creating the new constants Gl and G2q)
along with the a-rule to introduce formulas 12-16. Formula 17 is created by the application

of the definition of product topology.

Now we finally apply the F-rule to the f-formula from Figure 6.3. To the leftmost
branch we apply an equality substitution. That branch is closed by the application of the
definition of product. In this case, o/ = {G1y x G2¢/G}. (So far, in every application of the
¢-rule, o/ = ().) This is a case in which the e=-rule is applied (Section 4.1.3.) In particular,
rather than adding a branch containing the formula (Ag, Bg) # (A, Bo) to the tableau, the
fetcher successfully unifies the terms in the equality and composes the unifier () with the
substitution found so far in the e-rule application. The middle branch is closed by the same

substitution, ¢/ = {G'1y x G2¢/G}, by unifying formulas 17 and 19.
The tableau for the rightmost branch of that split is shown in Figure 6.5.

The remaining part of the proof is certainly not optimal. This just happens to be the

first way of proving the theorem that IPR detected.

In Figure 6.5, we first apply the definition of disjoint and then the §- and a-rules to the
resulting formula and create the new constant Y;. Next we apply the definition of diagonal and
again the d- and a-rules to obtain formula 23, which contains the new constant A;. (Notice

here that only a3 is needed in the proof.)

The mathematician might write, “Since we are trying to show that G and Sy x Sp are
disjoint, suppose yo € G and yg € Sy x Sp and look for a contradiction. Since yg € S X Sp, yo =

(a1,a1) for some a; € Sp.”

Next, we apply Brown’s rule and then the definition of product with ¢/ = {S x T/G}.

Here S and T are new variables in the tableau introduced by the e-rule.

134

(20) —disjoint(G, top-to-class(diagonal(Sy x; Sp)))
| e ={(20)},s =[9]
(FY)(Y € GAY € top-to-class(diagonal(Sy x; Sp)))
|
(21) Y1e€G
|
(22) Y1 € top-to-class(diagonal(Sy x - Sg))
| e ={(22)},s =[6]
(3A)(A € top-to-class(Sg) A Y1 = (A, A))
|
(23) Y1 = (A1, Ay)
| (21), (23), Brown
(24) (A1, A1) € G
| e ={(24)},s =[12] 0’ = {S x T/G}
(FA)3AB)(A e SABeTAN{A1, A1) = (A, B))
|
(25) Asr €S
|
(26) Bsr €T
|
(27) (A1, A1) = (As7, BsT)
| e ={(27)},s =
(28) A; = Bsr
| (27),(28), Brown
(29) (Bs,r,Bsr) = (AsT,BsT)
| e ={(29)},s =
(30) BS,T = AS,T
| (26),(30), Brown
(31) AS,T* eT
e ={(16), (25), (31)}
CT/ = {Glo/S7 Gzo/T}

Figure 6.5: The bottom of the tableau for Example 6.1.

135

The é- and a-rules produce formulas 25-27 in which Agy and Bgp are new Skolem
terms. The axiom of ordered pairs gives us formula 28. We use this to apply Brown’s rule
to formula 27 and then apply the axiom of ordered pairs again. Formula 30 is just what we
have been waiting for because now we can use it to find a contradiction using the definition

of disjoint.

In Figure 6.6 we show how IPR displays the top of Figure 6.5 in its interaction window
once it has been condensed. In this display, formulas are displayed only until the last time
they are needed. Thus the user knows that the formulas that disappeared in the new sequent
are those that were used to form the new formulas in the new sequent. However, sometimes
the used formulas will remain in the new sequent because they will be needed again later in
the proof. Remember that it is only possible to detect this in retrospect in cases such as -, e-
and equality rules. In the case of a-, § and B-rules, the used formula can always be eliminated.

Also notice that the variables are instantiated in the proof tree once the proof is found.

It is not possible to pin down a single reason IPR is able to prove this. Some experts
believe that the non-clausal form helps. I think it is a combination of things including the
strategies and breadth-first unification. In a proof this complex with this many possible ways to
search, throwing away and rebuilding the tableau become expensive. If breadth-first unification
is used, then nothing is thrown away. This is not enough, of course. If nothing is thrown away

then there will be a terrible space problem unless the prover uses strategies to guide the search.

The proof follows rather closely the proof that a student would find for this theorem.
Of course, the student would write it in English along with a picture. The proof that IPR
writes out in English is long and rather boring in this case. The problem of making long proofs
output by the prover read well is difficult [74, 110]. We give an example below of the English

output of IPR.

Example 6.2 Here is an example from the theory of vector spaces. It is Proposition 2.4.3 of

Bishop and Goldberg’s text, Tensor Analysis on Manifolds [24].

(VW) (VV)((a-vector-subspace (W, V') A a-vector-space(V)) D
(3E)(3F)(basis-of(F U F, V) A basis-of(E, W)))

136

137

[17] (1.3)

AND-SPLIT

If we suppose:

(_G1) and (_G2) are disjoint

then we have shown:

the cartesian product of (_G1) and (_G2) and

the class associated with the diagomnal of

the product topological space of (_S) and (_S) are disjoint

[18] (1.3)
APPLY-THEOREM
The following are contradictory:
1 (_G1) and (_G2) are disjoint
2 for some _Y
_Y is a member of the cartesian product of (_G1) and (_G2)
and
_Y is a member of the class associated with
the diagonal of the product topological space of (_S) and (_S)

[19] (1.3)
CONSIDER
The following are contradictory:
1 (_G1) and (_G2) are disjoint
2 (_Y0) is a member of the cartesian product of (_G1) and (_G2)
3 (_Y0) is a member of the class associated with
the diagonal of the product topological space of (_S) and (_S)

[20] (1.3)
APPLY-THEOREM
The following are contradictory:
1 (_G1) and (_G2) are disjoint
2 (_Y0) is a member of the cartesian product of (_G1) and (_G2)
3 for some _A
_A is a member of the class associated with (_S)
and (_Y0) = <_A, _A>

[21] (1.3)

CONSIDER

The following are contradictory:

1 (_G1) and (_G2) are disjoint

2 (_Y0) is a member of the cartesian product of (_G1) and (_G2)
3 (_Y0) = <(_Aa0), (_a0)>

Figure 6.6: Part of the interaction for Example 6.1.

IPR finds the proof easily using the knowledge base formed from the following five formulas:

the definition of a basis
(Vb)(YV)(basis-of(b, V) &
(lin-ind-subset (b, V) A b C vec-to-class(V') Aspans(b, V)))

Proposition 2.2.5 in Bishop and Goldberg
(Vs)(YV)(V#)(lin-ind-subset (s, V') A basis-of(¢, V) D
(Fu)(u C t A basis-of(s U u, V)))

a remark on page 63 of Bishop and Goldberg
(VA)(a-vector-space(A) D (Fb)basis-of (b, A))

the definition of a subspace
(VA)(VB)(a-vector-subspace (A, B) D
(a-vector-space(A) A vec-to-class(A) C vec-to-class(B)))

Proposition 2.4.2 in Bishop and Goldberg
(VW) (VV)(Ve)((a-vector-subspace (W, V) A e C vec-to-space(W)) D
(lin-ind-subset (e, W) < lin-ind-subset (e, V')))

In fact, IPR is able to find the proof of this theorem even when other related but unnecessary

formulas are in the knowledge base.

For the purpose of illustration, we will give a full presentation of IPR’s proof of a

similar theorem. We want to prove the following formula that is slightly simpler to prove.

(subspace(Wy, Vo) A basis(Ug, V5)) D
(VE)(basis(E, Wy) D (3F)(basis(union(E, F), Vo)A
subset (F, Up)))

This follows from a knowledge base containing the following sequents.

the definition of a basis
basis(B, V) — lin-ind(B, V)

Proposition 2.4.2 in Bishop and Goldberg
- subspace(W, V),
{ lin-ind(E, W) } -
lin-ind(E, V)
Proposition 2.2.5 from Bishop and Goldberg
lin-ind(S, V), N
basis(T, V)
(3U) (subset (U, T') A basis(union(S, U), V))
Figure 6.7 shows the tableau constructed for this example.
In this case, we let the English output of the IPR program explain the proof. Figure 6.8

contains IPR’s explanation of the proof.

138

(1) subspace(Wo, Vo)
(2) basis(|Uo,Vo)
(3) basis(g?o,Wo)
(4) —(basis(union(FEj, F)l, Vo) A subset (F, Up))
(5) lin—ind(lEo, Wo) s=[1] e={B3)}
(6) lin—ind(|E0, Vo) s=[2] e={(1),(5)}
(7) (3U)(subset (U, Ug) A blasis(union(Eo, U), Vo)) s=[3] e ={(2),(6)}
subset (|U1 ,Usg)

|
basis(union(Ey, U1), Vo)

— ~~

ﬁbasis(uniOI*l(Eo, F), Vo) ﬁsubsei(F, Usg)
{1/ F} {th/F}

Figure 6.7: The tableau for Example 6.2.

Proof: Since we know that Fy is a basis of Wy we can apply the definition of a basis and
conclude that Fjq is a linearly independent subset of Wj.

Since we know that W; is a subspace of Vj and FEj is a linearly independent subset of Wj
we can apply Proposition 2.4.2 in Bishop and Goldberg and conclude that Ej is a linearly
independent subset of V.

Since we know that Fq is a linearly independent subset of V4 and Uy 1s a basis of V; we can
apply Proposition 2.2.5 from Bishop and Goldberg and conclude that for some U, U is a subset
of Uy and the union of Ey and U is a basis of Vj.

