```
; Matt Kaufmann, ICSCA, Univ. of Texas, Austin, TX 78712
; 1/26/87
; Here is a mechanically-checked proof of the finite version
; of Ramsey's Theorem for exponent 2. This proof was shown
; to me (with ordinary mathematical notation rather than in
; the Boyer-Moore logic) by Jim Schmerl, who claims that it's
; not a new proof.
; Theorem (RAMSEY-THM-2):
; (IMPLIES (LEQ (RAMSEY P Q)
    (LENGTH DOMAIN))
    (AND
    (SUBSETP (HOM-SET PAIRS DOMAIN P Q)
                    DOMAIN)
    (OR
        (AND (HOMOGENEOUS (HOM-SET PAIRS DOMAIN P Q)
                                    PAIRS
                            1)
                (LEQ P (LENGTH (HOM-SET PAIRS DOMAIN P Q))))
        (AND (HOMOGENEOUS (HOM-SET PAIRS DOMAIN P Q)
                                    PAIRS
                            2)
                (LEQ Q (LENGTH (HOM-SET PAIRS DOMAIN P Q)))))))
; Here, HOM-SET can be thought of as a Skolem function which picks
; out the desired homogeneous subset of the given DOMAIN, i.e.
; homogeneous with respect to the relation PAIRS (presented as a
; list of ordered pairs). Notice that if DOMAIN has no repetitions
; (which is a harmless assumption for the statement of Ramsey's
; Theorem), then LENGTH is just cardinality. The function LEQ is
; just "less than or equal", at least on the natural numbers.
; (HOMOGENEOUS S PAIRS 1) is true, i.e. equals T, if the list
; S is homogeous with respect to PAIRS in the positive sense,
; i.e., in that each pair from S is related by PAIRS (i.e. either
; the pair or its reverse belongs to PAIRS). Similary,
; (HOMOGENEOUS S PAIRS 2) is true if no pair from S belongs to
; PAIRS (in the same sense). RAMSEY is a function which returns
; an integer which (according to the theorem above) is "large
; enough". However, at the end of this note we prove that
; (RAMSEY P Q) = (CHOOSE (PLUS P Q) P), where (CHOOSE M N) is
; the binomial coefficient (defined though with integer division).
```

```
; The description above completes the discussion of the theorem,
; but to read on it helps to realize that we don't define HOM-SET
; until near the end of this note. Instead, we define a function
; WIT which returns a pair, so that HOM-SET merely returns the CAR
; of this pair. The CDR of the value of WIT is the "color", which
; is 1 or 2 (as is proved in a lemma below). It's really best to
; think of WIT as a Skolem function, though in fact it is defined
; to make the theorem true.
```

Event: Start with the initial nqthm theory.

Definition:
ramsey (p, q)
$=$ if $p \simeq 0$ then 1
elseif $q \simeq 0$ then 1
else ramsey $(p-1, q)+\operatorname{ramsey}(p, q-1)$ endif

```
;this is a hint to get the
;definition accepted
```

Definition:
$\operatorname{related}(i, j$, pairs $)=((\operatorname{cons}(i, j) \in$ pairs $) \vee(\operatorname{cons}(j, i) \in$ pairs $))$
DEfinition:
partition (n, rest, pairs)
$=$ if listp (rest)
then if related (n, car (rest), pairs)
then cons (cons (car (rest), car (partition ($n, \operatorname{cdr}($ rest), pairs))),
$\operatorname{cdr}($ partition ($n, \operatorname{cdr}($ rest $)$, pairs $))$)
else cons (car (partition (n, cdr (rest), pairs)),
cons (car (rest), cdr (partition ($n, \operatorname{cdr}($ rest $)$, pairs $))$)) endif
else cons (nil, nil) endif
Definition:
length (lst)
$=$ if listp $(l s t)$ then $1+$ length $(\operatorname{cdr}(l s t))$
else 0 endif
Definition:
wit (pairs, domain, p, q)
$=$ if $p \simeq 0$ then cons (nil, 1)
elseif $q \simeq 0$ then cons (nil, 2)
elseif length (car (partition (car (domain), cdr (domain), pairs)))
$<\operatorname{ramsey}(p-1, q)$
then if cdr (wit (pairs,
cdr (partition (car (domain), cdr (domain), pairs)),
p,
$q-1))$

$$
=1
$$

then wit (pairs,
cdr (partition (car (domain), cdr (domain), pairs)),
p,
$q-1)$
else cons (cons (car (domain), car (wit (pairs, cdr (partition (car (domain), cdr (domain), pairs)), p, $q-1))$,
2) endif
elseif cdr (wit (pairs,
car (partition (car (domain), cdr (domain), pairs)),
$p-1$,
q))
$=2$
then wit (pairs, car (partition (car (domain), cdr (domain), pairs)), $p-1, q$) else cons (cons (car (domain),
car (wit (pairs, car (partition (car (domain), cdr (domain), pairs)),

$$
p-1
$$

$q))$),

1) endif

DEfinition:
homogeneous1 (n, domain, pairs, flg)
$=$ if listp (domain)
then if $f l g=1$ then related (n, car (domain), pairs)
else \neg related (n, car (domain), pairs) endif
\wedge homogeneous1 (n, cdr (domain), pairs, flg)
else t endif

