```
;;;; proof of completeness of ground resolution
;;;; Matt Wilding April 1988
;;;; This proof script executes on Matt Kaufmann's interactive enhancement
;;;; to the Boyer-Moore system
;; This proof script is a proof of the completeness of ground resolution
;; using Bledsoe's excess literal technique. The final theorem is:
;; (implies
;; (and
;; (unsatisfiable x)
;; (validclauses x))
;; (finishedproof x (getproof x)))
;; The proof script is in several sections:
;; 1) definitions required for understanding the theorem
;; 2) definition of getproof (a function that is conjectured to return a valid
;; resolution proof that ends in box)
;; 3) proof of theorem
;; Section 1 is, strictly speaking, the only section needed to understand what has
;; been proven.
```

Event: Start with the initial nqthm theory.
; ; added by Matt Kaufmann just to make nqthm-1991 happy!
;;;
; Section 1: definitions of terms in theorem

DEfinition:
subset (x, y)
$=$ if listp (x)
then if $\operatorname{car}(x) \in y$ then subset $(\operatorname{cdr}(x), y)$ else fendif
else t endif
Definition:
set-equal $(s 1, s 2)=(\operatorname{subset}(s 1, s 2) \wedge \operatorname{subset}(s 2, s 1))$
Definition:
set-member (x, list)
$=$ if listp (list)
then if set-equal $(x, \operatorname{car}(l i s t))$ then \mathbf{t} else set-member $(x, \operatorname{cdr}(l i s t))$ endif
else f endif
;; define what it means to be a valid set of clauses
; ; (ex. (validclauses ${ }^{\prime}((\mathrm{a}$ b) ((not a) (not b)) ((not a) b) (a (not b)))) = t)

Definition:
validliteral (l)
$=(($ litatom $(l) \wedge(l \neq$ nil $))$
\checkmark (listp (l)
$\wedge \quad(\operatorname{car}(l)=$ 'not $)$
\wedge litatom ($\operatorname{cadr}(l))$
$\wedge(\operatorname{cadr}(l) \neq$ nil $)$
$\wedge(\operatorname{cddr}(l)=\mathbf{n i l})))$
Definition:
validclause (c)
$=$ if listp (c)
then validclause ($(\operatorname{cdr}(c))$
$\wedge \quad$ validliteral $(\operatorname{car}(c))$
$\wedge \quad(\operatorname{car}(c) \notin \operatorname{cdr}(c))$
else $c=$ nil endif
Definition:
validclauses (cs)
$=$ if listp (cs) then validclause $(\operatorname{car}(c s)) \wedge$ validclauses $(\operatorname{cdr}(c s))$
else $c s=$ nil endif
;; unsatisfiablility of a set of clauses

Definition:

unsatwith (clause, cs, values)
$=$ if listp (clause)
then if $($ list $($ 'not, $\operatorname{car}($ clause $)) \in$ values $)$
$\checkmark \quad($ cadar $($ clause $) \in$ values $)$
then unsatwith (cdr (clause), cs, values)
else unsatwith (cdr (clause), cs, values)
$\wedge \quad$ if listp $(c s)$
then unsatwith ($\operatorname{car}(c s)$,
$\operatorname{cdr}(c s)$,
cons (car (clause), values))
else fendif endif
else t endif
DEfinition:
unsatisfiable (cs)
$=\mathbf{i f} \operatorname{listp}(c s)$ then unsatwith $(\operatorname{car}(c s), \operatorname{cdr}(c s)$, nil $)$
else fendif
Definition:
takeout (list, x)
$=$ if listp (list)
then if $x=\operatorname{car}($ list $)$ then takeout (cdr (list), x)
else cons (car (list), takeout (cdr (list), x)) endif else nil endif

```
;; resolvent is valid resolvent of p1 and p2 resolving on something in p1list
```


Definition:

