
FMWG Report, Version 5.2 August 2, 2000, 2200 CDT page 1 of 17

[*] Support for Teaching Formal Methods
Report of the ITiCSE 2000 Working Group on Formal Methods Education

Vicki L. Almstrum (co-chair)

The University of Texas at Austin, USA

almstrum@cs.utexas.edu

C. Neville Dean (co-chair)

Anglia Polytechnic University

c.n.dean@anglia.ac.uk

Don Goelman

Villanova University, USA

goelman@vill.edu

Thomas B. Hilburn

Embry-Riddle Aeronautical Univ., USA

hilburn@db.erau.edu

Jan Smith

Chalmers University of Technology

smith@cs.chalmers.se

Abstract

This report describes a growth path for the area referred to
as formal methods within the computing education
community. We define the term formal methods and
situate it within our field by highlighting its role in
Computing Curricula 1991, Computing Curriculum 2001,
and the SoftWare Engineering Body Of Knowledge
(SWEBOK). The working group proposes an enhancement
to an existing web resource, which is a rich collection of
materials and links related to formal methods. The new
section is designed to provide a bridge between the general
computing education community and the "formal
methodist" community. The goal is to allow the latter to
provide useful support for the former for the ultimate
benefit of all of our students. Eventually, the working
group aspires to see the concepts of formal methods
integrated seamlessly into the computing curriculum so that
it is not necessary to separate them in our discussions.

1 Introduction[DC1]

We support the use of discrete mathematics and formal
methods in the teaching and learning of computer science
and software engineering. We believe graduates of
programs that use and emphasize formal methods will be
better prepared for advanced study and research in
computing, and/or be able to apply mathematic techiniques
ot the development and verification of software artifacts
(such as requirements specifications or design
specifications). We see formal methods as the “calculus” of
software engineering; without formal methods, the
engineering is non-existent or suspect.

Each of the members of this working group is a strong
proponent of including topics from the area called formal
methods as a vital component of computing education at all

levels. During our pre-conference preparations, the
working group’s focus evolved to concentrate on providing
mechanisms to allow the computing education community
at large to more easily incorporate formal methods across
the curriculum. This focus reflects the experiences and
biases of a wide collection of concerned educators, since
we invited a number of individuals with strong
backgrounds in this area to serve on an “advisory board”.
The advisory board, which is acknowledged in Appendix
A, have contributed to the work in a variety of ways,
among them position papers (listed in Appendix A),
pointers to other documents, on-line (and on-line)
discussions, and reviews of the in-progress work.

Even though formal methods are very widely used in the
semiconductor industry —indeed, this is the area of
computing in which they have had their greatest success to
date— the emphasis in this report is on software. In part
this reflects the background of the committee, but it is also
consistent with the greater emphasis on software in
computing education.

The remainder of this report is divided into four major
sections. Section 2 defines what we mean by formal
methods, addresses some of the challenges and problems
related to its adoption, and considers what can be done to
address the communication gap between formal methodists
and the computing education community at large. Section 3
defines formal methods in the context of current curriculum
models and frameworks. Section 4 is an overview of
resources that are currently available as sources of support
for teaching formal methods. Section 5 describes the key
contribution of this working group. We have set the stage
for a new web-based resource that targets computing
educators who would either like to begin using formal
methods or who would like to expand their repertoire of
use. We fit our proposal into the framework of a well-

FMWG Report, Version 5.2 August 2, 2000, 2200 CDT page 2 of 17

established project with broad community support, which
bodes well for its long-term potential to affect the way the
computing community views the prospect of teaching
“formal methods”.

2 Formal Methods: Its nature and relevance

Definition[js2]

In our study and interaction about the nature of formal
methods, we found various beliefs about the character and
content of this area. A widely prevalent view (especially in
an industrial context) is Nancy Leveson’s definition [21]:

A broad view of formal methods includes all
applications of (primarily) discrete mathematics to
software engineering problems. This application
usually involves modeling and analysis where the
models and analysis procedures are derived from or
defined by an underlying mathematically-precise
foundation.

Robert Vienneau [31] offers a focused definition of formal
methods:

A formal method in software development is a
method that provides a formal language for
describing a software artifact (e.g. specifications,
designs, source code) such that formal proofs are
possible, in principle, about properties of the artifact
so expressed.

In subsequent sections, we assert the need and rationale for
including formalism throughout the computer science
curriculum. This motivates the more general definition that
the working group adopted:

Formal methods involves the use of discrete
mathematics and mathematical logic in the study
and practice of computer science and software
engineering[slg3].

With this definition, we intend to encapsulate within formal
methods all its associated concepts and techniques, and
both their informal and formal application.

Note: We also view “formal methods” as a single entity
within mathematics (with related methods, techniques and
applications) rather than as a set of discrete entities. Hence,
we use the singular when referring to formal methods[slg4].

Foundations of Computing

From its beginning in the 1930s, computing was regarded
as an abstract, mathematical science[slg5]. The work of
pioneers like Turing, Church and Von Neumann used
mathematics to establish the essences and boundaries of the
computing discipline. Although computer technology is
crucial in computer science education and practice, we
should not forget that the underpinnings are mathematical
in nature and that computing de als w ith purely logica l
proc ess es [22, p. 2]. However, there is often resistance by
students (and some faculty) to the use of mathematics in
the study of computing. There are a variety of reasons for

this resistance. For example, students may lack the proper
preparation or motivation; many in the education
community have neither an understanding of nor
appreciation for the role of mathematics (formal methods)
in computing [18]; and many individuals feel intimidated
by (and even fearful of) the level of mathematical
knowledge and capability they believe is required.

Using the working group’s general definition given above,
formal methods is found throughout the computing
discipline. Although the connection is not always made
clear to them, our students begin by studying and using
formal languages (the syntax and semantics of
programming languages); programs could simply be
viewed as a string of symbols from the language (similar to
formulae in other mathematical system)[js6]. In a later
section, we explore how formal methods is or may be used
throughout a computing curriculum.

Software Development[slg7]

Software is playing an increasingly important and central
role in almost all aspects of daily life. The number, size,
complexity, and application domains of programs being
developed are growing dramatically. [slg8]Unfortunately,
there are serious problems in the cost, timeliness, and
quality of development of many software products. Most
software projects spend more than half their development
time in testing and many delivered products contain an
unacceptably high number of defects. For the software
discipline, this is not just a commercial issue, but a
professional and ethical problem, which would not be
tolerated in other fields of science and engineering. Parnas
contrasts traditional CS programs with most engineering
programs, arguing that SE programs should follow the
traditional engineering approach to professional education
[25].

