
FMWG Report, Version 5.7 September 13, 2000, 2200 CDT page 1 of 18

Support for Teaching Formal Methods
Report of the ITiCSE 2000 Working Group on Formal Methods Education

Vicki L. Almstrum (co-chair)

The University of Texas at Austin, USA

almstrum@cs.utexas.edu

C. Neville Dean (co-chair)

Anglia Polytechnic University

c.n.dean@anglia.ac.uk

Don Goelman

Villanova University, USA

goelman@vill.edu

Thomas B. Hilburn

Embry-Riddle Aeronautical Univ., USA

hilburn@db.erau.edu

Jan Smith

Chalmers University of Technology

smith@cs.chalmers.se

Abstract

This report describes a growth path for the area referred to
as formal methods within the computing education
community. We define the term formal methods and
situate it within our field by highlighting its role in
Computing Curricula 1991, Computing Curricula 2001,
and the SoftWare Engineering Body Of Knowledge
(SWEBOK). The working group proposes an enhancement
to an existing web resource, which is a rich collection of
materials and links related to formal methods. The new
resource is designed to provide a bridge between the
general computing education community and the formal
methods community. The goal is to allow the latter to
provide useful support for the former for the ultimate
benefit of all of our students. Eventually, the working
group aspires to see the concepts of formal methods
integrated seamlessly into the computing curriculum so that
it is not necessary to separate them in our discussions.

1. Introduction

Each of the members of this working group is a strong
proponent of including topics from the area called formal
methods as a vital component of computing education at all
levels. Specifically:

• We support the use of discrete mathematics and

formal methods in the teaching and learning of
computer science and software engineering.

• We believe graduates of programs that use and
emphasize formal methods will be better prepared for
advanced study and research in computing and able to
apply mathematical techniques to the development
and verification of software artifacts (such as
requirements specifications or design specifications).

• We view formal methods as the “calculus” of
software engineering; without formal methods, the
engineering is non-existent or suspect.

During our pre-conference preparations, the working
group’s focus evolved to concentrate on providing
mechanisms to allow the computing education community
at large to incorporate formal methods more easily across
the curriculum. This focus reflects the experiences and
biases of a wide collection of concerned educators, since
we invited a number of individuals with strong
backgrounds in this area to serve on an advisory board.
The advisory board members, who are acknowledged in
Appendix A, have contributed to the work in a variety of
ways, among them position papers (listed among the
references, discussed in Section 4 of this paper, and cited in
Appendix A), pointers to other documents, on-line and off-
line discussions, and reviews of the in-progress work.

Even though formal methods are very widely used in the
semiconductor industry [18] —indeed, this is the area of
computing in which they have had their greatest success to
date— the emphasis in this report is on software. In part
this reflects the background of the committee, but it is also
consistent with the greater emphasis on software in
computing education.

FMWG Report, Version 5.7 September 13, 2000, 2200 CDT page 2 of 18

The remainder of this report is divided into four major
sections. Section 2 defines what we mean by formal
methods, addresses some of the challenges and problems
related to its adoption, and considers what can be done to
address the communication gap between formal methodists
and the computing education community at large. Section 3
defines formal methods in the context of current curriculum
models and frameworks. Section 4 is an overview of
resources that are currently available as sources of support
for teaching formal methods. Section 5 describes the key
contribution of this working group. We have set the stage
for a new web-based resource that targets computing
educators who would either like to begin using formal
methods or who would like to expand their repertoire of
use. We fit our proposal into the framework of a well-
established project with broad community support, which
bodes well for its long-term potential to affect the way the
computing community views the prospect of teaching
formal methods.

2. Formal Methods: Its Nature and Relevance

2.1 Definition

In our study and interaction about the nature of formal
methods, we found various beliefs about the character and
content of this area. A prevalent characterization
(especially in an industrial context) is this one from Nancy
Leveson [29]:

A broad view of formal methods includes all
applications of (primarily) discrete mathematics to
software engineering problems. This application
usually involves modeling and analysis where the
models and analysis procedures are derived from or
defined by an underlying mathematically-precise
foundation.

Robert Vienneau [42] offers this focused definition of
formal methods:

A formal method in software development is a
method that provides a formal language for
describing a software artifact (e.g. specifications,
designs, source code) such that formal proofs are
possible, in principle, about properties of the artifact
so expressed.

In subsequent sections, we assert the need and rationale for
including formalism throughout the computer science
curriculum. This motivates the more general definition that
the working group adopted:

Formal methods involves the use of discrete
mathematics and mathematical logic in the study
and practice of computer science and software
engineering.

With this definition, we intend to encapsulate within formal
methods all its associated concepts and techniques, and
both their informal and formal application.

Note: We also view “formal methods” as a single entity
within mathematics (with related methods, techniques and
applications) rather than as a set of discrete entities. Hence,
we use the singular when referring to formal methods.

2.2 Foundations of Computing

From its beginning in the 1930s, computing was regarded
as an abstract, mathematical science. The work of pioneers
like Turing, Church, and von Neumann used mathematics
to establish the essences and boundaries of the computing
discipline. Although computer technology is crucial in
computer science education and practice, the underpinnings
are mathematical in nature and computing does de al with
pure ly logic al proc ess es [31]. However, students (and some
faculty) often resist the use of mathematics in the study of
computing. There are many explanations for this
resistance: students may lack the proper preparation or
motivation; many individuals have neither an
understanding of nor appreciation for the role of
mathematics (formal methods) in computing [26]; and
some feel intimidated by (and even fearful of) the level of
mathematical knowledge and capability they believe is
required.

Using the working group’s general definition from section
2.1, formal methods is found throughout the computing
discipline. For example, although the connection is not
always made clear to them, computing students begin by
studying and using formal languages (the syntax and
semantics of programming languages); programs can
simply be viewed as a string of symbols from the language
(similar to formulae in other mathematical systems). In
Section 3, we explore how formal methods is or may be
used throughout a computing curriculum.

2.3 Software Development

Although the term software engineer is becoming a popular
title for software developers, there is little evidence to show
that the practice of software engineering compares with the
rigor and discipline that is required for practice in other
engineering fields. For the software discipline, this is not
just a commercial issue, but a professional and ethical
problem, which would not be tolerated in other fields of
science and engineering. Parnas contrasts traditional CS
programs with most engineering programs, arguing that
software engineering programs should follow the
traditional engineering approach to professional education
[35].

Quality problems arise from incomplete and imprecise
requirements specifications, shoddy designs with poor
documentation, and the almost sole reliance on testing for
software quality assurance. Although there is increasing
interest in the use of formal methods for specification and
design, the concepts of mathematical modeling and
rigorous verification (the staple of other engineering fields)
are still used sparingly in commercial software
development. This is partly revealed in a survey of
software developers by Timothy Lethbridge [28], where the

FMWG Report, Version 5.7 September 13, 2000, 2200 CDT page 3 of 18

developers ranked the importance of 75 knowledge areas.
Formal Specification Methods was ranked 37th and
Predicate Logic was ranked 39th. (Areas like specific
programming languages, data structures, software
architectures and requirements elicitation were ranked at
the top, while areas such as differential equations and VLSI
were ranked at the bottom.)

