FMWG Report, Version 4

July 21, 2000, 1930 CDT

page 1 of 16

Support for Teaching Formal Methods
Report of the ITICSE 2000 Working Group on Formal Methods Education

Vicki L. Almstrum (co-chair)
The University of Texas at Austin, USA
almstrum@cs.utexas.edu

C. Neville Dean
Anglia Polytechnic University
c.n.dean@anglia.ac.uk

Don Goelman
Villanova University, USA
goelman@vill.edu

Abstract
TBS

1 Introduction

Each of the members of this working group is a strong
proponent of including topics from the area called “formal
methods” as a vital component of computing education at
all levels. During our pre-conference preparations, the
working group’s focus evolved to concentrate on providing
mechanisms to allow the computing community at large to
more easily incorporate formal methods across the
curriculum. This focus reflects the experiences and biases
of a wide collection of concerned educators, since we
invited a number of individuals with strong backgrounds in
this area to serve on an “advisory board”. The advisory
board, which is acknowledged in appendix XA, have
contributed to the work in a variety of ways, among them
position papers (listed in the appendix), pointers to other
documents, on-line discussions (and in one case a pre-
conference meeting), and reviews of the in-progress work.

The remainder of this report is divided into four major
sections. Section 2 defines what we mean by formal
methods and addresses some of the challenges and
problems related to its adoption and consider what can be
done to chip away at the “great divide” between formal
methodists and the computing education community at
large. Section 3 defines formal methods in the context of
current curriculum models and frameworks. Section 4 is an
overview of resources that are currently available as
sources of support for teaching formal methods. Section 5
describes the key contribution of this working group. We
have set the stage for a new web-based resource that targets
computing educators who would either like to begin using
formal methods or who would like to expand their

Thomas B. Hilburn
Embry-Riddle Aeronautical Univ., USA
hilburn@db.erau.edu

Jan Smith
Chalmers University of Technology
smith@cs.chalmers.se

repertoire of use. We fit our proposal into the framework
of a well-established project with broad community
support, which bodes well for its long-term potential to
affect the way the computing community views the
prospect of teaching “formal methods”.

2 Formal Methods: Its nature and relevance
Definition

In our study and interaction about the nature of formal
methods, we found various beliefs about the character and
content of this area. A widely prevalent view (especially in

an industrial context) is Nancy Leveson's definition
[Leveson 90]:

A broad view of formal methods includes all
applications of (primarily) discrete mathematics to
software engineering problems. This application
usually involves modeling and analysis where the
models and analysis procedures are derived from or
defined by an underlying mathematically-precise
foundation.

Robert Vienneau [Vienneau 93] offers an even more
focused definition of formal methods:

A formal method in software development is a
method that provides a formal language for
describing a software artifact (e.g. specifications,
designs, source code) such that formal proofs are
possible, in principle, about properties of the artifact
S0 expressed.

In subsequent sections, we assert the need and rationale for
including formalism throughout the computer science
curriculum. This motivates the more general definition that
the working group adopted:

FMWG Report, Version 4

July 21, 2000, 1930 CDT

page 2 of 16

Formal methods involves the use of discrete
mathematics and mathematical logic in the study
and practice of computer science and software
engineering.

With this definition, we intend to encapsulate within formal
methods all its associated concepts and techniques, and
both their informal and formal application.

Note: We also view "formal methods" as a single entity
within mathematics (with related methods, techniques and
applications) rather than as a set of methods. Hence, we use
the singular when referring to formal methods.

Foundations of Computing

From its beginning in the 1930s, computing was regarded
as an abstract, mathematical science. The work of pioneers
like Turing, Church and Von Neumann used mathematics
to establish the essences and boundaries of the computing
discipline. Although computer technology is crucial in
computer science education and practice, we should not
forget that the underpinnings are mathematical in nature
and that computing deals with purely logical processes
[Mills 88]. However, there is often resistance by students
(and some faculty) to the use of mathematics in the study of
computing. There are a variety of reasons for this
resistance. For example, students may lack the proper
preparation or motivation; many in the education
community have neither an understanding of nor
appreciation for the role of mathematics (formal methods)
in computing [Kelemen 00]; and many individuals feel
intimidated by (and even fearful of) the level of
mathematical knowledge and capability they believe is
required.

Using the working group’s general definition given above,
formal methods is found throughout the computing
discipline. Although not always made clear to them, our
students begin by studying and using formal languages (the
syntax and semantics of programming languages) and use
mathematical formulas (programs) to solve problems on a
computer. In a later section, we explore how formal
methods is or may be used throughout a computing
curriculum.

Software Development

Software is playing an increasingly important and central
role in almost all aspects of daily life. The number, size,
complexity, and application domains of programs being
developed is growing dramatically. Unfortunately, there are
serious problems in the cost, timeliness, and quality of
development of many software products. Most software
projects spend more than half their development time in
testing and many delivered products contain an
unacceptably high number of defects. For the software
discipline, this is not just a commercial issue, but a
professional and ethical problem, which would not be
tolerated in other fields of science and engineering.

Although the term software engineer is becoming a popular
title for software developers, there is little evidence to show

that the practice of software engineering compares with the
rigor and discipline that is required for practice in other
engineering fields. The quality problems arise from
incomplete and imprecise requirements specifications,
shoddy designs with poor documentation, and the almost
sole reliance on testing for software quality assurance.
Although there is increasing interest in the use of formal
methods for specification and design, the concepts of
mathematical modeling and rigorous verification (the staple
of other engineering fields) are still used sparingly in
commercial software development. This is partly revealed
in a survey of software developers by Timothy Lethbridge
[Lethbridge 00], where the developers ranked the
importance of 75 knowledge areas. "Formal Specification
Methods" was ranked 37th and "Predicate Logic" was
ranked 39th. (Areas like "specific programming
languages”, "data structures", "software architectures™ and
"requirements elicitation" were ranked at the top and things
like "differential equations™ and "VLSI" were ranked at the
bottom.)

