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Event: Start with the initial nqthm theory.

; A Mechanical Checking of a Theorem About a Card Trick

; Robert S. Boyer, May 22, 1991

; This is a formalization, in the Nqthm logic, of a card trick theorem
; that de Bruijn taught Huet, Huet taught Moore, and Moore taught me.
; Mine differs from a treatment of the same problem by Moore in that
; he uses oracles to simulate shuffling, whereas I use a merge
; predicate.

; Here is Moore’s statement of the trick:

; Suppose you have a deck of cards of even length. Suppose the cards
; alternate between red ones and black ones. Cut the deck into two
; piles, a and b. Shuffle a and b together. Then the following is
; true of the shuffled deck. If the bottom-most cards in a and b are
; of different color, then when the cards of the shuffled deck are
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; taken from the top in adjacent pairs, each pair contains a card of
; each color. On the other hand, if the bottom-most cards in a and b
; are the same color, the above pairing property holds after rotating
; the shuffled deck by one card, i.e., moving the bottom card to the
; top.
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; Now on to my formalization. We first define the six functions
; needed in the statement of the theorem. The main, all encompassing,
; theorem is stated at the very end, and is named ‘‘all’’.

; Intuitively, we imagine that cards are arbitrary objects, but
; numbers are ‘‘red’’ and nonnumbers are ‘‘black.’’

Definition:
opposite-color (x , y) = (((x ∈ N) ∧ (y 6∈ N)) ∨ ((y ∈ N) ∧ (x 6∈ N)))

Definition:
alternating-colors (x )
= if (x ' nil) ∨ (cdr (x ) ' nil) then t

else opposite-color (car (x ), cadr (x ))
∧ alternating-colors (cdr (x )) endif

Definition:
paired-colors (x )
= if (x ' nil) ∨ (cdr (x ) ' nil) then t

else opposite-color (car (x ), cadr (x )) ∧ paired-colors (cddr (x )) endif

Definition:
plistp (x )
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= if x ' nil then x = nil
else plistp (cdr (x )) endif

Definition:
shufflep (x , y , z )
= if z ' nil then (x = nil) ∧ (y = nil) ∧ (z = nil)

elseif x ' nil then (x = nil) ∧ (y = z ) ∧ plistp (y)
elseif y ' nil then (y = nil) ∧ (x = z ) ∧ plistp (x )
else ((car (x ) = car (z )) ∧ shufflep (cdr (x ), y , cdr (z )))

∨ ((car (y) = car (z )) ∧ shufflep (x , cdr (y), cdr (z ))) endif

Definition:
even-length (l)
= if l ' nil then t

elseif cdr (l) ' nil then f
else even-length (cddr (l)) endif

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

; That ends the definitions needed to state the final theorem ‘‘all,’’ given
; at the end of this file.

; We now proceed to develop 17 auxiliary lemmas to help prove
; ‘‘all.’’

Theorem: al->pp
alternating-colors (x ) → paired-colors (x )

Definition:
silly (x , y , z )
= if z ' nil then t

else list (silly (cddr (x ), y , cddr (z )),
silly (cdr (x ), cdr (y), cddr (z )),
silly (x , cddr (y), cddr (z ))) endif

Theorem: main
(shufflep (x , y , z )
∧ alternating-colors (x )
∧ alternating-colors (y)
∧ listp (x )
∧ listp (y)
∧ opposite-color (car (x ), car (y)))
→ paired-colors (z )
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; The closer to a gensym is the name of a lemma, the more boring and
; obvious it is. As usual in such Nqthm proofs, these tedious lemmas
; are conceived by carefully reading failed Nqthm proofs rather than
; by thinking ahead. The idea is to prove only those things which are
; suggested by Nqthm failures.

Theorem: f2
(plistp (d) ∧ plistp (c)) → shufflep (c, d , append (c, d))

Theorem: f3
(plistp (d) ∧ plistp (c)) → shufflep (c, d , append (d , c))

Theorem: cdr-append
cdr (append (c, d))
= if listp (c) then append (cdr (c), d)

else cdr (d) endif

Theorem: f4
(plistp (w) ∧ shufflep (x , y , z )) → shufflep (x , append (y , w), append (z , w))

Theorem: f5
(plistp (w) ∧ shufflep (x , y , z )) → shufflep (append (x , w), y , append (z , w))

Theorem: trick
(listp (x ) ∧ listp (y) ∧ shufflep (x , y , z ))
→ (shufflep (append (cdr (x ), list (car (x ))), y , append (cdr (z ), list (car (z ))))

∨ shufflep (x ,
append (cdr (y), list (car (y))),
append (cdr (z ), list (car (z )))))

Theorem: car-append
car (append (x , y))
= if listp (x ) then car (x )

else car (y) endif

Theorem: f12
(alternating-colors (append (c, list (d))) ∧ (¬ opposite-color (d , e)))
→ alternating-colors (append (c, list (e)))

Theorem: f6
(listp (l) ∧ even-length (l) ∧ alternating-colors (l))
→ alternating-colors (append (cdr (l), list (car (l))))

Theorem: g19
(alternating-colors (c) ∧ (car (c) ∈ N) ∧ even-length (c) ∧ (v ∈ N))
→ alternating-colors (append (c, list (v)))
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Theorem: g20
(alternating-colors (c) ∧ (car (c) 6∈ N) ∧ even-length (c) ∧ (v 6∈ N))
→ alternating-colors (append (c, list (v)))

Theorem: fap
(shufflep (x , y , z )
∧ alternating-colors (x )
∧ alternating-colors (y)
∧ even-length (x )
∧ even-length (y)
∧ (¬ opposite-color (car (x ), car (y))))
→ paired-colors (append (cdr (z ), list (car (z ))))

Theorem: al2
(alternating-colors (append (x , y))
∧ even-length (append (x , y))
∧ (¬ opposite-color (car (x ), car (y))))
→ (even-length (x ) ∧ even-length (y))

Theorem: g16
(¬ alternating-colors (x )) → (¬ alternating-colors (append (x , y)))

Theorem: g17
(¬ alternating-colors (y)) → (¬ alternating-colors (append (x , y)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

; That ends the intermediate development of auxiliary lemmas. We are now
; ready for the main result.

Theorem: all
(alternating-colors (append (x , y))
∧ even-length (append (x , y))
∧ shufflep (x , y , z )
∧ listp (x )
∧ listp (y))
→ if opposite-color (car (x ), car (y)) then paired-colors (z )

else paired-colors (append (cdr (z ), list (car (z )))) endif

; To run this list of events takes about 1 hour of cpu time on a
; Sun-3/280. To develop this list of events took about 15 hours of
; work.
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