resolvent-help (resolvent, p1list, p1, p2)
$=$ if listp (p1list)
then if list ('not, car $(p 1 l i s t)) \in p 2$
then subset (takeout ($p 1, \operatorname{car}(p 1 l i s t))$
\cup takeout (p 2, list ('not, car (p 1list $)$)), resolvent)
\checkmark resolvent-help (resolvent, cdr (p1list), p1, p2)
elseif cadar $(p 1 l i s t) \in p 2$
then subset (takeout ($p 1, \operatorname{car}(p 1 l i s t))$
\cup takeout ($p 2$, cadar $(p 1 l i s t)$), resolvent)
\checkmark resolvent-help (resolvent, cdr (p1list), p1, p2)
else resolvent-help (resolvent, $\operatorname{cdr}(p 1 l i s t), p 1, p 2)$ endif
else fendif
Definition: resolvent $(r, p 1, p 2)=\operatorname{resolvent-help}(r, p 1, p 1, p 2)$
; ; a valid resolution proof for a set of axioms is a set of triples where
; ;each line of the proof has a resolvent and two (axiomatic or derived) parents
DEfinition:

```
validproof(axioms, proof)
= if listp(proof)
    then set-member (cadar (proof), axioms)
        set-member (caddar (proof), axioms)
        resolvent(caar (proof), cadar (proof), caddar (proof))
        \wedge validproof(cons (caar (proof), axioms), cdr (proof))
    else t endif
;; the empty clause is in a set of clauses
DEFINITION:
box-in-axioms (axioms)
= if listp (axioms)
    then if listp (car (axioms)) then box-in-axioms (cdr (axioms))
        else t endif
    else f endif
DEFINITION:
last-element (list)
= if listp (list)
    then if listp (cdr (list)) then last-element (cdr (list))
            else car (list) endif
    else nil endif
;; proof is a finished proof of axioms if there are no axioms, if
;; there are no axioms (and therefore satisfiable), if axioms include box,
;; or if proof is valid and has as its last resolvent box.
DEFINITION:
finishedproof (axioms, proof)
= ((\neg listp (axioms))
    \checkmark ~ b o x - i n - a x i o m s ~ ( a x i o m s )
    \vee \mp@code { ( v a l i d p r o o f ~ } ( \text { axioms, proof } ) \wedge ( \operatorname { c a r } ( \text { last-element } ( \text { proof } ) ) \simeq \text { nil } ) ) )
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Section 2: getproof function developement
Definition:
length (list)
= if listp (list) then 1 + length (cdr (list))
    else 0 endif
Theorem: list-means-length-more-0
\(\operatorname{listp}(x) \rightarrow(0<\operatorname{length}(x))\)
```

Definition:
takeout1 (list, x)
$=$ if listp $($ list $)$
then if $x=\operatorname{car}($ list $)$ then $\operatorname{cdr}($ list $)$
else cons (car (list), takeout1 (cdr (list), x)) endif else nil endif

DEfinition:
listofcars (list)
$=$ if listp (list) then cons (caar (list), listofcars (cdr (list)))
else nil endif
; ; some really useful rewrite rules for sets

Theorem: membership-on-subsets
$((e \in a) \wedge \operatorname{subset}(a, b)) \rightarrow(e \in b)$
Theorem: equals-has-same-members
set-equal $(a, b) \rightarrow((e \in a)=(e \in b))$
Theorem: subset-is-transitive
(subset $(x, y) \wedge \operatorname{subset}(y, z)) \rightarrow \operatorname{subset}(x, z)$
THEOREM: subset-fact-1
$\operatorname{subset}(x, y) \rightarrow \operatorname{subset}(x$, cons $(a, y))$
Theorem: set-equals-fact
$\operatorname{set}-\mathrm{equal}(x, y) \rightarrow \operatorname{set}-\mathrm{equal}(\operatorname{cons}(a, x), \operatorname{cons}(a, y))$
Theorem: subset-of-self
subset (x, x)
ThEOREM: set-equal-self
set-equal (x, x)
ThEOREM: member-is-setmember $(a \in x) \rightarrow$ set-member (a, x)

Theorem: setmember-is-setmember-of-superset (set-member $(a, x) \wedge \operatorname{subset}(x, y)) \rightarrow \operatorname{set}-m e m b e r(a, y)$

ThEOREM: takeout-fact1
subset (takeout (s, x), takeout $(\operatorname{cons}(a, s), x))$
THEOREM: subset-of-union-fact-1
subset $(a \cup b, c)=(\operatorname{subset}(a, c) \wedge \operatorname{subset}(b, c))$