Although the term software engineer is becoming a popular
title for software developers, there is little evidence to show
that the practice of software engineering compares with the
rigor and discipline that is required for practice in other
engineering fields. The quality problems arise from
incomplete and imprecise requirements specifications,
shoddy designs with poor documentation, and the almost
sole reliance on testing for software quality assurance.
Although there is increasing interest in the use of formal
methods for specification and design, the concepts of
mathematical modeling and rigorous verification (the staple
of other engineering fields) are still used sparingly in
commercial software development. This is partly revealed
in a survey of software developers by Timothy Lethbridge
[20], where the developers ranked the importance of 75
knowledge areas. “Formal Specification Methods” was
ranked 37th and “Predicate Logic” was ranked 39th. (Areas
like “specific programming languages”, “data structures”,
“software architectures” and “requirements elicitation”
were ranked at the top, while areas such as “differential
equations” and “VLSI” were ranked at the bottom[slg9].)

FMWG Report, Version 5.2 August 2, 2000, 2200 CDT page 3 of 17

However, there are examples of where formal methods has
been used effectively to develop high-quality products.
Most of these successes have been in safety critical areas
and have involved the integration of formal methods with
more traditional non-formal approaches [4, 11, 13, 14, 33].
For many years the use of formal methods has been
mandated or encouraged in critical national security
systems. Especially with the explosive growth of
electronic commerce, there is growing interest in formal
methods for achieving higher confidence in other critical
infrastructure systems [5, 26].

A more prevalent view of formal methods is that it is
intended to support the “spec ifica tion and verification of
ha rdware and s oftwa re syste ms ” [34]U nder this view, c urrent
curricula have a low le vel of e mphas is on formal me thods .
This is s ure ly due, at leas t in pa rt, to a lack of intere st on the
pa rt of the softw are industry, but much of the re spons ibility
must be a ttribute d to the s ta te of conc eptua l c urric ulum
de sign. The computing educa tion community ha s a dopte d a
curriculum s trate gy of dividing curricula eleme nts into a re as
of “theory” a nd “prac tice” . This cause s both fac ulty and
students to view the the ory of c omputing a s separate a nd
distinc t from the prac tice of computing. Too often, the re sult
is theorists w ho are vie wed a s the ma thema tical e lite and
prac titioners with little res pec t for the applica bility of forma l
me thods to the ir work. [slg10]This mindset inhibits the use and
inte gra tion of formal me thods into the softw are deve lopme nt
proc ess . Bec ause of this (a nd othe r rea sons mentione d
previously), there is little guida nce a nd support available to
fa culty that w ould like to introduce forma l methods into their
curricula . A ls o, the c urrently a va ila ble s oftwa re tools a re , for
the mos t part, de signe d for use in re se arc h or indus trial
se ttings. W e explore these issues in more depth in the
following se ctions.

3 FM in Computing-Related Curricula[eth11]

Computing Curricula ‘91 and 2001

The significance of formal methods topics in model
computer science curricula has been quite evident,
especially in the most recent versions: Computing Curricula
‘91 [30] and the draft of Computing Curricula 2001 [6].
Because CC2001 is still very much a work in progress,
details will change by the time a finished product is
published (our analysis is based on a version that resulted
from a Steering Committee meeting in June 2000). In this
section we examine the role of formal methods, both
explicit and implicit, in these curricula. We also mention
some implementations of formal methods modules.[vla12]

Computing Curricula ‘91 (CC91) organized the body of
computer science into ten “knowledge areas,” each
consisting of a set of knowledge units. The Computing
Curriculum 2001 (CC2001) committee determined that the
evolution of the discipline necessitated important
modifications and additions to the earlier organization. The
committee therefore added four new knowledge areas and

shuffled, modified, added, and deleted topics among the
CC91 set of knowledge areas. Most significant for this
working group topic, perhaps, is the recommendation that
Discrete Structures be added as a separate area in its own
right, rather than as a mathematics prerequisite (which was
and is the role of continuous mathematics). This reflects
the opinion of the CC2001 committee that many topics in
the Discrete Structures knowledge area, such as basic logic
and proof techniques, are so fundamental in other
knowledge areas that they should be taught in a computer
science environment with those areas in mind. Thus formal
methods topics appear explicitly in the Discrete Structures
knowledge area of CC2001.

Within each of CC91 and CC2001, sets of topics are
associated with each general knowledge area. Links among
the topics and various pedagogical suggestions are also
being developed for CC2001, but, at the time of this
writing, most of those details have not been finalized. In
CC91, topics were cross-referenced with certain “recurring
concepts”. Among the possible recurring concepts that
could be associated with a topic was one called “conceptual
and formal models”. Therefore, this working group began
with specific topics in examining the place of formal
methods across the curriculum. We started with the units
in CC91 that correlated with conceptual and formal models
as a recurring concept, and located those topics in CC2001
that are based on (or identical to) those units. This led to
using the more recent nomenclature.

Appendices B and C are related to this classification.
Appendix B shows a top-level mapping between the
curricula, together with the number of suggested core hours
in CC2001. Note that the mapping is not precise, as some
knowledge areas were added, and many units were
reassigned among the areas. According to Clarke [4], the
core was determined as “those subjects that we would be
embarrassed to have computer science majors graduate
without knowing”. Appendix C lists the topics (or units)
from both model curricula that correlate with formal
methods[DRJ13].

In order to do a small status check on the computing
education community’s view of the role of formal methods,
the working group conducted a small survey during the
poster session during the ITiCSE conference; the results are
given in Appendix D. While the number of responses was
small, the results did show us that the respondents do
perceive a strong relationship between the model curricula
and the importance of formal methods, in contrast to the
“math-phobic” evidence presented by Clarke [4].

Software Engineering Body of Knowledge[eth14]

A current project of the Software Engineering Coordinating
Committee (SWECC) is the development of a Guide for
the software Engineering Body of Knowledge (SWEBOK)
[8]. The SWEBOK states as one of its objectives to
provide support for “the students learning the software

FMWG Report, Version 5.2 August 2, 2000, 2200 CDT page 4 of 17

engineering profession and educators and trainers engaged
in defining curricula and course content”. The SWEBOK is
being developed in phases and the final version is due in
2002. The guide divides software engineering knowledge
into ten areas, providing description and guidance for each
area. In order to enhance the SWEBOK as a tool for
designing course material, programs, and accreditation
criteria, the committee used Bloom's Taxonomy [vla15]to
evaluate the required or desired capability for each of the
topics included in the knowledge areas. Appendix E lists
the ten SWEBOK knowledge areas and shows examples
(drawn from the SWEBOK, our working group
discussions, and other sources [2, 34]) of parts of formal
methods that would apply in each area. The table provides
a possible framework for the introduction and use of formal
methods in software development courses. At a minimum,
it provides faculty and students with an understanding and
appreciation for how and where formal methods can be
used. Those knowledge areas that benefit most from the use
of formal methods are requirements, design, construction,
and quality.

