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Abstract: Our goal is to qualitatively simplify devel-
oping large scale data replication systems and improv-
ing existing ones. To realize this goal, we address a
fundamental question: What are the right abstractions
for defining replication systems? Our new architecture,
Ursa, defines (1) mechanisms that define abstractions for
storage, communication, and consistency that automati-
cally handle the bookkeeping needed to allow policies to
distribute data however they want, (2) a model of policy
that cleanly separates safety and liveness concerns, (3) a
way to define safety policies leveraging standard consis-
tency algorithms, and (4) a way to define liveness policies
using a declarative language. By capturing the right ab-
stractions, Ursa dramatically reduces the effort needed to
construct a new system, and it facilitates innovation by
making it easy to evolve existing systems. For example,
we build systems that closely approximate Coda, Bayou,
Pangaea, Chain Replication, TRIP, and TierStore using
fewer than 200 lines of system-specific policy code for
each, and we add significant new features like coopera-
tive caching to Coda and TierStore, small-device support
for Bayou, or hierarchy to TRIP using fewer than 10 ad-
ditional lines.

1 Introduction
As technologies and workloads evolve, new replica-
tion systems will continue to be needed. In particular,
managing distributed state is a fundamental challenge
for a broad range of systems such as personal multi-
media [29], services for developing regions [8], web edge
services [9], and mobile applications [16, 18]. How-
ever, fundamental trade-offs between consistency, avail-
ability, and performance [10, 22] mean that new environ-
ments often demand new systems that make new trade-
offs among these factors.

To address these needs, this paper presents Ursa—a
universal replication service architecture over which a
broad range of replication systems can be constructed
with dramatically less effort than current approaches.

To realize this goal, Ursa addresses a fundamental
question: What are the right abstractions for defining
replication systems? Ursa’s architecture flows from four
key ideas.
• First, Ursa provides mechanisms that define abstrac-

tions for storage, communication, and consistency
that automatically handle the low-level bookkeeping
needed to allow policies to distribute data however
they want.

• Second, Ursa models policy in a way that cleanly
splits the decisions that distinguish one system from
another into safety constraints and liveness strategies.
In essence, a safety policy defines when a read or write
must block to enforce the system’s semantics, while a
liveness policy defines how data must flow through the
system to minimize blocking of reads and writes.

• Third, we observe that safety policy maps to the prob-
lem of enforcing consistency constraints. Systems can
therefore choose from a set of standard consistency li-
braries to select a safety policy.

• Fourth, we observe that liveness policy in a replica-
tion system defines a system’s topology and replica-
tion policy, and it can be cast as an overlay routing
problem: to which nodes should updates to each object
flow and from which nodes should requests for each
object be fetched? Given this insight, Ursa employs a
concise declarative language to express sophisticated
topology and replication policies.
By capturing the right abstractions, Ursa simplifies

development of replication systems. To test this claim,
we first build a series of replication systems inspired by
systems from the literature spanning a significant por-
tion of the design space. These case studies include
two client-server systems modeled on Coda [18] and
TRIP [28], two server replication systems modeled on
Bayou [30] and Chain Replication [38], and two ob-
ject replication systems modeled on Pangaea [32] and
TierStore [8]. We demonstrate that each of these sys-
tems approximates the corresponding published system
in that its behavior is within a modest constant factor for
a well-defined set of key properties including network
bandwidth, storage, consistency, latency, and availabil-
ity. Each system was remarkably easy to build, requiring
fewer than 200 lines of system-specific policy code.

We also demonstrate how Ursa facilitates rapid evo-
lution by adding significant features to several of these
systems. For example, we add cooperative caching to
Coda so that a clique of devices can share data even
when disconnected from the server; we add support for
small devices to Bayou so that a limited-storage device
can participate in Bayou replication without storing all
of the system’s data; and we add cooperative caching to
TierStore so that once one user in a developing region
downloads data across an expensive modem link, nearby
users can retrieve that data using their local wireless net-
work; and we add hierarchy to TRIP to improve scalabil-
ity. Each of these features yields significant advantages,
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yet each enhancement required less than 10 lines of ad-
ditional system-specific policy code.

Overall, our experience suggests that Ursa can dra-
matically reduce the effort needed to construct a replica-
tion system. More specifically,

1. Ursa is flexible in that we are able to implement a
broad range of systems.

2. Ursa is pithy in that the Ursa implementation of each
of these systems comprised fewer than 200 lines of
system-specific policy code.

3. Ursa is efficient in that we are able to build systems
that are comparable to hand-built systems from the lit-
erature with respect to the central properties of a repli-
cation architecture; and

4. Ursa facilitates innovation by making it easy to add or
change features in systems.

These results suggest that Ursa captures key abstractions
at the core of a significant range of replication architec-
tures.

In the rest of this paper, we first discuss thorny issue of
comparing Ursa-based systems to systems from the liter-
ature (§2.) Then, §3 and §4 present the abstractions and
mechanisms at the core of Ursa, and §5 describes how
replication systems can be defined by specifying their
policy. We discuss implementation decisions in §6. Our
evaluation of Ursa is based on a series of case studies
presented in §7. §8 contrasts Ursa with related work.
Finally, §9 concludes by discussing our experience with
Ursa.

2 Equivalence and scope
The reader should be a bit concerned at this point. We
claim that Ursa simplifies the task of developing replica-
tion systems, but how can such a claim be judged? Our
evaluation compares prototype systems to systems from
the literature, but constructing perfect, “bug compatible”
duplicates of such systems on Ursa is probably not a real-
istic (or useful) goal. On the other hand, if we are free to
pick and choose arbitrary subsets of features to exclude,
then the bar for evaluating our framework is too low: we
can claim to have built any system by simply excluding
any features our architecture has difficulty supporting.

This issue reflects a deeper challenge to designing
a replication architecture: we must identify the essen-
tial characteristics of replication systems the architecture
should encompass. Published replication systems have
many features; some are fundamental to their design and
some are peripheral. However, to be useful, an architec-
ture must restrict the choices of a designer: an architec-
ture that allows every possible variation of every possible
design decision is not an architecture at all.

In this section, we therefore define a working equiv-
alence relationship between replication systems that de-
fines both the scope of and requirements on Ursa. This
section closes with a discussion of several issues that
Ursa does not attempt to address.

2.1 Equivalence
We define equivalence in terms of three properties:

E1. Equivalent overhead. System A’s cumulative network
bandwidth between any pair of nodes and local storage
at any node are within a constant factor of system B’s.

E2. Equivalent consistency. System A provides consis-
tency and staleness properties that are at least as strong
as system B’s.

E3. Equivalent local data. The set of data that may be
accessed from system A’s local state without network
communication is a super-set of the set of data that
may be accessed from system B’s local state.

Notice that property E3 encompasses several factors in-
cluding latency, availability, and durability.

There is a principled reason for believing that these
properties capture something about the essence of a repli-
cation system: they highlight how a system resolves
the fundamental CAP (Consistency v. Availability v.
Partition-resilience) [10] and PC (Performance v. Con-
sistency) [22] trade-offs that any replication system must
make. More specifically, omitting any of these proper-
ties could allow a system to significantly cut corners. For
example, one can improve read performance by increas-
ing network and storage resource consumption to spec-
ulatively replicate more data to each node and weaken-
ing consistency by delaying invalidations until the corre-
sponding body has been prefetched [28]. Similarly, one
can improve the availability a system offers for a given
level of consistency by using more network bandwidth
to synchronize more often [39], or one can reduce the
resources consumed by replication by delaying propaga-
tion of updates and weakening consistency [2] or by re-
ducing the amount of data cached at a node.