However, there are examples of where formal methods has
been used effectively to develop high-quality products.
Most of these successes have been in safety critical areas
and have involved the integration for formal methods with
more traditional non-formal approaches [Clarke 96, Gerhart
94, Hall 96, Hinchey 95].

When one uses the more prevalent view of formal methods
(that it is intended to support the "specification and
verification of hardware and software systems" [Wing 00]),
this is where we see less interest and emphasis on formal
methods in our current curricula. Some of this is surely due
to a lack of interest on the part of industry, but a large part of
the responsibility must be assigned to our efforts at
conceptual curriculum design. The computing education
community has adopted a curriculum strategy of dividing
curricula elements into areas of "theory" and "practice”. This
causes both faculty and students to view the theory of
computing as separate and distinct from the practice of
computing. Too often, we end up with theorists who are
viewed as the mathematical elite and practitioners with little
respect for the applicability of formal methods to their work.
This mindset inhibits the use and integration of formal
methods into the software development process. Because of
this (and other reasons mentioned previously), there is little
guidance and support available to faculty that would like to
introduce formal methods into their curricula. Also, the
currently available software tools are, for the most, designed
for use in research or industrial settings. We explore these
issues in more depth in the following sections.

3 FMin Computing-Related Curricula
Computing Curricula '91 and 2001

The significance of formal methods topics in model
computer science curricula has been quite evident,
especially in the most recent versions: Computing Curricula

FMWG Report, Version 4

July 21, 2000, 1930 CDT

page 3 of 16

‘91 [Tucker 91] and draft of Computing Curricula 2001
[CC2001]. (We are using some changes the resulted from a
Steering Committee meeting in June 2000.). Because
CC2001 is still very much a work in progress, it is likely
that some details will have been changed by the time a
finished product is published. In this section we examine
the role of formal methods, both explicit and implicit, in
these curricula. We also mention some implementations of
formal methods modules.

CC91 organized the body of computer science into nine
“knowledge areas,” each consisting of a set of knowledge
units. The CC2001 committee determined that the
evolution of the discipline necessitated important
modifications and additions to the earlier organization. The
committee therefore added five new knowledge areas and
shuffled, modified, added and deleted topics among the
CC91 set of 14 knowledge areas. Most significant for this
working group topic, perhaps, is the recommendation that
Discrete Structures be added as a separate area in its own
right, rather than as a mathematics prerequisite (which was
and is the role of continuous mathematics). This reflects
the opinion of the CC2001 committee that many topics in
the Discrete Structures knowledge area, such as basic logic
and proof techniques, are so fundamental in other
knowledge areas that they should be taught in a computer
science environment with those areas in mind. Thus formal
methods topics appear explicitly in the Discrete Structures
knowledge area of CC2001.

Within each of CC91 and CC2001, sets of topics are
associated with each general knowledge area. Links among
the topics and various pedagogical suggestions are also
being developed for CC2001, but, at the time of this
writing, most of those details have not been finalized. In
CC91, topics were cross-referenced with certain “recurring
concepts.” Among the possible recurring concepts that
could be associated with a topic was one called “conceptual
and formal models.” Therefore, this working group began
with specific topics in examining the place of formal
methods across the curriculum. It took those units in CC91
that correlated with conceptual and formal models as a
recurring concept, and it located those topics in CC2001
based on (or identical to) those units. This meant that the
nomenclature used was the more current one.

Appendices XB and XC are related to this classification.
Appendix XB shows a top-level mapping between the
curricula, together with the number of suggested core hours
in CC2001. According to [Clarke 96], the core was
determined as “those subjects that we would be
embarrassed to have computer science majors graduate
without knowing.” Note further that the mapping is not
precise, as some knowledge areas were added, and many
units were reassigned among the areas. Appendix XC
shows the specific list of topics from both model curricula
that are deemed to correlate with formal methods.

Conference survey

The working group polled its colleagues at the ITICSE
2000 conference as to how they would assess the
importance of formal methods in the different knowledge
areas. Participants could view a poster with the current
state of the areas and their topics in CC 2001 (similar to
appendix XB), with that topics that correlated to formal
methods highlighted. They were also able to read the
working definition of formal methods discussed in Section
2, as well as a wide variety of definitions drawn from the
literature. Participants were asked to assign a numerical
ranking to each knowledge area, as follows:

1) It would be a stretch to use formal methods in
teaching this area.

2) This area could be taught using formal methods.
3) This area should be taught using formal methods.

4) This area can’t be taught without using formal
methods.

Thus, a rating of 2.5 for a knowledge area could be
construed as more or less neutral. The number of
respondents was approximately ten, with the results
displayed in Appendix XD.

The results of the survey showed that the respondents feel
there is a high degree of correlation between the model
curricula and the importance of formal methods, in contrast
to the “math-phobic” evidence presented by Clarke [Clarke
96] .

Software Engineering Body of Knowledge

A current project of the Software Engineering Coordinating
Committee (SWECC) (an ACM/IEEE-CS entity) is the
development of a Guide for the software Engineering Body
of Knowledge (SWEBOK) [Dupuis 00]. The SWEBOK
states as one of its objectives to provide support for “the
students learning the software engineering profession and
educators and trainers engaged in defining curricula and
course content”. The SWEBOK is being developed in
phases and the final version is due in 2002. The guide
divides software engineering knowledge into ten areas,
providing description and guidance for each area. Table 1
lists the ten SWEBOK knowledge areas and shows
examples (drawn form the SWEBOK, our working group
discussions, and other sources [Bjorner 99, Wing 00]) of
parts of formal methods that would apply in each area. The
table provides a possible framework for the introduction
and use of formal methods in software development
courses. At a minimum, it provides faculty and students
with an understanding and appreciation for how and where
formal methods can be used. Those knowledge areas that
benefit most from the use of formal methods are
requirements, design, construction, and quality.