However, there are examples where formal methods has
been used effectively to develop high-quality products.
Most of these successes have been in safety critical areas
and have involved the integration of formal methods with
more traditional non-formal approaches [6, 17, 20, 21, 44].
For many years the use of formal methods has been
mandated or encouraged in critical national security
systems. With the explosive growth of electronic
commerce, there is growing interest in formal methods for
achieving higher confidence in other critical infrastructure
systems [7, 36, 37].

A more prevalent view of formal methods is that it is
intended to support the “spec ifica tion and verification of
ha rdware and s oftwa re syste ms ” [45]. Under this view ,
current c urric ula have a low level of e mphas is on formal
me thods . This is s ure ly due, at leas t in pa rt, to a lack of
inte res t on the part of the s oftwa re indus try, but muc h of the
re spons ibility must be a ttribute d to the s ta te of conc eptua l
curriculum des ign. The c omputing e duc ation c ommunity has
adopted a curriculum s trate gy of dividing curricula eleme nts
into area s of “theory” a nd “prac tice” . This cause s both fac ulty
and stude nts to vie w the theory of computing as s epa ra te and
distinc t from the prac tice of computing. Too often, the re sult
is theorists w ho are vie wed a s the ma thema tical e lite and
prac titioners with little res pec t for the applica bility of forma l
me thods to the ir work. This mindse t inhibits the use a nd
inte gra tion of formal me thods into the softw are deve lopme nt
proc ess . Bec ause of this (a nd othe r rea sons mentione d
previously), there is little guida nce a nd support available to
fa culty that w ould like to introduce forma l methods into their
curricula . A ls o, curre ntly available softw are tools are, for the
most pa rt, des igned for use in res earch or industria l settings .
We e xplore the se is sue s in more de pth in the following
se ctions.

3. FM in Computing-Related Curricula

3.1 Computing Curricula ‘91 and 2001

Formal methods topics have had a significant role in model
computer science curricula, especially in the most recent
versions: Computing Curricula ‘91 [41] and the draft of
Computing Curricula 2001 [8]. In this section we examine
the role of formal methods, both explicit and implicit, in
these curricula. Because Computing Curricula 2001 is still
a work in progress, details will change by the time a
finished product is published; our analysis is based on a
version that resulted from a Steering Committee meeting in
June 2000.

Computing Curricula ‘91 (CC91) organized the body of
computer science into ten knowledge areas, each consisting
of a set of knowledge units. The Computing Curricula
2001 (CC2001) committee determined that the evolution of
the discipline necessitated important modifications and
additions to the earlier organization. The committee
therefore added four new knowledge areas and shuffled,
modified, added, and deleted topics among the CC91 set of
knowledge areas. Most significant for our working group
topic, perhaps, is the recommendation that Discrete
Structures be added as a separate area in its own right,
rather than as a mathematics prerequisite (which was and is
the role of continuous mathematics). This reflects the
opinion of the CC2001 committee that many topics in the
Discrete Structures knowledge area, such as basic logic and
proof techniques, are so fundamental in other knowledge
areas that they should be taught in a computer science
environment with those areas in mind. Thus, many formal
methods topics appear explicitly in the Discrete Structures
knowledge area of CC2001.

Within both CC91 and CC2001, sets of topics are
associated with each general knowledge area. Links among
the topics and pedagogical suggestions are also being
developed for CC2001, although most of those details have
not been finalized at the time of this writing. In CC91,
topics were cross-referenced with certain recurring
concepts, one of which is conceptual and formal models.
In examining the place of formal methods across the
curriculum, the working group started with the units in
CC91 that correlated with conceptual and formal models as
a recurring concept, and located topics in CC2001 that are
based on (or identical to) those units. This led to using the
more recent nomenclature.

In addition to the technical approach based on the
conceptual and formal models topic, the working group
also took a non-technical perspective. We note that a
number of regulatory bodies and established standards
make a connection between systems in which high
assurance is particularly important and formal methods as a
means of achieving high assurance. For many years this
has been the case for safety-critical systems and national
security systems. It is becoming increasingly important in
financial systems and systems in which privacy is required.
For this reason, formal methods correlate with certain
topics in the CC2001 knowledge area SP Social, Ethical,
and Professional Issues.

Appendices B and C are related to this classification.
Appendix B shows a top-level mapping between the two
model curricula, together with the number of suggested
core hours in CC2001. The mapping is not one-to-one, as
some knowledge areas were added and many units were
reassigned among the areas. According to Clarke [6], the
core was determined as “those subjects that we would be
embarrassed to have computer science majors graduate
without knowing”. Appendix C lists the topics (or units)

FMWG Report, Version 5.7 September 13, 2000, 2200 CDT page 4 of 18

from both model curricula that correlate with formal
methods.

As a status check on the computing education community’s
view of the role of formal methods, the working group
conducted a survey as part of our poster session during the
ITiCSE conference; the results are given in Appendix D.
While the number of responses was small, the results
showed that the respondents do perceive a strong
relationship between the model curricula and the
importance of formal methods, in contrast to the “math-
phobic” evidence presented by Clarke [6].

3.2 Software Engineering Body of Knowledge

A current project of the Software Engineering Coordinating
Committee (SWECC) is the development of A Guide for
the Software Engineering Body of Knowledge (SWEBOK)
[11]. The SWEBOK is being developed in phases and the
final version is due in 2002. The focus of SWEBOK is
more specialized than the computing curricula efforts
discussed in the previous subsection. One objective of the
guide is to provide support for “the students learning the
software engineering profession and educators and trainers
engaged in defining curricula and course content”. The
SWEBOK divides software engineering knowledge into ten
areas, with descriptions and guidance for each area. In
order to enhance the SWEBOK as a tool for designing
course material, programs, and accreditation criteria, the
committee used Bloom‘s Taxonomy [4] to evaluate the
required or desired capability for each of the topics
included in the knowledge areas. Appendix E lists the ten
SWEBOK knowledge areas and shows examples (drawn
from the SWEBOK, our working group discussions, and
other sources [3, 45]) of parts of formal methods that would
apply in each area. The table, which is consistent both with
the general computing curricula (Appendix C) and the
ITiCSE survey (Appendix D) but is more detailed than both
of them, suggests a framework for introducing and using
formal methods in software development courses. At a
minimum, the information in Appendix E can help faculty
and students understand and appreciate how and where
formal methods can be used. Those knowledge areas that
benefit most from the use of formal methods are
requirements, design, construction, and quality.

The SWEBOK does not emphasize or promote formal
methods. It appears to rely more on semi-formal methods,
such as using inspections and reviews throughout the
development life cycle. However, the SWEBOK, with its
organization and descriptions of knowledge areas, its
extensive list of references, and its emphasis on analysis
and model building, provides an excellent resource for
curriculum and course designers trying to determine where
and how to introduce formal methods.

Note: SWEBOK also includes a number of statistical
techniques used in software management for risk
management, project estimation and tracking, and process

and product assessment. These are not a part of formal
methods.

4. The Current State of FM Resources

A variety of resources are available to support the study
and application of formal methods, including software
tools, books, web pages, handouts, mail lists,
tutors/teaching assistants, and fellow students. In the
context of this report, we restrict our consideration of
resources to software tools, web-based resources, and other
resources that directly support these (for example, a book
on how to use a particular tool). In this section, we
consider the issue of resources from three angles:

reports and papers submitted to the FM working group,
including a range of statements from the FM advisory
board,

a resource use survey, and
the FM Educational site.