We define different levels of equivalence specifying
when E1–E3 must hold.

Definition. System A is S-equivalent (strongly equiva-
lent) to system B if at any time for any workload E1, E2,
and E3 hold.

Unfortunately, though appealing, the S-equivalence
relation is too strong in practice—it can exclude systems
that are “equivalent enough.” For example, if two sys-
tems (or even two runs of the same system) make dif-
ferent non-deterministic choices about the order of two
concurrent writes to an object, different nodes could end
up with a copy of the object, making the system fail the
third test. We therefore define a useful, weaker form of
equivalence.

Definition. System A is Q-equivalent (quiescent equiv-
alent) to system B if for a Q-workload consisting of a
series of requests with a quiescent period after request i
completes execution before request i + 1 begins execu-
tion, properties E1 and E3 hold at the start of each quies-
cent period and property E2 holds for all requests.
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Although the workload defined in Q-equivalence is
unrealistic, it makes comparison of systems tractable by
removing the non-determinism concurrency can intro-
duce. Furthermore, we believe that if a system can meet
the Q-equivalent requirements, it is likely the system will
be “equivalent enough” for most realistic workloads.

2.2 Excluded properties
These definitions restrict the scope of our architecture in
a well-defined way. Several excluded properties warrant
discussion: security, interface, conflict resolution, and
configuration.

First, we do not address security. We believe that ul-
timately our replication architecture should also define
flexible security mechanisms and make specifying a sys-
tem’s security a policy choice. Providing this ability is
important future work, but it is outside the scope of this
paper, which can be regarded as focusing on the architec-
tural problem of allowing systems to define their replica-
tion, consistency, and topology policies [3] to address the
CAP [10] and PC [22] trade-offs.

Second, we do not systematically address the local in-
terface a system exposes (e.g., file system [18, 28, 32],
object store [8], tuple store [30], etc.) because we do not
regard these differences as fundamental. Ursa currently
implements a object store and we have constructed sev-
eral file systems over it; future work is needed to extend
it to support tuple-stores.

Third, we do not attempt to support all possible con-
flict resolution algorithms [8, 17, 18, 34, 37]. Ursa logs
all write-write conflicts in a way that is data-preserving
and consistent across nodes to support a broad range of
application-level resolvers. We believe it is possible to
extend our mechanisms to support Bayou’s more flexi-
ble application-specified conflict detection and reconcil-
iation programs, but supporting this additional flexibility
would increase the cost of applying updates to a node’s
storage because it would requires a node’s state to be
rolled back to the logical time of an update in order to
run the conflict detection and resolution programs in an
appropriate context [37].

Finally, we do not attempt to duplicate how systems
are configured (e.g., specifying lists of peers or repli-
cation policy with configuration files [18] or symbolic
links [8, 25]). We rely on some configuration files and
provide hooks for our liveness policies to access the ob-
ject store, but we do not claim that our arrangement is
optimal.

3 Architecture
Ursa’s architecture defines abstractions that represent
simple building blocks with which a system designer
can construct a wide range of replication systems. As
Figure 1 illustrates, a system designer views a replica-
tion system as having three parts. First, a set of core
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Fig. 1: Ursa architecture and abstractions.

mechanisms that capture the fundamental abstractions for
state management, consistency, and communication of
updates. Second, a safety policy embodied in a wrap-
per library that enforces the system’s consistency con-
straints. Third, a liveness policy embodied in a set of
communication triggers embody the system’s replication
strategy and node topology for distributing updates; it
is such liveness policies that largely define a replica-
tion system’s architecture, distinguishing server replica-
tion systems like Bayou [30] and Chain Replication [38]
from client-server caching systems like Coda [18] from
cooperative caching systems like Shark [1] from coarse-
grained push-subscription systems like TierStore [8].

For example, to implement an AFS-like client-server
system [15], a designer would instantiate a wrapper li-
brary that enforces open/close consistency on reads and
writes, and she would construct a liveness policy in
which (1) each client sends all updates to the server,
(2) each client fetches demand read misses from the
server, and (3) the server sends invalidations to all clients
caching a file when the file is updated. The mechanisms
would provide the necessary storage, would handle the
bookeeping to ensure that updates flowing into a node
are applied in a well-defined order, and would expose the
resulting consistency state to the consistency policy.

§4 and §5 describe the abstractions provided by the
mechanisms and policies.

4 Mechanisms
In this section, we describe the basic abstractions for
managing storage, communication of invalidations, and
communication of update bodies. Although these mech-
anisms are simple, the specific features they expose make
it easy to construct a broad range of systems by instan-
tiating appropriate policies over them. The goal of this
section is to define the view of these mechanisms Ursa
exposes to policy writers; we defer discussion of how to
implement these abstractions efficiently to §6.

4.1 Storage
The storage abstraction presented to the policy layer is
simple and has two main parts: (1) per-object state for a
subset of the system’s data selected by the policy and (2)
basic consistency state that tracks and exposes the depen-
dencies among updates.
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Per-object and interest set state. In order to support
replication and caching, each node has an object store
that contains a subset of the system’s data. Every object
has an object ID and byte-addressable data. An interest
set identifies an individual object or a group of objects
(e.g., /a/b/*) and a policy can specify and update a list
of interest sets for which a node should store per-object
state. This per-object state includes a logical timestamp
and real timestamp for the last known update for each
byte-range and may include the data stored in each byte-
range (if that data has been received by the node.) A
node need not store per-object state for objects outside
of the interest sets specified by the policy. A node also
tracks per-IS-state that contains the logical timestamp of
the latest known update for any object in the interest set,
for poicy- specified interest sets.

Consistency state. A node tracks basic consistency
state for the system’s objects. For each interest set, the
node consultes the per-IS-state to determine whether ob-
jects in the interest set are presumed inconsistent—the
node has missed one or more invalidations that may af-
fect the state of objects in the interest set. Additionally,
for objects in interest sets for which the node is track-
ing per-object state, the node tracks whether each byte-
range is consistent (the node has a version of the byte-
range that is causally consistent [20] with all local reads
and writes it has processed and all updates it has received
from other nodes), inconsistent (the node has processed
an invalidation that is newer than the data it is storing),
or not present (the node does not have a copy of the byte-
range.) For interest sets that are presumed inconsistent,
a node tracks which ranges of update events it missed so
that it can identify what information is needed to make
the per-object consistency state current for that interest
set.

Additionally, to support TACT’s [39] tunable tempo-
ral error (TE) and order error (OE), each node maintains
a real-time vector clock that is updated when invalida-
tions or heartbeats are received from other nodes, and
each node tracks the commit state of its updates using
Golding’s algorithm [11].

4.2 Invalidation subscriptions
Invalidation subscriptions allow nodes to share informa-
tion about subsets of data while maintaining consistency.
Each invalidation subscription delivers a causally con-
sistent sequence of the updates for a subset of the sys-
tem’s data and also includes explicit records summariz-
ing which updates have been omitted from the complete
causally consistent stream. These explicit omissions al-
low a receiver to track which subsets of data it has re-
ceived complete consistency information for and which
subsets of data must be presumed inconsistent.