FMWG Report, Version 4

July 21, 2000, 1930 CDT

page 4 of 16

Table 1: SWEBOK and Formal Methods

SWEBOK Knowledge Area

Applicable Formal Methods

Software requirements

formal domain modeling
formal requirements specification
analysis diagrams - data/control flow, entity-relationship, object diagrams

Software design

formal design specification
design diagrams - structure charts,
object diagrams, state diagrams
program design languages

Software construction

algorithm/complexity analysis

data structures

detailed design formalisms (e.g., pre/post conditions, invariants, design
tables and diagrams)

program syntax and semantics

Software testing

program flow diagrams

Software maintenance

(any FM used in initial development)

Software configuration management

configuration process diagrams

Software engineering management

task schedule diagrams (PERT, Gantt)

Software engineering tools and methods

FM tools -analysis and design tools, compilers, type/domain checkers,
animators, model checkers, theorem provers, test case generators

Software engineering process

formal process modeling

Software quality

formal analysis and verification - symbolic execution, model checking,
theorem proving

The SWEBOK does not emphasize or promote formal
methods. It appears to rely more on semi-formal methods,
such as using inspections and reviews throughout the
development life-cycle. However, the SWEBOK, with its
organization and descriptions of knowledge areas and its
extensive list of references, provides an excellent resource
for curriculum and course designers trying to determine
where and how to introduce formal methods.

Note: SWEBOK also includes a number of non-discrete,
statistical techniques used in software management for risk
management, project estimation and tracking, and process
and product assessment.

4 The Current State of
Resources

There are a variety “resources” available which support the
study and application of formal methods (software tools,
books, web pages, handouts, mail lists, tutors/teaching
assistants, fellow students, etc.). In the context of this
report, however, we restrict ourselves to software tools and
web based resources together with any other resources that
may support these (for example, a book on how to use a
particular tool. This issue has been looked at from three
angles:

The FM Educational site.

Formal Methods

Reports and papers submitted to the FM Working
Group (WG). including a range of statements from the
FM Advisory Board (AB).

Surveys conducted by the WG.

FM Educational Site

In March of 1998, the 21st Century Engineering
Consortium Workshop was held in Melbourne, Florida.
The workshop's principal concern was to promote formal
methods education in computer science and computer
engineering programs. Toward this end, the workshop
gathered leading practitioners, experienced academics, and
government advocates interested in the educational issues
relevant to formal methods development. One outcome of
that Workshop was the Formal Methods Education
Resources site [FMED], which was created and has been
maintained by Kathi Fisler of Rice University. The general
philosophy of the site is to provide a collecting point for
materials related to teaching formal methods. The site has
evolved to include several sections, including course pages,
tools, reading materials, instructional materials,
benchmarks and examples related to formal methods, and
position announcements.

While the Formal Methods Education site is a wonderful
resource, at this time it is primarily useful for educators
who are already teaching formal methods and want to find
materials for their existing courses. The great variety of
information available at the site is somewhat

FMWG Report, Version 4

July 21, 2000, 1930 CDT

page 5 of 16

overwhelming; it would certainly be a daunting task for
someone who wishes to begin teaching formal methods to
begin wading through all of the information in order to
come up with the “right” materials for a particular
situation.

Reports and statements submitted to the WG

Several members of the WG and the AB make reference to
Resource Issues in their statements. In addition, Randolph
Johnson has alerted the working group to two relevant
documents. The following is a collection of relevant quotes
from these documents:

1) Jan Smith
http://www.cs.utexas.edu/users/csed/FM/docs/smith.html

This statement outlines an approach to teaching proofs
using a tool based on type theory (for example: Alfa
developed at Chalmers University and Coq developed at
INRIA).

“Experience of wusing formal proof systems in
undergraduate education is limited, mostly to deductions in
logic. We are proposing to present conventional
mathematical subjects in a formal, machine checked, but
still careful and explanatory manner. Students will be able
to browse the formal definitions and proofs at a level of
detail they choose, and will work their exercises using the
formal proof tool.”

“We are rapidly moving towards an information society
which will change both how and what we teach our
students. In mathematics there is already a trend towards
computations, but we expect a more radical change: a
renaissance of proof in education. For the first time, the art
of making proofs is on its way to become an engineering
discipline because of the fundamental importance of correct
hardware and software. For undergraduate students it is
difficult to understand the rules by which proofs are made
and even more difficult for them to develop their own
proofs. The fulfillment of this project will give powerful
tools to increase students' understanding of what a proof is
and how to develop proofs.”

2) WetStone Technologies, Formal Methods
Framework 1999, (Communicated by Randolp
Johnson),
http://www.cs.utexas.edu/users/csed/FM/docs/FMFramewo

rk.pdf

This is an extensive survey of tools used in Formal
Methods. It includes a framework for classifying formal
methods tools and the responses to a survey of 12 tools
relating to the nature of each tool, its availability and cost,
prerequisite knowledge and platforms. These tools are
essentially practitioner tools and include: ACL2; HOL;
Larch Prover; PVS; Z/EVES; Concurrency Factory;
Murphy; SVM Cadence; SPIN; NRL Protocol Analyzer;
SCR and Tatami.

3) M. Barjaktarovic and WetStone Technologies,
Report: State of the Art in Formal Methods, 1998,
(Communicated by Randolp Johnson)
http://www.cs.utexas.edu/users/csed/FM/docs/StateFM.pdf

“Formal methods are in different stages of development, in
a wide spectrum from formal languages with no tool
support, to internationally standardized languages with tool
support and industrial users. The field of formal methods is
in a great flux and evolving rapidly, leaving research
laboratories and making inroads into industrial practice.”

