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;; Matt Kaufmann

;; Here are some games with "partial functions".....

Event: Start with the initial nqthm theory.

Definition:
s-plus (x , y)
= if x

then if y then x + y
else f endif

else f endif

Event: Introduce the function symbol apply of 2 arguments.

;; Example 1: a simple total reflexive function that’s actually
;; the identity function on natural numbers.
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;; dcls, add-axioms, and rewrite rules for g-cost and g (6 events)

Event: Introduce the function symbol g-cost of one argument.

Event: Introduce the function symbol g of one argument.

Axiom: g-defn
g (x )
= if g-cost (x )

then if x ' 0 then 0
else 1 + g (g (x − 1)) endif

else apply (’g, list (x )) endif

Axiom: g-cost-defn
g-cost (x )
= if x ' 0 then 1

else s-plus (1, s-plus (g-cost (x − 1), g-cost (g (x − 1)))) endif

Theorem: g-cost-opener
((x ' 0) → (g-cost (x ) = 1))
∧ ((x 6' 0)

→ (g-cost (x )
= s-plus (1, s-plus (g-cost (x − 1), g-cost (g (x − 1))))))

Theorem: g-opener
((x ' 0)
→ (g (x )

= if g-cost (x ) then 0
else apply (’g, list (x )) endif))

∧ ((x 6' 0)
→ (g (x )

= if g-cost (x ) then 1 + g (g (x − 1))
else apply (’g, list (x )) endif))

Theorem: g-theorem
g-cost (x ) ∧ (g (x ) = fix (x ))

;; Example 2: Silly factorial

Definition:
isub1 (x )
= if negativep (x ) then − (1 + negative-guts (x ))

else x − 1 endif
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;; dcls, add-axioms, and rewrite rules for fact-cost and fact (5 events).
;; Note that we don’t try to make a rewrite rule for the nonterminating
;; case. Also, since our function isn’t reflexive and we are only interested
;; in termination, we only bother to prove a rewrite rule for opening up
;; fact-cost, not one for opening up fact.

Event: Introduce the function symbol fact-cost of one argument.

Event: Introduce the function symbol fact of one argument.

Axiom: fact-defn
fact (x )
= if fact-cost (x )

then if x = 0 then 1
else fact (isub1 (x )) endif

else apply (’fact, list (x )) endif

Axiom: fact-cost-defn
fact-cost (x )
= if x = 0 then 1

else s-plus (1, fact-cost (isub1 (x ))) endif

Theorem: fact-cost-opener-numberp
((x = 0) → (fact-cost (x ) = 1))
∧ ((x 6' 0) → (fact-cost (x ) = s-plus (1, fact-cost (x − 1))))

;; Now let’s first note when fact IS defined.

Theorem: fact-defined-numberp
(x ∈ N) → fact-cost (x )

Theorem: fact-defined-other
((x ' 0) ∧ (¬ negativep (x ))) → fact-cost (x )

;; Next, let’s show that fact is undefined on the negatives by
;; showing that the cost is arbitrarily high (the usual trick
;; used for analogous v&c$ proofs).

Definition:
fact-undefined-ind (x , n)
= if n ' 0 then t

else fact-undefined-ind (1 + x , n − 1) endif
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Theorem: fact-undefined-numberp-lemma-inductive-step
((n 6' 0)
∧ fact-cost (− x )
∧ (fact-cost (− (1 + x )) → ((n − 1) ≤ fact-cost (− (1 + x )))))
→ ((fact-cost (− x ) < n) = f)

Theorem: fact-undefined-negativep-lemma
fact-cost (− x ) → ((fact-cost (− x ) < n) = f)

Theorem: fact-undefined-negativep
negativep (z ) → (fact-cost (z ) = f)

;; finally, we put this all together

Theorem: fact-domain
fact-cost (x ) ↔ (¬ negativep (x ))

;; Example 3: triple reverse

;; First, ordinary reverse, and proper list recognizer

Definition:
rev (x )
= if listp (x ) then append (rev (cdr (x )), list (car (x )))

else nil endif

Definition:
plistp (x )
= if listp (x ) then plistp (cdr (x ))

else x = nil endif

Definition:
length (x )
= if listp (x ) then 1 + length (cdr (x ))

else 0 endif

;; dcls, add-axioms, and rewrite rules for rev3-cost and rev (6 events)

Event: Introduce the function symbol rev3-cost of one argument.