More specifically, the invalidations to be sent in a sub-
scription are characterized by two parameters: a start

time startVV (a vector clock) and a subscription set SS
(a collection of objects) that together define a request:
“Send all invalidations to SS that have occurred since
startVV .”

Log and checkpoint transfers. Policies can optimize
the cost of an invalidation subscription by selecting either
of two semantically-equivalent encodings: log-iteration
and checkpoint-and-log.

In the log-iteration realization of a subscription, the
sender iterates across a causally-sorted list of all invalida-
tions it has received after time startVV , sending any in-
validations that target objects in SS and combining other
invalidations into concise imprecise invalidations [3] that
specify a target set of objects, a start time, and an end
time: “One or more objects in target set were updated
between start time and end time.”

Alternatively, the checkpoint variation of an invalida-
tion subscription sends three things: the most recent in-
validation the sender has for every element in SS that has
been updated since startVV ; the sender’s presumed in-
consistent state for interest sets that overlap SS to reveal
any events the checkpoint may not reflect for objects in
SS; and an imprecise invalidation covering startVV un-
til the sender’s current logical time to signify that the
checkpoint may omit invalidations to objects outside of
SS. After such a checkpoint is sent, the sender continues
to stream each new invalidation it receives using the log
streaming mechanism until the subscription is closed.

4.3 Body subscriptions and demand fetch
Whereas invalidation subscriptions make nodes aware of
the updates that have occurred, body messages deliver
the contents of these updates. Each body message iden-
tifies an invalidation with which it is associated and car-
ries the contents of the corresponding update. Body mes-
sages can be delivered to a node in any order. A node can
request an individual body message (i.e., for a demand
fetch of an object) or it can subscribe to receive any new
updates that appear for a specified subscription set of ob-
jects at another node.

To allow a system to enforce consistency despite hav-
ing separate streams of (carefully-ordered) invalidations
and (unordered) bodies, an incoming message scheduler
coordinates how received invalidations and updates are
applied to a node’s state. The scheduler (1) discards any
body that is older than currently stored data, (2) delays
applying a body until the corresponding invalidation has
been applied, and (3) delays applying an invalidation un-
til either a configurable timeout has expired or a body
matching this or some later invalidation received for the
same byte-range has arrived.

This timeout allows a system to balance the per-
formance and availability benefits of maximizing the
amount of valid data it stores versus the reduced tempo-
ral imprecision [39] it achieves by applying invalidations
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quickly [28]. For example, if the timeout is set to infin-
ity, then a node will never apply an invalidation unless it
can also apply a body to keep the data valid. Conversely,
a timeout of zero ensures that a node becomes aware of
writes quickly, though it may then have to block a sub-
sequent read to receive the most current version of the
data.

5 Specifying policy
Surprisingly, the simple storage and communication ab-
stractions above are sufficient to describe a broad range
of replication systems by specifying (a) a safety policy
embedded in a wrapper library that determines a sys-
tem’s consistency guarantees by ensuring that read and
write requests block until they may safely complete and
(b) a liveness policy embedded in a system’s communica-
tion triggers that determines a system’s topology (which
nodes communicate with which nodes) and replication
strategy (which nodes receive and store which updates)
in order to avoid or minimize blocking of requests.

5.1 Safety policy
In order to provide flexible consistency and higher level
interfaces for applications (e.g., a file system over the
object store), applications access storage via a wrapper
library. Each wrapper library enforces a specific consis-
tency policy by blocking read and write requests until
some desired consistency semantic is ensured. Libraries
use two basic approaches to determine when it is safe for
a request to complete.

First, a library can use the basic consistency informa-
tion maintained locally by each node’s storage to enforce
many levels of consistency including best effort coher-
ence, causal consistency [20], temporal error [39], and
order error [39]. These libraries simply set parameters
on requests to the underlying object store. For example,
if the block-inconsistent flag is set, reads will block until
they can return data that are causally consistent as de-
fined above. Otherwise, reads can return inconsistent or
presumed inconsistent data.

Second, a library on one node can communicate with
libraries on other nodes to enforce more stringent con-
sistency guarantees like sequential consistency [21] 1-
copy serializability [4], open/close consistency [15], or
linearizability [14]. Such consistency algorithms are not
always simple to implement and we don’t advance the
state of the art on this front: we implement most of our
consistency libraries in Java. Fortunately, libraries are
reusable across systems, so a designer who wants to pro-
vide standard consistency semantics can simply select
from a set of a standard libraries. Future work includes
investigating domain specific languages [?] or other flex-
ible consistency frameworks [17, 34, 36, 39] for defining
consistency protocols.

Local read/write events
Read needs data objId, offset, length, logicTime
Read of presumed inconsistent objId, offset, length
Write objId, offset, length, logicTime
Delete objId

Connection events
Inval subscription start SS, senderId
Inval subscription attached SS, senderId
Inval subscription end SS, senderId
Body subscription start SS, senderId
Body subscription end SS, senderId
Outgoing inval subscription start SS, receiverId
Outgoing inval subscription end SS, receiverId
Outgoing body subscription start SS, receiverId
Outgoing body subscription end SS, receiverId

Message arrival events
Inval arrives sender, objId, off, len, logicTime
Requested body arrives sender, objId, off, len, logicTime
Body request failed senderId, objId, offset, length, logicTime

Fig. 2: Events for liveness policy generated by mechanisms.

5.2 Liveness policy
As just described, to enforce safety (consistency), reads
and writes may block until data has propagated to some
desired set of nodes in the system. Therefore, a liveness
policy works to avoid or end blocking by causing nodes
to subscribe to invalidation and body streams to ensure
that desired information propagates between nodes. It
is such liveness policies that largely define a replication
system’s architecture.

5.2.1 Events and actions
The liveness policy receives notification of important
events that affect the local state (e.g., local read miss, lo-
cal write, open incoming invalidation subscription, close
incoming invalidation stream, receive invalidation, re-
ceive body, etc.). Fig. 2 lists all of the events generated
by our implementation.

Reacting to such events, the policy then triggers com-
munication of updates between nodes by adding a sub-
scription for an interest set from a start time, removing
an interest set from an invalidation-stream subscription,
transmitting a body for a specified byte-range, or creat-
ing a subscription for a stream of new bodies. Fig. 3 lists
policy actions that can be generated.

In addition to these events and communication ac-
tions, we provide a way for liveness policies to read
and write tuples to persistent objects in our object store.
This interface allows a liveness policy to base its action
on per-object state. For example, each object stored in
Pangaea [32] identifies three nodes that store the “gold
replicas” of the object, so a liveness policy for Pangaea
must be able to read and update a list of gold replicas for
any object in the system. Liveness policies also use this
feature to store configuration information (e.g., a list of
nodes to peer with or list of files to prefetch [8, 18]) in
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Actions generated by liveness policy
Add pull inval subscription SS, sourceId [, CP|LOG, start]
Add pull body subscription SS, sourceId [, start]
Add push inval subscription SS, destId [, CP|LOG, start]
Add push body subscription SS, destId [, start]
Remove pull inval sub SS, sourceId
Remove pull inval sub SS, sourceId
Remove push body sub SS, destId
Remove push body sub SS, destId
Request body srcId, objId, off, len, logicTime
Push body destId, objId, off, len

Fig. 3: Actions for mechanisms generated by liveness policy. If
the optional start parameter is omitted from an add subscription
action, a default is used: for pull, the default is the last logical
time SS was not presumed inconsistent and for push the default
is the logical time the last connection to destId was closed. If
the optional CP|LOG parameter is omitted, a log is sent unless
start is earlier than the truncation point in the log, in which case
a checkpoint is sent.

the object store.
The persistent-tuple interface simply adds a set of ac-

tions to write tuples to objects and a set of events trig-
gered when tuples are read. For example, the action
writeTuple(objId, tupleName, field1, . . . , fieldN) appends
the tuple tupleName(field1, . . . , fieldN) to the object ob-
jId, and the action readAndWatchTuple(objId) generates
an event for each tuple stored in objId and then gener-
ates a new event any time a new tuple is appended to that
object.