“The major task of the formal methods community will be
to provide the assistance sought. Expressed needs include:
more user-friendly tools; more powerful and robust tools;
more real-life applications; more infrastructure such as
verified libraries; more publicity of success stories and
available technologies; and more user training.”

4) Jeannette Wing, 2000, Weaving Formal Methods
into the Undergraduate Computer Science
Curriculum.
http://www.cs.utexas.edu/users/csed/FM/docs/Wing-

abstract.pdf

“There is no excuse not to be using model checkers in our
undergraduate courses today. With a verification tool, we
can more easily teach that verification complements the
testing and simulation activities of practicing hardware and
software engineers. ... it behooves us as educators to
ensure that our students are well-versed in the state of the
art verification technology.”

“Theorem provers require more expertise than we can
expect of our students to acquire in one semester, all the
while learning other course material.”

5) Dan Craigen, 2000, Position Statement
http://www.cs.utexas.edu/users/csed/FM/docs/craigen.html

“Our Z/EVES system has been extensively used for
teaching purposes. ... Overall, Z/EVES appears to being
used in a lightweight perspective for teaching. Few
students/lecturers move through the adoption curve to
performing complex proofs. Obviously, time and
experience is an issue. However, there have been a number
of undergraduate and graduate projects that have used the
full capabilities of the system (with varying degrees of
success). Various researchers and commercial types have
pushed Z/EVES to its full extent.”

6) Kathi Fisler, 2000, Position Statement
http://www.cs.utexas.edu/users/csed/FM/docs/fis er.html

“Formal methods education should address how to identify,
develop, and prove formal statements --- in particular,
theorems --- about programs and systems. This
encompasses activities ranging from type-checking (where
the theorem is stated implicitly and proved automatically)
to model-checking (theorem stated explicitly and proved
automatically) to theorem-proving (theorem stated
explicitly and proved manually).”

FMWG Report, Version 4

July 21, 2000, 1930 CDT

page 6 of 16

“Students at all levels should be encouraged to think about
the theorems associated with computer science. In
particular, a student should be able to answer the following
questions:

[1] What kinds of formal statements can be made about a
system?

[2] When is a formal statement about a system provable?
[3] When is a formal statement about a system useful?

[4] What resources are needed to prove a given formal
statement?

[5] What tools and techniques exist for validating formal
statements about systems?”

7) Randolph Johnson, 2000, Position Statement,
http://www.cs.utexas.edu/users/csed/FM/docs/johnson.html

“| think that tool support for formal methods is essential. |
have used various Z tools, most recently version 1.5 and
version 2.0 of Z/EVES. See Dan Craigen's position paper
for more information on Z/EVES. Among its strong points
are that it runs on a variety of platforms and is free for
academic use. In my experience, the biggest drawback of
version 1.5, at least for student use, is that you had to know
LaTeX and emacs in addition to learning formal methods
and Z. Version 2.0 added a GUI and eliminated the need to
know LaTeX and emacs. This is MUCH better for
beginners.”

“For educational use, maybe the biggest value of Z/EVES
(and many other formal methods tools) is that it does
syntax checking and type checking at the push of a button.
Some students may never do much more than that. A nice
feature of Z/EVES which | haven't seen in other tools is
that it goes beyond type checking to automatically generate
domain conditions. These state that the argument to which
a partial function is applied in a spec is actually in the
domain of the function. Not only does it generate the
conditions, it tries and often succeeds in proving them.
With no effort on the part of the instructor, the tool
repeatedly draws the attention of the student to an aspect of
their specification which is often ignored, even by very
experienced Z specifiers.”

8) Peter Gorm Larsen, 2000, Position Statement,
http://www.cs.utexas.edu/users/csed/FM/docs/larsen.html

“l believe that formal methods education should be
introduced in stages and that in order to keep the interest
for the students the use of tools is extremely important.
Furthermore | feel that it is important to the students that
the use of formal methods in themselves simply is a means
to achieve better systems/software and not a goal in itself.
It is my experience from some formal methods promoters
that this is not sufficiently stressed. Thus it is in my opinion
important to be able to envisage how one's formal method
and the associated tools could be applied in a real
system/software development environment.”

9) J Strother Moore, Computer-Aided Reasoning with
ACL2
http://www.cs.utexas.edu/users/csed/FM/docs/moore.pdf

“Why teach just one tool? Why ACL2 among all the
choices? ... ACL2 is the tool | know best. ... Enthusiastic
teachers who deeply understand the subject matter tend to
be good teachers. However, when one teaches a course
based upon a particular tool, it is incumbent upon the
teacher to explore the tool’s inadequacies, especially those
that result from fundamental design decisions”

“The argument for teaching just one tool is simple: a
semester is not very long. If | were teaching a course on
programming, | would rather the students learn one “first
language” than several.”

“ACL2 is a good choice for the following reasons. ...
“There is now a textbook introduction... The tool is free
and runs on many platforms. The tool is rugged, well-
documented online, and widely used. Within the ACL2
setting there is a natural way to study some other tools...
Finally, and very importantly, ACL2 is not a pedagogical
toy but an advanced industrial-strength theorem prover ...”

10) Lesley Semmens, 2000, Teaching Formal Methods
— An Integrated Approach
http://www.cs.utexas.edu/users/csed/FM/docs/semmens.ht
ml

“l see the main problem in the early teaching of formal
methods to be the students’ limited ability to model. The
notations are not the main problem. | therefore try to build
on other experience and understanding they already have. |
have tried many different approaches over the ten years |
have been teaching formal methods. | have done it with and
without tools (fUZZ, Formaliser, ZTC). We have even built
tools to translate from ERDs to Z. But, always it comes
back to the students’ ability (or lack of ability) in modeling.
Using tools student beginners produce syntactically correct
Z, but often it is semantic nonsense; they concentrate far
too much on the syntax and coping with the idiosyncrasies
of the tool.”