Let Uy be such that U; i1s a subset of Uy and the union of Ey and U; is a basis of Vj.

Split the goal: the union of Ey and F' is a basis of V) and F is a subset of Uj into cases.

1. Since we know that the union of Fy and Uj is a basis of Vj and we are trying to show that
the union of Ey and F' is a basis of Vj we are finished if we substitute U; for the variable F.
2. Since we know that U7 is a subset of Uy and we are trying to show that F' is a subset of Uy
we are finished if we substitute U; for the variable F'.

Figure 6.8: IPR’s proof of Example 6.2.

139

Example 6.3 The next example is from homotopy theory. It is Corollary 2.2 in Chapter 8
of Munkres’ Topology: A first course [91]. In this example, we ignore the difference between a

topological space and its underlying set since it does not come into play in this proof.

(VX)(Vao) (V1) ((path-connected (X) Azg € X Az € X) D
isomorphic-groups(m (X, zg), m1 (X, 21)))

The knowledge base formed from the following formulas is sufficient although a bit more than
necessary for the proof. The proof was found with these theorems and others in the knowledge

base by IPR.

The definition of “isomorphic-groups”

(VA)(VB)(isomorphic-groups(A, B) « (3f)group-isomorphism(f, A, B))

The definition of path connectedness
(VX)) (path-connected (X) ¢ (Vao)(Vz1) (2o € X Az1 € X) D
(3p)path-from-to(p, zg, 21, X)))

Theorem 2.1 in Chapter 8 of Munkres
(Va)(Yzo)(Va1) (VX)path-from-to(a, 2o, 21, X) D
group-isomorphism(a, w1 (X, zg), m1 (X, 21))

These theorems turn into the five sequents in Figure 6.9. Only three of the five are needed in
the proof. All five are displayed in the figure as IPR displays them. IPR is also able to find the
proof of this theorem even when other related but unnecessary formulas are in the knowledge

base. Here we only show a minimal set of formulas.

In this case we show in Figure 6.10 what the proof tree that the user can navigate after
the proof is found looks like. The last sequent in the proof tree is closed by the application of
what it means to be isomorphic. At any point, the user can ask for more details about how
a sequent was formed (especially when it was a theorem application.) The user may navigate

up and down the tree at will.

Example 6.4 Here is an example from the appendix on set theory in Kelley’s text on topol-
ogy [77]. In this example, all of the previously-occurring theorems and definitions were present
in the knowledge base. This came to 59 sequents including 8 term definitions. The theorem is

Theorem 33 in the appendix.

(an-element(z) A z C) D an-element(z)

140

Description: Theorem 2.1 in Chapter 8 of Munkres

Suppose
A is a path from zg to x1 in X
Then

A-hat is an isomorphism from 71 (X, zg) to m (X, 21)

Description: the definition of path connectedness
Suppose

for all zg and 1, if 2y is a member of X and x; is a member of X then for some P, P is a

path from zg to z; in X.
Then
X 1s path connected

Description: the definition of path connectedness
Suppose all of the following:

1. X is path connected

2. zg 1s a member of X

3. x1 i1s a member of X

Then

for some P, P is a path from zg to 7 in X

Description: what it means to be isomorphic
Suppose

F' is an isomorphism from A to B

Then

A and B are 1somorphic

Description: what it means to be isomorphic
Suppose

A and B are 1somorphic

Then

for some F', F' is an isomorphism from A to B

Figure 6.9: The knowledge base sufficient for Example 6.3.

141

(1]

We have shown:

if X5 is path connected and zg is a member of X3 and z; is a member of Xy then 71 (X3, zg)

and (X3, z1) are isomorphic

(2]

PROMOTE

If we suppose all of the following:

1. X5 is path connected

2. z1 1s a member of X5

3. xg is a member of Xy

then we have shown:

71(X2, 2g) and 71 (X2, 21) are isomorphic
(3]

APPLY-THEOREM

If we suppose:

for some P, P is a path from zg to x1 in X5
then we have shown:

71(X2, zg) and w1 (X2, 1) are isomorphic

]
CONSIDER

If we suppose:

Py 1s a path from zg to 1 1n X3

then we have shown:

71(X2, zg) and 71 (X2, z1) are isomorphic

5]

APPLY-THEOREM

If we suppose:

Py-hat is an isomorphism from 71 (X2, o) to m1 (X2, 1)
then we have shown:

71(X2, zg) and 71 (X2, z1) are isomorphic

Figure 6.10: The proof tree for Example 6.3.

142

The proof was found by IPR under these circumstances in a fraction of a second.

Since Kelley does not allow ur-elements in his theory, he uses the term “a set” to refer
to what we mean here by “an element.” In fact, his definition of a set is “z is a set if and only
if for some y, & € y,” which is a wired-in axiom of IPR’s higher-order reasoning mechanism

except IPR uses “an element” in place of “a set.”

Here is the main theorem that is needed in the proof. It is Axiom III, Axiom of

Subsets, in the appendix.
an-element(z) D (y)(an-element(y) A (Vz)(z Cz D z € y))

One of the comprehension rules is also used to find this proof.

Example 6.5 This example is from Paulson’s article on the development of set theory in his

Isabella prover [96]. The following theorem is proved completely automatically by TPR.
ANB=BNA

Or in the input format:

(= (the-intersection-of A B) (the-intersection-of B 4))

The formulas in Figure 6.11 are used to form the knowledge base. They are displayed

there in the form needed as input to TPR. (See Section 5.2.2.)

The definitions of subset and union are put into the knowledge base just to distract
the prover from the correct path. IPR finds the proof completely automatically even in the

presence of a good bit of unneeded knowledge.

Previously (Example 4.6) we mentioned that this theorem could be proved using the
comprehension schema and the other rules presented in Section 4.2. In that case, the definitions
of terms such as AN B were given as equalities by saying that the intersection of two sets is a
certain class. In the current proof, we instead use a theorem that describes what it means to
be an element of the intersection of two sets. This device brings the theorem into the realm

of first-order logic. Therefore, in this case, no higher-order rules from Section 4.2 are needed.

143

144

(def-axiom extensionality
(iff (= x y)
(forall ((z))
(iff (a-member-of z x)
(a-member-of z y)))))

(def-term (a-subset-of a b)
(forall ((x))
(implies (a-member-of x a)
(a-member-of x b))))

(def-theorem subset
(iff (forall ((x))
(implies (a-member-of x a)
(a—-member-of x b)))
(a-subset-of a b)))

(def-theorem union
(iff (for-some ((b)) (and (a-member-of b c) (a-member-of a b)))
(a-member-of a (the-union-over c))))

(def-theorem intersection
(iff (and (a-member-of c a)
(a-member-of c b))
(a-member-of ¢ (the-intersection-of a b))))

Figure 6.11: The input for Example 6.5.

Chapter 7

Related Work

As indicated 1n the introduction, a tremendous amount of work has been done already in the
field of automated reasoning. It would be impossible to discuss it all in this dissertation. The
motivations for the present work—automated reasoning in mathematics together with human

understanding—distinguish it from a large amount of the work that has been done by others.

There are some recent projects that share very nearly the motivations of this project.
The OMEGA project [74], overseen by Jorg Siekmann, incorporates many components that
come together as an excellent automatic proof discovery and explanation system. Parts of
OMEGA include PROVERB [73], a system that translates resolution proofs into “assertion-
level” proofs and explains them in natural language; LEO/HOTEL [79], which incorporates

some set theoretic and equality reasoning power; as well as other components.

Bruno Buchberger’s THEOREMA project intends to develop a system that incorpo-
rates various special purpose provers each in its respective area. The combination of these

reasoning systems will be unified in a single interface for examining proofs in English [40].

Ingo Dahn’s ILF project also has similar aims [48]. His system attempts to prove a
sentence using a large set of powerful theorem provers and then, upon success, explains the

proofs in English.

Many other systems share one of the two motivations of the IPR project. Systems
that emphasize interface typically do not include a strong independent inferencing system. On
the other hand, most systems that emphasize strong automatic reasoning do not strive to be

usable by a non-expert.

145

146

We will discuss work related to both of the motivations: automated mathematical

reasoning and human interface.

7.1 Reasoning

We already mentioned in Section 2.1 other work related to the choice of language to be used.
While higher-order languages are more convenient for expressing mathematical facts, the rea-

soning in higher-order languages is much less tractable.

Many theorem proving programs use tableaux and related methods. PROTEIN [14],
sPP [19], lean-7%P [16], SETHEO [82], MGTP and it variants [66, 65], METEOR [6],

Parthenon [35] and PTTP [115] are some of the better known systems.

Most existing systems and calculi use clausal form for storing the theory. Some save
some space by breaking a formula only to negation normal form [63]. This form still has the

disadvantages associated with Skolem constants.

The non-clausal format in which knowledge is stored as described in this dissertation
appears to be a novelty. The Gazer system stores knowledge in a similar but less general form.

Gazer essentially assumes that the input is nearly Horn [11].

While clausal form is compatible with the e-rule—indeed clausal form allows the e-rule
to be applied with the set-of-support restriction (weak connection condition) without losing

completeness—we have stressed the advantages of the non-clausal form in Section 2.3.

In some systems, knowledge is stored with additional information supplied by the user,
which instructs the prover how or when to use the knowledge [38, 68]. In this calculus, only

the formulas themselves are entered. No indexing or additional information is provided.