5.2.2 Examples
The liveness policies are best understood by consider-
ing several examples. In order to convey the overall ap-
proach, these examples are high level and omit some de-
tails; we provide the actual full implementation of the
liveness policies for several examples in Section 7.

Example: Server replication. In a server replication
system like Bayou [30], all nodes maintain copies of all
data, and any node can exchange updates with any other
node. The liveness policy at each server periodically
pings other servers to determine when they are reachable.
When a server becomes reachable, the liveness policy
creates an invalidation subscription and a body subscrip-
tion for “*” (an interest set that includes all objects) with
the node’s current version vector [30] as a start time. To
match Bayou’s 100% availability and causal consistency,
a node sets its scheduler to have an infinite timeout (do
not apply an invalidation until the corresponding body
has arrived) and uses the standard causalWrapper con-
sistency library, which blocks reads of not-present, in-
consistent, or presumed inconsistent data. ♦

Example: Client-server caching with callbacks. In
a client-server system like AFS [15], clients cache re-
cently referenced objects and send updates to a server.
Whenever a client reads an object o that is inconsistent,
presumed inconsistent, or not present, the liveness policy

adds o to the invalidation subscription from the server S
to the client C using as a subscription start ⊥ (the begin-
ning of time for the system) and specifying that the server
should send a checkpoint containing the most recent in-
validation of o rather than the full sequence of invalida-
tions to o. The server adds o to the subscription set for
the invalidation stream from S to C and sends that check-
point of o’s most recent invalidation. Additionally, when
such a read occurs, the liveness policy at C requests that S
send a body for o if that body is newer than the version of
the body stored at C or whatever version S has if C does
not have a copy of o. Eventually, the invalidation and
matching body arrive at C and the read may return. Sub-
sequent reads of o will be local operations at C until the
invalidation subscription delivers a newer invalidation of
o. When such an invalidation arrives, we remove o from
this invalidation subscription.

To ensure that writes propagate to the server, the live-
ness policy creates a subscription for “*” from C to S
using S’s current version vector as a start time. ♦

Example: Client-server callback crash recovery.
Often, a tricky issue in callback based systems is recov-
ering callback state after a server crash or after a client
becomes disconnected from the server and reconnects af-
ter perhaps missing some invalidations to objects it is
caching. The abstractions presented here allow these
cases to be handled quite naturally.

Suppose a client becomes disconnected from a server
because one or both crash or because the network path
between them is lost. If strong consistency is desired,
the consistency wrapper at the client will block reads
when the client is disconnected; alternatively, systems
like Coda weaken consistency guarantees when the client
is disconnected [18]. Later, when connectivity is re-
stored, the liveness policy creates an invalidation sub-
scription from the server to the client with an empty
interest set (“”) and a start time corresponding to the
client’s current version vector. The server sends a check-
point for the invalidation state of “”, which will, to en-
sure the stream carries a causal sequence of events, carry
an imprecise invalidation covering all invalidations the
client missed. This invalidation typically makes all of
the client’s state presumed inconsistent. As a result, sub-
sequent reads block until they establish new callbacks by
adding the objects being read to the subscription set as
described in the previous example. ♦

5.2.3 Declaring liveness policy
We use the declarative OverLog language [23] and the
P2 runtime [23] to specify and execute liveness policy.
OverLog statements specify how to create a new tuple
(event or table entry) when a set of existing tuples meet
some constraint. For example

out@Y(Y, A, C, D) :-
in1@X(X, A, B, C), in2@X(X, A, B, D), in3@X(X, A, )
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indicates that whenever there exist at node X tuples in1,
in2, and in3 such that all have identical second fields (A),
and in1 and in2 have identical third fields (B), create a
new tuple (out) at node Y using the first and fourth fields
from in1 (A and C) and the fourth field from in2 (D).
Note that for in3, the wildcard matches anything for
field three.

When the events listed above occur, Ursa generates
the corresponding P2 tuple. Similarly, when a P2 tuple
for an action appears, P2 generates an Ursa action.

To give a concrete example of how one could specify
an action in a replication system’s liveness policy, con-
sider the following rule from our Ursa implementation of
TierStore [8]:

addPullInvalSubscription@node(node, volume, parent) :-
newLiveNeighbor@node(node, parent),
isParent@node(node, parent),
wantSubscribe@node(node, volume)

This rule causes a node to subscribe for one or more vol-
umes of interest when a node it regards as its parent be-
comes reachable.

In the above examples, our English translations of
simple OverLog statements are admittedly a bit awk-
ward. Also, we acknowledge that this declarative style
of programming may be unfamiliar to many system
builders. After an initial learning curve where we learned
to “think in OverLog,” our experience using OverLog
to specify liveness policy for replication systems echos
Loo et al.’s experience for overlays: “The combination
of a declarative language and a dataflow runtime forms a
powerful and surprisingly natural environment for over-
lay specification and runtime.” [23] Like Loo et al., we
find the effort to learn an unusual syntax offset by the ad-
vantages of having descriptions of our systems that are as
concise as pseudocode, that specify the system precisely,
and that can be executed.

6 Implementation
The previous sections defined the abstractions Ursa re-
lies on to construct replication systems. This section
focuses Ursa’s novel implementation of the invalidation
subscription abstraction. The abstraction requires mech-
anisms that (1) support flexible liveness policies by al-
lowing any nodes to exchange any subsets of data and
(2) support consistency policies by tracking the causal
relationships of updates. Supporting either of these as-
pects alone is straightforward, but efficiently supporting
both is challenging. Our implementation realizes the in-
validation subscription abstraction by multiplexing inval-
idation subscriptions on a single stream, allowing Ursa to
support large numbers of interest sets an order of magni-
tude more efficiently than previous systems that provide
similar flexibility [3].

6.1 Log and per-object state
Each node stores a log of invalidations as well as per-
object state for a policy-specified subset of the system’s
data. These are similar to past systems [3, 30]; we in-
clude a brief description here for concreteness.

Each node maintains a log of invalidations it has
processed, causally sorted by each invalidation’s logical
time. Logical times are based on a Lamport clock [20] so
that each update’s time exceeds the time of all updates on
which it depends. Each node maintains a version vector
currentVV summarizing which updates it has processed.
A node can be configured to limit the log to any specified
size by garbage collecting a prefix of the log.

Each node maintains per-object state for a policy-
specified set of objects. For each byte-range of each ob-
ject in that set, the node keeps the logical- and real-time
of the last invalidation and, if a body has been processed,
the logical time and contents of that body.

