EVENT: Start with the initial **nqthm** theory.

```
DEFINITION:
delete(x, l)
   if listp (l)
    then if x = car(l) then cdr(l)
           else cons(car(l), delete(x, cdr(l))) endif
    else l endif
DEFINITION:
\operatorname{bagdiff}(x, y)
    if listp (y)
    then if car(y) \in x then bagdiff (delete (car(y), x), cdr(y))
           else bagdiff (x, cdr(y)) endif
    else x endif
DEFINITION:
bagint(x, y)
    if listp (x)
    then if car(x) \in y
           then \cos(\operatorname{car}(x), \operatorname{bagint}(\operatorname{cdr}(x), \operatorname{delete}(\operatorname{car}(x), y)))
           else bagint (\operatorname{cdr}(x), y) endif
    else nil endif
DEFINITION:
occurrences (x, l)
   if listp(l)
    then if x = car(l) then 1 + occurrences(x, cdr(l))
           else occurrences (x, \operatorname{cdr}(l)) endif
    else 0 endif
DEFINITION:
subbagp (x, y)
    if listp(x)
    then if car(x) \in y then subbagp (cdr(x), delete(car(x), y))
           else f endif
    else t endif
Theorem: listp-delete
listp (delete (x, l))
= if listp (l) then (x \neq car(l)) \vee listp(cdr(l))
     else f endif
```

EVENT: Disable listp-delete.

```
Theorem: delete-non-member
(x \not\in y) \to (\text{delete}(x, y) = y)
THEOREM: delete-delete
delete(y, delete(x, z)) = delete(x, delete(y, z))
Theorem: equal-occurrences-zero
(occurrences(x, l) = 0) = (x \notin l)
Theorem: member-non-list
(\neg \text{ listp}(l)) \rightarrow (x \notin l)
THEOREM: member-delete
(x \in delete(y, l))
= if x \in l
     then if x = y then 1 < occurrences (x, l)
             else t endif
      else f endif
Theorem: member-delete-implies-membership
(x \in \text{delete}(y, l)) \to (x \in l)
Theorem: occurrences-delete
occurrences (x, delete(y, l))
= if x = y
      then if x \in l then occurrences (x, l) - 1
             else 0 endif
      else occurrences (x, l) endif
Theorem: member-bagdiff
(x \in \text{bagdiff}(a, b)) = (\text{occurrences}(x, b) < \text{occurrences}(x, a))
THEOREM: bagdiff-delete
\operatorname{bagdiff}(\operatorname{delete}(e, x), y) = \operatorname{delete}(e, \operatorname{bagdiff}(x, y))
THEOREM: subbagp-delete
\operatorname{subbagp}(x, \operatorname{delete}(u, y)) \to \operatorname{subbagp}(x, y)
THEOREM: subbagp-cdr1
\operatorname{subbagp}(x, y) \to \operatorname{subbagp}(\operatorname{cdr}(x), y)
Theorem: subbagp-cdr2
\operatorname{subbagp}(x,\operatorname{cdr}(y))\to\operatorname{subbagp}(x,y)
Theorem: subbagp-bagint1
subbagp (bagint (x, y), x)
```

```
Theorem: subbagp-bagint2 subbagp (bagint (x, y), y)

Theorem: occurrences-bagint occurrences (x, bagint (a, b))

= if occurrences (x, a) < occurrences (x, b) then occurrences (x, a) else occurrences (x, b) endif

Theorem: occurrences-bagdiff occurrences (x, bagdiff (a, b)) = (occurrences (x, a) - occurrences (x, b))

Theorem: member-bagint (x \in bagint (a, b)) = ((x \in a) \land (x \in b))
```

EVENT: Let us define the theory *bags* to consist of the following events: occurrences-bagint, bagdiff-delete, occurrences-bagdiff, member-bagint, member-bagdiff, subbagp-bagint2, subbagp-bagint1, subbagp-cdr2, subbagp-cdr1, subbagp-delete.

EVENT: Make the library "bags".

Index

```
bagdiff, 1–3
bagdiff-delete, 2
bagint, 1-3
bags, 3
delete, 1, 2
delete-delete, 2
delete-non-member, 2
equal-occurrences-zero, 2
listp-delete, 1
member-bagdiff, 2
member-bagint, 3
member-delete, 2
member-delete-implies-membership,
member-non-list, 2
occurrences, 1-3
occurrences-bagdiff, 3
occurrences-bagint, 3
occurrences-delete, 2
subbagp, 1-3
subbagp-bagint1, 2
subbagp\text{-}bagint 2,\,3
subbagp\text{-}cdr1,\,2
subbagp-cdr2, 2
subbagp-delete, 2
```