4.1 Reports and Position Statements

This section highlights some key points from several
documents that were submitted by advisory board and
working group members. These excerpts set the stage for
the remainder of this report.

1) WetStone Technologies, Formal Methods
Framework, (Communicated by Randolph Johnson) [43]
This is an extensive survey of tools used in Formal
Methods. It includes a framework for classifying formal
methods tools and the responses to a survey investigating
the use of twelve tools. The survey addressed the nature of
each tool, its availability and cost, prerequisite knowledge,
and platforms. All of these tools are essentially practitioner
tools and include ACL2, HOL, Larch Prover, PVS,
Z/EVES, Concurrency Factory, Murphy, SVM Cadence,
SPIN, NRL Protocol Analyzer, SCR, and Tatami.

2) M. Barjaktarovic and WetStone Technologies,
Report: State of the Art in Formal Methods,
(Communicated by Randolph Johnson) [1]
“Formal methods are in different stages of development, in
a wide spectrum from formal languages with no tool
support, to internationally standardized languages with tool
support and industrial users. The field of formal methods is
in a great flux and evolving rapidly, leaving research
laboratories and making inroads into industrial practice.”

“The major task of the formal methods community will be
to provide the assistance sought. Expressed needs include:
more user-friendly tools; more powerful and robust tools;
more real-life applications; more infrastructure such as
verified libraries; more publicity of success stories and
available technologies; and more user training.”

3) Jeannette Wing, Weaving Formal Methods into the
Undergraduate Computer Science Curriculum [45]

FMWG Report, Version 5.7 September 13, 2000, 2200 CDT page 5 of 18

“There is no excuse not to be using model checkers in our
undergraduate courses today. With a verification tool, we
can more easily teach that verification complements the
testing and simulation activities of practicing hardware and
software engineers. … [I]t behooves us as educators to
ensure that our students are well-versed in the state of the
art verification technology.”

“Theorem provers require more expertise than we can
expect our students to acquire in one semester, all the while
learning other course material.”

4) Jan Smith position statement [39]
This statement outlines an approach to teaching proofs
using a tool based on type theory (specifically, Alfa,
developed at Chalmers University, and Coq, developed at
INRIA).

“Experience of using formal proof systems in
undergraduate education is limited, mostly to deductions in
logic. We are proposing to present conventional
mathematical subjects in a formal, machine checked, but
still careful and explanatory manner. Students will be able
to browse the formal definitions and proofs at a level of
detail they choose, and will work their exercises using the
formal proof tool.”

“We are rapidly moving towards an information society
which will change both how and what we teach our
students. In mathematics there is already a trend towards
computations, but we expect a more radical change: a
renaissance of proof in education. For the first time, the art
of making proofs is on its way to become an engineering
discipline because of the fundamental importance of correct
hardware and software. For undergraduate students it is
difficult to understand the rules by which proofs are made
and even more difficult for them to develop their own
proofs. The fulfillment of this project will give powerful
tools to increase students’ understanding of what a proof is
and how to develop proofs.”

5) Dan Craigen position statement [9]
“Our Z/EVES system has been extensively used for
teaching purposes. … Overall, Z/EVES appears to be used
in a lightweight perspective for teaching. Few
students/lecturers move through the adoption curve to
performing complex proofs. Obviously, time and
experience is an issue. However, there have been a number
of undergraduate and graduate projects that have used the
full capabilities of the system (with varying degrees of
success). Various researchers and commercial types have
pushed Z/EVES to its full extent.”

6) Kathi Fisler position statement [12]
“Formal methods education should address how to identify,
develop, and prove formal statements —in particular,
theorems— about programs and systems. This
encompasses activities ranging from type-checking (where
the theorem is stated implicitly and proved automatically)
to model-checking (theorem stated explicitly and proved

automatically) to theorem-proving (theorem stated
explicitly and proved manually).”

“Students at all levels should be encouraged to think about
the theorems associated with computer science. In
particular, a student should be able to answer the following
questions:

[1] What kinds of formal statements can be made about a
system?

[2] When is a formal statement about a system provable?

[3] When is a formal statement about a system useful?

[4] What resources are needed to prove a given formal
statement?

[5] What tools and techniques exist for validating formal
statements about systems?”

7) Randolph Johnson position statement [25]
“I think that tool support for formal methods is essential. I
have used various Z tools, most recently version 1.5 and
version 2.0 of Z/EVES (see [9] for more information on
Z/EVES). Among its strong points are that it runs on a
variety of platforms and is free for academic use. In my
experience, the biggest drawback of version 1.5, at least for
student use, is that you had to know LaTeX and emacs in
addition to learning formal methods and Z. Version 2.0
added a GUI and eliminated the need to know LaTeX and
emacs. This is much better for beginners.”

“For educational use, maybe the biggest value of Z/EVES
(and many other formal methods tools) is that it does
syntax checking and type checking at the push of a button.
Some students may never do much more than that. A nice
feature of Z/EVES which I haven’t seen in other tools is
that it goes beyond type checking to automatically generate
domain conditions. These state that the argument to which
a partial function is applied in a spec is actually in the
domain of the function. Not only does it generate the
conditions; it tries and often succeeds in proving them.
With no effort on the part of the instructor, the tool
repeatedly draws the attention of the student to an aspect of
their specification which is often ignored, even by very
experienced Z specifiers.”

8) Peter Gorm Larsen position statement [27]
“I believe that formal methods education should be
introduced in stages and that in order to keep the interest
for the students the use of tools is extremely important.
Furthermore I feel that it is important to the students that
the use of formal methods in themselves simply is a means
to achieve better systems/software and not a goal in itself.
It is my experience from some formal methods promoters
that this is not sufficiently stressed. Thus it is in my opinion
important to be able to envisage how one’s formal method
and the associated tools could be applied in a real
system/software development environment.” Larsen adds:
“Tools such as VDMTools that integrate with state-of-the-
art commercial tools such as Microsoft Word and Rational

FMWG Report, Version 5.7 September 13, 2000, 2200 CDT page 6 of 18

Rose on platforms such as Windows give the students more
appreciation for the formal methods usability.”

9) J Strother Moore position statement [32]
“Why teach just one tool? Why ACL2 among all the
choices? … ACL2 is the tool I know best. … Enthusiastic
teachers who deeply understand the subject matter tend to
be good teachers. However, when one teaches a course
based upon a particular tool, it is incumbent upon the
teacher to explore the tool’s inadequacies, especially those
that result from fundamental design decisions.”

“The argument for teaching just one tool is simple: a
semester is not very long. If I were teaching a course on
programming, I would rather the students learn one “first
language” than several.”

“ACL2 is a good choice for the following reasons. …
There is now a textbook introduction… The tool is free and
runs on many platforms. The tool is rugged, well-
documented online, and widely used. Within the ACL2
setting there is a natural way to study some other tools…
Finally, and very importantly, ACL2 is not a pedagogical
toy but an advanced industrial-strength theorem prover …”

10) Lesley Semmens position statement [38]
“I see the main problem in the early teaching of formal
methods to be the students’ limited ability to model. The
notations are not the main problem. I therefore try to build
on other experience and understanding they already have. I
have tried many different approaches over the ten years I
have been teaching formal methods. I have done it with and
without tools (fUZZ, Formaliser, ZTC). We have even built
tools to translate from ERDs to Z. But, always it comes
back to the students’ ability (or lack of ability) in modeling.
Using tools, student beginners produce syntactically correct
Z, but often it is semantic nonsense; they concentrate far
too much on the syntax and coping with the idiosyncrasies
of the tool.”