Theorem: takeout-fact2
$(a \notin x) \rightarrow \operatorname{set}$-equal (takeout $(x, a), x)$
Theorem: stupid-lemma1
$(l \in c) \rightarrow(\operatorname{subset}(\operatorname{cons}(l, c), d)=\operatorname{subset}(c, d))$
ThEOREM: stupid-lemma2
$(l \in d) \rightarrow(\operatorname{subset}(c, \operatorname{cons}(l, d))=\operatorname{subset}(c, d))$
Theorem: stupid-lemma3
$(l \in c) \rightarrow($ set-member $(\operatorname{cons}(l, c), d)=\operatorname{set}-m e m b e r(c, d))$
;; some useful oddball facts about append other things
Theorem: member-of-append-1
$(a \in x) \rightarrow(a \in \operatorname{append}(x, y))$
Theorem: is-last-element-means-member
$(\operatorname{listp}(p) \wedge(\operatorname{car}($ last-element $(p))=x)) \rightarrow(x \in \operatorname{listofcars}(p))$
Theorem: membership-of-append
$(a \in x) \rightarrow(a \in \operatorname{append}(y, x))$
Theorem: subset-of-append
$\operatorname{subset}(x, y) \rightarrow \operatorname{subset}(x$, append $(z, y))$
Definition:
first-non-unit (clauses)
$=$ if listp (clauses)
then if $1<$ length (car (clauses)) then car (clauses) else first-non-unit (cdr (clauses)) endif
else nil endif
Theorem: first-non-unit-fact2
(length $($ first-non-unit $(x))=1)=\mathbf{f}$
Definition:
take-out-literal $(c s, c)$
$=$ if listp $(c s)$
then if $c=\operatorname{car}(c s)$ then cons $(\operatorname{cdr}(c), \operatorname{cdr}(c s))$
else cons (car (cs), take-out-literal ($\operatorname{cdr}(c s), c)$) endif
else nil endif
Definition:
take-out-clause ($c s, c$)
$=\mathbf{i f} \operatorname{listp}(c s)$
then if $c=\operatorname{car}(c s)$ then cons (list ($\operatorname{car}(c)), \operatorname{cdr}(c s)$) else cons (car $(c s)$, take-out-clause $(\operatorname{cdr}(c s), c))$ endif
else nil endif

Theorem: subset-of-takeouts-fact
(validclauses (x)
$\wedge \quad(a \in x)$
$\wedge \quad(\operatorname{list}(\operatorname{car}(a)) \in y)$
$\wedge \operatorname{subset}(\operatorname{takeout1}(x, a), y))$
$\rightarrow \quad \operatorname{subset}$ (take-out-clause $(x, a), y)$
Theorem: take-out-literal-communative-sort-of
$(a \in x)$
\rightarrow set-equal (take-out-literal $(\operatorname{cons}(y, x), a), \operatorname{cons}(y$, take-out-literal $(x, a)))$
ThEOREM: take-out-literal-preserves-validclauseness
$((\neg$ box-in-axioms $(c s)) \wedge$ validclauses $(c s))$
$\rightarrow \quad$ validclauses (take-out-literal $(c s, x))$
THEOREM: take-out-clause-preserves-validclauseness
$((\neg$ box-in-axioms $(c s)) \wedge$ validclauses $(c s))$
$\rightarrow \quad$ validclauses (take-out-clause $(c s, x))$
DEfinition:
find-contradiction ($c s$)
$=$ if listp $(c s)$
then if length $(\operatorname{car}(c s))=1$
then if list (list ('not, caar $(c s))) \in \operatorname{cdr}(c s)$
then list (nil, car (cs), list (list ('not, caar ($c s)$)))
elseif list (cadaar $(c s)) \in \operatorname{cdr}(c s)$
then list (nil, car $(c s)$, list (cadaar (cs)))
else find-contradiction $(\operatorname{cdr}(c s))$ endif
else list (nil, nil, nil) endif
else nil endif
Definition:
number-of-lits ($c s$)
$=$ if listp $(c s)$ then length $(\operatorname{car}(c s))+$ number-of-lits $(\operatorname{cdr}(c s))$
else 0 endif
Definition:
excess-literal $(c s)=($ number-of-lits $(c s)-$ length $(c s))$
TheOrem: first-non-unit-fact
$(($ excess-literal $(c s) \nsucceq 0) \wedge(\neg$ box-in-axioms $(c s)))$
$\rightarrow \quad((1<$ length $($ first-non-unit $(c s)))=\mathbf{t})$
Definition:
adjust (proof, cs, l)

$=$ if listp $($ proof $)$

then if set-member (cadar (proof), cs)
then if set-member (caddar (proof), cs)
then cons (car (proof),
adjust (cdr (proof), cons (caar (proof), cs), l))
else cons (list (add-to-set (l, caar (proof)),
cadar (proof),
add-to-set $(l$, caddar $($ proof $)))$,
adjust (cdr (proof),
cons (add-to-set (l, caar (proof)), cs),
l)) endif
elseif set-member (caddar (proof), cs)
then cons (list (add-to-set (l, caar (proof)),
add-to-set (l, cadar (proof)),
caddar (proof)),
$\operatorname{adjust}(\operatorname{cdr}(p r o o f)$, cons (add-to-set $(l$, caar $(p r o o f)), c s), l))$
else cons (list (add-to-set (l, caar (proof)),
add-to-set (l, cadar (proof)),
add-to-set $(l$, caddar (proof $))$),
adjust (cdr (proof),
cons (add-to-set $(l$, caar (proof $)), c s)$,
$l)$) endif
else nil endif
THEOREM: adjust-is-listp-when
$\operatorname{listp}(p) \rightarrow \operatorname{listp}(\operatorname{adjust}(p, x, l))$
Theorem: when-first-non-unit-gives-clause
$((\neg$ box-in-axioms $(c s)) \wedge($ excess-literal $(c s) \nsucceq 0))$
$\rightarrow \quad$ (first-non-unit $(c s) \in c s)$
Theorem: no-box-fact
$(\neg$ box-in-axioms $(c s)) \rightarrow$ (number-of-lits $(c s) \nless$ length $(c s))$
Theorem: excess-literal-in-terms-of-cdr
$(\operatorname{listp}(c s) \wedge(\neg$ box-in-axioms $(c s)))$
\rightarrow (excess-literal (cs)