DEfinition:
homogeneous (domain, pairs, flg)
$=$ if listp (domain)
then homogeneous1 (car (domain), cdr (domain), pairs, flg)
\wedge homogeneous (cdr (domain), pairs, flg)
else t endif
ThEOREM: length-of-partitions
length (cons (n, domain))

```
=(1+(length (car (partition ( n, domain, pairs)))
    + length (cdr (partition (n, domain, pairs)))))
```

Theorem: lessp-length-ramsey-2
(listp (domain)
$\wedge \quad(i \nsucceq 0)$
$\wedge(j \nsim 0)$
$\wedge \quad((i+j) \leq$ length $($ domain $))$
$\wedge($ length $(\operatorname{car}($ partition $(\operatorname{car}($ domain $), \operatorname{cdr}($ domain $)$, pairs $)))<i))$
$\rightarrow \quad((\operatorname{length}(\operatorname{cdr}(\operatorname{partition}(\operatorname{car}($ domain $), \operatorname{cdr}($ domain $)$, pairs $)))<j)=\mathbf{f})$
ThEOREM: ramsey-not-zerop
ramsey $(p, q) \nsucceq 0$
Event: Disable lessp-length-ramsey-2.

Theorem: lessp-length-ramsey
($(p \nsucceq 0)$
$\wedge \quad(q \nsim 0)$
$\wedge(\operatorname{ramsey}(p, q) \leq$ length $($ domain $))$
$\wedge \quad($ length $(\operatorname{car}($ partition (car (domain), $\operatorname{cdr}($ domain $)$, pairs $)))$
$<\operatorname{ramsey}(p-1, q)))$
$\rightarrow \quad(($ length $(\operatorname{cdr}($ partition $(\operatorname{car}($ domain $), \operatorname{cdr}($ domain $)$, pairs $)))$
$<\operatorname{ramsey}(p, q-1))$
$=\mathbf{f})$
Theorem: wit-flag
$(\operatorname{cdr}(\operatorname{wit}($ pairs, domain, $p, q)) \neq 1) \rightarrow(\operatorname{cdr}(\operatorname{wit}($ pairs, domain, $p, q))=2)$
TheOrem: homogeneous1-partition-cdr
homogeneous1 (a, cdr (partition (a, domain, pairs)), pairs, 2)
Theorem: homogeneous1-partition-car
homogeneous1 (a, car (partition (a, domain, pairs)), pairs, 1)
DEFINITION:
$\operatorname{subsetp}(x, y)$
$=$ if $x \simeq$ nil then \mathbf{t}
elseif $\operatorname{car}(x) \in y$ then $\operatorname{subsetp}(\operatorname{cdr}(x), y)$
else fendif

Theorem: subsetp-preserves-homogeneous1
($\operatorname{subsetp}(l, m) \wedge \operatorname{homogeneous1}(a, m$, pairs, $f l g))$
\rightarrow homogeneous1 (a, l, pairs, flg)

```
; The following lemmas, till further notice, are simply
; lemmas about sets, some of which may be needed below.
```

Theorem: member-cons

$$
(a \in l) \rightarrow(a \in \operatorname{cons}(x, l))
$$

Theorem: subsetp-cons
$\operatorname{subsetp}(l, m) \rightarrow \operatorname{subset}(l, \operatorname{cons}(a, m))$
Theorem: subsetp-reflexivity
subsetp (x, x)
Theorem: cdr-subsetp
subsetp $(\operatorname{cdr}(x), x)$
Theorem: member-subsetp
$((x \in y) \wedge \operatorname{subsetp}(y, z)) \rightarrow(x \in z)$

```
Theorem: subsetp-is-transitive
(subsetp (x,y)^ subsetp (y,z)) }->\mathrm{ subsetp (x,z)
; end of silly subset lemmas
Theorem: partition-subsetp
subsetp (car (partition (a, dom, pairs)), dom)
subsetp(cdr (partition (a,dom, pairs)), dom)
ThEOREM: ramsey-not-zero
ramsey \((p, q) \neq 0\)
Theorem: witness-subsetp
(ramsey \((p, q) \leq\) length \((\) domain \())\)
\(\rightarrow\) subsetp (car (wit (pairs, domain, \(p, q)\) ), domain)
; Here are the commands to generate proofs of four of ; the six induction steps in the theorem.
```