“I am not totally against tools. With [students in their] final
year, who have more understanding of what they are doing
(and more ability in modeling), I use tools, such as fUZZ
and ZTC if time permits. In any case I encourage them to
try out the tools, in the same way as they might any other
software engineering tool. This seems to work, they are not
trying to learn two things at once and appreciate the help
the tool gives them.”

11) Jonathan Bowen position statement [5]

This position statement specifically addresses the issue of
web-based teaching of the formal notation Z. The author
describes his experiences of delivering an FM course in this
manner, including the use of books and software tools
(LaTeX, ZTC and ZANS).

“No one book was followed exactly. It was recommended
that a Z textbook be obtained by students and used to
complement the course unit with additional reading outside
lectures.”

“Student understanding of producing a Z specification
increased significantly after the practical sessions. Many
seemed to appreciate using tools far more than just pencil
and paper. However, a danger with the use of an animator
is the possibility of confusion between a (possibly non-
executable) formal specification and an executable
program. A few always seem to stubbornly fail to
recognize the difference even after this is emphasized
repeatedly in lectures.”

“In the experience of the author, using tools in supporting
formal methods course units helps the students in their
understanding and increases their appreciation of the
usefulness (or at least decreases their negativity) of formal
methods.

“By insisting that students type-check their Z specifications
(using the ZTC tool on the course unit described here) and
check for explicitness (or otherwise) at least using the
related ZANS animation tool, many errors in Z
specifications can be discovered and eliminated by the
students themselves, sometimes with no help from
demonstrators in the case of bright students. This allows
demonstrators (and markers) to concentrate on the more
interesting and difficult aspects of formulating a Z
specification that require human inspection.

“Web support for formal methods and other course units is
a useful adjunct. A benefit is the accessibility of material
by students, the staff involved, other colleagues, internal
and external examiners, etc. It also helps in the
maintenance of course unit material as a unit develops
since this can be easily added and information can quickly
be corrected in the case of errors. However, it is
recommended that all essential material is still given to
students in paper form, even if it is available on the web,
since students will tend to print this anyway, which is still
relatively expensive compared to photocopying. Of course
the web resource can contain considerable extra
supplementary material if desired at very little cost once it
is installed.”

Themes in the Excerpts
We found several themes emerging from these excerpts:

1) The need for more robust and user-friendly tools.

2) There is a wide spectrum of tools available (perhaps
too wide for educational purposes).

3) The value of including industrial strength tools in the
curriculum, particularly with regard to model
checking.

4) Students need more educationally oriented tools to
help learn the concepts of theorem proving rather than
being overwhelmed by the power of industrial strength
tools.

5) Ancillary issues (such as the operating system a tool
runs under, and the need to learn other software tools,
such as LaTeX and emacs) can have major adverse
effects on the students’ learning experience.

FMWG Report, Version 5.7 September 13, 2000, 2200 CDT page 7 of 18

6) Tools can be extremely important in keeping the
interest of students and enhancing the learning
experience.

7) Tools are not necessarily a good idea at the
introductory stages; indeed they may hinder the
learning, or even mislead the student into a mindset
where formal methods are seen as yet another
programming approach!

8) Web support is useful, if only as a means of providing
access to the (latest) handout materials.

4.2 Uses of FM Resources

A questionnaire circulated before the ITiCSE conference
investigated resource use among members of the Formal
Methods focus group of the (UK-based) Learning and
Teaching Support Group for Computer Science and
Information Technology. Participants in this mailing list
discuss the teaching of formal methods in the United
Kingdom. The response rate was about 50% and provided
useful information about the situation in theUK. (Note that
FMs teaching has a longer history than in the
US.)Appendix F lists the questions and overviews the
responses. The following lists some key points from the
results:

• The respondents use a wide variety of tools, mostly
industrial strength.

• Z is very popular in the UK but other FM approaches
are also used.

• Very few of the tools include features designed to help
students develop their FM skills.

• Based on follow-up communications with the
respondents, it seems that many tools (especially the Z
tools) are somewhat problematic in use: some work
only on a Unix platform; several require the use of
LaTeX or troff; and others have integrated editors that
students find difficult to use. For example, Formaliser
uses a structure editor, which students find difficult to
use, although it could be argued that thinking more
structurally is a valuable skill (in which case
Formaliser can be seen as a tool having an educational
function).

• There seems to be a dearth of good backup materials
(tutorials, handouts, books), although at least one
respondent has produced good material using LaTeX
and CadiZ. An exception to this seems to be Toolbox
Lite (for VDM); this is an educational version of the
Toolbox tool and comes packaged with a textbook on
VDM [13].

• There is very little use of web-based resources. There
are however a wide variety of textbooks available and
in use. About a quarter of respondents indicated that
their courses tend to be “traditional”, that is, book-
based with hand-worked exercises.

• Opinion seems to vary on what constitutes a formal
method and a formal methods tool. For example, are

declarative languages like Prolog and ML to be
considered as FMs or FM tools?

Generally, the state of the art in resources for teaching
formal methods seems to be a maze that the novice must try
to navigate: “which FM shall I teach?”; “which tool shall I
use?”; “what materials are available?”. The temptation may
be to start with the available resources and to choose
(perhaps somewhat randomly) those that seem most
convenient or that are used on apparently similar courses.
But the working group and advisory board members
believe that a better approach would be to first identify
student needs and then decide how best to facilitate student
learning. There must be some means of helping both the
novice and the more experienced educator to decide what
resources (in the general sense outlined above) may aid the
achievement of these aims and objectives.

In his invited ITiCSE talk, Needham [34] talked about the
conflict between teaching basic CS concepts and the need
for students to have experience building large-scale
systems. Although Needham‘s remarks focused on tools in
general, they are equally applicable to the specific area of
formal methods. He suggested that, at an introductory
level, industrial-strength tools are too much for students
and hinder the students’ understanding of concepts; that
such tools are appropriate and desirable in final-year group
projects; and that, when used, the tools should be fully
understood by the educators. This has been a recurring
theme in our investigations. It is clear that there is a need
for more thought and study about providing resources to
aid learning and that there must be suitable materials, such
as tutorials and books, to support the resources.

In point 9 in the previous subsection, Moore makes a good
start at describing what attributes a good tool should have if
it is to be used for educational purposes. For the teacher,
the problem is to define clearly what the aims and
objectives are at each stage in the students’ learning and to
relate these to the resources available.

4.3 FM Educational Site

As seems to be the case in essentially every imaginable
area, the World Wide Web offers an ever-expanding array
of resources in the area of formal methods. The definitive
gateway to information about formal methods is the World
Library for Formal Methods [46], maintained by Jonathan
Bowen. This site serves as a clearinghouse to a wealth of
information about all aspects of formal methods: research
and practice, theory and application.