$$
=((\text { length }(\operatorname{car}(c s))+\text { excess-literal }(\operatorname{cdr}(c s)))-1))
$$

ThEOREM: when-take-out-literal-does-something
$((\neg$ box-in-axioms $(c s)) \wedge($ excess-literal $(c s) \not 千 0))$
$\rightarrow \quad(($ excess-literal (take-out-literal ($c s$, first-non-unit $(c s)))$
$<$ excess-literal $(c s))$
$=\mathbf{t}$)

Theorem: not-box-when-clause-taken
$((\neg$ box-in-axioms $(c s)) \wedge(1<$ length $(x)))$
$\rightarrow \quad(\neg$ box-in-axioms (take-out-clause $(c s, x)))$
Theorem: no-box-zero-el-fact
$(\operatorname{listp}(x) \wedge(\neg$ box-in-axioms $(x)) \wedge(\operatorname{excess-literal}(x) \simeq 0))$
$\rightarrow \quad($ excess-literal $(\operatorname{cdr}(x)) \simeq 0)$
ThEOREM: take-out-clause-fact
$((\neg$ box-in-axioms $(c s)) \wedge(1<$ length $(x)) \wedge(x \in c s))$
$\rightarrow \quad(($ excess-literal $($ take-out-clause $(c s, x))<\operatorname{excess-literal}(c s))=\mathbf{t})$
Theorem: when-take-out-clause-does-something
$((\neg$ box-in-axioms $(c s)) \wedge($ excess-literal $(c s) \not 千 0))$
$\rightarrow \quad(($ excess-literal (take-out-clause $(c s$, first-non-unit $(c s)))$

```
    < excess-literal(cs))
```

 \(=\mathbf{t}\))
 Definition:
getproof (cs)
$=$ if box-in-axioms $(c s)$ then nil
elseif excess-literal $(c s) \simeq 0$ then list (find-contradiction $(c s)$)
elseif car (last-element (adjust (getproof (take-out-literal (cs, first-non-unit $(c s))$),
cs,
$\operatorname{car}($ first-non-unit $(c s)))))$

$=$ nil

then adjust (getproof (take-out-literal ($c s$, first-non-unit $(c s)$)),
cs, car (first-non-unit ($c s)$))
else append (adjust (getproof (take-out-literal (cs, first-non-unit ($c s)$)),
cs, car (first-non-unit (cs))),
getproof (take-out-clause ($c s$, first-non-unit $(c s))$)) endif
;;;
; ; Section 3. Proof of the completeness theorem
; ; the format of a resolution proof (implicit in validproof but useful to make explicit
Definition:
proof-form (p)
$=$ if $\operatorname{listp}(p)$

```
    then validclause (caar (p))
    validclause (cadar (p))
    validclause (caddar (p))
    \wedge (cdddar ( p)= nil)
    proof-form (cdr (p))
    else }p=\mathrm{ nil endif
;; some useful facts about valid proofs
```

Theorem: validproof-on-subset
(subset $(x, y) \wedge$ validproof $(x, p)) \rightarrow \operatorname{validproof}(y, p)$
Theorem: validproof-clauses-commutative
set-equal $(x, y) \rightarrow($ validproof $(x, p)=\operatorname{validproof}(y, p))$
; ; A useful fact about unsatisfiable sets of clauses

Theorem: assignment-interchangeable
(unsatwith $(c, c s, z) \wedge \operatorname{set}-$ equal $(y, z)) \rightarrow \operatorname{unsatwith}(c, c s, y)$

```
;; lemmas about preservation of unsatisfiablility of clauses with some of
;; the literals removed
```

Theorem: take-out-literal-helper
unsatwith (clause, cs, v)
$\rightarrow \quad$ unsatwith (car (take-out-literal (cons (clause, cs), x)),
$\operatorname{cdr}($ take-out-literal (cons (clause, cs),$x))$,
$v)$
TheOrem: without-literal-still-unsatisfiable (unsatisfiable $(c s) \wedge \operatorname{listp}(c s)) \rightarrow$ unsatisfiable (take-out-literal $(c s, x)$)