“l am not totally against tools. With the final year, who
have more understanding of what they are doing (and more
ability in modeling), I use tools, such as fUzZZ and ZTC if
time permits. In any case | encourage them to try out the
tools, in the same way as they might any other software
engineering tool. This seems to work, they are not trying to
learn two things at once and appreciate the help the tool
gives them.”

11) Jonathan Bowen, Position Statement,
http://www.cs.utexas.edu/users/csed/FM/docs/powen.pdf

This paper specifically addresses the issue of web-based
teaching of the formal notation Z. The author describes his
experiences of delivering an FM course in this manner,
including the use of books, and software tools (LaTeX,
ZTC and ZANS)..

FMWG Report, Version 4

July 21, 2000, 1930 CDT

page 7 of 16

“No one book was followed exactly. It was recommended
that a Z textbook be obtained by students and used to
complement the course unit with additional reading outside
lectures.”

“Student understanding of producing a Z specification
increased significantly after the practical sessions. Many
seemed to appreciate using tools far more than just pencil
and paper. However, a danger with the use of an animator
is the possibility of confusion between a (possibly non-
executable) formal specification and an executable
program. A few always seem to stubbornly fail to
recognize the difference even after this is emphasized
repeatedly in lectures.”

“Note that students were given much of this material in
printed form. Otherwise having on-line material encourages
students to simply print it out anyway. This is more
expensive than mass photocopying and clogs the
departments printers when they could be used for more
productive purposes, sure as printing out individual
student’s personal work. However, having the material on-
line is useful in those cases were the students lose their
printed notes since it is readily accessible if needed quickly
(i.e., near dead-lines!). It also makes the material easily and
accessible and updatable by the lecturer. This is especially
helpful in revising the material each year for a course unit
delivered and developed over a number of years.”

“In the experience of the author, using tools in supporting
formal methods course units helps the students in their
understanding and increases their appreciation of the
usefulness (or at least decreases their negativity) of formal
methods.

By insisting that students type-check their Z specifications
(using the ZTC tool on the course unit described here) and
check for explicitness (or otherwise) at least using the
related ZANS animation tool, many errors in Z
specifications can be discovered and eliminated by the
students themselves, sometimes with no help from
demonstrators in the case of bright students. This allows
demonstrators (and markers) to concentrate on the more
interesting and difficult aspects of formulating a Z
specification that require human inspection.

Web support for formal methods and other course units is a
useful adjunct. A benefit is the accessibility of material by
students, the staff involved, other colleagues, internal and
external examiners, etc. It also helps in the maintenance of
course unit material as a unit develops since this can be
easily added and information can quickly be corrected in
the case of errors. However, it is recommended that all
essential material is still given to students in paper form,
even if it is available on the web, since students will tend to
print this anyway, which is still relatively expensive
compared to photocopying. Of course the web resource can
contain considerable extra supplementary material if
desired at very little cost once it is installed.”

Conclusions regarding position statements

From these, we can see several themes emerging:
1) The need for more robust and user-friendly tools.
2) There is a wide spectrum of tools available.

3) The value of including industrial strength tools in
the curriculum, particularly with regard to model
checking.

4) Students need more educationally oriented tools to
help learn the concepts of theorem proving rather
than being overwhelmed by the power of
industrial strength tools.

5) Ancillary issues (such as the operating system a
tool runs under, and the need to learn other
software tools, such as LaTeX and emacs) can
have major adverse effects on the students’
learning experience.

6) Tools can be extremely important in keeping the
interest of students and enhancing the learning
experience.

7) Tools are not necessarily a good idea at the
introductory stages, indeed they may hinder the
learning, or even mislead the student into a
mindset where formal methods are seen as yet
another programming approach!

8) Web support is useful, if only as a means of
providing access to the (latest) handout materials.

Surveys related to FM Resources

Several questionnaires were circulated both before and
during the ITiCSE conference. Of these only one produced
a reasonable number of responses (30, all collected from
the Formal Methods focus group of the (UK based)
Learning and Teaching Support Group for Computer
Science and Information Technology). Appendix AE lists
the questions and gives information about the responses.

These surveys show that a wide variety of tools are used,
mostly industrial strength. Very few are designed
specifically to help develop FM skills in students. Z is very
popular in the UK but other FM approaches are also used.
In follow up communications to the respondents, it seems
that many tools (especially the Z tools) create problems for
their use: some only work on a Unix platform; several
require the use of LaTeX or troff; others have editors that
students find difficult to use. For example, Formaliser uses
a structure editor; students find this difficult, although it
could be argued that thinking more structurally is a skill to
be developed (in which case Formaliser can be seen as a
tool having an educational function). There also seems to
be a dearth of good backup material (tutorials, handouts,
books), although at least one respondent produces some
good material on LaTeX and CadiZ. One exception to this
seems to be Toolbox Lite (for VDM); this is an
educational version of the Toolbox tool, and comes

FMWG Report, Version 4

July 21, 2000, 1930 CDT

page 8 of 16

packaged with a textbook on VDM— Fitzgerald & Larson,
“Modelling Systems”.

The survey reveals there is very little use of web based
resources. There are however a wide variety of textbooks
available and in use. About a quarter of respondents
indicated that there courses tend to “traditional”—book
based and hand-worked exercises.

There also seems to some variability in opinion of what
constitutes a FM and an FM tool. Are declarative languages
like Prolog and ML to be considered as FMs or FM tools?