The e-rule is closely related to various strategies used in clausal tableaux [81]. The e-
rule is distinct from existing rules for clausal tableau expansion in various ways. METEOR [6],
Parthenon [35], PTTP [115], SETHEO [82] and PROTEIN [14] use calculi closely related to
model elimination. Therefore, they obey the connection condition. In a clausal context,

the e-rule only uses the weak connection condition (set-of-support) as in Hihnle’s ordered

tableaux [64].

The system ﬂAP uses the weak connection condition but considers only one connection
at a time. The clausal (and non-clausal) e-rule takes into account any number of connections
from a single clause (or, more generally, a single sequent in the knowledge base) into a given
branch. A second apparent distinction between the e-rule and the A-ordered tableau tech-
nique [64] used in 3774}3 is that the e-rule does not add the connected literals to the tableau.
This makes little difference if a depth-first search is made of a unification, however, in a

breadth-first search, the omission of the extra literals cuts the search space tremendously.

Baumgartner’s hyper-tableaux resemble S-tableaux formed by the ¢-rule [15]. Indeed,
in some proofs the tableaux constructed by the two methods are identical. The main differences
are (1) that the e-rule allows both positive and negative literals to be connected during the rule
application, (2) the e-rule requires only the weak connection condition and (3) hyper-tableaux
have range-restrictedness, which allows variables to be universal rather than rigid (or mixed)

as in the case of the e-rule.

A number of good ideas have been developed for reasoning in the presence of a lot of
knowledge. Most of the closely related work in automating the use of a knowledge base relies
on the use of rewriting or Horn clauses. That is, the existing methods that work well on large

knowledge bases do not work well if the knowledge 1s non-Horn.

Among the most closely-related work is that of Dave Barker-Plummer on his Gazing
algorithm [11, 12]. The formulas entered into Gazer’s knowledge base are translated into
“rewrite normal form” that is similar to the form knowledge takes in this dissertation although,
in Gazer, the formulas are assumed to be nearly Horn. Gazer uses abstraction planning to plan
the entire proof but the proof has to have a certain linearity, which obliterates completeness.
Gazer has an advantage over this author’s framework on problems that only require reasoning
that has the nature of rewriting. However, in non-Horn theories, something stronger than

Gagzer is required.

Hahnle, Klingenbeck and Pape’s A-ordered tableaux are another restriction to clausal

tableaux that reduce the search space tremendously while retaining completeness [64, 62]. This

147

system make gains in efficiency by applying an order on the predicates and terms in the theory.

Frank Brown [39] used what was essentially an incomplete sequent-based prover with
free variables to prove theorems in set theory. Brown’s system used one particular theory
(Quine’s set theory [103]) primarily as rewrite rules. Brown’s work was very closely related to

Bledsoe’s IMPLY prover [29] that also used knowledge essentially for rewriting.

Baumgartner has worked to allow provers to use certain types of first-order theories
by means of theory reasoning [13]. A theory reasoning system needs a background reasoner

for the theories of interest. They are particularly useful for Horn theories.

Boyer and Moore’s proof checkers, which are experts at applying induction, use the-
ories extensively. In this case, the user needs to supply a bit of information along with the

statement of the lemma to help the prover know how to use the knowledge [37].

Larry Hines’ hyper-chaining technique is another example of a system in which the
user needs to attach extra information to the knowledge so that the prover will know how to

use it [68].

The problem of adding equality inference rules to tableau systems is quite different
from that of adding equality to resolution systems [17, 18, 55]. Most of the work published
in this area has concentrated on complete procedures. In this dissertation, we have looked for
some “minimal” set of inference rules for equality that encompass a useful area of mathematical

reasoning without becoming intractable.

Many interactive theorem provers and proof checkers have been successful in proving
many theorems in set theory. In this work we emphasized the automatic discovery of proofs
in set theory. Related to this, there has been less done. Art Quaife used Godel’s first-order
axioms (or a slight improvement on them which benefits systematization) to prove theorems
in set theory [101]. The calculus introduced in Section 4.2 bypasses many of Godel’s axioms
rendering them unneeded for most applications. However, the calculus described here does

not construct sets well independently of hints from the knowledge base.

Woody Bledsoe initiated a tremendous amount of work on the automation of reasoning

148

in set theory. His Set-Var calculus was quite successful on many interesting problems [30]. Set-
Var used a rule for constructing sets that was essentially equivalent to circumscription. Many
of Bledsoe’s collaborators (Plummer, Brown, etc.) also worked on related problems. Bailin
and Barker-Plummer’s Z-match took a very similar approach to Set-Var [10]. The present

work does not construct classes in any interesting way as these systems do.

Frank Brown also worked on a system that proved theorems in set theory using some
special inference rules [39]. These special inference rules encoded all of the axioms of Quine’s
set theory into rewrite rules. This method was also quite successful on many interesting
problems. The present approach allows any set theory to be used rather than wiring one
particular system into the calculus. The comprehension schema described in Section 4.2 is

similar to one of the rewrite rules in Brown’s work.

The use of breadth-first search for a tableau closure seems to be unique to this work.
Although the possibility of such a thing has been known, the advantages and disadvantages
have not been widely discussed nor has the problem of implementing strategies in the context

of breadth-first unification.

7.2 Interface

Many systems have interfaces that are superior in many ways to the interface to IPR. What
is more unusual about ITPR 1is its ability to have such an interface so closely related to a
strong automatic theorem proving calculus. In most systems, one of these properties excludes

the other.

Some work has been done on the problem of having automated theorem proving sys-
tems read natural language [112]. However, most systems, even interactive systems, require
the user to input the statements in a formal computer-oriented language. IPR is not unusual

in this way.

In order to produce all of its output in natural language, IPR requires format strings
to be associated with predicate and term definitions. Any system that translates formulas and

terms into natural language must have this information given to it in some form [53].

149

In terms of the interaction, IPR is similar to interactive theorem proving systems [53].
Powerful automatic systems do not offer the non-expert user the opportunity to watch a proof
in progress and change its direction. With few exceptions [74], automatic systems cannot

produce a natural language description of a proof once it is finished.

Boyer, Moore and Kaufmann’s NQTHM prover communicates with the user largely

in English although formulas and terms in the formal language are not translated [38].

David McAllester developed a formal language that more closely resembles English [84,

87]. The proof system, Ontic, checks proofs in this language.

150

Chapter 8

Conclusion

...one could be too conservative in estimating the potentialities of machines in

theorem proving.

—Hao Wang. 1960 [116]

In this chapter, we summarize the new results presented in this dissertation and present
a history of the author’s development of the ideas behind IPR and behind the IPR program
itself. Since there is plenty of room for improvement and many problems that remain unsolved,
we also discuss some of these problems and some ideas for extending this work. We include
in Section 8.5 some remarks about why IPR is successful on problems which are difficult for

other provers.

One of the long-range goals is to solve the n 4+ 1 problem. That is, given the first n
statements in some textbook, have the prover prove the (n + 1)5*. By enabling the intelligent
use of a large knowledge base, this procedure is an excellent step along with the great progress
made by many others in the field. We discuss this challenge and some of what will be necessary

to solve it in more generality in Section 8.3.

8.1 Summary
The TPR prover uses several novel logical rules and control ideas that contribute to its success.

The non-clausal form introduced in this work (first described in an early technical re-

port [106]) has several advantages in both efficient reasoning and human interface (Section 2.3.)

The e-rule is a generalized connection method for applying knowledge. It can be
applied in both the clausal and non-clausal contexts. In the clausal context, completeness is

retained even with the weak connection condition.

The non-clausal e-rule was developed with the intention of developing a calculus for
applying knowledge in a way that is easy to explain. The non-clausal form is also believed
to be a benefit for efficient reasoning. Since the application of the e-rule resembles the way a
human explains the application of a theorem, it makes it easier (than in the case of resolution,
for example) for the programmer to think about human-like strategies for selecting theorems

to apply [98, 114].

The strategies mentioned in Section 3.3 include the “n + m” strategy that prefers
to apply theorems that do not add too much complexity to what remains to the proof after
the theorem application. Other strategies mentioned prefer to apply theorems that have as
much in common as possible with the formulas and terms in the proof so far. Finally, the
set-of-support strategy requires that a theorem be applied only when some predicate in the

theorem is unifiable with some properly signed predicate in the proof so far.

Once the logical rules are described, the question of control arises. IPR implements
several novel methods in controlling how rules are applied and how a proof is sought. One
of the most important of these control issues is breadth-first unification. IPR searches for a
unification that closes a tableau breadth-first. Breadth-first unification allows several other
strategies, such as subgoal (or branch) selection [75], to be applied more easily than in the
case of depth-first unification. Also, if it is done as described in Section 5.1.1, breadth-first
unification allows theorems to be applied using substitutions that are incompatible with the

proof and yet the proof can still be found in a proof-confluent way.

Another issue of control is the splicing of formulas onto a branch at the highest position
possible. This saves space, usually makes the presentation of the proof more attractive and

allows shorter proofs to be found in some cases (Section 5.1.)

Every aspect of the new calculus developed for IPR was conceived in order to facilitate

human interface. IPR is able to explain the proofs it finds in English. Also, when a proof is

152

not successful, the user can navigate a tree of sequents (in English) and understand what has
been done in the proof so far and what remains to be done. If there is some knowledge missing
from the knowledge base, the user can often understand the incomplete proof well enough to

tell what is missing.

The user can also direct the proof by giving commands about rules to apply. Thus the
user can have full control over the construction of a proof. The user can also ask the prover

for a list of options.