The SWEBOK does not emphasize or promote formal
methods. It appears to rely more on semi-formal methods,
such as using inspections and reviews throughout the
development life-cycle. However, the SWEBOK, with its
organization and descriptions of knowledge areas and its
extensive list of references, provides an excellent resource
for curriculum and course designers trying to determine
where and how to introduce formal methods.

Note: SWEBOK also includes a number of non-discrete,
statistical techniques used in software management for risk
management, project estimation and tracking, and process
and product assessment.

4 The Current State of Formal Methods
Resources

There are a variety “resources” available that support the
study and application of formal methods (software tools,
books, web pages, handouts, mail lists, tutors/teaching
assistants, fellow students, etc.). In the context of this
report, however, we restrict ourselves to software tools and
web-based resources together with any other resources that
may support these (for example, a book on how to use a
particular tool). In this section, we consider this issue from
three angles:

• Reports and papers submitted to the FM Working
Group (WG). including a range of statements from the
FM Advisory Board (AB).

• Surveys conducted by the WG.
• The FM Educational site.

Reports and statements submitted to the WG

In the position statements and other materials submitted to
the WG, several members of the WG and the AB make
reference to Resource Issues. In addition, Randolph

Johnson has alerted the working group to two relevant
documents, which are included here as items 2) and 3). The
following highlights some key points from each of these
documents:

1) Jan Smith position statement [28]
This statement outlines an approach to teaching proofs
using a tool based on type theory (specifically, Alfa,
developed at Chalmers University, and Coq, developed at
INRIA).

“Experience of using formal proof systems in
undergraduate education is limited, mostly to deductions in
logic. We are proposing to present conventional
mathematical subjects in a formal, machine checked, but
still careful and explanatory manner. Students will be able
to browse the formal definitions and proofs at a level of
detail they choose, and will work their exercises using the
formal proof tool.”

“We are rapidly moving towards an information society
which will change both how and what we teach our
students. In mathematics there is already a trend towards
computations, but we expect a more radical change: a
renaissance of proof in education. For the first time, the art
of making proofs is on its way to become an engineering
discipline because of the fundamental importance of correct
hardware and software. For undergraduate students it is
difficult to understand the rules by which proofs are made
and even more difficult for them to develop their own
proofs. The fulfillment of this project will give powerful
tools to increase students’ understanding of what a proof is
and how to develop proofs.”

2) WetStone Technologies, Formal Methods
Framework 1999, (Communicated by Randolph
Johnson) [32]
This is an extensive survey of tools used in Formal
Methods. It includes a framework for classifying formal
methods tools and the responses to a survey investigating
the use of twelve tools. The survey addressed the nature of
each tool, its availability and cost, prerequisite knowledge,
and platforms. All of these tools are essentially practitioner
tools and include ACL2, HOL, Larch Prover, PVS,
Z/EVES, Concurrency Factory, Murphy, SVM Cadence,
SPIN, NRL Protocol Analyzer, SCR, and Tatami.

3) M. Barjaktarovic and WetStone Technologies,
Report: State of the Art in Formal Methods, 1998,
(Communicated by Randolph Johnson) [0]
 “Formal methods are in different stages of development, in
a wide spectrum from formal languages with no tool
support, to internationally standardized languages with tool
support and industrial users. The field of formal methods is
in a great flux and evolving rapidly, leaving research
laboratories and making inroads into industrial practice.”

“The major task of the formal methods community will be
to provide the assistance sought. Expressed needs include:
more user-friendly tools; more powerful and robust tools;

FMWG Report, Version 5.2 August 2, 2000, 2200 CDT page 5 of 17

more real-life applications; more infrastructure such as
verified libraries; more publicity of success stories and
available technologies; and more user training.”

4) Jeannette Wing, Weaving Formal Methods into the
Undergraduate Computer Science Curriculum. [34]
 “There is no excuse not to be using model checkers in our
undergraduate courses today. With a verification tool, we
can more easily teach that verification complements the
testing and simulation activities of practicing hardware and
software engineers. … it behooves us as educators to
ensure that our students are well-versed in the state of the
art verification technology[slg16].”

“Theorem provers require more expertise than we can
expect of our students to acquire in one semester, all the
while learning other course material.”[slg17]

5) Dan Craigen position statement [7]
 “Our Z/EVES system has been extensively used for
teaching purposes. … Overall, Z/EVES appears to being
used in a lightweight perspective for teaching. Few
students/lecturers move through the adoption curve to
performing complex proofs. Obviously, time and
experience is an issue. However, there have been a number
of undergraduate and graduate projects that have used the
full capabilities of the system (with varying degrees of
success). Various researchers and commercial types have
pushed Z/EVES to its full extent.”[slg18]

6) Kathi Fisler position statement [9]
 “Formal methods education should address how to
identify, develop, and prove formal statements —in
particular, theorems— about programs and systems. This
encompasses activities ranging from type-checking (where
the theorem is stated implicitly and proved automatically)
to model-checking (theorem stated explicitly and proved
automatically) to theorem-proving (theorem stated
explicitly and proved manually).”

“Students at all levels should be encouraged to think about
the theorems associated with computer science. In
particular, a student should be able to answer the following
questions:

[1] What kinds of formal statements can be made about a
system?

[2] When is a formal statement about a system provable?

[3] When is a formal statement about a system useful?

[4] What resources are needed to prove a given formal
statement?

[5] What tools and techniques exist for validating formal
statements about systems?”

7) Randolph Johnson position statement [17]
 “I think that tool support for formal methods is essential. I
have used various Z tools, most recently version 1.5 and
version 2.0 of Z/EVES. See Dan Craigen’s position paper
for more information on Z/EVES. Among its strong points

are that it runs on a variety of platforms and is free for
academic use. In my experience, the biggest drawback of
version 1.5, at least for student use, is that you had to know
LaTeX and emacs in addition to learning formal methods
and Z. Version 2.0 added a GUI and eliminated the need to
know LaTeX and emacs. This is MUCH better for
beginners.”

“For educational use, maybe the biggest value of Z/EVES
(and many other formal methods tools) is that it does
syntax checking and type checking at the push of a button.
Some students may never do much more than that. A nice
feature of Z/EVES which I haven’t seen in other tools is
that it goes beyond type checking to automatically generate
domain conditions. These state that the argument to which
a partial function is applied in a spec is actually in the
domain of the function. Not only does it generate the
conditions, it tries and often succeeds in proving them.
With no effort on the part of the instructor, the tool
repeatedly draws the attention of the student to an aspect of
their specification which is often ignored, even by very
experienced Z specifiers.”