Generally, the state of the art in resources for teaching FM
seems to be a maze which the novice has to navigate:
“which FM shall | teach?”; “which tool shall I use?”; “what
materials are available?”. The temptation may be to start
with the available resources and to choose (perhaps
somewhat randomly) those that seem most convenient or
which are used on apparently similar courses. But the WG
and AB believe that a better approach would be to start
with the student needs and to decide how best to facilitate
the student learning. There needs to be some means of
helping both the novice and more experienced educator to
decide what resources (in the general sense outlined above)
may aid the achievement of these aims and objectives.

Conclusions regarding FM Resources

Needham [Needham 2000] talks about the conflict between
teaching basic CS concepts and the need for students to
have experience building large-scale systems. He suggests
that at an introductory level, industrial strength tools are
too much for students and hinder the development of
understanding of concepts; that such tools are appropriate
and desirable in final-year group projects; and that when
used, the tools should be fully understood by the educators.
Although his remarks are meant to apply to tools in
general, they are equally applicable to the specific area of
FMs. This seems to be a recurring theme in our
investigations. Certainly, there is a need for more thought
and study about providing tools to aid learning; and that the
tools should be supported by suitable tutorial and other
materials such as books.

There is also the issue of what attributes a good tool should
have if it is to be used for educational purposes. Moore (see
above) makes a good start at this. But the WG and AB sees
this as another important area of investigation.

For the teacher, the problem is to define clearly what the
aims and objectives are at each stage in the students’
learning and to relate these to the resources available.
Currently there seems to be little help to guide the educator
through the maze. The WG proposes that a web resource be
developed to this end.

Our investigations also indicate that there is very little use
of web-based resources. Even when the web is used, it is
often used simply as a means of providing copies of the
latest versions of a handout. The web is largely viewed as a
repository of useful information.

5 A Resource to Support FM Teaching

While the Formal Methods Education site presented in
Section 4 is a wonderful resource, at this time it is
primarily useful for educators who are already teaching
formal methods and want to find materials for their existing
courses. The wealth of information available at the site is
somewhat overwhelming; it would be a daunting task for
someone who wishes to begin teaching formal methods to
begin wading through all of the information in order to
come up with the “right” materials for a particular
situation.

This working group proposes a new area for inclusion in
the Formal Methods Educational site, with a vision toward
creating a set of pages to assist computing educators who
are either new to teaching formal methods or who would
like to move along to the “next level” of teaching formal
methods.

The remainder of this section describes our proposal for the
organization of this sub-site and some of its features. The
actual implementation will be an on-going process, which
will require cooperation by a number of individuals and
institutions. We address our plan of action where such a
plan exists.

We propose the following sections for the new sub-site:

Introduction: What is Formal Methods? (can be drawn
from Section 2 of this report)

Problems and Challenges (can be drawn from section 2
of this report)

FAQs (we have suggestions of several questions and
answers, given below, which will be used to seed this
page)

FM Motivation (advantages, statistics such as those
given by Henderson in [Henderson XX], information to
help in “selling” the idea of teaching formal methods
within a department)

FM across the curriculum
Current computing curricula guidance (links)

Courses matrix and FM components (drawn from
appendices XB and XC)

Guidelines for designing an FM course

Modules that can be incorporated into other
courses (reflecting the results from projects
proposed by Rice University and XX)

As a key addition to the FM Educational web site, we
propose the addition of a resource navigation assistant
(RNA). We feel such a capability would be invaluable in
surveying the maze of resources. The RNA would be more
than a search engine. It would build a searchable network
of interrelated resources that would allow cross-referencing
among courses and curriculum modules, tutorials, software

FMWG Report, Version 4

July 21, 2000, 1930 CDT

page 9 of 16

tools, textbooks, and relevant case studies, examples, and
benchmarks.

The working group also suggests building a educational
tools wish list as part of this sub-site. Currently, tools that
can be used to support the teaching of formal methods are
primarily for practitioners, not for educators or first-time
users. The wish list can provide a basis for enhancing
existing tools for educational settings or for creating
customized tools that address academic concerns. The key
question is: What do tools for teaching and learning FM
need in order to be useful? Some features we have
identified are that they should enhance the learning, should
provide a good learning curve trade-off (that is, the time
invested in learning the tool should not outweigh the
ultimate benefit of using the tool), the user interface should
be intuitive and accessible, and the toll should provide
appropriate revelation of the underlying principles.

The initial plan for implementing this suggestion is to
incorporate many of these ideas into the existing site. The
webmaster is committed to refining and improving the site
and has been in close contact with the working group. We
are proposing an evolutionary process, which will respond
to suggestions and newly emerging needs.

Challenges for bringing the site into use include
encouraging contributions and publicizing the site. As one
aspect of publicizing the FM Ed resource, the working
group will draft a simple flyer that can be readily available
on the web site. This will allow FM proponents to print out
the flyer and have it available on the hand-out table during
appropriate conferences. We will also devise a plan for
distributing information about the resource via relevant
mailing lists.

6 Conclusions

The working group has presented a proposal for extending
the work started elsewhere in order to create a resource that
provides a solid basis of support for computing educators
who wish to begin teaching formal methods, as well as for
educators already teaching formal methods who wish to
move to the next level. The working group’s web site,
http://www.cs.utexas.edu/users/csed/formal-methods/, will
be a source of information about these efforts. The goal,
however, is to incorporate these results into the Formal
Methods Education site as soon as possible.

References

[1] [Bjorner 99]Bjorner, D., and Cueller, J., Software
engineering Education: Roles for Formal
Specification and Design Calculi, Annals of
Software Engineering , April 1999.

[2] [Bowen 00] Bowen, J.P., Experience Teaching Z
with Tool and Web Support, 2000,

(3]

[4]

(5]

(6]

(7]

(8]

(9]
[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

(18]

http://www.cs.utexas.edu/users/csed/FM/
(Advisory Board contribution).