6.2 Interest sets and subscriptions
Although the abstraction specifies independent invalida-
tion subscriptions, our implementation multiplexes all in-
validation subscriptions from one node to another onto
a single underlying invalidation stream. This multiplex-
ing yields two significant advantages for dynamically-
created, fine-grained subscription sets such as those
needed by callbacks [15, 18, ?].

First, the network overhead to add a new subscrip-
tion is reduced because imprecise invalidations covering
objects not in the subscription need only be sent once
per stream. In particular, an invalidation subscription for
subscription set SS must also include imprecise invalida-
tions covering updates outside of SS so that the receiver
can maintain its presumed inconsistent state. Multiplex-
ing subscriptions allows one imprecise invalidation to be
used across all active subscriptions.

Second, the processing overhead to handle each inval-
idation is reduced from O(number of active interest sets)
to update each interest set’s state to O(1) to update the
stream’s state. To accomplish this goal, we generalize
the notion of establishing a callback with a server to at-
taching an interest set to a stream.

Implementation. An interest set’s effective time
IS.effVV is the latest time at which the interest set is
known to have has seen all invalidations that could af-
fect it. So, if IS.effVV < currentVV , the interest set is
presumed inconsistent. Our implementation sets the the
effective VV for an interest set IS to be the maximum
across a stored VV for the interest set and the causal time
for any connection to which IS is attached. For the for-
mer, to limit space overheads a policy specifies which
interest sets maintain persistent state; if IS does not main-
tain such state, the stored VV is taken from ISenclosing, the
smallest enclosing interest set that maintains per-IS state.
To track the latter, for each incoming invalidation stream
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Fig. 4: Bandwidth to subscribe to varying number of 1-object
interest sets for Ursa and PRACTI [3].

a node maintains stream.VV that encompasses the latest
invalidations provided by the stream. Thus, IS.effVV =
max(ISenclosing.VV, ∀stream∈attachedstream.VV ).

Attaching an interest set to a stream requires receiv-
ing a checkpoint or log that brings IS up to date with the
sender, but once IS is attached to stream, each invalida-
tion on stream advances IS.effVV with a single update to
the receiver’s stream.VV state. When an imprecise inval-
idation that overlaps IS arrives on a stream, the receiver’s
state is no longer guaranteed to be causally consistent to
stream.VV , so we detach IS from the stream; if the the
system is maintaining per-interest set state for IS, we up-
date the stored IS.VV = stream.VV at this time.

Example. This approach provides an efficient way to
track per-interest state for fine-grained, dynamic interest
sets. Consider, for example, emulating per-object call-
backs. To ensure that object o is not presumed incon-
sistent, a client attaches o to the stream of invalidations
from its server by sending a request addSubscription(o,
⊥) where ⊥ is a special token concisely representing an
all-zero version vector—when an interest set is small, it
is cheaper to send ⊥ as a start time and receive the cur-
rent logical time for all objects in the interest set than
to send a full version vector and receive the logical time
only for more recent updates. The server sends the log-
ical time of o’s last update and the token attach:o. The
cost is thus two small messages. Note that in this case a
policy would typically configure “/” to be the only per-
sistent interest set to avoid keeping a version vector for
each object. ♦

Example. The approach is also efficient for coarse-
grained interest sets. Consider attaching an interest set
with 1000 objects, 100 of which have been updated since
IS.effVV. A node sends IS.effVV and receives an object
ID and logical time for each of the 100 modified objects
followed by the attach token. ♦

Evaluation. Fig. 4 shows the cost for synchronizing
the current state of and requesting future updates to 1000

objects, 100 of which have been modified, in a 100-node
system (1) using single-object interest sets to approxi-
mate object-by-object callbacks [15, 18, ?] and (2) using
a single interest set spanning all 1000 objects [3, 30]. We
measure the cost of callbacks on our implementation of
Ursa, an implementation of PRACTI provided by the au-
thors [3], and estimate the ideal cost in a client-server
system assuming a callback is established by sending an
object id and receiving the object ID and a timestamp.

As Fig. 4 shows, when access patterns have sufficient
predictability and locality to use coarse-grained subscrip-
tions, both PRACTI and Ursa outperform even ideal call-
backs. However, when fine-grained callbacks are estab-
lished dynamically, Ursa approximates callbacks and is
an order of magnitude cheaper than PRACTI. PRACTI
pays a high cost because each subscription establishes a
new, independent connection by sending a version vector
summarizing the current state of IS and then receiving an
imprecise invalidation describing all invalidations to ob-
jects not in IS. Additionally, PRACTI pays a cost propor-
tional to the number of interest sets to process each inval-
idation because each invalidation must update the state of
each interest set.

6.3 Other implementation details
Our prototype is written in Java and uses BerkeleyDB for
storage.

We use an NFS server that implements a file system
over our object store. Note that systems that provide file
service typically run an NFS server on each node, mount
that file system locally, and do not use NFS from a remote
client

7 Case studies and evaluation
This section examines the value of Ursa’s approach to
constructing replication systems by examining a series
of case studies. One should view this evaluation as both
(1) assessing how useful our artifact is for constructing
prototype replication systems and (2) testing whether the
ideas provide useful principles for thinking about and un-
derstanding replication systems.

To evaluate our architecture, we consider three crite-
ria:

• Generality/Flexibility. Is the architecture capable
of describing a wide range of systems including
client-server systems [15, 18], server-replication sys-
tems [30, 38], object replication systems [12, 32], and
so on?

• Pithiness. Is the specification of systems concise and
elegant? Pithiness is evidence that abstractions capture
the essence of the underlying concepts.

• Efficiency. Are the resulting systems comparable to
hand-built systems? Does the architecture facilitate
improvements in a design?
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Safety Policy Liveness Policy
Standard Customized

Bayou 12 - 29
Chain - 88 76
Replication
Coda 157 - 31
Pangaea 12 - 67
TierStore 12 - 28
Trip 12 - 22

Fig. 5: Lines of code required to implement each system Stan-
dard safety policy means that a standard library wrapper was
used. Customized means that a customized library wrapper was
used to implement the system.

To that end, this evaluation focuses on a series of case
studies spanning diverse classic and new systems from
the literature. To illustrate pithiness, we provide a de-
tailed implementation for one system (Ursa-Coda), and
highlight key pieces of several others. To illustrate flexi-
bility, we discuss in less detail a broad range of systems
covering a large part of design space: Bayou [30], Pan-
gaea [32], Tier-Store [8], Chain Replication [38], and
TRIP [28]. To illustrate efficiency, we analytically and
experimentally assess the extent to which our implemen-
tations are equivalent to prior systems according to the
definition in §2. Fig. 5 summarizes the number of lines
of code which were used to implement each system.

Finally, as an illustration of all three properties,
we show how constructing a system on Ursa’s flexible
framework makes it easy to extend a design by adding
new features. We add cooperative caching to Coda in 2
lines; this addition allows a set of disconnected devices to
share updates while retaining consistency. We add small-
device support to Bayou in 1 line; this addition allows de-
vices that with limited capacity or that do not care about
some of the data to participate in a server replication sys-
tem. We add cooperative caching to Tier-Store in 2 lines;
this addition allows data to be downloaded across an ex-
pensive modem link once and then shared via a cheap
wireless network. Each of these simple optimizations
provides an order of magnitude improvement for some
scenarios of interest.