8) Peter Gorm Larsen position statement [19]

“I believe that formal methods education should be
introduced in stages and that in order to keep the interest
for the students the use of tools is extremely important.
Furthermore I feel that it is important to the students that
the use of formal methods in themselves simply is a means
to achieve better systems/software and not a goal in itself.
It is my experience from some formal methods promoters
that this is not sufficiently stressed. Thus it is in my opinion
important to be able to envisage how one’s formal method
and the associated tools could be applied in a real
system/software development environment.”

9) J Strother Moore position statement [23]
 “Why teach just one tool? Why ACL2 among all the
choices? … ACL2 is the tool I know best. … Enthusiastic
teachers who deeply understand the subject matter tend to
be good teachers. However, when one teaches a course
based upon a particular tool, it is incumbent upon the
teacher to explore the tool’s inadequacies, especially those
that result from fundamental design decisions.”

“The argument for teaching just one tool is simple: a
semester is not very long. If I were teaching a course on
programming, I would rather the students learn one “first
language” than several.”[slg19]

“ACL2 is a good choice for the following reasons. …
There is now a textbook introduction… The tool is free and
runs on many platforms. The tool is rugged, well-
documented online, and widely used. Within the ACL2
setting there is a natural way to study some other tools…
Finally, and very importantly, ACL2 is not a pedagogical
toy but an advanced industrial-strength theorem prover …”

10) Lesley Semmens position statement [27]

FMWG Report, Version 5.2 August 2, 2000, 2200 CDT page 6 of 17

 “I see the main problem in the early teaching of formal
methods to be the students’ limited ability to model. The
notations are not the main problem. I therefore try to build
on other experience and understanding they already have.
[slg20]I have tried many different approaches over the ten
years I have been teaching formal methods. I have done it
with and without tools (fUZZ, Formaliser, ZTC). We have
even built tools to translate from ERDs to Z. But, always it
comes back to the students’ ability (or lack of ability) in
modeling. Using tools student beginners produce
syntactically correct Z, but often it is semantic nonsense;
they concentrate far too much on the syntax and coping
with the idiosyncrasies of the tool.”

“I am not totally against tools. With the final year, who
have more understanding of what they are doing (and more
ability in modeling), I use tools, such as fUZZ and ZTC if
time permits. In any case I encourage them to try out the
tools, in the same way as they might any other software
engineering tool. This seems to work, they are not trying to
learn two things at once and appreciate the help the tool
gives them.”

11) Jonathan Bowen position statement [3]

This position statement specifically addresses the issue of
web-based teaching of the formal notation Z. The author
describes his experiences of delivering an FM course in this
manner, including the use of books, and software tools
(LaTeX, ZTC and ZANS).

“No one book was followed exactly. It was recommended
that a Z textbook be obtained by students and used to
complement the course unit with additional reading outside
lectures.”

“Student understanding of producing a Z specification
increased significantly after the practical sessions. Many
seemed to appreciate using tools far more than just pencil
and paper. However, a danger with the use of an animator
is the possibility of confusion between a (possibly non-
executable) formal specification and an executable
program. A few always seem to stubbornly fail to
recognize the difference even after this is emphasized
repeatedly in lectures.”

“Note that students were given much of this material in
printed form. Otherwise having on-line material encourages
students to simply print it out anyway. This is more
expensive than mass photocopying and clogs the
department’s printers when they could be used for more
productive purposes, such as printing out individual
student’s personal work. However, having the material on-
line is useful in those cases where the students lose their
printed notes since it is readily accessible if needed quickly
(i.e., near deadlines!). It also makes the material easily
accessible and updatable by the lecturer. This is especially
helpful in revising the material each year for a course unit
delivered and developed over a number of years.”

“In the experience of the author, using tools in supporting
formal methods course units helps the students in their

understanding and increases their appreciation of the
usefulness (or at least decreases their negativity) of formal
methods.

By insisting that students type-check their Z specifications
(using the ZTC tool on the course unit described here) and
check for explicitness (or otherwise) at least using the
related ZANS animation tool, many errors in Z
specifications can be discovered and eliminated by the
students themselves, sometimes with no help from
demonstrators in the case of bright students. This allows
demonstrators (and markers) to concentrate on the more
interesting and difficult aspects of formulating a Z
specification that require human inspection.[slg21]

Web support for formal methods and other course units is a
useful adjunct. A benefit is the accessibility of material by
students, the staff involved, other colleagues, internal and
external examiners, etc. It also helps in the maintenance of
course unit material as a unit develops since this can be
easily added and information can quickly be corrected in
the case of errors. However, it is recommended that all
essential material is still given to students in paper form,
even if it is available on the web, since students will tend to
print this anyway, which is still relatively expensive
compared to photocopying. Of course the web resource can
contain considerable extra supplementary material if
desired at very little cost once it is installed.”

Conclusions regarding position statements

From these, we can see several themes emerging:

1) The need for more robust and user-friendly tools.

2) There is a wide spectrum of tools available[slg22].

3) The value of including industrial strength tools in the
curriculum, particularly with regard to model
checking[slg23].

4) Students need more educationally oriented tools to
help learn the concepts of theorem proving rather than
being overwhelmed by the power of industrial strength
tools.

5) Ancillary issues (such as the operating system a tool
runs under, and the need to learn other software tools,
such as LaTeX and emacs) can have major adverse
effects on the students’ learning experience[slg24].

6) Tools can be extremely important in keeping the
interest of students and enhancing the learning
experience.

7) Tools are not necessarily a good idea at the
introductory stages, indeed they may hinder the
learning, or even mislead the student into a mindset
where formal methods are seen as yet another
programming approach!

8) Web support is useful, if only as a means of providing
access to the (latest) handout materials.

FMWG Report, Version 5.2 August 2, 2000, 2200 CDT page 7 of 17

Surveys related to FM Resources

Several questionnaires were circulated both before and
during the ITiCSE conference.[slg25] Of these only one
produced a reasonable number of responses (30, all
collected from the Formal Methods focus group of the (UK
based) Learning and Teaching Support Group for
Computer Science and Information Technology). Appendix
F lists the questions and gives information about the
responses.