Theorem: unsat-stepper
$(\operatorname{listp}(x) \wedge$ unsatwith $(x, c s, v)) \rightarrow$ unsatwith $($ list $(\operatorname{car}(x)), c s, v)$
Theorem: take-out-clause-helper
(listp $(x) \wedge$ unsatwith (clause, cs, v))
\rightarrow unsatwith (car (take-out-clause (cons (clause, cs), x)), cdr (take-out-clause (cons (clause, cs), x)), $v)$

Theorem: when-unsatisfiable
unsatwith (clause, cs, z) \rightarrow unsatwith (clause, cs, cons (x, z))

Definition:
unsat-induct $(c, x, c s, v)$
$=\mathbf{i f} \operatorname{listp}(c s)$
then if $(x=\operatorname{cadr}(\operatorname{car}(c))) \vee(x=\operatorname{list}($ 'not, $\operatorname{car}(c)))$ then \mathbf{t} else unsat-induct $(\operatorname{car}(c s), x, \operatorname{cdr}(c s), \operatorname{cons}(\operatorname{car}(c), v))$ endif else t endif
; ; useful facts about negations of literals
Theorem: reversible-nots-1
($($ length $(y)=1)$
\wedge litatom (x)
$\wedge \quad(x \neq$ nil $)$
\wedge validclause (y)
$\wedge \quad(x=\operatorname{cadar}(y)))$
$\rightarrow \quad($ list $(\operatorname{list}(' \operatorname{not}, x))=y)$
Theorem: reversible-nots-2
((length $(y)=1)$
$\wedge \operatorname{listp}(x)$
\wedge validclause (y)
$\wedge \quad(x=\operatorname{list}($ ' not, $\operatorname{car}(y))))$
$\rightarrow \quad($ list $(\operatorname{cadr}(x))=y)$
; ; useful definition of set of clauses with all unit clauses
DEfinition:
allunits (x)
$=$ if listp (x) then $($ length $(\operatorname{car}(x))=1) \wedge$ allunits $(\operatorname{cdr}(x))$ else t endif

Theorem: allunit-means
allunits $(x) \rightarrow(\neg \operatorname{listp}(\operatorname{cdar}(x)))$
Theorem: allunits-if
$((\neg$ box-in-axioms $(x)) \wedge($ excess-literal $(x) \simeq 0)) \rightarrow$ allunits (x)
Theorem: unit-clause-fact
(length $(x)=1) \rightarrow(\operatorname{takeout}(x, \operatorname{car}(x))=\operatorname{nil})$
Theorem: restriction-list-commutative
set-equal $(z 1, z$ 2) $\rightarrow(\operatorname{unsatwith}(x, y, z 1)=\operatorname{unsatwith}(x, y, z 2))$
ThEOREM: unsat-ignore-first-helper
$((\operatorname{litatom}(x) \rightarrow($ list $($ list $('$ not,$x)) \notin \operatorname{cons}(c, c s)))$
$\wedge \quad(\operatorname{listp}(x) \rightarrow(\operatorname{list}(\operatorname{cadr}(x)) \notin \operatorname{cons}(c, c s)))$

```
\(\wedge\) allunits (cons \((c, c s))\)
\(\wedge\) validclause (list ( \(x\) ))
\(\wedge \quad\) validclauses (cons \((c, c s))\)
\(\wedge \quad \operatorname{unsatwith}(c, c s, \operatorname{cons}(x, v)))\)
\(\rightarrow \quad\) unsatwith \((c, c s, v)\)
; ; base case of main theorem - if all clauses unit then getproof finds a proof
```

THEOREM: no-excess-literal-proof
(validclauses (cs)
$\wedge(\neg$ box-in-axioms $(c s))$
$\wedge($ excess-literal $(c s) \simeq 0)$
\wedge unsatisfiable (cs))
\rightarrow finishedproof ($c s$, list (find-contradiction ($c s)$))

```
;; useful definition of "almost" valid proof. p is validproof of cs except that
;; some clauses in proof are missing literal l
```


