
#|

Copyright (C) 1994 by Yuan Yu. All Rights Reserved.

This script is hereby placed in the public domain, and therefore unlimited
editing and redistribution is permitted.

NO WARRANTY

Yuan Yu PROVIDES ABSOLUTELY NO WARRANTY. THE EVENT SCRIPT IS PROVIDED "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
SCRIPT IS WITH YOU. SHOULD THE SCRIPT PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT WILL Yuan Yu BE LIABLE TO YOU FOR ANY DAMAGES, ANY LOST PROFITS,
LOST MONIES, OR OTHER SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT
OF THE USE OR INABILITY TO USE THIS SCRIPT (INCLUDING BUT NOT LIMITED TO LOSS
OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY THIRD
PARTIES), EVEN IF YOU HAVE ADVISED US OF THE POSSIBILITY OF SUCH DAMAGES, OR
FOR ANY CLAIM BY ANY OTHER PARTY.

|#

; Proof of the Correctness of a FOO Function

Event: Start with the library "mc20-2" using the compiled version.

#|
Here is a trivial example to illustrate our ability to handle embedded
assembler in a high level language.

foo returns either a or b depending on the memory value at location 10000.

int foo (int a, int b)
{
asm("tstl 10000:w ");
asm("beq l1 ");
asm("movl a6@(12), d0 ");
asm("jmp end ");
asm("l1: movl a6@(8), d0 ");
asm("end: nop ");

}

1



The MC68020 assembly code of the above C function on SUN-3 is given as
follows. This binary is generated by "gcc -O".

0x243a <foo>: linkw fp,#0
0x243e <foo+4>: tstl @#0x2710
0x2442 <foo+8>: beq 0x244e <foo+20>
0x2446 <foo+12>: movel fp@(12),d0
0x244a <foo+16>: jmp 0x2452 <foo+24>
0x244e <foo+20>: movel fp@(8),d0
0x2452 <foo+24>: nop
0x2454 <foo+26>: unlk fp
0x2456 <foo+28>: rts

The machine code of the above program is:

<foo>: 0x4e56 0x0000 0x4ab8 0x2710 0x6700 0x000a 0x202e 0x000c
<foo+16>: 0x4efa 0x0006 0x202e 0x0008 0x4e71 0x4e5e 0x4e75

’(78 86 0 0 74 184 39 16
103 0 0 10 32 46 0 12
78 250 0 6 32 46 0 8
78 113 78 94 78 117)

|#

; in the logic, the above program is defined by (foo-code).

Definition:
foo-code
= ’(78 86 0 0 74 184 39 16 103 0 0 10 32 46 0 12 78 250

0 6 32 46 0 8 78 113 78 94 78 117)

; the Nqthm counterpart of foo.

Definition:
foo (a, b, x )
= if x = 0 then a

else b endif

; the computation time of the program.

Definition:
foo-t (x )
= if x = 0 then 7

else 8 endif

2



; the preconditions of the initial state.

Definition:
foo-statep (s, a, b)
= ((mc-status (s) = ’running)

∧ evenp (mc-pc (s))
∧ rom-addrp (mc-pc (s), mc-mem (s), 30)
∧ mcode-addrp (mc-pc (s), mc-mem (s), foo-code)
∧ ram-addrp (sub (32, 4, read-sp (s)), mc-mem (s), 16)
∧ ram-addrp (10000, mc-mem (s), 4)
∧ disjoint (10000, 4, sub (32, 4, read-sp (s)), 16)
∧ (a = iread-mem (add (32, read-sp (s), 4), mc-mem (s), 4))
∧ (b = iread-mem (add (32, read-sp (s), 8), mc-mem (s), 4)))

; from the initial state to exit: s --> exit.

Theorem: foo-correctness
let x be iread-mem (10000, mc-mem (s), 4)
in
foo-statep (s, a, b)
→ ((mc-status (stepn (s, foo-t (x ))) = ’running)

∧ (mc-pc (stepn (s, foo-t (x ))) = rts-addr (s))
∧ (read-rn (32, 14, mc-rfile (stepn (s, foo-t (x ))))

= read-rn (32, 14, mc-rfile (s)))
∧ (read-rn (32, 15, mc-rfile (stepn (s, foo-t (x ))))

= add (32, read-an (32, 7, s), 4))
∧ (d2-7a2-5p (rn)

→ (read-rn (oplen, rn, mc-rfile (stepn (s, foo-t (x ))))
= read-rn (oplen, rn, mc-rfile (s))))

∧ (disjoint (x , k , sub (32, 4, read-sp (s)), 16)
→ (read-mem (x , mc-mem (stepn (s, foo-t (x ))), k)

= read-mem (x , mc-mem (s), k)))
∧ (iread-dn (32, 0, stepn (s, foo-t (x ))) = foo (a, b, x ))) endlet

3



Index
add, 3

d2-7a2-5p, 3
disjoint, 3

evenp, 3

foo, 2, 3
foo-code, 2, 3
foo-correctness, 3
foo-statep, 3
foo-t, 2, 3

iread-dn, 3
iread-mem, 3

mc-mem, 3
mc-pc, 3
mc-rfile, 3
mc-status, 3
mcode-addrp, 3

ram-addrp, 3
read-an, 3
read-mem, 3
read-rn, 3
read-sp, 3
rom-addrp, 3
rts-addr, 3

stepn, 3
sub, 3

4