Theorem: ramsey-thm-2-goals-1-2-3-5
t

Theorem: all-but-goal-4
t
Theorem: ramsey-thm-2-except-length
(ramsey $(p, q) \leq$ length (domain))
\rightarrow homogeneous (car (wit (pairs, domain, $p, q)$),
pairs,
$\operatorname{cdr}($ wit (pairs, domain, $p, q))$)
Theorem: ramsey-thm-2-length

```
\((\operatorname{ramsey}(p, q) \leq\) length \((\) domain \())\)
\(\rightarrow \quad((\) length \((\operatorname{car}(\) wit \((\) pairs, domain, \(p, q)))\)
    \(<\) if \(\operatorname{cdr}(\) wit (pairs, domain, \(p, q))=1\) then \(p\)
        else \(q\) endif)
    \(=\mathbf{f}\) )
```

; Finally, the main theorem's proof is concluded:

Definition:
$\operatorname{hom-set}($ pairs, domain, $p, q)=\operatorname{car}(\operatorname{wit}($ pairs, domain, $p, q))$
Theorem: ramsey-thm-2

```
(ramsey \((p, q) \leq\) length \((\) domain \())\)
\(\rightarrow\) (subsetp (hom-set (pairs, domain, \(p, q\) ), domain)
    \(\wedge\) ((homogeneous (hom-set (pairs, domain, \(p, q\) ), pairs, 1)
            \(\wedge \quad(p \leq\) length (hom-set (pairs, domain, \(p, q))))\)
    \(\vee\) (homogeneous (hom-set (pairs, domain, \(p, q\) ), pairs, 2)
        \(\wedge \quad(q \leq\) length \((\operatorname{hom}-\) set \((\) pairs, domain, \(p, q))))))\)
;;; The following were aded 4/22/88 to show that in fact, under the
;;; hypotheses of the theorem above, the HOM-SET has no duplicates
;;; (and hence LENGTH really does measure cardinality, though I don't
;;; formalize or prove this parenthetical remark).
```

Definition:
$\operatorname{setp}(x)$
$=$ if listp (x) then $(\operatorname{car}(x) \notin \operatorname{cdr}(x)) \wedge \operatorname{setp}(\operatorname{cdr}(x))$ else t endif

ThEOREM: set-partition
$\operatorname{set} \mathrm{p}(x)$
$\rightarrow \quad(\operatorname{setp}(\operatorname{car}(\operatorname{partition}(a, x$, pairs $))) \wedge \operatorname{setp}(\operatorname{cdr}(\operatorname{partition}(a, x$, pairs $))))$

Theorem: member-partition
$(a \notin x)$
$\rightarrow \quad((a \notin \operatorname{car}(\operatorname{partition}(b, x, p a i r s)))$
$\wedge \quad(a \notin \operatorname{cdr}(\operatorname{partition}(b, x, p a i r s))))$
Theorem: member-cons-expand
$(a \in \operatorname{cons}(b, y))$
$=$ if $a=b$ then \mathbf{t} else $a \in y$ endif

Theorem: setp-cons-expand
$\operatorname{setp}(\operatorname{cons}(b, y))$
$=$ if $b \in y$ then \mathbf{f}
else setp (y) endif
Theorem: member-hom-set-implies-member-domain $(($ length $($ domain $) \nless \operatorname{ramsey}(p, q)) \wedge(a \notin$ domain $))$
$\rightarrow \quad(a \notin \operatorname{car}(\operatorname{wit}($ pairs, domain, $p, q)))$
ThEOREM: setp-hom-set
$(($ length $($ domain $) \nless \operatorname{ramsey}(p, q)) \wedge \operatorname{setp}($ domain $))$
$\rightarrow \operatorname{setp}($ hom-set (pairs, domain, $p, q)$)

Index

all-but-goal-4, 6
cdr-subsetp, 5
hom-set, 6,7
homogeneous, $3,4,6$
homogeneous1, 3-5
homogeneous1-partition-car, 4
homogeneous1-partition-cdr, 4
length, $2,4-7$
length-of-partitions, 4
lessp-length-ramsey, 4
lessp-length-ramsey-2, 4
member-cons, 5
member-cons-expand, 7
member-hom-set-implies-member-d omain, 7
member-partition, 7
member-subsetp, 5
partition, 2-7
partition-subsetp, 5
ramsey, 2-7
ramsey-not-zero, 5
ramsey-not-zerop, 4
ramsey-thm- 2,6
ramsey-thm-2-except-length, 6
ramsey-thm-2-goals-1-2-3-5, 5
ramsey-thm-2-length, 6
related, 2, 3
set-partition, 6
setp, 6,7
setp-cons-expand, 7
setp-hom-set, 7
subsetp, 4-6
subsetp-cons, 5
subsetp-is-transitive, 5
subsetp-preserves-homogeneous1, 5
subsetp-reflexivity, 5
wit, 2-7
wit-flag, 4
witness-subsetp, 5