Up until 1998, there was little to help guide the educator
through the World Library’s maze of materials on formal
methods. This situation was addressed as one outcome
from the 21st Century Engineering Consortium Workshop,
held in Melbourne, Florida, in March 1998. The
workshop’s principal concern was to promote formal
methods education in computer science and computer
engineering programs. Toward this end, the organizers
gathered leading practitioners, experienced academics, and

FMWG Report, Version 5.7 September 13, 2000, 2200 CDT page 8 of 18

government advocates interested in educational issues
relevant to formal methods development. One outcome
from the workshop was a report [24] that describes the state
of formal methods education in academia and practice and
makes recommendations for education and training. The
other key outcome of this workshop was the Formal
Methods Education site [14], which was created and has
been maintained by Kathi Fisler. This web site is
essentially an information hub, with the general philosophy
of providing a collecting point for materials related to
teaching formal methods. The site includes sections about
course pages, tools, reading materials, instructional
materials, benchmarks and examples related to formal
methods, and position announcements. The Formal
Methods Education site has become the educational node
within the World Library for FM and is the foundation
from which the resource we propose in the next section will
emerge.

5. A Resource to Support FM Teaching

While the Formal Methods Education site presented in
section 4.3 is a rich and varied resource, at this time it is
primarily useful for educators who are already teaching
formal methods and want to find materials for their existing
courses. The wealth of information available at the site is
somewhat overwhelming; it would be a daunting task for
someone who wishes to begin teaching formal methods to
navigate all of the information in order to come up with the
“right” materials for a particular situation.

This working group proposes a new area for inclusion in
the Formal Methods Educational site, with the goal of
creating a set of pages to ease the continued integration of
formal methods into existing and future courses. This
resource will be a useful “entry point“ for computing
educators who are new to teaching formal methods or for
those who would like to move along to the “next level” of
teaching formal methods. It can also prove to be a useful
tool to support virtual university studies in this area.

The remainder of this section describes our proposal for the
organization of this sub-site and some of its features. The
actual implementation will be an on-going process, which
will require cooperation by a number of individuals and
institutions. We discuss our plan of action where such a
plan exists.

5.1 Proposed Content

In this section, we present the areas we propose for the new
sub-site. Much of the required material already exists in
various locations on the Web, such as this report, the report
from the 21st Century Engineering Consortium Workshop
[24], the Formal Methods Education site [14], the World
Library for Formal Methods [46], and the site for Formal
Methods Europe [15]. The challenge is to provide links in
a way that makes it all easily accessible.

Introduction: What is Formal Methods? This section
will be a brief summary (such as the one in the introduction

to this paper) that will point to more detailed information
such as that found in the World Library for Formal
Methods [46] or on the site for Formal Methods Europe
[15].

FAQs We will seed the FAQ with some standard questions
and answers. In order to make the FAQ section dynamic,
we will include the means for submitting new questions
and answers (with intervention by the current moderator
before they become part of the site).

FM Motivation This section will be designed to assist
educators who need facts and statements to convince
colleagues or students about the merits of including formal
methods topics in the curriculum. Subsections we
anticipate include:

• Advantages, problems, and challenges.

• Statistics and evaluations (such as those in a
survey by alumni of an introductory mathematics
course at SUNY Stony Brook [40]).

• Success stories where formal methods have been
used in real, large-scale projects.

• Standards in which the use of formal methods is
mandated or encouraged, especially in the safety-
critical and security areas.

• Template letters and flyers that can be
downloaded, adapted, and printed.

Discrete mathematics Because discrete mathematics is the
foundation for formal methods, it is natural to highlight this
area. Some examples of existing resources include:

• The approach to teaching discrete mathematics
presented in David Gries‘s position statement [19].

• Neville Dean’s paper from ZUM ‘95 [10], which
discusses how one can teach the discrete mathematics
foundations of Z.

• The pages of the working group on Integrating
Mathematical Reasoning into Computer Science
Curricula [23], which has as its charter to raise
awareness of mathematical reasoning in CS and of
ways of teaching it.

• The LINK software system [30], which is aimed at
educational applications of discrete mathematics at
levels ranging from junior high to research. It
includes a 50-page tutorial that is designed to be read
with no prerequisite.

Formal Methods across the curriculum This section will
provide the specific information that computing educators
can use as they incorporate formal methods into a particular
course or an entire curriculum. Sections can include:

• Current computing curricula guidance

• Courses matrix and FM components (drawn from
appendices B and C)

• Guidelines for designing an FM course

FMWG Report, Version 5.7 September 13, 2000, 2200 CDT page 9 of 18

• Modules that can be incorporated into other courses
(reflecting the results from projects such as the one
recently awarded to Rice University [2] and the
training materials listed on this NASA site [33])

Approaches to evaluating the use of Formal Methods in
computing-related curricula Such evaluations can be
done after a course, after graduation, or after students have
started to work. A positive evaluation may be the best
motivation for encouraging others to try including formal
methods modules in their courses. Evaluation is also a
necessary basis for improvement of a curriculum. For an
example evaluation, see the Stony Brook survey [40].

5.2 Resource Navigation Assistant

As a key enhancement of the FM Educational web site, we
propose the addition of a resource navigation assistant
(RNA). We feel such a capability would be invaluable in
surveying the maze of resources. We visualize the RNA as
more than a search engine; it would be built around a
searchable network of interrelated resources that would
allow cross-referencing among courses and curriculum
modules, tutorials, software tools, textbooks, and relevant
case studies, examples, and benchmarks. Eventually, this
could become an interactive tool that guides the user (rather
than requiring the user to ask the “right” questions).
Because the FM Educational web site will evolve as people
submit additional relevant material, the RNA itself will
need ongoing maintenance and evaluation.

5.3 Educational Tools Wish List

Advances in the teaching of formal methods, for whatever
reason, will be fostered by more coordination among
teachers, with help from tool developers. Currently, most
tools used to support the teaching of formal methods were
developed for practitioners, rather than for educators or
first-time users. What changes are needed in order to make
such tools more useful in teaching and learning formal
methods? In order to encourage the development of
educationally desirable tools, we propose creating a wish
list of important features and trade-offs. For example, such
a tool should help highlight the underlying principles,
should enhance the learning, should have a good learning
curve trade-off (that is, the time invested in learning the
tool should not outweigh the ultimate benefit of using the
tool), and should have an intuitive and accessible user
interface.

As the wish list develops, we suggest that a sub-section
should be added with assessments of FM tools according to
the criteria in the wish list. Ideally, such assessments
should be based on actual experience using the tools in
educational settings.

While the wish list will support the efforts we recommend
for creating a resource for novice users, it is not intended
for their direct use. As a result, the wish list should reside
in a separate subsection of the FM education web site. The
wish list should also inform the development of the
resource navigation assistant we described in Section 5.2.

5.4 Logistics for Creating the New Resource

The initial plan for implementing the proposed web pages
is to extend the existing FM Educational site [14]. The
webmaster of that site is committed to refining and
improving the site and has been a very active member of
the advisory board. We visualize the development of the
new area as an evolutionary process, which will respond to
suggestions and newly emerging needs. The logistics for
bringing the site into use include encouraging contributions
and publicizing the site. As one aspect of publicizing the
FM Educational resource, the working group proposes a
simple flyer that can be readily available on the web site.
This will allow FM proponents to print out the flyer and
have it available on the handout table during appropriate
conferences. We will also devise a plan for distributing
information about the resource via relevant mailing lists.