DEFINITION:

validproof-but-for-literal $(c s, p, l)$
$=$ if listp (p)
then (set-member (cadar $(p), c s)$
$\checkmark \operatorname{set}-m e m b e r(\operatorname{add}-$ to-set $(l, \operatorname{cadar}(p)), c s))$
\wedge (set-member (caddar $(p), c s)$
$\vee \quad$ set-member (add-to-set $(l$, caddar $(p)), c s))$
\wedge resolvent (caar (p), cadar (p), caddar $(p))$
\wedge validproof-but-for-literal (cons (caar $(p), c s), \operatorname{cdr}(p), l)$
else t endif
;; some facts about validproof-but-for-literal
Theorem: validproof-but-for-literal-clauses-commutative set-equal (x, y)
\rightarrow (validproof-but-for-literal (x, p, l)
$=$ validproof-but-for-literal $(y, p, l))$
Definition:
adding-literal-induct ($c s, p$)
$=$ if listp (p) then adding-literal-induct (cons (caar $(p), c s), \operatorname{cdr}(p))$ else t endif

Theorem: adding-literal-fact
validproof-but-for-literal (cons ($x, c s$), p, l)
$\rightarrow \quad$ validproof-but-for-literal (cons (add-to-set $(l, x), c s), p, l)$

```
;; facts about adjusting clauses by adding literals and still getting valid resolvents
```

```
THEOREM: resolvent-with-extra-literal-fact1b
(validliteral ( \(l\) )
\(\wedge \quad(l \notin p 2)\)
\(\wedge \quad(l \in r)\)
\(\wedge\) validclause \((p 1)\)
\(\wedge\) validclause ( \(p\) 2)
\(\wedge\) validclause ( \(p\) 1list)
\(\wedge \operatorname{resolvent-help}(r, p 1 l i s t, p 1, p 2))\)
\(\rightarrow \quad\) resolvent-help \((r, p 1 l i s t, p 1\), cons \((l, p 2))\)
```

Theorem: resolvent-with-extra-literal-fact1c (validliteral (l)
$\wedge(l \notin r)$
$\wedge \quad(l \notin p 2)$
\wedge validclause $(p 1)$
\wedge validclause (p 2)
\wedge validclause (p 1list)
\wedge resolvent-help (r, p1list, p1, p2))
\rightarrow resolvent-help (cons (l, r), p1list, p1, cons (l, p2))
ThEOREM: resolvent-with-extra-literal-fact2a
$((l \notin r)$
$\wedge \quad(l \notin p 1)$
\wedge validliteral (l)
\wedge validclause $(p 1)$
\wedge validclause (p 2)
\wedge validclause (p 1list)
$\wedge \quad$ resolvent-help $(r, p 1 l i s t, p 1, p 2))$
$\rightarrow \quad$ resolvent-help (cons (l, r), p1list, cons (l, p1), p2)
ThEOREM: resolvent-with-extra-literal-fact2b
$((l \in r)$
$\wedge \quad(l \notin p 1)$
\wedge validliteral (l)
\wedge validclause $(p 1)$
\wedge validclause (p 2)
\wedge validclause (p 1list)
\wedge resolvent-help $(r, p 1 l i s t, p 1, p 2))$
\rightarrow resolvent-help (r, p 1list, cons (l, p1), p2)
THEOREM: resolvent-with-extra-literal-fact3a
$((l \notin r)$
$\wedge(l \notin p 1)$
$\wedge \quad(l \notin p 2)$
\wedge validliteral (l)
\wedge validclause ($p 1$)
\wedge validclause ($p 2$)
\wedge validclause (p 1list)
\wedge resolvent-help (r, p1list, p1, p2))
\rightarrow resolvent-help (cons (l, r), p1list, cons (l, p1), cons (l, p2))
Theorem: resolvent-fact
resolvent-help $(a, b, c, d) \rightarrow \operatorname{resolvent-help}(\operatorname{cons}(l, a), b, c, d)$
THEOREM: extra-try-resolvent-fact
resolvent-help $(a, b, c, d) \rightarrow \operatorname{resolvent-help}(a, \operatorname{cons}(l, b), c, d)$
ThEOREM: when-not-member-of-take-out-literal
$((1<$ length $(c)) \wedge(a \in$ take-out-literal $(x, c)) \wedge(a \notin x))$
$\rightarrow \quad(\operatorname{cons}(\operatorname{car}(c), a) \in x)$
Theorem: take-out-literal-is-validclause
(validclauses $(x) \wedge(1<$ length $(c)))$
$\rightarrow \quad$ validclauses (take-out-literal (x, c))
Theorem: member-of-validclause-is-validlit
(validclause $(c s) \wedge(l \in c s)) \rightarrow \operatorname{validliteral}(l)$
ThEOREM: when-literal-not-there
(validclauses $(c s) \wedge(x \notin c s)) \rightarrow($ take-out-literal $(c s, x)=c s)$
THEOREM: real-proof-implies-almost-proof
validproof $(c s, p) \rightarrow$ validproof-but-for-literal $(c s, p, x)$
Theorem: when-not-in-bigger-clauses
$((\neg \operatorname{set}-m e m b e r(x, c s)) \wedge$ set-member $(x$, take-out-literal $(c s, p)))$
$\rightarrow \quad$ set-equal $(\operatorname{cdr}(p), x)$
THEOREM: take-out-literal-produces-almost-proof (proof-form (p)
$\wedge \quad$ validproof (take-out-literal $(c s, c), p)$
\wedge validclauses (cs)
$\wedge \quad(1<$ length $(c)))$
$\rightarrow \quad$ validproof-but-for-literal $(c s, p, \operatorname{car}(c))$
ThEOREM: member-of-validclauses-is-validclause (validclauses $(x) \wedge(a \in x)) \rightarrow \operatorname{validclause}(a)$