Chapter 6 contains a list of interesting examples that have been proved by TPR. One
of those examples has not yet been proved by any other prover. Many of these examples were
proved in the presence of knowledge that was related to the problem but not needed in the

proof. The presence of unneeded knowledge makes these problems much more difficult.

In order to allow the user to get into advanced mathematics more easily, IPR also
implements the novel handling of the comprehension schema and the definite descriptor

(t-operator.)

In Chapter 6 and in Section 4.2.6, examples of theorems in set theory and higher-order
logic are given. IPR uses a novel method for proving higher-order theorems in set theory. The
method uses the comprehension schema and seems to give IPR a great advantage over provers
using other methods on many problems. Several theorems that are used as examples to show
the strength of other systems are proved without search using this tractable comprehension

schema method.

The result of all of these discoveries takes the technology for developing really use-
ful and usable automated theorem proving applications a long way. IPR is both a strong
automated theorem proving program that explains its proofs in English and an easy to use

interactive prover that explains proofs in progress in a comprehensible way.

8.2 A Brief History of IPR

In 1993, I began by writing a prover for first-order logic. I was initially influenced by experience

with Bledsoe’s IMPLY [29] and McAllester’s Ontic [84]. My plan was to implement something

153

that would be as sensible and easy to use as these provers except that it would be a theorem
prover (like IMPLY) instead of a proof checker (like Ontic.) T wanted the program to write
a readable proof rather than having the human write a readable proof to be checked by

the computer.

The earliest implementation of IPR was a sequent-based prover. I read Smullyan’s
First-Order Logic [113] and followed his directions. Then T began to make improvements,
reinventing everything from free-variable semantic tableaux [54] to Brown’s depth-first non-

backtracking unification strategy [39].

I was also experimenting with the interface. I strove to have the prover present proofs
in progress in a way that was easy to understand. I implemented the tree navigation code for
the interface very early in the process and experimented with various conventions for displaying

Skolem terms.

In July 1993, T visited McAllester at MIT and Farmer, Guttman and Thayer at the
MITRE Corp. Farmer, et. al. had implemented IMPS [52], a sequent based proof checker for
higher-order logic. I was very impressed by their interface and began to try to make my system

as easy to use.

In late 1993 and early 1994, T implemented the congruence closure technique [85, 105]
into the unifier. It was at that time that the more complex equality problems were solved by

the prover.

At the same time, I experimented with the sequent calculus and its variations in-
cluding “lemmaizing” [5], mixed universal and rigid variables [18], various d-rules [8], equality
methods [18, 85] and unification strategies. In those early days, the prover was tested on
Pelletier’s problems [97] and was quite successful, although not enough to be competitive with

the provers that win the international contests.

In the Spring of 1994, T worked on adding rules for handling set theory. This included
the conservative comprehension schema and other simple rules for drawing conclusions about

classes as described in Section 4.2.

154

In the Summer of 1994, inspired by the n 4 1 challenge, T got more serious about
using a knowledge base automatically. At that time, I developed the non-clausal e-rule and
restrictions described in Chapters 2 and 3. The first theorems proved by IPR using knowledge

were from set theory.

During this period from 1993 through 1994, I was also developing the interface. 1
programmed the part of the user interface that allows the user to give commands. The user
was able to use equalities in the hypotheses to make arbitrary substitutions. The user was
able to tell the program to apply any of the logical rules to an appropriate formula. Once the
e-rule was invented, I also implemented the code for translating formulas into English. Until
that point, only the logical operators were in English. The code for producing English proofs

was also developed during this time.

From August 1994 through May 1996 I worked an unrelated project with Benjamin
Kuipers [111].} During that time, the only work I got done related to IPR was light writing and
editing of the technical reports describing the non-clausal e-rule, the associated strategies, the

comprehension schema, the congruence closure and other basic ideas behind TPR [106, 107].

In the Summer of 1996, I began working on the IPR code again in earnest. At
this point, I was most interested in its ability to prove theorems in advanced theories using
relatively large knowledge bases. I wanted to test the strength of my non-clausal e-rule and
the associated strategies. The main goal of my work that summer was to get IPR to succeed

at Example 6.1. In the middle of August 1996, IPR proved this example.

8.3 The Theorem n + 1 Challenge

There have been many factors motivating the work on IPR. One ambitious challenge has been
proposed: enter the first n statements from a textbook in mathematics with as little extra

information as possible and let the prover prove the next statement. This challenge was in

1 This project had begun in the Fall of 1992 but I worked on it to the exclusion of all else only during the
time mentioned. Because of this early association with Kuipers, the early versions of IPR used his Algernon
system to store and access the knowledge [47].

155

place at least as early as Hao Wang’s work in the late 1950s [116]. This has been called the

n + 1 problem or the theorem n + 1 challenge.

John Kelley’s text, General Topology [77], seems to be an excellent target for this
test since it is very thorough, includes the axioms of set theory on which the system may
be built, is apparently based on a system of axioms including only one proper schema (the
easily-implemented comprehension schema) and contains many different types of reasoning.
The version of the comprehension schema given by Kelley is implemented in IPR except that

IPR also allows for ur-elements.

A prover that could solve the n + 1 problem for all n would certainly be able to go
further and prove open questions in the area of mathematics covered by the text. A prover
that does this well will be very useful to mathematicians, physicists and others who could
benefit from an assistant reasoner. Therefore, I discuss here what seem to be the barriers that

remain between our current technology and the solution to the n + 1 challenge.

Fetching. Any prover attempting to solve this problem will have to use a large knowledge
base. This is true even if the challenge is restated so that only statements from “relevant”
sections are in the knowledge base. The IPR framework is a step toward solving the fetching
problem. TPR is particularly weak when a proof requires a good deal of rewriting. Barker-
Plummer’s prover, Gazer, implements a fetcher that is stronger on rewriting problems [11]
but more limited in non-Horn theories. The Gazing algorithm accomplishes this by planning
the entire (if linear) proof before applying any theorem. Barker-Plummer’s implementation
limited the application of theorems to exclude branching altogether and limited the formulas
input to the knowledge base to be nearly Horn. A combination of the ideas in Gazer and IPR
seems very promising. As in Gazing, proofs could be planned but the knowledge base would
have the more general form as in IPR and the plans would be allowed to branch. In order
to keep the complexity down, the plans would be formed in a more intelligent manner using

IPR’s strategies.

Other promising technology exists for helping to solve the fetching problem. For

156

example, Hahnle’s A-ordered tableaux make tremendous restrictions to the way knowledge

can be applied [64].

Rewriting. This problem has been solved to a great extent in many systems. Indeed, even
pure mathematicians frequently use softwares, such as Mathematica, that apply rewriting
techniques to help them prove theorems. The solution to the fetching problem mentioned
above would go quite far in the direction of controlling rewriting but some proofs will require
some of the more powerful rewriting techniques that are used by other systems [118, 122, 123].

This would be even more important for texts in more algebraic fields.

The current framework does not control rewriting well at all. There are many existing
provers that easily outperform it on problems that are Horn or otherwise related to rewriting.
There is no reason to believe that those methods will be impossible to combine with this
framework, thus creating a prover that will be able to solve the n 4+ 1 problem for more and

more n.

Set instantiation. In proofs such as Kelley’s proof of Tychonoff’s theorem, it is necessary to
construct a set that has certain properties. IPR can prove this theorem if we cheat by putting
an extra lemma into the knowledge base that contains the set needed in the proof or if we
interact once with the prover to tell it what that set must be. Methods such as higher-order
unification used in Andrews’ TPS prover [3] would need to be incorporated into a prover that
we want to discover this kind of proof without help. This is an area where much more work

1s needed.

Finding examples and counter-examples. IPR is able to find examples and counter-
examples as long as the needed example is mentioned in some lemma in the knowledge base.
For instance, IPR may be able to prove that there is a regular topological space that is not
normal if, for example, (1) there is a theorem in the knowledge base that mentions that a

certain space is regular or not normal and (2) that space happens to be regular and not

157

normal. Without this kind of knowledge some very strong higher-order reasoning seems to be

needed to solve this kind of problem.

Induction. There is not as much proof by induction in Kelley’s book as there would be in a
text on number theory or algebra. It appears that perhaps all of the induction in this text is
within the reach of a good fetcher assuming that the principle of mathematical induction, as
Kelley states it, is included in the knowledge base. Kelley’s principle of mathematical induction
is a first-order formula that simply states that every inductive subset of w 1s identical to w. If
we were to choose a number theory text that used a schema for its induction principle then the
problem of finding proofs by induction becomes more difficult. For information on successful

provers in this area, reference the Boyer-Moore provers [36] and the rippling provers [41].

Matthias Baaz et. al. recently demonstrated an excellent way of implementing induc-

tion and related inference rules in a tableau based prover [7].

Complexity. Finally, there is the simple fact that some proofs are just too long and complex
to be handled by existing methods with existing commonly used hardware. Proof planning

and analogy could help this problem by keeping the search space smaller.

There is another method, proposed long ago, for handling complex mathematical proofs.
That is, in Hao Wang’s words, the formation of “interlocked hierarchies of methods, and ...a
complex web of clearly understood, definite and deterministic algorithms...” [116]. What is
intended here is the combination of special methods, many of which will be decision procedures,
with a program that assigns each part of the proof to its appropriate method. In the words of
Woody Bledsoe,

The stumbling block to prover designers is the desire for a “magical” solution,

a “lodestone,”

a simple algorithm that will search out and eventually find a proof.
But alas, it requires more complicated mechanisms to do complicated reasoning;

the human prover uses a whole collection of methods of different sorts.