[CC2001] Computing Curricula 2001, DRAFT
(March 6, 2000), The Joint Task Force on
Computing Curricula, IEEE Computer Society,
Association for Computing Machinery, March
2000. (http://computer.org/education/cc2001)
[Clarke 96] Clarke, E.M., et. al., Formal Methods:
State of Art and Future Directions, ACM
Computing Surveys, 28,4, December 1996.
[Dupuis 00] Dupuis, R., et. al. A Guide to the
Software Engineering Body of Knowledge,
Version 0.7, http://lwww.swebok.org.

[FMED] Formal Methods Educational Site,
http://www.cs.indiana.edu/formal-methods-
education/

[Gerhart, S.]Gerhart, S., Craigen, D., and Ralston,
T., Experience with Formal Methods in Critical
Systems, IEEE Software, January 1994, pp. 21-28.
[Hall 96] Hall, A., Using Formal Methods to
Develop an ATC Information System, IEEE
Computer, March 1996.

[Henderson XX] Henderson, P. ?? Need a source
as an example of the kinds of statistics we can cite
[Hinchey 95] Hinchey, M.G. and Bowen, J.P.,
Applications of Formal Methods, Prentice-Hall,
1995.

[Kelemen 00] Kelemen, C., et. al., Has Our
Curriculum Become Math-Phobic? (an American
Perspective), Proceedings of the 5th Annual
SIGCSE/SIGCUE Conference on Innovation and
Technology in Computer Science Education, July
2000.

[Leveson 90] Leveson, N. G., Guest Editor's
Introduction: Formal methods in Software
Engineering, IEEE Transactions in Software
Engineering, September 1990.

[Lethbridge 00] Lethbridge, T.C. What
Knowledge is Important to a Software Engineer
IEEE Computer, May 2000.

[Mills 88] Mills, H. Software Productivity (p. 2),
Dorset, 1988.

[Needham 2000] Needham, R. Keynote Talk,
ITiCSE 2000, Helsinki Finland.

[Tucker 91] Tucker, A. B., ed. Computing
Curricula 1991: Report of the ACM/IEEE-CS
Joint Curriculum Task Force. IEEE Computer
Society Press, 1991.
(http://computer.org/education/cc1991)

[Vienneau 93] Vienneau, R., A Review of
Formal Methods, Kaman Sciences Corporation,
1993.

[Wing 00] Wing, J., Weaving Formal Methods
into the Undergraduate Computer Science
Curriculum, Proceedings of the 8th International
Conference on Algebraic Methodology and

FMWG Report, Version 4 July 21, 2000, 1930 CDT page 10 of 16

Software Technology (AMAST) 2000, Education
Day, lowa City, lowa, US, May 20-27, 2000.

FMWG Report, Version 3 July 14, 2000, 1100

Appendix XA Advisory Board Members

Jonathan Bowen

South Bank University, London, UK

Dan Craigen ORA Canada, Ottawa, Ontario, Canada

Kathi Fisler Rice University, Houston, TX USA

Susan Gerhart Embry-Riddle Aeronautical University, Prescott AZ USA
David Gries University of Georgia, Athens GA USA

Ebba Thora Hvannberg

University of Iceland, Reykjavik, Iceland

Peter Gorm Larsen

IFAD A/S, Odense M, Denmark

J Strother Moore

University of Texas at Austin, Austin, TX USA

Lesley Semmens

Leeds Metropolitan University, Leeds, UK

Moshe Vardi

Rice University

Jeannette M. Wing

Carnegie Mellon University, Pittsburgh, PA USA

J. C. P. Woodcock

Oxford University Software Engineering Centre, Oxford, UK

page 111

FMWG Report, Version 3

July 14, 2000, 1100

Appendix XB: Top-level Mapping between
Knowledge Areas CC2001 and CC91

Computing Curricula 2001
Knowledge Area and
Number of Core Hours

Computing Curricula 91
Knowledge Area

DS: Discrete Structures (40)

None (refer to discussion in Section 3)

PF: Programming Fundamentals (59)

AL: Algorithms and Data Structures

AL: Algorithms and Complexity (31)

AL: Algorithms and Data Structures

PL: Programming Languages (6)

PL: Programming Languages

AR: Architecture (36)

AR: Architecture

OS: Operating Systems (14)

OS: Operating Systems

HC: Human-Computer Interaction (6)

HU: Human-Computer Communication

GR: Graphics and Visualization (5)

HU: Human-Computer Communication

IS: Intelligent Systems (10)

Al: Artificial Intelligence and Robotics

IM: Information Management (10)

DB: Database and Information Retrieval

NC: Net-Centric Computing (15)

OS: Operating Systems

SE: Software Engineering (35)

SE: Software Methodology and Engineering

CN: Computational Science (0)

NU: Numeric and Symbolic Computing

SP: Social and Professional Issues (16)

SP: Social, Ethical and Professional Issues

page 12

FMWG Report, Version 3

July 14, 2000, 1100

Appendix XC: Specific Topics Correlated with
Formal Methods in CC91 and CC2001

CC 2001 Topic

CC 91 Unit

DS1: Functions, relations, and sets

None (refer to discussion in Section 3)

DS2: Basic logic None
DS3: Proof techniques None
DS4: Basics of counting None
DS5: Graphs and trees None
PF1: Fundamental programming constructs None