All experiments are run on Dell Dimension 4100
machines with 800MHz Pentium-III CPUs, 256MB of
memory, and 100Mb/s Ethernet. We use Fedora Core 6,
Sun JVM 1.5, and Berkeley DB Java Edition 1.7.1. In
some experiments, we artificially introduce network la-
tency or throttle network bandwidth using NIST Net.

7.1 Micro-benchmarks
Although Ursa has not been extensively tuned, its per-
formance is adequate for prototyping systems. For ex-
ample, Fig. 6 compares accessing local Ursa storage via
our NFS wrapper with accessing the local Linux ext3 file
system via the Linux NFS server. For the Andrew bench-
mark [15] Ursa suffers a factor of two slowdown. When
we configure Ursa to implement a client-server system
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Fig. 6: Performance for Andrew benchmark.

Ping latency Throughput
Local 4ms 224 req/s
Remote 13ms 95 req/s

Fig. 7: P2 Performance

and run the benchmark with an empty client cache and a
network with a 10ms latency, performance falls by about
another factor of two.

Fig. 7.1 summarizes the round trip ping latency and
maximum throughput per second for a null P2 event in-
serted by Ursa on a local machine or remote machine.

7.2 Ursa-Coda
To illustrate how to construct a replication system with
Ursa, this section discusses in detail Ursa-Coda, a sys-
tem designed to be equivalent to the version of Coda
described by Kistler et al [18]. In particular, we sup-
port disconnected operation, reintegration, crash recov-
ery, whole-file caching, open/close consistency (when
connected), causal consistency (when disconnected), and
hoarding. We know of one feature from this version that
we are missing: we do not support cache replacement
prioritization. In particular, in Coda, some files and di-
rectories can be given a lower priority and will be dis-
carded from cache before others. Thus, Ursa-Coda is
only equivalent when the hoard set fits on client disk.
Coda is long-running project with many papers worth
of ideas. We omit features discussed in other papers
like server replication [33], trickle reintegration [26], and
variable granularity cache coherence [27]. We see no
fundamental barriers to adding them in Ursa-Coda.

7.2.1 Implementing safety policy
Coda provides open/close semantics when connected and
enforces causal consistency when disconnected. We em-
ploy an open/close wrapper library that buffers writes in
the library until close, at which point it will make the
writes to Ursa’s storage. If the node is connected to the
server, the library will block until the server gathers in-
validation acknowledgements and reports “done.” For a
read, the library first looks in its buffer. If the object is not
there, it issue a read to Ursa’s storage which will block
until the local data is consistent This standard library is
usable by different systems. It has 124 semicolons of
Java and 22 P2 rules.
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// Get server and list of peers from config file
cf1 readAndWatchTuple@X(X, nodeFile) :-

init, nodeFile:=/coda/nodeList
cf2 server@X(X, S) :-

configServer@X(X, S)
// Server connection status

c1 isConnected@X(X, V) :-
newLiveNeighbor@X(X, S), server@X(X, S), V:=1

c2 isConnected@X(X, V) :-
declareDeadNode@X(X, S), server@X(X, S), V:=0

// Local read miss: Add an inval subscription
sc1 addPullInvalSubscription@X(X, S, Catchup, Obj) :-

localReadImprecise@X(X, Obj, , ), server@X(X, S),
isConnected@X(X, V), V==1, Catchup:=CP,
X6=S //I am client

// ... and get a body
sc2 demandRead@X(X, S, Obj, Off, Len) :-

localReadInvalid@X(X, Obj, Off, Len), server@X(X, S),
isConnected@X(X, V), V==1, X6=S //I am client

// Server is detected: add subscriptions to send updates to server
cs1 addPullInvalSubscription@S(S, X, Catchup, SS) :-

isConnected@X(X, V), V==1, server@X(X, S), SS:=/*,
Catchup:=LOG, X6=S // I am client

cs2 addPullBodySubscription@S(S, X, Catchup, SS) :-
isConnected@X(X, V), V==1, server@X(X, S), SS:=/*,
Catchup:=LOG, X6=S // I am client

// Client receives an inval: Remove subscription
cbr removePullInvalSubscription@S(S, X, Obj) :-

invalArrives@X(X, S, Obj, , , ), server@X(X, S),
X6=S // I am client

// Server is detected: Add subscription to “” to see if I missed anything
re addPullInvalSubscription@X(X, S, Catchup, SS) :-

isConnected@X(X, V), V==1, server@X(X, S),
SS:=EMPTY, Catchup := LOG, X6=S // I am client

// Hoarding: Add hoard subscriptions when server reachable
h1 readAndWatchTuple@X(X, hoardFile) :-

isConnected@X(X, V), V==1, hoardFile:=/coda/hoardList
h2 addPullInvalSubscription@X(X, S, Catchup, SS) :-

doHoard@X(X, SS), Catchup:=CP, server@X(X, S),
X6=S // I am client

h3 addPullBodySubscription@X(X, S, Catchup, SS) :-
doHoard@X(X, SS), Catchup:=CP, server@X(X, S),
X6=S // I am client

// Cooperative caching: Check reachable peers if server unreachable
cc1 peer@X(X, P) :-

configPeer@X(X, P)
cc2 pConnected@X(X, P, V) :-

newLiveNeighbor@X(X, P), peer@X(X, P), V:=1
cc3 pConnected@X(X, P, V) :-

declareDeadNode@X(X, P), peer@X(X, P), V:=0
cc4 demandRead@X(X, P, Obj, Off, Len) :-

localReadInvalid@X(X, Obj, Off, Len),
isConnected@X(X, V), V==0, pConnected@X(X, P, W),
W==1, server@X(X, S), X != S // I am client

Algorithm 1: Liveness policy for a Coda-like system. 17
rules for monitoring connectivity are excluded.
7.2.2 Implementing liveness policy
Ursa-Coda’s 31 liveness rules can be divided into 6 main
groups: configuration, connectivity, demand read, write
propagation, recovery, and hoarding. Algorithm 1 de-
fines Ursa-Coda’s liveness policy.

Configuration and connectivity. A configuration file
stores the server’s identity in a configServer tuple and
another configuration file provides the hoard list in a
series of doHoard tuples. At each client C, the ta-
ble entry isConnected@C(C, S) indicates whether the

server S is currently reachable. We use 17 rules (not
shown) based on the published P2 implementation of
Narada [23] to track connectivity information and gen-
erate newLiveNeighbor and declareDeadNode tuples,
which invoke rules c1 or c2 respectively.

Demand read. Two rules are triggered when a demand
read of object o occurs at a connected client. sc1 sub-
scribes for o’s invalidations using a checkpoint for effi-
ciency, and sc2 demand-fetches the body. Eventually, o
is no longer presumed inconsistent or inconsistent, and
the safety policy can unblock the read. The invalidation
subscription ensures that if another node updates o, it will
become invalid so that writes can complete.

Write propagation and callbacks. To propagate client
writes to the server, rules cs1 and cs2 are triggered when
the client connects to the server, and they create an in-
validation and a body subscription from the client to the
server. Note that the server sets the scheduler timeout
to infinity so that invalidations are not applied until the
server receives the corresponding bodies. (Conversely,
the clients set the scheduler timeout to 0 to process inval-
idations immediately and demand fetch bodies.)