These surveys show that a wide variety of tools are used,
mostly industrial strength. Very few are designed
specifically to help develop FM skills in students. Z is very
popular in the UK but other FM approaches are also used.
In follow up communications to the respondents, it seems
that many tools (especially the Z tools) create problems for
their use: some only work on a Unix platform; several
require the use of LaTeX or troff; others have editors that
students find difficult to use. For example, Formaliser uses
a structure editor; students find this difficult, although it
could be argued that thinking more structurally is a skill to
be developed (in which case Formaliser can be seen as a
tool having an educational function). There also seems to
be a dearth of good backup material (tutorials, handouts,
books), although at least one respondent produces some
good material on LaTeX and CadiZ. One exception to this
seems to be Toolbox Lite (for VDM); this is an
educational version of the Toolbox tool, and comes
packaged with a textbook on VDM— Fitzgerald & Larson,
“Modelling Systems”.

The survey reveals there is very little use of web based
resources. There are however a wide variety of textbooks
available and in use. About a quarter of respondents
indicated that their courses tend to “traditional” —book-
based and hand-worked exercises.

There also seems to some variability in opinion of what
constitutes a FM and an FM tool[DRJ26]. Are declarative
languages like Prolog and ML to be considered as FMs or
FM tools?

Generally, the state of the art in resources for teaching FM
seems to be a maze which the novice has to navigate:
“which FM shall I teach?”; “which tool shall I use?”; “what
materials are available?”. The temptation may be to start
with the available resources and to choose (perhaps
somewhat randomly) those that seem most convenient or
which are used on apparently similar courses. But the WG
and AB believe that a better approach would be to start
with the student needs and to decide how best to facilitate
the student learning. There needs to be some means of
helping both the novice and more experienced educator to
decide what resources (in the general sense outlined above)
may aid the achievement of these aims and
objectives.[slg27]

Conclusions regarding FM Resources

Needham [24] talks about the conflict between teaching
basic CS concepts and the need for students to have

experience building large-scale systems. He suggests that at
an introductory level, industrial strength tools are too much
for students and hinder the development of understanding
of concepts; that such tools are appropriate and desirable in
final-year group projects; and that when used, the tools
should be fully understood by the educators. Although his
remarks are meant to apply to tools in general, they are
equally applicable to the specific area of FMs. This seems
to be a recurring theme in our investigations. Certainly,
there is a need for more thought and study about providing
tools to aid learning; and that the tools should be supported
by suitable tutorial and other materials such as books.

There is also the issue of what attributes a good tool should
have if it is to be used for educational purposes. Moore (see
above) makes a good start at this. But the WG and AB see
this as another important area of investigation.

For the teacher, the problem is to define clearly what the
aims and objectives are at each stage in the students’
learning and to relate these to the resources available.
Currently there seems to be little help to guide the educator
through the maze. The WG proposes that a web resource be
developed to this end.

Our investigations also indicate that there is very little use
of web-based resources. Even when the web is used, it is
often used simply as a means of providing copies of the
latest versions of a handout. The web is largely viewed as a
repository of useful information.

FM Educational Site

In March of 1998, the 21st Century Engineering
Consortium Workshop was held in Melbourne, Florida
[16]. The workshop’s principal concern was to promote
formal methods education in computer science and
computer engineering programs. Toward this end, the
workshop gathered leading practitioners, experienced
academics, and government advocates interested in the
educational issues relevant to formal methods development.
One outcome of that Workshop was the Formal Methods
Education Resources site [10], which was created and has
been maintained by Kathi Fisler of Rice University. The
general philosophy of the site is to provide a collecting
point for materials related to teaching formal methods. The
site has evolved to include several sections, including
course pages, tools, reading materials, instructional
materials, benchmarks and examples related to formal
methods, and position announcements.

5 A Resource to Support FM Teaching[slg28][eth29]

While the Formal Methods Education site presented in
Section 4 is a rich and varied resource, at this time it is
primarily useful for educators who are already teaching
formal methods and want to find materials for their existing
courses. The wealth of information available at the site is
somewhat overwhelming; it would be a daunting task for
someone who wishes to begin teaching formal methods to

FMWG Report, Version 5.2 August 2, 2000, 2200 CDT page 8 of 17

navigate all of the information in order to come up with the
“right” materials for a particular situation.

This working group proposes a new area for inclusion in
the Formal Methods Educational site, with a vision toward
creating a set of pages to assist computing educators who
are either new to teaching formal methods or who would
like to move along to the “next level” of teaching formal
methods.

The remainder of this section describes our proposal for the
organization of this sub-site and some of its features. The
actual implementation will be an on-going process, which
will require cooperation by a number of individuals and
institutions. We address our plan of action where such a
plan exists.

We propose the following sections for the new sub-site:

• Introduction: What is Formal Methods? (can be drawn
from Section 2 of this report)

• Problems and Challenges (can be drawn from section 2
of this report)

• FAQs (we have suggestions of several questions and
answer, which will be used to seed this page)

• FM Motivation (advantages; statistics and reactions
such as those in this survey by alumni of an
introductory mathematics course at SUNY Stony Brook
[29]; information to help in “selling” the idea of
teaching formal methods within a department; pointers
to success stories in which formal methods has been
used in real, large scale projects; pointers to standards
in which the use of formal methods is mandated or
encouraged, especially in the safety-critical and
security areas)

• FM across the curriculum

• Current computing curricula guidance (links)

• Courses matrix and FM components (drawn from
appendices B and C)

• Guidelines for designing an FM course

• Modules that can be incorporated into other
courses (reflecting the results from projects
proposed by Rice University and a proposal
mentioned by Tom Hilburn)

• Evaluation of Formal Methods in computing-related curricula
(such an evaluation could be done after a course, after
graduation, or after students have started to work; a positive
evaluation may be the best motivation; evaluation is also a
necessary basis for improvement of a curriculum; for an
example survey, see [29])

• Resource Navigation Assistant: As a key addition to the
FM Educational web site, we propose the addition of a
resource navigation assistant (RNA). We feel such a
capability would be invaluable in surveying the maze of
resources. The RNA would be more than a search
engine. It would build a searchable network of
interrelated resources that would allow cross-

referencing among courses and curriculum modules,
tutorials, software tools, textbooks, and relevant case
studies, examples, and benchmarks. Since the FM
Educational web site will continue to change as people
submit additional relevant material, the RNA itself will
need ongoing maintenance.

• Educational tools wish list[slg30]: Currently, tools that
can be used to support the teaching of formal methods
are primarily for practitioners, not for educators or first-
time users. The wish list can provide a basis for
enhancing existing tools for educational settings or for
creating customized tools that address academic
concerns. The key question is: What do tools for
teaching and learning FM need in order to be useful?
Some features we have identified are that they should
enhance the learning, should provide a good learning
curve trade-off (that is, the time invested in learning the
tool should not outweigh the ultimate benefit of using
the tool), the user interface should be intuitive and
accessible, and the tool should help highlight the
underlying principles[DRJ31].