6. Conclusions

This report proposes a web-based resource related to
teaching formal methods. The intended consumers of the
new resource are computing educators who wish to begin
teaching formal methods as well as educators already
teaching formal methods who wish to move to the “next”
level. Rather than duplicating information that already
exists, the intention is to create a resource that simplifies
the task of effectively accessing useful and usable
information in this area. The working group’s web site
[16] and the existing FM Educational site [14] will be on-
going sources of information about these efforts. A key
part of the future work will be continued evaluation and
feedback.

By the time this report appears, the Formal Methods
Education site [14] should include the first basic version of
this new resource. We anticipate that the site will ease the
goal of expanding and enhancing the use of formal methods
throughout the computing curriculum. We encourage others
to join us and to contribute to this area, which is critical to
the improvement of computing education and the
preparation of our students for research and software
engineering practice.

Acknowledgement

The working group extends a special note of thanks to the
following advisory board members, whose comments and
suggestions on preliminary versions of the report have
improved the content and presentation significantly: Kathi
Fisler, Randy Johnson, Susan Gerhart, Ebba Thora
Hvannberg, Peter Gorm Larsen, and Dan Craigen.

References

[1] Barjaktarovic, M., and WetStone Technologies, Inc.
The State-of-the-Art in Formal Methods, January
1998, available
http://www.cs.utexas.edu/~csed/FM/docs/StateFM.pdf

FMWG Report, Version 5.7 September 13, 2000, 2200 CDT page 10 of 18

[2] Barland, I, Felleisen, M., Fisler, K, Kolatis, P., and
Vardi, M. Joint position statement: Integrating Logic
into the Computer Science Curriculum. Adapted
from a grant proposal to develop materials, June
2000, available
http://www.cs.utexas.edu/~csed/FM/docs/iticse-
fislervardi.pdf

[3] Bjørner, D., and Cueller, J., Software Engineering
Education: Roles for Formal Specification and Design
Calculi, Annals of Software Engineering, April 1999.

[4] Bloom, B. S. (Ed.) Taxonomy of educational
objectives: The classification of educational goals:
Handbook I, cognitive domain. New York; Toronto:
Longmans, Green, 1956.

[5] Bowen, J. P., Experience Teaching Z with Tool and
Web Support, July 2000, available
http://www.cs.utexas.edu/users/csed/FM/docs/bowen.pdf
(FM Advisory Board contribution).

[6] Clarke, E.M., et al., Formal Methods: State of Art and
Future Directions, ACM Computing Surveys 28(4),
December 1996.

[7] The Common Criteria for Information Security
Evaluation (CC) version 2.1 / ISO IS 1540, available
http://csrc.nist.gov/cc/

[8] Computing Curricula 2001, DRAFT (March 6, 2000),
The Joint Task Force on Computing Curricula, IEEE
Computer Society, Association for Computing
Machinery, March 2000, available
http://computer.org/education/cc2001/

[9] Craigen, D., Position Statement, June 2000, available
http://www.cs.utexas.edu/~csed/FM/docs/craigen.html (FM
Advisory Board contribution).

[10] Dean, N. Mental Models of Z: I -- Sets and Logic. In
Bowen J and Hinchey M (Eds.), ZUM’95: The Z
Formal Specification Notation, LNCS 967, 1995, pp.
498--507.

[11] Dupuis, R., et. al. A Guide to the Software
Engineering Body of Knowledge, Version 0.7,
available http://www.swebok.org.

[12] Fisler, K., Position Statement, June 2000, available
http://www.cs.utexas.edu/~csed/FM/docs/fisler.html (FM
Advisory Board contribution).

[13] Fitzgerald, J. and Larsen, P. G. Modelling Systems:
Practical Tools and Techniques for Software
Development. Cambridge University Press, 1998.

[14] Formal Methods Educational Site,
http://www.cs.indiana.edu/formal-methods-education/.

[15] Formal Methods Europe, available
http://www.fmeurope.org/

[16] Formal Methods Working Group, ITiCSE 2000,
available http://www.cs.utexas.edu/~csed/formal-
methods/.

[17] Gerhart, S., Craigen, D., and Ralston, T., Experience
with Formal Methods in Critical Systems, IEEE
Software, January 1994, pp. 21-28.

[18] Gopalakrishnan, G. and Windley, P. (Eds.)
Proceedings 2nd International Conference on Formal
Methods in Computer-Aided Design, FMCAD’98,

Palo Alto, CA, November 1998, LNCS 1522,
Spronger Verlag, 1998.

[19] Gries, K., Position Statement, July 2000, available
http://www.cs.utexas.edu/~csed/FM/docs/gries.html (FM
Advisory Board contribution).

[20] Hall, A., Using Formal Methods to Develop an ATC
Information System, IEEE Computer, March 1996.

[21] Hinchey, M.G. and Bowen, J.P., Applications of
Formal Methods, Prentice-Hall, 1995.

[22] Hvannberg, E. T., Position Statement, June 2000,
available
http://www.cs.utexas.edu/~csed/FM/docs/hvannberg.html
(FM Advisory Board contribution).

[23] Integrating Mathematical Reasoning into Computer
Science Curricula, available
http://www.cs.geneseo.edu/~baldwin/math-thinking/

[24] Johnson, S. D., Alexander, W. P., Chin, S. K., and
Gopalakrishnan, G. (Eds.) Report on the 21st Century
Engineering Consortium Workshop: a forum on
formal methods education, March 1998, available
http://www.cs.indiana.edu/formal-methods-
education/xxiec/report.html

[25] Johnson, R., Position Statement, June 2000, available
http://www.cs.utexas.edu/~csed/FM/docs/johnson.html
(FM Advisory Board contribution).

[26] Kelemen, C., Tucker, A., Henderson, P., Bruce, K.,
and Astrachan, O. Has Our Curriculum Become
Math-Phobic? (an American Perspective),
Proceedings of the 5th Annual SIGCSE/SIGCUE
Conference on Innovation and Technology in
Computer Science Education, July 2000, pp. 132-135.

[27] Larsen, P. G., Position Statement, June 2000,
available
http://www.cs.utexas.edu/~csed/FM/docs/larsen.html (FM
Advisory Board contribution).

 [28] Lethbridge, T.C. What Knowledge is Important to a
Software Engineer IEEE Computer, May 2000.

[29] Leveson, N. G., Guest Editor’s Introduction: Formal
Methods in Software Engineering, IEEE Transactions
in Software Engineering, September 1990.

 [30] LINK: A Software System for Discrete Mathematics,
version: 1.3, 02/23/98, available
http://zhivago.elon.edu/~berryj/LINK.html.

[31] Mills, H. Software Productivity, Dorset, 1988.
[32] Moore, J S., Position Statement, June 2000, available

http://www.cs.utexas.edu/~csed/FM/docs/moore.pdf (FM
Advisory Board contribution).

[33] NASA Jet Propulsion Laboratories, Formal Methods
Training and Courseware, April 2000, available
http://eis.jpl.nasa.gov/quality/Formal_Methods/training.htm
l

[34] Needham, R. Invited Talk, ITiCSE 2000, Helsinki
Finland.

[35] Parnas, D. L., Software Engineering Programs are not
Computer Science Programs, IEEE Software,
November/December 1999.