The invalidation subscriptions created by clients when
they read objects from the server ensures that our under-
lying mechanisms transmit invalidations. The safety pol-
icy is responsible for unblocking a write once the inval-
idations have been delivered by these liveness-triggered
rules. To avoid sending repeated callbacks to a client, we
include a rule cbr to remove an object from the invalida-
tion subscription when a client receives a callback.

Recovery. When a client reconnects to a server, it trig-
gers re, to establish an invalidation subscription for an
empty subscription set from the server. This action
causes the server to send an imprecise invalidation for all
updates the client has missed, typically making all data
presumed inconsistent at the client.

Hoarding. As in Coda, we prefetch objects in a user-
defined hoard set. The hoard set is stored as tuples in a
local configuration file which is read when the server be-
comes connected (h1). The client then subscribes to re-
ceive invalidations and bodies for subscription sets listed
in the hoard file (h2, h3).

7.2.3 Adding cooperative caching
Four rules provide a way for disconnected clients to fetch
data from their peers. We augment the node list config-
uration file to include a list of peers; when cf1 reads the
config file, it generates configPeer tuples that populate
the peer table via cc1. cc2 and cc3 keep track of connec-
tivity to peers. cc3 triggers a demand read attempt from
reachable peers if the server is not reachable.
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7.2.4 Evaluation
Ursa-Coda is Q-equivalent to Coda if the number of
writes at each node between disconnections exceeds the
number of nodes and if if the initial state, the number of
clients, the hoard set at each client, and the workload is
the same.

E1. Overhead. Both systems issue and process the same
writes, invalidations, and local/remote reads. Estab-
lishing or breaking each callback has a constant cost
that is near the cost of ideal callbacks (see Fig. 4).
Similarly, demand read requests are of constant size
and demand read replies have the data plus a constant
overhead. Establishing one body update subscription
to propagate updates to the server and establishing the
first invalidation connection to/from the server each
entail sending a version vector, so Ursa-Coda is only
Q-equivalent to Coda if the number of invalidation
and body messages sent to/from the server exceeds the
number of entries in a version vector so that network
bandwidth is within a constant factor.

E2. Consistency. Both systems enforce open/close seman-
tics when connected and causal when disconnected.

E3. Available local data. For both systems,at each client,
only the objects that have an established callback are
available during connected operation and only the ob-
jects that are consistent are available during discon-
nected operation.

7.3 Bayou
We use Ursa to implement a server replication system
modelled on the version of Bayou described by Petersen
et al. [30].

Bayou enforces causal consistency, so we instantiate
a causal consistency wrapper library that blocks reads to
inconsistent or presumed inconsistent data as our safety
policy.

For liveness, Bayou uses peer-to-peer anti-entropy
sessions to disseminate all updates to all nodes. Anti-
entropy is easily implemented on Ursa. When node A
wants to carry out anti-entropy with node B, it establishes
an invalidation and a body subscription with subscription
set “*”. Once all updates have been applied and the two
nodes have synchronized, A removes the subscriptions.
Note that if the log at B is truncated to a point beyond
A’s knowledge, the invalidation subscription will auto-
matically send a checkpoint rather than the log; Bayou’s
approach is similar.

The complete implementation of Ursa-Bayou’s live-
ness policy requires 29 rules: 4 for anti-entropy liveness
(Alg. 2), 8 for random neighbor selection (omitted) and
17 for connection management (omitted.)

Equivalence. Ursa-Bayou is Q-Equivalent to the orig-
inal Bayou implementation assuming that nodes execute
anti-entropy with the same peers during the same quies-
cent periods in the workload. The network overhead is

// Add Subscriptions when a random neighbor is selected
bc01 addPullInvalSubcription@X(X, Y, SS) :-

selectedNeighbor@X(X, Y), ss@X(X, SS)
bc02 addPullBodySubcription@X(X, Y, SS) :-

selectedNeighbor@X(X, Y), ss@X(X, SS)
// Remove Subscripiton when we have received all updates

bc03 removePullInvalSubcription@X(X, Y, SS) :-
informInvalSubscriptionAttached@X(X, Y, SS)

bc04 removePullBodySubcription@X(X, Y, SS) :-
informInvalSubscriptionAttached@X(X, Y, SS)

Algorithm 2: Rules for liveness in a Bayou-like system
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Fig. 8: Anti-Entropy bandwidth on Ursa-Bayou

the information transferred during anti-entropy. For both
systems, the number of bytes transferred during anti-
entropy is proportional to the number of updates which
the sender has but the receiver doesn’t and the size of the
updates. Or if checkpoints are sent, the size of checkpoint
is directory proportional to the size of changed objects.
Both systems store all objects locally. As for the log,
both garbage collect old log entries to keep the log to a
specified maximum size. Additionally, both systems en-
forces casual and eventual consistency. Finally, for both
systems, 100% of the data is always locally available at
every node.

Small-device support. We extend this system to sup-
port small devices. Instead of storing the whole database,
a node can specify an interest set containing the set of
objects or directories it cares about. During anti-entropy,
it simply needs to add subscriptions for its interest set
rather than “*”. After anti-entropy, all data in its interest
set is inconsistent, and the rest is presumed inconsistent.
This requires a change of 1 liveness rule.

Experimental Evaluation. As Figure 8 indicates, the
overhead for anti-entropy in Ursa-Bayou is relatively
small compared to “ideal” anti-entropy. In addition, if a
node requires only 10% of the data, the small device en-
hancement in Ursa-Bayou greatly reduces the bandwidth
required for anti-entropy.

11



Coherence-only Ursa
Messages Bytes Messages Bytes

Worst Case 1 26 2 52
Bursty workload (10) 1 26 1.1 30

Fig. 9: Messages and bytes per invalidation sent by Ursa and
coherence-only system.

7.4 Pangaea
Pangaea [32] is a wide-area file system that supports high
degrees of replication and high availability. Replicas of a
file are arranged in an m-connected graph, with a clique
of g gold nodes. The location of the gold nodes for each
file is stored in the file’s directory entry. Updates flood
harbingers (i.e. invalidations) in the graph. On receipt
of a harbinger, a node requests the body from the sender
of the harbinger with the fastest link. Pangaea enforces
weak, best-effort coherence.

Ursa-Pangaea uses a standard coherence-only wrap-
per, which does not block any reads or writes. Addi-
tionally, if an individual node wishes to enforce stronger
consistency, that node may instantiate the causal or TE
wrapper to block reads and thereby enforce causal con-
sistency or a bound on staleness (temporal error.)

The liveness policy comprises 67 rules to create a sys-
tem Q-equivalent to Pangaea. Due to space constraints,
we omit a detailed discussion. Most of the complexity
stems from (1) constructing the required per-file invalida-
tion graph across gold and bronze replicas, (2) updating
the invalidation graph when nodes become unreachable,
and (3) creating new gold replicas for objects when an
existing gold replica fails.