The initial plan for implementing the proposed web pages
is to extend the existing FM Educational site [10]. The
webmaster of that site is committed to refining and
improving the site and is a very member of the advisory
board. We visualize this as an evolutionary process, which
will respond to suggestions and newly emerging needs.
The logistics for bringing the site into use include
encouraging contributions and publicizing the site.
[slg32]As one aspect of publicizing the FM Ed resource, the
working group proposes a simple flyer that can be readily
available on the web site. This will allow FM proponents
to print out the flyer and have it available on the hand-out
table during appropriate conferences. We will also devise a
plan for distributing information about the resource via
relevant mailing lists.

6 Conclusions

The working group has presented a proposal for extending
the work started elsewhere in order to create a resource that
provides a solid basis of support for computing educators
who wish to begin teaching formal methods, as well as for
educators already teaching formal methods who wish to
move to the next level. [slg33]The working group’s web
site, http://www.cs.utexas.edu/users/csed/formal-methods/,
will be a source of information about these efforts. The
goal, however, is to incorporate these results into the
Formal Methods Education site [10] by the time this report
is published.

References

[0] Barjaktarovic, M., and Wetstone Technologies, Inc.
The State-of-the-Art in Formal Methods, January
1998, available
http://www.cs.utexas.edu/users/csed/FM/docs/StateFM.pdf

FMWG Report, Version 5.2 August 2, 2000, 2200 CDT page 9 of 17

[1] Barland, I, Felleisen, M., Fisler, K, Kolatis, P., and
Vardi, M. Joint position statement: Integrating Logic
into the Computer Science Curriculum. Adapted
from a grant proposal to develop materials, June
2000, available
http://www.cs.utexas.edu/users/csed/FM/docs/iticse-
fislervardi.pdf

 [2] Bjorner, D., and Cueller, J., Software Engineering
Education: Roles for Formal Specification and Design
Calculi, Annals of Software Engineering, April 1999.

[3] Bowen, J. P., Experience Teaching Z with Tool and
Web Support, July 2000, available
http://www.cs.utexas.edu/users/csed/FM/docs/bowen.html
(FM Advisory Board contribution).

[4] Clarke, E.M., et. al., Formal Methods: State of Art
and Future Directions, ACM Computing Surveys
28(4), December 1996.

[5] The Common Criteria for Information Security
Evaluation (CC) version 2.1 / ISO IS 1540, available
http://csrc.nist.gov/cc/

[6] Computing Curricula 2001, DRAFT (March 6, 2000),
The Joint Task Force on Computing Curricula, IEEE
Computer Society, Association for Computing
Machinery, March 2000, available
http://computer.org/education/cc2001)

[7] Craigen, D., Position Statement, June 2000, available
http://www.cs.utexas.edu/users/csed/FM/docs/craigen.html
(FM Advisory Board contribution).

[8] Dupuis, R., et. al. A Guide to the Software
Engineering Body of Knowledge, Version 0.7,
available http://www.swebok.org.

[9] Fisler, K., Position Statement, June 2000, available
http://www.cs.utexas.edu/users/csed/FM/docs/fisler.html
(FM Advisory Board contribution).

[10FMED] Formal Methods Educational Site,
http://www.cs.indiana.edu/formal-methods-
education/.

[11] Gerhart, S., Craigen, D., and Ralston, T., Experience
with Formal Methods in Critical Systems, IEEE
Software, January 1994, pp. 21-28.

[12] Gries, K., Position Statement, July 2000, available
http://www.cs.utexas.edu/users/csed/FM/docs/gries.html
(FM Advisory Board contribution).

[13] Hall, A., Using Formal Methods to Develop an ATC
Information System, IEEE Computer, March 1996.

[14] Hinchey, M.G. and Bowen, J.P., Applications of
Formal Methods, Prentice-Hall, 1995.

[15] Hvannberg, E. T.., Position Statement, June 2000,
available
http://www.cs.utexas.edu/users/csed/FM/docs/hvannberg.ht
ml (FM Advisory Board contribution).

[16] Johnson, S. D., Alexander, W. P., Chin, S. K., and
Gopalakrishnan, G. (Eds.) Report on the 21st Century
Engineering Consortium Workshop: a forum on
formal methods education, March 1998, available
http://www.cs.indiana.edu/formal-methods-
education/xxiec/report.html

[17] Johnson, R., Position Statement, June 2000, available
http://www.cs.utexas.edu/users/csed/FM/docs/johnson.html
(FM Advisory Board contribution).

[18] Kelemen, C., et. al., Has Our Curriculum Become
Math-Phobic? (an American Perspective),
Proceedings of the 5th Annual SIGCSE/SIGCUE
Conference on Innovation and Technology in
Computer Science Education, July 2000.

[19] Larsen, P. G., Position Statement, June 2000,
available
http://www.cs.utexas.edu/users/csed/FM/docs/larsen.html
(FM Advisory Board contribution).

 [21] Leveson, N. G., Guest Editor’s Introduction: Formal
Methods in Software Engineering, IEEE Transactions
in Software Engineering, September 1990.

[20] Lethbridge, T.C. What Knowledge is Important to a
Software Engineer IEEE Computer, May 2000.

[22] Mills, H. Software Productivity, Dorset, 1988.
[23] Moore, J S., Position Statement, June 2000, available

http://www.cs.utexas.edu/users/csed/FM/docs/moore.html
(FM Advisory Board contribution).

[24] Needham, R. Invited Talk, ITiCSE 2000, Helsinki
Finland.

[25] arnas, D. L., Software Engineering Programs are not
Computer Science Programs, IEEE Software,
November/December 1999.

[26] Critical Foundations: Protecting America’s
Infrastructures, The Report of the President’s
Commision on Critical Infrastructure Protection,
October 1997, available http://www.pccip.gov.

[27] Semmens, L., Position Statement, July 2000, available
http://www.cs.utexas.edu/users/csed/FM/docs/semmens.htm
l (FM Advisory Board contribution).

[28] Smith, J. A Proposal for Computer Assisted Proof in
Mathematics Education, June 2000, available
http://www.cs.utexas.edu/users/csed/FM/docs/smith.html
(FM Advisory Board contribution).

[29] Stony Brook Computer Science alumni, “Foundations
of CS I” Stony Brook Alumni Survey, Spring 1999,
available http://www.sinc.sunysb.edu/cse113/survey/.

[30] Tucker, A. B. (Ed.). Computing Curricula 1991:
Report of the ACM/IEEE-CS Joint Curriculum Task
Force. IEEE Computer Society Press, 1991, available
http://computer.org/education/cc1991.

[Vienneau93] Vienneau, R., A Review of Formal
Methods, Kaman Sciences Corporation, 1993.