—Woody Bledsoe [33]

158

159

To my knowledge, such a project has not been undertaken on a scale large enough to

attempt the n+1 problem. However, this idea seems as promising today as it did 37 years ago.

8.4 Imitating Human Techniques.

Some people give me credit for imitating human reasoning techniques with the calculi T have
presented here. I do not deny this except to say that no one really knows how a human proves
theorems. It might be said that the calculus presented here resembles loosely what happens
on a conscious level when a human is doing certain types of reasoning. The goal has been

more to explain computer reasoning to humans than to imitate the human psyche.

Others criticize this resemblance as if it were a weakness in the calculus. I do not

understand this criticism. These detractors say something like the following.?

Since the characteristics of computers and of people are apparently quite dif-
ferent, no need exists for emulating the reasoning a person might employ, for the
objective is to design and implement powerful and effective procedures to be used in
a computer program that reasons; a study of how people solve problems, however,

might lead to important breakthroughs.

—Larry Wos [120]

The famous quotation attributed to Edsgar Dijkstra is also used: to ask whether a
computer can be intelligent is like asking whether a submarine can swim. The point is that
computers and humans presumably operate differently. We should expect that computers will
do some things better than people and vice-versa. I have no argument against any of these
remarks. I quite agree that “the objective is to design and implement powerful and effective

)

procedures to be used in a computer program that reasons.” It seems that the point being

made here 1s that this objective should be obtained by any means necessary. In other words:

if something works well, use it regardless of whether or not it resembles what we

think of as human reasoning.

21 do not mean to say that Larry Wos is one of the detractors. This quote sums up rather nicely the
argument that others use against the imitation of human techniques.

160

All of this T accept.

However, it absolutely does not follow that the imitation of human techniques 1is
excluded. In fact the detractors contradict the very statement that they imagine is supporting

them. They essentially say the following;:

if something works well, use it unless is resembles what we think of as human

reasoning.

This is not only a non sequiter, but in contradiction with the previous statement.

Surprisingly, the first statement, which is a paraphrase of the words of Larry Wos,
supports very strongly the promise of the idea of the imitation of human techniques. Human
techniques, whatever they are, obviously work better than current computer techniques on

many hard problems.

I am not arguing here that my techniques mirror human reasoning in any deep way. I
am only arguing that if they do mirror human reasoning in any way at all, this is not something

that anyone should be embarrassed about or surprised by.

8.5 Synergistic Effect

The success of IPR on examples such as Example 6.1 is due to the combination of four factors:
the e-rule, the strategies mentioned in Section 3.3, breadth-first unification and the use of the

non-clausal form.

The strength of breadth-first unification is that it tries all possibilities without back-
tracking. It is not used with other tableau systems because it is very expensive. It must try
around n* combinations of closing substitutions where k is the number of branches and n is
the number of closing substitutions per branch. The strategies applied with the e-rule reduce

the number of branches tremendously and thereby make breadth-first unification viable.

The e-rule allows any number of connected formulas (the formulasin U’'UV’) and those
formulas are not added to the tableau. Therefore, it produces tableaux with fewer branches

than other tableau expansion rules. Thus, 1t demonstrates its strength when combined with

breadth-first unification while other tableau expansion rules (it is widely believed) do not

benefit from the use of breadth-first unification.

These strategies (particularly the n 4 m strategy) cause TPR to prefer to apply knowl-
edge which will keep the number of branches low. Thus, the combination of the strategies
and the e-rule make breadth-first unification a more reasonable unification strategy. Even the
combination of the e-rule with breadth-first unification is not able to prove Example 6.1 in a
reasonable amount of time without the application of the strategies for selecting knowledge as

described in Section 3.3.

If the e-rule, the strategies or breadth-first unification were used alone, or together
with other widely-used techniques, none of them would significantly increase the power of the

associated theorem proving system. However, their combination is quite powerful.

The last factor involved in the success of IPR is the use of the non-clausal form
described in Section 2.3.2. With the non-clausal form there are fewer items in the knowledge
base (Section 2.3.1.) Since each of the items in the knowledge base must be searched for
connections into the tableau, the benefit of having fewer items is clear. Furthermore, the
items in the knowledge base are at a slightly higher level. This allows matches to be made
earlier in the proof search process. In typical problems, the advantages of the use of the non-
clausal form are relatively small compared to the advantages gained by the other novelties

mentioned above.

In short, the strength of the prover on examples such as Example 6.1 comes primarily
from the combination of the use of the e-rule, the strategies for keeping the complexity of the
tableau down and the use of breadth-first unification. The use of the non-clausal form also

contributes to efficiency.

8.6 Future Work

The calculus presented here is compatible with many of the refinements studied in the lit-
erature of clausal tableaux. It would be interesing to explore the benefits of adding some

of these refinements. For example, the problem of adding a regularity condition or dynamic

161

lemma generation in the context of breadth-first unification might bring up some interesting

theoretical and implementational questions.

There is a possibility to obtain some of the advantages to using clausal form while
maintaining some of the advantages of the non-clausal form. One such possibility is to store
the knowledge internally in clausal form and display it to the user in the non-clausal form.
This might bring other problems into the interface, such as introducing Skolem functions in
a way that might surprise the user but they could probably be handled without too much
difficulty. The problem of keeping new Skolem functions distinct from the Skolem functions in

the knowledge base would not be difficult to solve.

It is likely that more work on the ranking that TPR applies to theorem applications
when it is fetching could be improved. Other ideas related to the ones explained in Section 3.3

could be implemented and tested on harder problems.

Some techniques for selecting input clauses recently developed for clausal tableaux
may be compatible with the goals of this project. Hahnle’s A-ordered tableau ideas [62] may
augment TPR’s selection criteria well. The problem faced here is that the user (or perhaps the
program) needs to decide on a selection function or an ordering on terms and predicates. Tt is

this kind of decision that we would like to keep away from the non-expert user.

There is also the possibility of an extension or generalization of the planning mech-
anism used in Gazer [11]. The techniques used by TPR for knowledge selection are local
whereas if the proof is planned, then we have a global view of the proof that should help in
the decision making.

Furthermore, ideas from learning and training software could be used to train IPR to

be more intelligent in its selection of theorems.?

Brown’s Rule is the only substitution of equals that IPR currently applies automat-

ically. Further experimentation may recommend other rules in the future, especially rules

3This idea was suggested by John Case of the University of Delaware.

162

related to higher-order logic (Section 4.2.4.) Tt should also be rewarding to research the com-

patibility of complete methods for handling equality with the current calculus and goals.

Although it takes away from the general-purpose nature of IPR, the method used by
Frank Brown for handling set theory seems promising [39]. The procedure I envision is to
write tableau expansion and branch closure rules for each axiom of, say, Kelley’s set theory.
A related problem is to try to have classes be constructed intelligently as is needed for the
satisfactory solution of the problem posed by Wos to test a system claiming to solve his eighth

research problem [120].

Experimentation has convinced me that control issues are an extremely important
factor contributing to the success or failure of a program using any given logical calculus. In
what order should rules be applied? How often should equality, breadth-first unification and
trivial e-rule applications be applied and how aggressively? These and many other similar
questions are typically left open by the definition of a calculus but their answer makes an

enormous difference in the success of an implementation.

Many systems allow (or require) the user to include some strategic information along
with the knowledge. This information is used to help the program know how or when to use
the knowledge. It seems that it would not be difficult for a non-expert user to have the ability
to know, at some level, how certain knowledge should or should not be applied. A system for

allowing the user to inform the program of such preferences ought to improve performance.

The IPR prover has such a natural interface that it is possible to write educational
software based on the prover. A course could be designed to teach proof skills and the students
could use a limited version of IPR to prove theorems. For example, a limited version of IPR,
could be written that gives hints, recommendations or just a list of possibilities instead of
taking steps automatically. The student would have to decide which theorem to apply and
how to apply it. The student would have to decide how to instantiate variables in a proof.
The prover could give a list of possible instantiations or a list of possible theorems to apply.

The desired difficulty of the course would determine how much help the prover would offer.

Various aspects of the interface need to be improved and augmented. It would be easy

163

to give the user the ability to select from the possible ways a branch can be closed. When the
user makes this choice, the prover would apply that substitution across the tree, closing many
branches and cutting others off using the condense algorithm [94]. Tt would also be easy to
program IPR to show the user all the top-ranked options for applying theorems and allow the
user to make a selection. All of the information needed to do this is stored on the tableau. All

that is lacking is the interface to the user.

It would be nice to have time to try more examples from advanced mathematics. It
takes time to try example challenge problems because the knowledge all has to be entered and
checked. The examples given in this dissertation only give an idea of the kind of reasoning

that the prover can do.

The future of automated theorem proving looks promising. Consider a comparison
between the future of proof checking to the future of automated proof discovery on hard
examples. It will always take several hours, days or weeks for an expert at a proof checking
system to program an acceptable proof of a difficult example. The amount of time this takes is
not decreasing. The advantage to proof checking software is that, with enough time, the user
can check the proof of almost any theorem for which a proof is known. However, the time it
takes for automated theorem proving software to prove difficult examples is always decreasing
and the difficulty of the problems that are being solved by these systems is always increasing.
There is no reason to believe that this trend is going to end in the near future. Unless there
is some as yet invisible bound on this sequence, automated theorem proving programs will be
able to prove almost any theorem that a person would ever care to write out in a checkable
form in less time than it takes the person to write it. It seems more reasonable to expect
that the technology that lies between these extremes will prove most successful. That is to
say that interactive theorem provers, with very strong underlying ATP engines, will be able to
outperform both pure ATP and pure proof checking systems with some little bit of guidance

from a user.