[36] Critical Foundations: Protecting America’s
Infrastructures, The Report of the President’s

FMWG Report, Version 5.7 September 13, 2000, 2200 CDT page 11 of 18

Commission on Critical Infrastructure Protection,
October 1997, available
http://www.ciao.gov/CIAO_Document_Library/PCCIP_Re
port.pdf.

 [37] Schneider, F. B. (Ed.) Trust in Cyberspace,
Committee on Information Systems Trustworthiness,
National Research Council, 1999, available
http://books.nap.edu/catalog/6161.html.

[38] Semmens, L., Position Statement, July 2000, available
http://www.cs.utexas.edu/~csed/FM/docs/semmens.html
(FM Advisory Board contribution).

[39] Smith, J. A Proposal for Computer Assisted Proof in
Mathematics Education, June 2000, available
http://www.cs.utexas.edu/~csed/FM/docs/smith.html (FM
Advisory Board contribution).

[40] Stony Brook Computer Science alumni, “Foundations
of CS I” Stony Brook Alumni Survey, Spring 1999,
available http://www.sinc.sunysb.edu/cse113/survey/.

[41] Tucker, A. B. (Ed.). Computing Curricula 1991:
Report of the ACM/IEEE-CS Joint Curriculum Task
Force. IEEE Computer Society Press, 1991, available
http://www.acm.org/education/curricula.html#CRVI.

[42] Vienneau, R., A Review of Formal Methods, Kaman
Sciences Corporation, 1993.

[43] WetStone Technologies, Inc., Formal Methods
Framework, final month status report, Contract #
F30602-99-C-0166, October 26, 1999, available
http://www.cs.utexas.edu/~csed/FM/docs/FMFramework.pd
f.

[44] Wing, J., Woodcock, J., and Davies, J. (Eds.) FM’99
– Formal Methods: World Congress on Formal
Methods in the Development of Computing Systems,
Toulouse, France, September 1999, Proceedings, Vol.
I, LNCS 1708, Vol. II, LNCS 1709, Springer-Verlag,
September 1999.

[45] Wing, J., Weaving Formal Methods into the
Undergraduate Computer Science Curriculum,
Proceedings of the 8th International Conference on
Algebraic Methodology and Software Technology
(AMAST) 2000, Education Day, Iowa City, Iowa, US,
May 20-27, 2000, available
http://www.cs.utexas.edu/~csed/FM/docs/Wing-abstract.pdf

[46] World Library for Formal Methods, available
http://archive.comlab.ox.ac.uk/formal-methods.html

FMWG Report, Version 5.7 September 13, 2000, 2200 CDT page 12 of 18

Appendix A: Advisory Board Members and Materials Contributed

• Jonathan Bowen, South Bank University, London, UK

• Position Statement [5]

• Dan Craigen, ORA Canada, Ottawa, Ontario, Canada

• Position Statement [9]

• Kathi Fisler, Worcester Polytechnic Institute, Worcester, MA USA

• Position Statement [12]

• Joint position statement: Integrating Logic into the Computer Science Curriculum [2]

• Susan Gerhart, Embry-Riddle Aeronautical University, Prescott AZ USA

• David Gries, University of Georgia, Athens GA USA

• Position Statement [19]

• Ebba Thora Hvannberg, University of Iceland, Reykjavik, Iceland

• Position Statement [22]

• Randolph Johnson, National Security Agency, Fort Meade MD USA

• The State-of-the-Art in Formal Methods, January 1998 [1]

• Formal Methods Framework, final month status report [43]

• Position Statement [25]

• Peter Gorm Larsen, IFAD A/S, Odense, Denmark

• Position Statement [27]

• J Strother Moore, University of Texas at Austin, Austin, TX USA

• Position Statement [32]

• Lesley Semmens, Leeds Metropolitan University, Leeds, UK

• Position Statement [38]

• Moshe Vardi, Rice University, Houston, TX USA

• Joint position statement: Integrating Logic into the Computer Science Curriculum. [2]

• Jeannette M. Wing, Carnegie Mellon University, Pittsburgh, PA USA

• Weaving Formal Methods into the Undergraduate Computer Science Curriculum [45]

• J. C. P. Woodcock, Oxford University Software Engineering Centre, Oxford, UK

FMWG Report, Version 5.7 September 13, 2000, 2200 CDT page 13 of 18

Appendix B: Top-level Mapping between Knowledge Areas
in Computing Curricula 2001 [8] and Computing Curricula 91 [41]

CC 2001 Knowledge Area
and Number of Core Hours

CC 91
Knowledge Area

DS: Discrete Structures (40) None (refer to discussion in Section 3)

PF: Programming Fundamentals (59) AL: Algorithms and Data Structures

AL: Algorithms and Complexity (31) AL: Algorithms and Data Structures

PL: Programming Languages (6) PL: Programming Languages

AR: Architecture (36) AR: Architecture

OS: Operating Systems (14) OS: Operating Systems

HC: Human-Computer Interaction (6) HU: Human-Computer Communication

GR: Graphics and Visualization (5) HU: Human-Computer Communication

IS: Intelligent Systems (10) AI: Artificial Intelligence and Robotics

IM: Information Management (10) DB: Database and Information Retrieval

NC: Net-Centric Computing (15) OS: Operating Systems

SE: Software Engineering (35) SE: Software Methodology and Engineering

CN: Computational Science (0) NU: Numeric and Symbolic Computing

SP: Social and Professional Issues (16) SP: Social, Ethical and Professional Issues

FMWG Report, Version 5.7 September 13, 2000, 2200 CDT page 14 of 18

Appendix C: Specific Topics Correlated with Formal Methods
 in Computing Curricula 2001 [8] and Computing Curricula 91 [41]

CC 2001 Topic CC 91 Unit
DS1: Functions, relations, and sets None (refer to discussion in Section 3)

DS2: Basic logic None

DS3: Proof techniques None

DS4: Basics of counting None

DS5: Graphs and trees None

PF1: Fundamental programming constructs None

PF2: Algorithms & problem solving AL8: Problem-solving strategies

PF3: Object-oriented programming PL11: Programming paradigms

PF4: Fundamental data structures AL1: Basic data structures

PF5: Recursion AL3: Recursive algorithms

AL5: Basic computability theory AL7: Computability and undecidability

AL6: The complexity classes P and NP AL5: Complexity classes

AL7: Automata theory PL7: Finite-state automata and regular expressions

PL8: Context-free grammars and pushdown automata

PL1: History of programming languages PL1: History and overview of programming languages

PL3: Virtual machines PL2: Virtual machines

PL4: Introduction to language translation PL9: Language translation systems

PL5: Language translation systems PL9: Language translation systems

PL6: Type systems PL3: Representation of data types

PL7: Models of execution control PL4: Sequence control

PL8: Declaration, modularity, and storage management PL6: Run-time storage system

PL9: Programming language semantics PL10: Programming language semantics

PL10: Programming paradigms PL11: Programming paradigms

AR1: Digital logic and digital systems AR1: Digital logic

AR6: CPU implementation AR1: Digital logic

OS2: Concurrency OS3: Process coordination and synchronization

OS3: Scheduling and dispatch OS4: Scheduling and dispatch

OS6: Security and protection OS8: Security and protection

OS8: Real-time systems OS10: Distributed and real-time systems

HC2: Modeling the user HU1: User interfaces

GR3: Modeling HU2: Computer graphics

IS2: Search and optimization methods AI2: Problems, state spaces, and search strategies