Event: Introduce the function symbol rev3 of one argument.
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Axiom: rev3-defn
rev3 (x )
= if rev3-cost (x )

then if listp (cdr (x ))
then cons (car (rev3 (cdr (x ))),

rev3 (cons (car (x ), rev3 (cdr (rev3 (cdr (x )))))))
else x endif

else apply (’rev3, list (x )) endif

Axiom: rev3-cost-defn
rev3-cost (x )
= if listp (cdr (x ))

then s-plus (1,
s-plus (rev3-cost (cdr (x )),

s-plus (rev3-cost (cdr (rev3 (cdr (x )))),
rev3-cost (cons (car (x ),

rev3 (cdr (rev3 (cdr (x )))))))))
else 1 endif

Theorem: rev3-cost-opener
(listp (cdr (x ))
→ (rev3-cost (x )

= s-plus (1,
s-plus (rev3-cost (cdr (x )),

s-plus (rev3-cost (cdr (rev3 (cdr (x )))),
rev3-cost (cons (car (x ),

rev3 (cdr (rev3 (cdr (x )))))))))))
∧ ((cdr (x ) ' nil) → (rev3-cost (x ) = 1))

Theorem: rev3-defn-opener
(listp (cdr (x ))
→ (rev3 (x )

= if rev3-cost (x )
then if listp (cdr (x ))

then cons (car (rev3 (cdr (x ))),
rev3 (cons (car (x ), rev3 (cdr (rev3 (cdr (x )))))))

else x endif
else apply (’rev3, list (x )) endif))

∧ ((cdr (x ) ' nil) → (rev3 (x ) = x ))

Definition:
rev3-induction (x , n)
= if (n ' 0) ∨ ((n − 1) ' 0) then t

else rev3-induction (cdr (x ), n − 1)
∧ rev3-induction (cdr (rev3 (cdr (x ))), (n − 1) − 1)

5



∧ rev3-induction (cons (car (x ), rev3 (cdr (rev3 (cdr (x ))))),
n − 1) endif

Theorem: length-0
((length (x ) = 0) = (¬ listp (x )))
∧ ((0 = length (x )) = (¬ listp (x )))

Theorem: rev3-length-and-definedness-lemma
(length (x ) = n) → (rev3-cost (x ) ∧ (length (rev3 (x )) = n))

Theorem: rev3-defined
rev3-cost (x )

;; Now, just for fun, we’ll show in the rest of these "rev" events
;; that rev3 is rev. Note that we’ve already shown that rev3 is
;; "total" in the event just above.

Event: Disable rev3-cost-opener.

Theorem: app-assoc
append (append (x , y), z ) = append (x , append (y , z ))

Theorem: rev-rev
plistp (x ) → (rev (rev (x )) = x )

Theorem: plistp-rev
plistp (rev (x ))

Theorem: plistp-append
plistp (append (x , y)) = plistp (y)

Theorem: plistp-cdr
(plistp (x ) ∧ listp (x )) → plistp (cdr (x ))

Theorem: listp-append
listp (append (x , y)) = (listp (x ) ∨ listp (y))

Theorem: rev-prop
plistp (x )
→ (rev (x )

= if listp (cdr (x ))
then cons (car (rev (cdr (x ))),

rev (cons (car (x ), rev (cdr (rev (cdr (x )))))))
else x endif)
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Theorem: rev-prop-rewrite
plistp (x )
→ ((listp (cdr (x ))

→ (rev (x )
= cons (car (rev (cdr (x ))),

rev (cons (car (x ), rev (cdr (rev (cdr (x )))))))))
∧ ((cdr (x ) ' nil) → (rev (x ) = x )))

Event: Disable rev.

Theorem: listp-rev
listp (rev (x )) = listp (x )

Theorem: length-rev3
length (rev3 (x )) = length (x )

Theorem: rev3-nil
(rev3 (x ) = nil) = (x = nil)

Theorem: length-cdr-rev3
listp (x ) → (length (cdr (rev3 (x ))) = (length (x ) − 1))

Theorem: rev3-rev-lemma
(plistp (x ) ∧ (length (x ) = n)) → (rev3 (x ) = rev (x ))

Theorem: rev3-rev
plistp (x ) → (rev3 (x ) = rev (x ))
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