PF2: Algorithms & problem solving

ALS8: Problem-solving strategies

PF3: Object-oriented programming

PL11: Programming paradigms

PF4: Fundamental data structures

AL1: Basic data structures

PF5: Recursion

AL3: Recursive algorithms

ALD5: Basic computability theory

AL7: Computability and undecidability

ALG6: The complexity classes P and NP

AL5: Complexity classes

AL7: Automata theory

PL7-PL8: Automata, regular expressions, et al

PL1: History of programming languages

PL1: History and overview of programming
languages

PL3: Virtual machines

PL2: Virtual machines

PL4: Introduction to language translation

PL9: Language translation systems

PL5: Language translation systems

PL9: Language translation systems

PL6: Type systems

PL3: Representation of data types

PL7: Models of execution control

PL4: Sequence control

PL8: Declaration,
management

modularity, and storage

PL6: Run-time storage system

PL9: Programming language semantics

PL10: Programming language semantics

PL10: Programming paradigms

PL11: Programming paradigms

ARL1: Digital logic and digital systems

AR1: Digital logic

ARG6: CPU implementation

ARZ1: Digital logic

0S2: Concurrency

0S3: Process coordination and synchronization

0S3: Scheduling and dispatch

0S4: Scheduling and dispatch

0OS6: Security and protection

0OS8: Security and protection

0S8: Real-time systems

0S10: Distributed and real-time systems

HC2: Modeling the user

HU1: User interfaces

GR3: Modeling

HU2: Computer graphics

1S2: Search and optimisation methods

Al2: Problems, state spaces, and search strategies

1S3: Knowledge representation and reasoning

Al2: Problems, state spaces, and search strategies

Appendix continues on the next page

page 131

FMWG Report, Version 3

July 14, 2000, 1100

Appendix XC, continued: Specific Topics Correlated with
Formal Methods in CC91 and CC2001

CC 2001 Topic

CC 91 Unit

1S6: Machine learning

Al2: Problems, state spaces, and search strategies

I1S7: Natural language processing

All: History and applications of artificial
intelligence

1S10: Knowledge-Based systems

All: History and applications of artificial
intelligence

IM2: Data modeling and the relational model

DB2: The relational data model

IM3: Database query languages

DB2: The relational data model

IM4: Relational database design

DB2: The relational data model

IM5: Transaction processing

DB1: Overview, models, and applications of
database systems

IM6: Distributed databases

DB1: Overview, models, and applications of
database systems

IM7: Advanced relational database design

DB2: The relational data model

NC2: Communication and networking

0S9: Communications and networking

NC7: Distributed systems

0S10: Distributed and real-time systems

SE2: Software requirements and specifications

SE3: Software requirements and specifications

SE3: Software design and implementation

SE4: Software design and implementation

SE4: Verification and validation

SE5: Verification and validation

SE5: Software tools and environments

SE2: The software development process

CNZ1: Numerical analysis

NU2: Iterative approximation methods

FMWG Report, Version 3

July 14, 2000, 1100

Appendix XD: Responses to Conference Survey
on Importance of Formal Methods

Key to interpretation of ratings:

1) It would be a stretch to use formal methods in teaching this area.

2) This area could be taught using formal methods.
3) This area should be taught using formal methods.
4) This area can’t be taught without using formal methods.

CC 2001 Knowledge Area

Median Rating in
Formal Methods Survey

Discrete Structures 3.8
Programming Fundamentals 2.9
Algorithms and Complexity 3.7
Programming Languages 2.9
Architecture 2.5
Operating Systems 4.4
Human-Computer Interaction 14
Graphics and Visualization 3.2
Intelligent Systems 3.2
Information Management 2.0
Net-Centric Computing 2.7
Software Engineering 3.8
Computational Science 3.9

page 15

FMWG Report, Version 3 July 14, 2000, 1100 page 16 (

Appendix XE: Responses to FM Tool Survey

1. What software have you used in teaching formal methods?

Respondents gave the following answers:

Z (including Z Specific Formaliser (3), CadiZ (3), Fuzz (2), Z/IEVES, ZTC, and Z Browser)
B (B Tool(2))

SDL (Telelogic TAU)

Lotos (SEDOS, TOPO, LOLA)

PVS

VDM (ToolBox Lite)

CSP (Kramer & McGee (KM) model checker; FDR model checker)

Design CPN (Concurrency Workbench)

ML

No software used (5)

Note: The numbers in parentheses indicate the number of responses for each tool; all others represent a single
response.

2. How have you used the software in your teaching?

Respondents indicated they have:
a) taught its use as a tool for doing formal methods in the case of:

Z Specific Formaliser (3), CadiZ(2), Fuzz(2), ZIEVES, TOPO, LOLA, PVS,
B Tool, KM model checker, Concurrency Workbench, ZTC

b) used it as a tool for teaching/learning the concepts of FM in the case of:

Z Specific Formaliser (2), CadiZ, Telelogic TAU, SEDOS, TOPO,Fuzz, Z/EVES, PVS, ToolBox Lite, B
Tool, Concurrency Workbench, FDR model checker, Fuzz, Z Browser

3. At what levels have you used the software?

Responses were:
a) undergraduate courses, or

Z Specific Formaliser (2) , Cadiz, Telelogic TAU, SEDQOS, TOPO, ToolBox Lite, B Tool, KM model
checker, Concurrency Workbench, Fuzz, ZTC

b) postgraduate courses? (i.e. after the undergraduate degree)

B Tool, Telelogic TAU, SEDOS, TOPO, ToolBox Lite (M.Sc. Conversion), Concurrency Workbench, FDR
model checker, ZTC

4. What resources have you used in support?

Respondents listed the following:
textbooks;

Turner, “Using Formal Description Techniques”
Jacky, “The Way of Z2”

Potter, Sinclair & Till (2), “Introductionto ... Z.”
Lightfoot, “Z”

Spivey, “Z Reference Manual”,

Woodcock and Davies, “Using Z”

Currie, “The Essence of Z”

Diller (2), “2”

Ellsberger et al. “SDL”

Fitzgerald & Larson, “Modelling Systems”
Unknown (3)

on-line tutorials/manuals: Fuzz, TOPO, LOLA, Z/EVES, PVS; Own materials, CadiZ; No such material used
(3); own handouts (3)

other web based resources: Z, CadiZ
mailing lists: Z/EVES, PVS