[Wetstone99] WetStone Technologies, Inc., Formal
Methods Framework, final month status report,
Contract # F30602-99-C-0166, October 26, 1999,
available
http://www.cs.utexas.edu/users/csed/FM/docs/FMFramewor
k.pdf.

[33] Wing, J., Woodcock, J., and Davies, J., eds. FM’99 –
Formal Methods: World Congress on Formal
Methods in the Development of Computing Systems,
Toulouse, France, September 1999, Proceedings, Vol.
I, LNCS 1708, Vol. II, LNCS 1709, Springer-Verlag.,
September, 1999.

FMWG Report, Version 5.2 August 2, 2000, 2200 CDT page 10 of 17

[34] Wing, J., Weaving Formal Methods into the
Undergraduate Computer Science Curriculum,
Proceedings of the 8th International Conference on
Algebraic Methodology and Software Technology
(AMAST) 2000, Education Day, Iowa City, Iowa, US,
May 20-27, 2000, available
http://www.cs.utexas.edu/users/csed/FM/docs/Wing-
abstract.pdf

FMWG Report, Version 5.2 August 2, 2000, 2200 CDT page 11 of 17

Appendix A: Advisory Board Members and Materials Contributed

• Jonathan Bowen, South Bank University, London, UK

v Position Statement [3]

• Dan Craigen, ORA Canada, Ottawa, Ontario, Canada

v Position Statement [7]

• Kathi Fisler, Rice University, Houston, TX USA

v Position Statement [7]

v Joint position statement: Integrating Logic into the Computer Science Curriculum.
[Barland 00]

• Susan Gerhart, Embry-Riddle Aeronautical University, Prescott AZ USA

• David Gries, University of Georgia, Athens GA USA

v Position Statement [12]

• Ebba Thora Hvannberg, University of Iceland, Reykjavik, Iceland

v Position Statement [15]

• Randolph Johnson, National Security Agency, Fort Meade MD USA

v The State-of-the-Art in Formal Methods, January 1998 [0]

v Formal Methods Framework, final month status report [32]

v Position Statement [17]

• Peter Gorm Larsen, IFAD A/S, Odense M, Denmark

v Position Statement [19]

• J Strother Moore, University of Texas at Austin, Austin, TX USA

v Position Statement [23]

• Lesley Semmens, Leeds Metropolitan University, Leeds, UK

v Position Statement [27]

• Moshe Vardi, Rice University

v Joint position statement: Integrating Logic into the Computer Science Curriculum. [1]

• Jeannette M. Wing, Carnegie Mellon University, Pittsburgh, PA USA

v Weaving Formal Methods into the Undergraduate Computer Science Curriculum [34]

• J. C. P. Woodcock, Oxford University Software Engineering Centre, Oxford, UK

FMWG Report, Version 5.2 August 2, 2000, 2200 CDT page 12 of 17

Appendix B: Top-level Mapping between
Knowledge Areas CC2001 and CC91

Computing Curricula 2001
Knowledge Area and

Number of Core Hours

Computing Curricula 91
Knowledge Area

DS: Discrete Structures (40) None (refer to discussion in Section 3)

PF: Programming Fundamentals (59) AL: Algorithms and Data Structures

AL: Algorithms and Complexity (31) AL: Algorithms and Data Structures

PL: Programming Languages (6) PL: Programming Languages

AR: Architecture (36) AR: Architecture

OS: Operating Systems (14) OS: Operating Systems

HC: Human-Computer Interaction (6) HU: Human-Computer Communication

GR: Graphics and Visualization (5) HU: Human-Computer Communication

IS: Intelligent Systems (10) AI: Artificial Intelligence and Robotics

IM: Information Management (10) DB: Database and Information Retrieval

NC: Net-Centric Computing (15) OS: Operating Systems

SE: Software Engineering (35) SE: Software Methodology and Engineering

CN: Computational Science (0) NU: Numeric and Symbolic Computing

SP: Social and Professional Issues (16) SP: Social, Ethical and Professional Issues

FMWG Report, Version 5.2 August 2, 2000, 2200 CDT page 13 of 17

Appendix C: Specific Topics Correlated with
Formal Methods in CC91 and CC2001[slg34]

CC 2001 Topic CC 91 Unit
DS1: Functions, relations, and sets None (refer to discussion in Section 3)

DS2: Basic logic None

DS3: Proof techniques None

DS4: Basics of counting None

DS5: Graphs and trees None

PF1: Fundamental programming constructs None

PF2: Algorithms & problem solving AL8: Problem-solving strategies

PF3: Object-oriented programming PL11: Programming paradigms

PF4: Fundamental data structures AL1: Basic data structures

PF5: Recursion AL3: Recursive algorithms

AL5: Basic computability theory AL7: Computability and undecidability

AL6: The complexity classes P and NP AL5: Complexity classes

AL7: Automata theory PL7: Finite-state automata and regular
expressions

PL8: Context-free grammars and pushdown
automata

PL1: History of programming languages PL1: History and overview of programming
languages

PL3: Virtual machines PL2: Virtual machines

PL4: Introduction to language translation PL9: Language translation systems

PL5: Language translation systems PL9: Language translation systems

PL6: Type systems PL3: Representation of data types

PL7: Models of execution control PL4: Sequence control

PL8: Declaration, modularity, and storage
management

PL6: Run-time storage system

PL9: Programming language semantics PL10: Programming language semantics

PL10: Programming paradigms PL11: Programming paradigms

AR1: Digital logic and digital systems AR1: Digital logic

AR6: CPU implementation AR1: Digital logic

OS2: Concurrency OS3: Process coordination and synchronization

OS3: Scheduling and dispatch OS4: Scheduling and dispatch

OS6: Security and protection OS8: Security and protection

OS8: Real-time systems OS10: Distributed and real-time systems

HC2: Modeling the user HU1: User interfaces

GR3: Modeling HU2: Computer graphics

IS2: Search and optimisation methods AI2: Problems, state spaces, and search strategies

IS3: Knowledge representation and reasoning AI2: Problems, state spaces, and search strategies
Appendix continues on the next page

FMWG Report, Version 5.2 August 2, 2000, 2200 CDT page 14 of 17

Appendix C, continued: Specific Topics Correlated with
Formal Methods in CC91 and CC2001

CC 2001 Topic CC 91 Unit

IS6: Machine learning AI2: Problems, state spaces, and search strategies

IS7: Natural language processing AI1: History and applications of artificial
intelligence

IS10: Knowledge-Based systems AI1: History and applications of artificial
intelligence