Theorem: find-contradiction-returns-proof-form
((\neg box-in-axioms $(x))$
$\wedge \quad(\operatorname{excess}-\operatorname{literal}(x) \simeq 0)$
\wedge unsatisfiable (x)
\wedge validclauses $(x))$
$\rightarrow \quad$ proof-form (list (find-contradiction (x)))

TheOrem: proofs-together-have-form-if-both-do
(proof-form $(x) \wedge$ proof-form $(y)) \rightarrow$ proof-form $(\operatorname{append}(x, y))$
TheOrem: adjust-does-not-unform-proofs (proof-form $(x) \wedge$ validliteral $(l)) \rightarrow$ proof-form $(\operatorname{adjust}(x, c s, l))$

```
;; getproof returns something that is of a resolution proof form
;; (later we show that this proof is "valid")
```

TheOrem: getproof-gives-proof-form
(unsatisfiable $(x) \wedge$ validclauses $(x)) \rightarrow$ proof-form (getproof (x))
THEOREM: allunits-means-no-excess-literal
allunits $(x) \rightarrow($ excess-literal $(x) \simeq 0)$
ThEOREM: find-contradiction-returns-box
(unsatisfiable (x)
$\wedge(\neg$ box-in-axioms $(x))$
$\wedge \quad(\operatorname{excess}-\operatorname{literal}(x) \simeq 0)$
\wedge validclauses $(x))$
$\rightarrow \quad(\operatorname{car}($ find-contradiction $(x))=$ nil $)$
Theorem: last-element-fact
$\operatorname{listp}(x) \rightarrow$ (last-element $(\operatorname{append}(y, x))=$ last-element $(x))$
Theorem: getproof-is-list-when
$(\neg$ box-in-axioms $(x)) \rightarrow \operatorname{listp}($ getproof $(x))$
; ; the last resolvent in a getproof-generated proof is box
Theorem: getproof-returns-box
(unsatisfiable $(x) \wedge$ validclauses $(x) \wedge(\neg$ box-in-axioms $(x)))$
$\rightarrow \quad(\operatorname{car}($ last-element $($ getproof $(x)))=$ nil $)$

```
;; adjusting a proof ending in box yields a proof ending in box or a proof
;; whose last resolvent has just the literal used to adjust the proof
```

Theorem: adjusted-proof-gets

$$
\begin{aligned}
& (\operatorname{car}(\text { last-element }(p))=\operatorname{nil}) \\
& \rightarrow \quad((\operatorname{car}(\operatorname{last-element}(\operatorname{adjust}(p, x, l)))=\operatorname{nil}) \\
& \quad \vee \quad(\operatorname{car}(\text { last-element }(\operatorname{adjust}(p, x, l)))=\operatorname{list}(l)))
\end{aligned}
$$

Theorem: what-adjusted-proof-returns
(unsatisfiable (x)
\wedge validclauses (x)
$\wedge \quad(\neg$ box-in-axioms $(x))$
$\wedge \quad(\operatorname{car}(\operatorname{last}-$ element $(\operatorname{adjust}(\operatorname{getproof}(x), y, l))) \neq$ nil $))$
$\rightarrow \quad(\operatorname{car}($ last-element $(\operatorname{adjust}(\operatorname{getproof}(x), y, l)))=\operatorname{list}(l))$

```
;; adjusting an "almost" correct proof yields a correct proof
```

Theorem: adjusting-makes-proofs-valid
(validliteral (l)
\wedge proof-form (p)
\wedge validclauses (cs)
\wedge validproof-but-for-literal $(c s, p, l))$
$\rightarrow \quad \operatorname{validproof}(c s, \operatorname{adjust}(p, c s, l))$
TheOrem: validproof-of-append
(proof-form (x)
\wedge proof-form (y)
\wedge validclauses ($c s$)
\wedge validproof $(c s, x)$
$\wedge \quad \operatorname{validproof(\operatorname {append}(\text {listofcars}(x),cs),y))~}$
$\rightarrow \quad$ validproof $(c s$, append $(x, y))$
ThEOREM: getproof-returns-validproof (unsatisfiable $(x) \wedge$ validclauses $(x)) \rightarrow \operatorname{validproof}(x$, getproof $(x))$
;;10,
;; the completeness theorem