We close with a challenge that seems to be just out of reach of the IPR prover. Here

164

165

1s the statement of the theorem.

(continuous-from-to(¢, S, T') A Hausdorff(T')) D
closed-in(T'y, S x, T')

The proof should be found in the theory given in Figure 8.1. The theory is not minimal for
the problem, which makes it harder. Here f(z) is an abbreviation for, say, apply(f,) and I'¢

stands for the graph of f as a set.

166

the definition of closed
closed-in(4, X) &
(Vy)((y € top-to-class(X) Ay & A) D
(3G)(y € G Aopen-in(G, X) Adisjoint(G, A)))

the definition of Hausdorff:
(VX)(Hausdorff(X) < (VA)(VB)((A € top-to-class(X) A B € top-to-class(X)A
A # B) D (3G1)(3G2)(open-in(G1, X) A open-in(G2, X) A A € G1A
B € G2 Adisjoint(G1, G2))))

the definition of a continuous function
continuous-from-to(f, X, Y) &
(function-from-to(f, top-to-class(X), top-to-class(Y))A
(VG)(open-in(G,Y) D open-in(f~1(G), X)))

the definition of product topology:
(open-in(A, X) A open-in(B,Y)) D
open-in(A x B, X x,;Y)

part of the definition of product of topological spaces:
X € top-to-class(S x, T) D
(3A)(3B)(A € top-to-class(S) A B € top-to-class(T) A X = (A, B))

the definition of product:
XeSxTe (FAEB)(AeSABeTAX =(AB))

the definition of disjoint:
(VA)(VB)(disjoint(A, B) & —=(FY)(Y € AAY € B))

a fact about inverse images

zefTHA) & fla)ye A

a fact about graphs
(a,b) €eT¢ b= f(a)

a basic fact about functions
(function-from-to(f, A, By Aa € A) D f(z) € B

Figure 8.1: The knowledge for the challenge.

(1

Bibliography

R. Abraham, J. E. Marsden, and T. Ratiu. Manzfolds, Tensor Analysis, and Applica-

tions. Springer-Verlag, second edition, 1988.

Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory: To Truth

Through Proof. Academic Press, 1986.

Peter B. Andrews, Matthew Bishop, Sunil Issar, Dan Nesmith, Frank Pfenning, and
Hongwei Xi. TPS: A theorem proving system for classical type theory. Technical

Report 94-166, Department of Mathematics, Carnegie Mellon University, 1994.

Peter B. Andrews, Dale A. Miller, Eve Longini Cohen, and Frank Pfenning. Automating
higher-order logic. In W. W. Bledsoe and D. W. Loveland, editors, Automatic Theo-
rem Proving: After 25 Years, volume 29 of Contemporary Mathematics, pages 169-192.

American Mathematical Society, 1984.

O. W. Astrachan and M. E. Stickel. Caching and lemmaizing in model elimination
theorem provers. In Proc. 11th Conference on Automated Deduction, volume 607 of

Lecture Notes in Artificial Intelligence, pages 224-238. Springer Verlag, 1992.

Owen Astrachan. METEOR: Exploring model elimination theorem proving. Journal of
Automated Reasoning, 13(3):283-296, 1994.

Matthias Baaz, Uwe Egly, and Christian G. Fermuller. Lean induction principles for
tableaux. In Didier Galmiche, editor, Automated Reasoning with Analytic Tableauz and
Related Methods, volume 1227 of Lecture Notes in Artificial Intelligence, pages 62-75.

Springer-Verlag, May 1997.

167

(8]

[15]

[16]

Matthias Baaz and Christian G. Fermuller. Non-elementary speedups between different
versions of tableaux. In Peter Baumgartner, Reiner Hahnle, and Joachim Posegga,
editors, Proc. 4th Workshop on Deduction with Tableauz and Related Methods, St. Goar,

Germany, LNCS 918, pages 217-230. Springer-Verlag, 1995.

L. Bachmair and N. Dershowitz. Completion for rewriting modulo a congruence. The-

oretical Computer Science, 67(2 & 3):173-201, 1989.

Sidney C. Bailin and Dave Barker-Plummer. Z-match: An inference rule for incremen-
tally constructing set instantiations. Journal of Automated Reasoning, 11(3):391-428,
1993.

Dave Barker-Plummer. Gazing: An approach to the problem of definition and lemma

use. Journal of Automated Reasoning, 8(3):311-344, 1992.

Dave Barker-Plummer and Alex Rothenberg. The Gazer theorem prover. In D. Kapur,
editor, Proceedings of the Eleventh International Conference on Automated Deduction,

volume 607 of Lecture Notes in Computer Science, pages 726-730. Springer-Verlag, 1992.

P. Baumgartner. A model elimination calculus with built-in theories. In Fronhofer,
Hahnle, and Kaufl, editors, Theorem Proving with Analytic Tableaur and Related Meth-

ods, 1992.

P. Baumgartner and U. Furbach. PROTEIN: A PROver with a Theory Extension
Interface. In A. Bundy, editor, Automated Deduction - CADE-12, volume 814 of Lecture
Notes in Artificial Intelligence, pages 769-773. Springer, 1994. Available in the WWW |

URL: http://www.uni-koblenz.de/ag-ki/Systems/PROTEIN/.

P. Baumgartner, U. Furbach, and I. Niemela. Hyper Tableaux. In JELIA 96. European

Workshop on Logic in Al, Springer, LNCS, 1996.

B. Beckert and J. Posegga. lear('P: Lean, tableau-based deduction. Journal of Auto-

mated Reasoning, 15(3):339-358, 1995.

168

[17]

[21]

Bernhard Beckert. Adding equality to semantic tableaux. In Krysia Broda, Marcello
D’Agostino, Rajeev Goré, Rob Johnson, and Steve Reeves, editors, Proc. 3rd Workshop
on Theorem Proving with Analytic Tableaur and Related Methods, pages 29-42, April

1994.

Bernhard Beckert. A completion-based method for mixed universal and rigid E-
unification. In Alan Bundy, editor, Proc. 12th Conference on Automated Deduction
CADE, Nancy/France, volume 814 of Lecture Notes in Artificial Intelligence, pages 678
692. Springer-Verlag, 1994.

Bernhard Beckert, Stefan Gerberding, Reiner Hahnle, and Werner Kernig. The tableau-
based theorem prover SYAP for multiple-valued logics. In Proceedings, 11th Interna-
tional Conference on Automated Deduction (CADE), Saratoga Springs, NY, LNCS 607.

Springer, 1992.

Bernhard Beckert, Reiner Hahnle, and Peter H. Schmitt. The even more liberalized
d-rule in free variable semantic tableaux. In Georg Gottlob, Alexander Leitsch, and
Daniele Mundici, editors, Proceedings of the third Kurt Godel Colloguium KGC’93,
Brno, Czech Republic, volume 713 of Lecture Notes in Computer Science, pages 108—
119. Springer-Verlag, August 1993.

Paul Bernays. Aziomatic Set Theory: with a Historical Introduction by Abraham A.
Fraenkel. Dover Publications, 1991. This Dover edition, first published in 1991, is
an unabridged and unaltered republication of the second edition (1968) of the work first
published by the North-Holland Publishing Company, Amsterdam, in 1958 in their series

Studies in Logic and The Foundations of Mathematics.
E. W. Beth. The Foundations of Mathematics. North Holland, 1959.

E. W. Beth. On machines which prove theorems. In Jorg Siekmann and Graham
Wrightson, editors, Automation of Reasoning, volume 1, pages 79-90. Springer-Verlag,
1983. Reprinted from Simon Stevin Wis-en Naturkundig Tidschrift, Vol. 32, pages

49-60, 1958.

169

[24]

Richard L. Bishop and Samuel 1. Goldberg. Tensor Analysis on Manifolds. Dover
Publications, 1980. This Dover edition, first published in 1980, is an unabridged and
corrected republication of the work originally published by The Macmillan Company in
1968.

W. W. Bledsoe and L. J. Henschen. What is automated theorem proving? Journal of

Automated Reasoning, 1(1), 1985.

Woodrow W. Bledsoe. Non-resolution theorem proving. Artificial Intelligence, 9:1-35,
1977.

Woodrow W. Bledsoe. Thad a dream: AAAI Presidential address, 19 August 1985. The

AT Magazine, pages 57-61, 1985.

Woodrow W. Bledsoe. Interactive proof presentation. In J. L. Sassez and Gordon

Plotkin, editors, Computational Logic, pages 136-165. MIT Press, 1991.

Woodrow W. Bledsoe and Peter Bruell. A man-machine theorem-proving system. Ar-

tificial Intelligence, 5:51-72, 1974.

Woodrow W. Bledsoe and Guohui Feng. Set-Var. Journal of Automated Reasoning,
11(3):293-314, 1993.

Woodrow W. Bledsoe and Larry M. Hines. Variable elimination and chaining in a
resolution-based prover for inequalities. In W. Bibel and R. Kowalski, editors, Proceed-
ings of the Fifth Conference on Automated Deduction, volume 87 of Lecture Notes in

Computer Science, pages 70-87. Springer Verlag, 1980.

Woody Bledsoe. Splitting and reduction heuristics in automatic theorem proving. Ar-
tifictal Intelligence, 2:55-T7, 1971. also in Automation Of Reasoning - Classical Papers
On Computational Logic, Vol. II, 1967-1970, ed. J. Siekmann And G. Wrightson,
Springer-Verlag, Berlin, 1983, pp. 508-530.

