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Event: Start with the initial nqthm theory.

; load basic definitions and lemmas

; From kunen@cs.wisc.edu Mon Oct 21 08:56:34 1991
; Date: Fri, 18 Oct 91 13:20:25 -0500
; From: kunen@cs.wisc.edu (Ken Kunen)
; To: boyer@CLI.COM, kaufmann@CLI.COM
; Subject: nqthm
; Cc: kunen@cs.wisc.edu
;
; The following is one of the examples I’m using in my course here
; to illustrate nqthm. In particular, note that the representation
; of a pair of numbers by an ordinal, as described on p. 42, is more
; complicated than it has to be.
; Ken
;
; -------------------------------------------------------------------------
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;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;; CS761 -- SEMESTER I, 1991-92 ;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

; nqthm contains induction on epsilon_0, so it’s stronger than pure primitive
; recursive arithmetic. Presumably, it can prove Con(PA).
; LONG project -- do this

; This file -- a simple example -- use recursion on pairs to define the
; Ackermann function, which grows faster than any primitive recursive function
; see Aho-Hopcroft-Ullman, "Data Structures and Algorithms", p. 189

; Representation of a pair of numbers, (i,j), as the ordinal omega^(i+1) + j;
; This is a little simpler than the one described on Boyer-Moore p. 42.

Definition: rep (i , j ) = cons (1 + i , j )

Definition:
lex2 (i1 , j1 , i2 , j2 ) = ((i1 < i2 ) ∨ ((i1 = i2 ) ∧ (j1 < j2 )))

Theorem: rep-respects-lex
((i1 ∈ N) ∧ (i2 ∈ N) ∧ (j1 ∈ N) ∧ (j2 ∈ N))
→ (lex2 (i1 , j1 , i2 , j2 ) = ord-lessp (rep (i1 , j1 ), rep (i2 , j2 )))

Definition:
ack (x , y)
= if x ' 0 then 1

elseif y ' 0
then if x = 1 then 2

else x + 2 endif
else ack (ack (x − 1, y), y − 1) endif

; hint
; "fix" = "cast to numberp"

Theorem: ack-is-positive
(ack (x , y) ' 0) = f

Theorem: ack-of-1
(x 6' 0) → (ack (x , 1) = (x ∗ 2))
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Definition:
expt2 (x )
= if x ' 0 then 1

else expt2 (x − 1) ∗ 2 endif

Theorem: ack-of-2-aux1
(x 6' 0) → (ack (x , 2) = ack (ack (x − 1, 2), 1))

;
; ---------------------

Theorem: ack-of-2-aux2
(x 6' 0) → (ack (x , 2) = (ack (x − 1, 2) ∗ 2))

;
;;;;;;;;;;;;;;;;;;;;;;;;;;

Theorem: ack-of-2
ack (x , 2) = expt2 (x )

; ack(x,3) = 2^2^2^ ...^2 (stack of x 2’s, ^ assoc to right)
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