THEOREM: resolution-is-complete
(unsatisfiable $(x) \wedge$ validclauses $(x)) \rightarrow$ finishedproof $(x$, getproof $(x))$

Index

adding-literal-fact, 12
adding-literal-induct, 12
adjust, $7-9,15,16$
adjust-does-not-unform-proofs, 15
adjust-is-listp-when, 8
adjusted-proof-gets, 15
adjusting-makes-proofs-valid, 16
allunit-means, 11
allunits, 11, 12, 15
allunits-if, 11
allunits-means-no-excess-litera l, 15
assignment-interchangeable, 10
box-in-axioms, 4, 7-9, 11, 12, 14, 15
equals-has-same-members, 5
excess-literal, $7-9,11,12,14,15$
excess-literal-in-terms-of-cdr, 8
extra-try-resolvent-fact, 14
find-contradiction, $7,9,12,14,15$
find-contradiction-returns-box, 15
find-contradiction-returns-proo f-form, 14
finishedproof, $4,12,16$
first-non-unit, 6-9
first-non-unit-fact, 7
first-non-unit-fact2, 6
getproof, $9,15,16$
getproof-gives-proof-form, 15
getproof-is-list-when, 15
getproof-returns-box, 15
getproof-returns-validproof, 16
is-last-element-means-member, 6
last-element, 4, 6, 9, 15
last-element-fact, 15
length, 4, 6-9, 11, 14
list-means-length-more-0, 4
listofcars, 5, 6, 16
member-is-setmember, 5
member-of-append-1, 6
member-of-validclause-is-validlit, 14
member-of-validclauses-is-valid clause, 14
membership-of-append, 6
membership-on-subsets, 5
no-box-fact, 8
no-box-zero-el-fact, 9
no-excess-literal-proof, 12
not-box-when-clause-taken, 9
number-of-lits, 7,8
proof-form, 9, 10, 14-16
proofs-together-have-form-if-bot h-do, 15
real-proof-implies-almost-proof, 14
resolution-is-complete, 16
resolvent, $3,4,12$
resolvent-fact, 14
resolvent-help, 3, 13, 14
resolvent-with-extra-literal-fa
ct1b, 13
ct1c, 13
ct2a, 13
ct2b, 13
ct3a, 13
restriction-list-commutative, 11
reversible-nots-1, 11
reversible-nots-2, 11
set-equal, $2,5-7,10-12,14$
set-equal-self, 5
set-equals-fact, 5
set-member, $2,4-6,8,12,14$
setmember-is-setmember-of-super set, 5
stupid-lemma1, 6
stupid-lemma2, 6
stupid-lemma3, 6
subset, 1-3, 5-7, 10
subset-fact-1, 5
subset-is-transitive, 5
subset-of-append, 6
subset-of-self, 5
subset-of-takeouts-fact, 7
subset-of-union-fact-1, 5
take-out-clause, $6,7,9,10$
take-out-clause-fact, 9
take-out-clause-helper, 10
take-out-clause-preserves-valid clauseness, 7
take-out-literal, 6-10, 14
take-out-literal-communative-so rt-of, 7
take-out-literal-helper, 10
take-out-literal-is-validclause, 14
take-out-literal-preserves-vali dclauseness, 7
take-out-literal-produces-almost -proof, 14
takeout, 3, 5, 6, 11
takeout-fact1, 5
takeout-fact2, 6
takeout1, 5, 7
unit-clause-fact, 11
unsat-ignore-first-helper, 11
unsat-induct, 11
unsat-stepper, 10
unsatisfiable, $3,10,12,14-16$
unsatwith, $2,3,10-12$
validclause, $2,10-14$
validclauses, $2,7,12,14-16$
validliteral, 2, 13-16
validproof, $3,4,10,14,16$
validproof-but-for-literal, 12, 14, 16
validproof-but-for-literal-clau
ses-commutative, 12
validproof-clauses-commutative, 10
validproof-of-append, 16
validproof-on-subset, 10
what-adjusted-proof-returns, 15
when-first-non-unit-gives-clause, 8 when-literal-not-there, 14
when-not-in-bigger-clauses, 14
when-not-member-of-take-out-lite ral, 14
when-take-out-clause-does-somet hing, 9
when-take-out-literal-does-somet hing, 8
when-unsatisfiable, 10
without-literal-still-unsatisfi able, 10