Woody Bledsoe. Some thoughts on proof discovery. Technical report, Microelectronics

and Computer Technology Corporation, June 1986.

170

[34]

[35]

[36]

[43]

[44]

George Boole. An Investigation of the Laws of Thought. Walton, London, 1854.

Reprinted by Dover Books, New York, 1954.

S. Bose, E. M. Clarke, D. E. Long, and S. Michaylov. Parthenon: a parallel theorem

prover for non-horn clauses. Journal of Automated Reasoning, 8:153-181, 1992.

Robert S. Boyer, M. Kaufmann, and J Strother Moore. The Boyer-Moore theorem
prover and its interactive enhancement. Computers and Mathematics with Applications,

29(2):27-62, 1995.

Robert S. Boyer and J. Strother Moore. A Computational Logic Handbook, volume 23

of Perspectives in Computing. Academic Press, 1988.

Robert S. Boyer and J. Strother Moore. A theorem prover for a computational logic. In
M. E. Stickel, editor, Proceedings of the Tenth International Conference on Automated
Deduction, volume 449 of Lecture Notes in Computer Science, pages 1-15. Springer
Verlag, 1990.

Frank M. Brown. Towards the automation of set theory and its logic. Artificial

Intelligence, 10(3):281-316, 1978.

Bruno Buchberger. Natural language proof in nested cells representation. In X. Huang,
J. Pelletier, F. Pfenning, and J. Siekmann, editors, First International Workshop on

Proof Transformation and Presentation, April 1997.

A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, and A. Smaill. Rippling: A heuristic

for guiding inductive proofs. Artificial Intelligence, 62:185-253, 1993.

Alan Bundy. The Computer Modelling of Mathematical Reasoning. Academic Press,
1983.

D. Cantone, A. Ferro, and E. G. Omodeo. Computable Set Theory, volume 1. Oxford

University Press, 1989.

Lewis Carroll. Through the Looking Glass: And What Alice Found There. Puffin

Classics. Puffin, 1996.

171

[45]

[46]

[52]

[53]

[54]

Chin-Liang Chang and Richard Char-Tung Lee. Symbolic Logic and Mechanical Theo-

rem Proving. Academic Press, London, 1973.

Shang-Ching Chou. Mechanical Geometry Theorem Proving. D. Reidel Publishing,
1988.

J. M. Crawford and B. J. Kuipers. Algernon — a tractable system for knowledge repre-
sentation. SIGART Bulletin, 2(3):35-44, June 1991.

B. 1. Dahn, J. Gehne, T. Honigmann, L. Walther, and A. Wolf. Integrating logical
functions with ILF. Technical report, Institut fur Mathematik der Humboldt-Universitat

zu Berlin, 1994.

Martin Davis. A computer program for Presburger’s algorithm. In Summer Inst. for

Symbolic Logic, pages 215-233. Cornell Press, 1957.

Martin Davis. The prehistory and early history of automated deduction. In Jorg
Siekmann and Graham Wrightson, editors, Automation of Reasoning, volume 1, pages

1-28. Springer-Verlag, 1983.

Nachum Dershowitz and Jean-Pierre Jounnaud. Rewrite systems. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, volume B: Formal Models and Se-

mantics, pages 243-320. Elsevier Science Pub. B. V./MIT Press, 1990.

W. M. Farmer, J. D. Guttman, and F. J. Thayer. IMPS: System description. In
D. Kapur, editor, Proceedings of the Eleventh International Conference on Automated
Deduction, volume 607 of Lecture Notes in Computer Science, pages 701-705. Springer-
Verlag, 1992.

William M. Farmer, Joshua D. Guttman, and F. Javier Thayer. IMPS: An interactive
mathematical proof system. Journal of Automated Reasoning, 11(2):213-248, August
1993.

Melvin C. Fitting. Furst-Order Logic and Automated Theorem Proving. Springer-Verlag,

New York, second edition, 1996.

172

[55]

J. Gallier, W. Snyder, P. Narendran, and D. Plaisted. Rigid E-unification is NP-
complete. In Proc. Logic in Computer Science LICS, pages 218-227. IEEE Computer

Society Press, 1988.

H. Gelernter, J. R. Hansen, and D. W. Loveland. Empirical explorations of the geometry-
theorem proving machine. In Jorg Siekmann and Graham Wrightson, editors, Automa-
tion of Reasoning, volume 1, pages 99-122. Springer-Verlag, 1983. Reprinted from Proc.
West. Joint Comp. Conf., May 1960, pages 143-147.

Gerhard Gentzen. Investigation into logical deduction. In M. E. Szabo, editor, The
Collected Papers of Gerhard Gentzen, pages 68-131. North-Holland Publishing Co.,

1969.

Robert Givan and David McAllester. New results on local inference relations. In Princi-
ples of Knolwedge Representation and Reasoning: Proceedings of the Third International

Conference, pages 403-412. Morgan Kaufman Press, October 1992.

Robert Givan, David McAllester, and Sameer Shalaby. Natural language based inference
procedures applied to Schubert’s steamroller. In Proc. 9th National Conf. on Artificial

Intelligence (AAAI-91), pages 915-920. Morgan Kaufmann Publishers, July 1991.

Kurt Godel. The Consistency of the Aziom of Choice and the Generalized Continuum

Hypothesis with the Azxioms of Set Theory. Princeton University Press, 1940.

M. Gordon. HOL: A proof generating system for higher-order logic. In G. Birtwistle and
P. A. Subrahmanyam, editors, Current Trends in Hardware Verification and Automated

Theorem Proving, pages 77-128. Springer-Verlag, 1989.

Reiner Hahnle and Stefan Klingenbeck. A-ordered tableaux. Journal of Logic and
Computation, 1996, to appear. Available as Technical Report 26/95 from University
of Karlsruhe, Department of Computer Science via anonymous ftp to ftp.ira.uka.de

under pub/uni-karlsruhe/papers/techreports/1995/1995-26.ps.gz.

173

[63]

[66]

Reiner Hahnle, Neil Murray, and Erik Rosenthal. Completeness for linear regular nega-
tion normal form inference systems. In Zbigniew Ras, editor, Proc. International Sympo-
stum on Methodologies for Intelligent Systems, Charlotte, North Carolina, Lecture Notes

in Artificial Intelligence. Springer Verlag, 1997.

Reiner Hahnle and Christian Pape. Ordered tableaux: Extensions and applications.
In Didier Galmiche, editor, Proc. International Conference on Automated Reasoning
with Analytic Tableauz and Related Methods, Pont-a-Mousson, France, volume 1227 of

Lecture Notes in Artificial Intelligence, pages 173-187. Springer-Verlag, 1997.

R. Hasegawa. MGTP: A model generation theorem prover—its advanced features and
applications. In Didier Galmiche, editor, Automated Reasoning with Analytic Tableauz
and Related Methods, volume 1227 of Lecture Notes in Al, pages 1-15. Springer-Verlag,

May 1997.

R. Hasegawa and Y. Shirai. Constraint propagation of CP and CMGTP: Experiments
on quasigroup problems. In Proceedings of the Twelfth International Conference on

Automated Deduction, 1994.

D. Hilbert and W. Ackermann. Principles of Mathematical Logic. Chelsea, 1950. This

is a translation of the second edition of Grundzige der Theoretischen Logik.

Larry M. Hines. Hyper-chaining and knowledge-based theorem proving. In E. Lusk and
R. Overbeek, editors, Proceedings of the Ninth International Conference on Automated

Deduction, pages 469-486. Spring-Verlag, 1988.

Larry M. Hines. Str+veC: The Str4ve-based subset prover. In Mark Stickel, editor,
Proceedings of the Tenth International Conference on Automated Deduction, volume 449

of Lecture Notes in Computer Science, pages 193-206. Springer-Verlag, 1990.

Larry M. Hines. The central variable strategy of Str+ve. In D. Kapur, editor, Proceed-
wngs of the FEleventh International Conference on Automated Deduction, volume 607 of

Lecture Notes in Computer Science, pages 35-49. Springer-Verlag, 1992.

174

[71]

[72]

[80]

Jaakko Hintikka. Form and content in quantification theory. Acta Philosohica Fennica,

8:7-55, 1955.

Jaakko Hintikka. The Principles of Mathematics Revisited. Cambridge University

Press, 1996.

Xiaorong Huang and Armin Fiedler. Presenting machine-found proofs. In Proceedings

of 13th International Conference on Automated Deduction, 1996.

Xiaorong Huang, Manfred Kerber, Michael Kohlhase, Erica Melis, Dan Nesmith, Jorn
Richts, and Jorg Siekmann. Q-MKRP: A proof development environment. In Alan
Bundy, editor, Proceedings of the 12th International Conference on Automated Deduc-
tion, volume 814 of Lecture Notes in Artificial Intelligence, pages 788-792, Nancy, France,

1994. Springer-Verlag, Berlin, Germany.

Ortrun Ibens and Reinholt Letz. Subgoal alternation in model elimination. In Didier
Galmiche, editor, Automated Reasoning with Analytic Tableaur and Related Methods,

volume 1227 of Lecture Notes in Al pages 201-215. Springer-Verlag, May 1997.

D. Kapur and N. Narendran. An equational approach to theorem proving in first-order
predicate calculus. In Proc. 9th Int. Joint Conf. on Artificial Intelligence (IJCAI-85),

pages 1146-1153, 1985.