IS3: Knowledge representation and reasoning AI2: Problems, state spaces, and search strategies
Appendix continues on the next page

FMWG Report, Version 5.7 September 13, 2000, 2200 CDT page 15 of 18

Appendix C, continued: Specific Topics Correlated with
Formal Methods in CC 2001 and CC 91

CC 2001 Topic CC 91 Unit

IS6: Machine learning AI2: Problems, state spaces, and search strategies

IS7: Natural language processing AI1: History and applications of artificial intelligence

IS10: Knowledge-Based systems AI1: History and applications of artificial intelligence

IM2: Data modeling and the relational model DB2: The relational data model

IM3: Database query languages DB2: The relational data model

IM4: Relational database design DB2: The relational data model

IM5: Transaction processing DB1: Overview, models, and applications of database systems

IM6: Distributed databases DB1: Overview, models, and applications of database systems

IM7: Advanced relational database design DB2: The relational data model

NC2: Communication and networking OS9: Communications and networking

NC7: Distributed systems OS10: Distributed and real-time systems

SE2: Software requirements and specifications SE3: Software requirements and specifications

SE3: Software design and implementation SE4: Software design and implementation

SE4: Verification and validation SE5: Verification and validation

SE5: Software tools and environments SE2: The software development process

CN1: Numerical analysis NU2: Iterative approximation methods

FMWG Report, Version 5.7 September 13, 2000, 2200 CDT page 16 of 18

Appendix D: Responses to Conference Survey
on Importance of Formal Methods

The working group polled its colleagues at the ITiCSE
2000 conference as to how they would assess the
importance of formal methods in the different knowledge
areas. Participants could view a poster with the current
state of the areas and their topics in CC 2001 (similar to
Appendix B), with those topics that correlated to formal
methods highlighted. The participants were also able to
read the working definition of formal methods discussed
in Section 2, as well as a wide variety of definitions
drawn from the literature. In order to complete the
survey, participants were asked to assign a numerical
ranking to each knowledge area using the following
scale:

1– It would be a stretch to use formal methods in
teaching this area.

2 – This area could be taught using formal methods.

3 – This area should be taught using formal methods.

4 – This area can’t be taught without using formal
methods.

Thus, a rating of 2.5 for a knowledge area could be
construed as a neutral stance about the applicability of

formal methods. The number of respondents was
approximately ten.

The results of the survey showed that the respondents
feel there is a high degree of correlation between the
model curricula and the importance of formal methods.
In particular, the attendees polled corroborated the
importance of formal methods in the Software
Engineering area with a median of 3.8/4.0. In fact, the
median rating for Computational Science was 3.9. This
supported the correlation posited in CC91, in spite of the
fact that many formal methodists do not usually have
continuous mathematics in mind when they refer to
formal methods. Finally, while the number of
respondents is not significant, it is interesting to note the
relatively low rating assigned to the Information
Management knowledge area. This would seem to
indicate that many faculty either are unaware of, or do
not assign strong weight to, the central role played by
mathematical logic in the relational calculus formal query
language.

CC 2001
Knowledge Area

Median Rating in
Formal Methods Survey

(4-point scale as given above)

Discrete Structures 3.8

Programming Fundamentals 2.9

Algorithms and Complexity 3.7

Programming Languages 2.9

Architecture 2.5

Operating Systems 2.9

Human-Computer Interaction 1.4

Graphics and Visualization 3.2

Intelligent Systems 3.2

Information Management 2.0

Net-Centric Computing 2.7

Software Engineering 3.8

Computational Science 3.9

FMWG Report, Version 5.7 September 13, 2000, 2200 CDT page 17 of 18

Appendix E: SWEBOK and Formal Methods

SWEBOK Knowledge Area Applicable Formal Methods

Software requirements formal domain modeling

formal requirements specification

analysis diagrams - data/control flow, entity-relationship, object diagrams

Software design formal design specification

design diagrams - structure charts,

object diagrams, state diagrams

program design languages

Software construction algorithm/complexity analysis

data structures

detailed design formalisms (e.g., pre/post conditions, invariants, design tables
and diagrams)

program syntax and semantics

Software testing program flow diagrams, case construction, specification decomposition into
cases, reliability and coverage arguments

Software maintenance (any FM used in initial development)

Software configuration management configuration process diagrams

Software engineering management task schedule diagrams (PERT, Gantt)

Software engineering tools and methods FM tools -analysis and design tools, compilers, type/domain checkers,
animators, model checkers, theorem provers, test case generators

Software engineering process formal process modeling

Software quality formal analysis and verification - symbolic execution, state machines, model
checking, theorem proving, “proof by team checking“

FMWG Report, Version 5.7 September 13, 2000, 2200 CDT page 18 of 18

Appendix F: Responses to FM Tool Survey

1. What software have you used in teaching formal methods?

(Numbers in parentheses indicate the number of responses for each tool; all others represent a single response.)

• Z (including Z Specific Formaliser (3), CadiZ (3), Fuzz (2), Z/EVES, ZTC, and Z Browser)
• B (B Tool(2))
• SDL (Telelogic TAU)
• Lotos (SEDOS, TOPO, LOLA)
• PVS
• VDM (ToolBox Lite)
• CSP (Kramer & McGee (KM) model checker; FDR model checker)
• Design CPN (Concurrency Workbench)
• ML
• No software used (5)

2. How have you used the software in your teaching?

a) taught its use as a tool for doing formal methods in the case of:

Z Specific Formaliser (3), CadiZ(2), Fuzz(2), Z/EVES, TOPO, LOLA, PVS, Tool, KM model checker,
Concurrency Workbench, ZTC

b) used it as a tool for teaching/learning the concepts of FM in the case of:

Z Specific Formaliser (2), CadiZ, Telelogic TAU, SEDOS, TOPO, Fuzz, Z/EVES, PVS, ToolBox Lite, B
Tool, Concurrency Workbench, FDR model checker, Fuzz, Z Browser

3. At what levels have you used the software?

a) undergraduate courses:

Z Specific Formaliser (2) , CadiZ, Telelogic TAU, SEDOS, TOPO, ToolBox Lite, B Tool, KM model
checker, Concurrency Workbench, Fuzz, ZTC

b) postgraduate courses (i.e. after the undergraduate degree):

B Tool, Telelogic TAU, SEDOS, TOPO, ToolBox Lite (M.Sc. Conversion), Concurrency Workbench, FDR
model checker, ZTC

4. What resources have you used in support?

• textbooks:

• Turner, “Using Formal Description Techniques”
• Jacky, “The Way of Z”
• Potter, Sinclair & Till (2), “Introduction to … Z.”
• Lightfoot, “Z”
• Spivey, “Z Reference Manual”,
• Woodcock and Davies, “Using Z”
• Currie, “The Essence of Z”
• Diller (2), “Z”
• Ellsberger et al. “SDL”
• Fitzgerald & Larsen, “Modelling Systems”
• Unknown (3)

• on-line tutorials/manuals: Fuzz, TOPO, LOLA, Z/EVES, PVS; Own materials, CadiZ; No such material used
(3); own handouts (3)

• other web based resources: Z, CadiZ

• mailing lists: Z/EVES, PVS