IM2: Data modeling and the relational model DB2: The relational data model

IM3: Database query languages DB2: The relational data model

IM4: Relational database design DB2: The relational data model

IM5: Transaction processing DB1: Overview, models, and applications of
database systems

IM6: Distributed databases DB1: Overview, models, and applications of
database systems

IM7: Advanced relational database design DB2: The relational data model

NC2: Communication and networking OS9: Communications and networking

NC7: Distributed systems OS10: Distributed and real-time systems

SE2: Software requirements and specifications SE3: Software requirements and specifications

SE3: Software design and implementation SE4: Software design and implementation

SE4: Verification and validation SE5: Verification and validation

SE5: Software tools and environments SE2: The software development process

CN1: Numerical analysis NU2: Iterative approximation methods

FMWG Report, Version 5.2 August 2, 2000, 2200 CDT page 15 of 17

Appendix D: Responses to Conference Survey
on Importance of Formal Methods

The working group polled its colleagues at the ITiCSE 2000 conference as to how they would assess the importance of
formal methods in the different knowledge areas. Participants could view a poster with the current state of the areas and
their topics in CC 2001 (similar to Appendix B), with those topics that correlated to formal methods highlighted. The
participants were also able to read the working definition of formal methods discussed in Section 2, as well as a wide
variety of definitions drawn from the literature. In order to complete the survey, participants were asked to assign a
numerical ranking to each knowledge area using the following scale:

1 – It would be a stretch to use formal methods in teaching this area.

2 – This area could be taught using formal methods.

3 – This area should be taught using formal methods.

4 – This area can’t be taught without using formal methods.

Thus, a rating of 2.5 for a knowledge area could be construed as a neutral stance abou;the applicability of FMs. The
number of respondents was approximately ten [slg35].

The results of the survey showed that the respondents feel there is a high degree of correlation between the model
curricula and the importance of formal methods. In particular, the attendees polled corroborated the importance of formal
methods in the Software Engineering area with a median of 3.8/4.0. In fact, the median rating for Computational Science
was 3.9. This supported the correlation posited in CC91, in spite of the fact that many formal methodists do not usually
have continuous mathematics in mind when they refer to formal methods. Finally, while the number of respondents is
not significant, it is interesting to note the relatively low rating assigned to the Information Management knowledge area.
This would seem to indicate that many faculty either are unaware of, or do not assign strong weight to, the central role
played by mathematical logic in the relational calculus formal query language.

CC 2001 Knowledge Area Median Rating in
Formal Methods Survey

(4-point scale as given above)

Discrete Structures 3.8

Programming Fundamentals 2.9

Algorithms and Complexity 3.7

Programming Languages 2.9

Architecture 2.5

Operating Systems 2.9

Human-Computer Interaction 1.4

Graphics and Visualization 3.2

Intelligent Systems 3.2

Information Management 2.0

Net-Centric Computing 2.7

Software Engineering 3.8

Computational Science 3.9

FMWG Report, Version 5.2 August 2, 2000, 2200 CDT page 16 of 17

Appendix E: SWEBOK and Formal Methods[eth36]

SWEBOK Knowledge Area Applicable Formal Methods

Software requirements • formal domain modeling
• formal requirements specification
• analysis diagrams - data/control flow, entity-relationship, object diagrams

Software design • formal design specification
• design diagrams - structure charts,
• object diagrams, state diagrams
• program design languages

Software construction • algorithm/complexity analysis
• data structures
• detailed design formalisms (e.g., pre/post conditions, invariants, design

tables and diagrams)
• program syntax and semantics

Software testing • program flow diagrams, case construction, specification decomposition
into cases, reliability and coverage arguments

Software maintenance (any FM used in initial development)

Software configuration management • configuration process diagrams

Software engineering management • task schedule diagrams (PERT, Gantt)

Software engineering tools and methods • FM tools -analysis and design tools, compilers, type/domain checkers,
animators, model checkers, theorem provers, test case generators

Software engineering process • formal process modeling

Software quality • formal analysis and verification - symbolic execution, state machines,
model checking, theorem proving, "proof by team checking" [slg37]

FMWG Report, Version 5.2 August 2, 2000, 2200 CDT page 17 of 17

Appendix F: Responses to FM Tool Survey
1. What software have you used in teaching formal methods?

Respondents gave the following answers:

• Z (including Z Specific Formaliser (3), CadiZ (3), Fuzz (2), Z/EVES, ZTC, and Z Browser)
• B (B Tool(2))
• SDL (Telelogic TAU)
• Lotos (SEDOS, TOPO, LOLA)
• PVS
• VDM (ToolBox Lite)
• CSP (Kramer & McGee (KM) model checker; FDR model checker)
• Design CPN (Concurrency Workbench)
• ML
• No software used (5)

Note: The numbers in parentheses indicate the number of responses for each tool; all others represent a single
response.

2. How have you used the software in your teaching?

Respondents indicated they have:

a) taught its use as a tool for doing formal methods in the case of:

Z Specific Formaliser (3), CadiZ(2), Fuzz(2), Z/EVES, TOPO, LOLA, PVS, Tool, KM model checker,
Concurrency Workbench, ZTC

b) used it as a tool for teaching/learning the concepts of FM in the case of:

Z Specific Formaliser (2), CadiZ, Telelogic TAU, SEDOS, TOPO,Fuzz, Z/EVES, PVS, ToolBox Lite, B
Tool, Concurrency Workbench, FDR model checker, Fuzz, Z Browser

3. At what levels have you used the software?

Responses were:

a) undergraduate courses, or

Z Specific Formaliser (2) , CadiZ, Telelogic TAU, SEDOS, TOPO, ToolBox Lite, B Tool, KM model
checker, Concurrency Workbench, Fuzz, ZTC

b) postgraduate courses? (i.e. after the undergraduate degree)

B Tool, Telelogic TAU, SEDOS, TOPO, ToolBox Lite (M.Sc. Conversion), Concurrency Workbench, FDR
model checker, ZTC

4. What resources have you used in support?

Respondents listed the following:

• textbooks;

• Turner, “Using Formal Description Techniques”
• Jacky, “The Way of Z”
• Potter, Sinclair & Till (2), “Introduction to … Z.”
• Lightfoot, “Z”
• Spivey, “Z Reference Manual”,
• Woodcock and Davies, “Using Z”
• Currie, “The Essence of Z”
• Diller (2), “Z”
• Ellsberger et al. “SDL”
• Fitzgerald & Larson, “Modelling Systems”
• Unknown (3)

• on-line tutorials/manuals: Fuzz, TOPO, LOLA, Z/EVES, PVS; Own materials, CadiZ; No such material used
(3); own handouts (3)

• other web based resources: Z, CadiZ

• mailing lists: Z/EVES, PVS