John Kelley. General Topology. The University Series in Higher Mathematics. D. Van

Nostrand Company, 1955.

D. E. Knuth and P. B. Bendix. Simple word problems in universal algebras. In Leech,

editor, Computational Problems in Abstract Algebra, pages 263-267. Pergamon Press,

1970.

Michael Kohlhase. Higher-order tableaux. submitted to the Tableau Workshop 1995,
Koblenz.

Leslie Lamport. ETgX: A Document Preparation System. Addison-Wesley Publishing

Company, second edition, 1994.

175

176

[81] R. Letz, K. Mayr, and C. Goller. Controlled integration of the cut rule into connection

tableau calculi. Journal of Automated Reasoning, 13(3):297-338, December 1994.

[82] Reinhold Letz, Johann Schumann, Stephan Bayerl, and Wolfgang Bibel. SETHEO: A

high-perfomance theorem prover. Journal of Automated Reasoning, 8(2):183-212, 1992.

[83] D.W. Loveland. A simplified format for the model elimination procedure. Journal of
the ACM, 16(3):233-248, July 1969.

[84] David McAllester. Ontic: A Knowledge Representation Language for Mathematics.
MIT Press, 1989.

[85] David McAllester. Grammar rewriting. In D. Kapur, editor, Proceedings of the Eleventh
International Conference on Automated Deduction, volume 607 of Lecture Notes in Ar-

tificial Intelligence, pages 124-138. Springer-Verlag, June 1992.

[86] David McAllester and Robert Givan. Natural language syntax and first order inference.
Artificial Intelligence, 56:1-20, 1992.

[87] David McAllester and Robert Givan. Taxonomic syntax for first order inference. Jour-

nal of the ACM, 40(2):246-283, April 1993.

[88] John McCarthy. Recursive functions of symbolic expressions and their computation by

machine (Part I). Communications of the ACM, 3(3):184-195, April 1960.

[89] William McCune. Solution of the Robbins problem. Journal of Automated Reasoning.

to appear.

[90] Elliott Mendelson. Introduction of Mathematical Logic. Mathematics Series.

Wadsworth & Brooks/Cole, 3rd edition, 1987.
[91] James R. Munkres. Topology: A First Course. Prentice-Hall, Inc., 1975.

[92] G. Nelson and D. Oppen. Fast decision procedures based on congruence closure. Journal

of the ACM, 27(2):356-364, 1980.

177

[93] A. Newell, J. C. Shaw, and H. A. Simon. Empirical explorations with the logic theory

machine. In Proc. West. Joint Comp. Conf., pages 218-239, 1957.

[94] F. Oppacher and E. Suen. HARP: A tableau-based theorem prover. Journal of Auto-

mated Reasoning, 4:69-100, 1988.
[95] S. Owen. Analogy for Automated Reasoning. Academic Press, Inc., 1990.

[96] Lawrence C. Paulson. Set theory for verification: I. from foundations to functions.

Journal of Automated Reasoning, 11:353-389, 1993.

[97] Francis Jeffry Pelletier. Seventy-five problems for testing automatic theorem provers.

Journal of Automated Reasoning, 2:191-216, 1986.

[98] G. Polya. Mathematics and Plausible Reasoning. Princeton University Press, 1954.

Two volumes.

[99] Joachim Posegga. Deduction based on Shannon graphs. In Proceedings GWAI-92,
Bonn, LNCS. Springer-Verlag, 1992.

[100] Dag Prawitz. An improved proof procedure. Theoria, 26:102-139, 1960. Reprinted
in Automation of Reasoning I edited by Seikmann and Wrightson, pages 162-199, 1983,

Springer-Verlag.

[101] Art Quaife. Automated deduction in von Neumann-Bernays-Godel set theory. Journal

of Automated Reasoning, 8(1):91-148, February 1992.

[102] Art Quaife. Automated Development of Fundamental Mathematical Theories, volume 2

of Automated Reasoning Series. Kluwer Academic Publishers, 1992.

[103] Willard Van Orman Quine. Set Theory and its Logic. The Belknap Press of Harvard

University Press, revised edition, 1969.

[104] J. A. Robinson. A machine-oriented logic based on the resolution principle. Journal of

the ACM, 1(12):23-41, 1965.

[105] Robert E. Shostak. An algorithm for reasoning about equality. Comm. of the ACM,
21(2):583-585, 1978.

[106] Benjamin Shults. The creation and use of a knowledge base of mathematical theorems

and definitions. Technical Report ATP-127, The University of Texas at Austin, 1995.

[107] Benjamin Shults. A framework for the creation and use of a knowledge base of mathe-
matical theorems and definitions. Technical Report ATP-127a, The University of Texas

at Austin, 1995.

[108] Benjamin Shults. Challenge problems in first-order theories. Association of Automated

Reasoning Newsletter, (34):5-8, October 1996.

[109] Benjamin Shults. A framework for using knowledge in tableau proofs. In Didier
Galmiche, editor, Automated Reasoning with Analytic Tableaur and Related Methods,

volume 1227 of Lecture Notes in Al pages 328-342. Springer-Verlag, May 1997.

[110] Benjamin Shults. TPR and English proofs. In X. Huang, J. Pelletier, F. Pfenning,
and J. Siekmann, editors, First International Workshop on Proof Transformation and

Presentation, April 1997.

[111] Benjamin Shults and Benjamin Kuipers. Proving properties of continuous systems:

qualitative simulation and temporal logic. Artificial Intelligence, 92:91-129, 1997.

[112] Donald Simon. Checking natural language proofs. In E. Lusk and R. Overbeek, editors,
Proceedings of the Ninth International Conference on Automated Deduction, volume 310

of Lecture Notes in Computer Science, pages 141-150. Springer-Verlag, 1988.

[113] Raymond M. Smullyan. First-Order Logic. Dover Publications, New York, second

corrected edition, 1995. First published 1968 by Springer-Verlag.
[114] Daniel Solow. How to Read and Do Proofs. John Wiley & Sons, Inc., 1982.

[115] Mark E. Stickel. A Prolog technology theorem prover: a new exposition and implemen-

tation in prolog. Theoretical Computer Science, 104:109-128, 1992.

178

[116] Hao Wang. Proving theorems by pattern recognition —I. In Jorg Sieckmann and Graham
Wrightson, editors, Automation of Reasoning, volume 1, pages 229-243. Springer-Verlag,
1983. Reprinted from Communications of the Association for Computing Machinery,

Vol. 3, No. 4, April 1960.

[117] Hao Wang. Toward mechanical mathematics. In Jorg Siekmann and Graham Wright-
son, editors, Automation of Reasoning, volume 1, pages 244-264. Springer-Verlag, 1983.

Reprinted from IBM Journal of Research and Development, 4, 2-22, 1960.

[118] Stephen Wolfram. The Mathematica Book. Cambridge University Press, third edition,

1996.
[119] Larry Wos. Editorial: A journal is born. Journal of Automated Reasoning, 1(1), 1985.

[120] Larry Wos. Automated Reasoning: 33 Basic Research Problems. Prentice-Hall, Engle-

wood Cliffs, 1988.

[121] Larry Wos. Automated reasoning: It cannot exist. Keynote Address at CADE 92,

Saratoga Springs, June 1992.

[122] Larry Wos, Ross Overbeek, Ewing Lusk, and Jim Boyle. Automated Reasoning: Intro-

duction and Applications. McGraw-Hill, Inc., second edition, 1992.

[123] Hantao Zhang. Herky: High performance rewriting in RRL. In D. Kapur, editor,
Proceedings of the Eleventh International Conference on Automated Deduction, volume

607 of Lecture Notes in Computer Science, pages 696-700. Springer-Verlag, 1992.

[124] Hantao Zhang and Deepak Kapur. First-order theorem proving using conditional rewrite
rules. In E. Lusk and R. Overbeek, editors, Proceedings of the Ninth International
Conference on Automated Deduction, volume 310 of Lecture Notes in Computer Science,

pages 1-20. Springer-Verlag, 1988.

179

Vita

Benjamin Price Shults was born in Austin, Texas on August 31, 1968, the son of Lynda Mae
Shults and Fount Lee Shults. Mr. Shults attended high school at Honeoye Falls-Lima High
School in Honeoye Falls, New York. There he concentrated academically on mathematics and
physics and wrote a special report on Einstein’s theories of relativity. He was also honored for
his accomplishments on the swim team, soccer team and in musical drama. After completing
his high school work in 1986, he entered Colgate University in Hamilton, New York. At Colgate,
he pursued his interests in music, philosophy and physics while majoring in mathematics. He
received a degree of Bachelor of Arts magna cum lauda with high honors in Mathematics
from Colgate University in 1990. In September 1990 he entered the Graduate School of the
University of Texas at Austin. His initial interests were in topology but he soon decided that
it should be possible to program a computer to be helpful in proving theorems and joined
Woody Bledsoe’s vision. In October of 1992, he married Alice Elaine Neff. He also spent a
couple of years while in graduate school working on a project with Benjamin Kuipers in which
they developed a program which would check whether statements in temporal logic were true

of the solutions to incompletely specified differential equations.

Permanent address: P.O. Box 753

Gambier, Ohio 43022

This dissertation was typeset with IXTEX* by the author using the U.T. Austin Doctoral

Dissertation Format - Version 1.1-a by Young. U. Ryu with some fixes by Miguel A. Lerma.

{IATEX is a document preparation system developed by Leslie Lamport as a special version of Donald

Knuth’s T X Program.

180