Equivalence. Ursa propagates sufficient information
for any node to enforce causal consistency using local in-
formation. Ursa-Pangaea does not use this information,
so it retains the high availability, partition-resiliance, and
performance [10, 22] available to weak-consistency sys-
tems. Furthermore, the overhead of propagating this in-
formation is modest for several reasons. First, as Fig.
9 indicates, once a connection between a pair of nodes
is established, Ursasends at most two invalidation mes-
sages for every one sent by a coherence-only algorithm—
at worst an Ursa node alternates sending an invalidation
requested by the receiver and an imprecise invalidation
summarizing updates the receiver has not requested. Fur-
thermore, as long as there is locality workload’s updates
in the object ID space, imprecise invalidations are com-
parable in size to regular invalidations. Finally, as the
figure indicates, if there are bursts of load to objects of
interest, the ratio of invalidations to imprecise invalida-
tions improves. As a result, network bandwidth remains
within a constant factor of a coherence-only protocol if
the workload has sufficient locality in the object ID space
for imprecise invalidations to achieve good compression.

Experimental Evaluation. Fig. 10 illustrates one as-
pect of Pangaea’s performance: its ability to dynamically
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Fig. 10: Read miss latency for Ursa-Pangaea and alternatives.

choose the best replica from which to fetch data. In this
experiment, a simplified version of the experiment pre-
sented in Saito et al.’s Figure 11 [32], we measure the
time to satisfy a cache miss from one of three replicas.
We compare three policies: (1) Pangaea (locality-based),
(2) Random, and (3) Static. For the Static policy, we
show results for each of the three possible choices. Our
results are consistent with Saito et al.’s experiment: not
surprisingly, fetching data from a nearby node is a good
policy.

7.5 Chain Replication
Chain Replication [38] is a server replication protocol in
which the nodes are arranged as a chain to provide high
availability and sequential consistency. All updates are
introduced at the head of the chain and queries are han-
dled by the tail. An update does not complete until all live
nodes in the chain have received it. Chain management
is carried out by a master node. Data are divided into
volumes, and each volume is assigned to its own chain.

Ursa-CR implements this protocol with support for
volumes, addition of a new node, and node failure and
recovery. The master node is implemented in OverLog.
Although we could use our standard library for enforcing
sequential consistency we implement a customized lo-
cal interface wrapper that exploits the chain topology and
simply blocks an update until it receives an ack from the
tail. This custom safety library required 85 semi-colons
of Java and 3 OverLog rules.

Most of the complexity in the original chain replica-
tion algorithm stems from the need to track which up-
dates have been received by a node’s successors and syn-
chronizing a recovering node. Ursa’s mechanisms handle
these housekeeping details. In particular, if node A in the
middle of the chain dies, the successor of A will establish
subscriptions from node A’s predecessor. Because of the
semantics guaranteed by invalidation subscriptions, the
successor will receive all updates it hasn’t seen, includ-
ing those that were sent to node A and were lost. The
liveness policy totals 76 rules: 3 for update propagation,
9 for chain management at the servers, 35 for chain man-
agement at the master, 20 for connection management,
and 9 for initialization and miscellany.
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Our implementation is Q-equivalent to the published
system. We omit detailed discussion of this unsurprising
result due to space constraints.

7.6 TierStore and TRIP
We also implement TierStore [8], a hierarchical replica-
tion system for developing regions, and TRIPP [28], a
system that seeks to provide transparent replication of
dynamic content for web edge servers. We summarize
the relevant statistics in Fig.5. Due to space constraints,
we omit detailed discussion.

What is perhaps most interesting about these exam-
ples is the extent to which Ursa facilitates evolution.
For example, the TRIP implementation assumes a single
server and a star topology. By implementing on Ursa,
we can improve scalability by changing the topology
from a star to a static tree simply by changing a node’s
configuration file to list a different node as its parent—
Ursa’s mechanisms are general enough so that this “just
works”—invalidations and bodies flow as intended and
sequential consistency is still maintained. Better still,
if one writes a topology policy that dynamically recon-
figures a tree when nodes become available or unavail-
able [23], a few additional rules to subscribe/unsubscribe
produce a dynamic-tree version of TRIP that still en-
forces the required consistency. Note that we have im-
plemented the static tree policy but not the dynamic tree
policy.

8 Related work
PRACTI [3] defines a set of mechanisms for replication
systems. Like PRACTI, Ursa supports Partial Replica-
tion, Arbitrary Consistency, and Topology Independence,
and like PRACTI our mechanisms separate invalidations
from bodies and use imprecise invalidations to avoid
sending all invalidations to all nodes. Our mechanisms
are an order of magnitude more efficient than PRACTI
for the fine-grained, dynamic replication schemes used
by a number of systems [?, 15, 32]. More broadly, where
PRACTI defines a set of mechanisms, Ursa defines new
mechanisms, defines an architecture for separately spec-
ifying safety and liveness policy, shows how to imple-
ment liveness policy using a declarative language, and
demonstrates how this approach facilitates construction
of a wide range of systems that are equivalent to or im-
provements on systems from the literature.

A number of other efforts have defined general frame-
works for constructing replication systems for different
environments. Deceit [35] focuses on replication across
a well-connected cluster of servers. Zhang et al. [40] de-
fine an object storage system with flexible consistency
and replication policies in a cluster environment. Stack-
able file systems [13] seek to provide a way to add fea-
tures and compose file systems.

Ursa incorporates the order error and temporal error
abstractions of TACT tunable consistency [39]; we do

not currently support arithmetic error. Although we base
Ursa on TACT, there are other efforts to support flexi-
ble consistency that could support the vision of provid-
ing a set of standard libraries in a replication toolkit.
IceCube [17] and actions/constraints [34] provide frame-
works for specifying general consistency constraints and
scheduling reconciliation to minimize conflicts. Like
Ursa, Swarm [36] provides a set of mechanisms that seek
to make it easy to implement a range of TACT guar-
antees; Swarm, however, implements its coherence al-
gorithm independently for each file, so it does not at-
tempt to enforce cross-object consistency guarantees like
causal [20], sequential [21], 1SR [4], or linearizabil-
ity [14]. Fluid replication [6] provides a menu of consis-
tency policies, but it is restricted to hierarchical caching.

Ursa uses P2 [23] to execute our declarative liveness
policies. More broadly, we follow in the footsteps of ef-
forts to define runtime systems or domain-specific lan-
guages to ease the construction of routing [23], over-
lay networks [31], cache consistency protocols [?], and
routers [19].

The specific optimizations we add to replication
systems—cooperative caching [7], bulk resynchroniza-
tion [27], and small device support [18]—have all been
done before. Our contribution is to provide an abstrac-
tions that supports such optimizations in a general way
and that make it simple to evolve an existing system by
adding new features.

9 Experience and conclusion
We started this project with the goal of building an infras-
tructure that would allow a couple of graduate students to
rapidly build a dozen or so classic and cutting edge repli-
cation systems. Looking back, four “aha” moments stand
out. First, was our realization that much of what dis-
tinguishes different replication systems can be regarded
as routing policy. This realization allowed us to exploit
the OverLog declarative language for pithy description
of that aspect of policy.

Routing could be used to define much of the policy
of a replication system but there were still some aspects
that didn’t quite fit into routing. Was there a clean way to
think about the rest? Our second realization was that “the
rest” are essentially the safety guarantees and that they
can be cleanly implemented at the read- and write- in-
terface by casting these safety guarantees as consistency
constraints.

Although it is appealing to be able to send any data
to any node while enforcing consistency, doing so in a
scalable way is daunting. The third insight was that we
could adapt PRACTI-like mechanisms to support not just
coarse-grained subscriptions but fine-grained callbacks
by multiplexing logical invalidation streams onto a sin-
gle physical connection.

13



Finally, we were left with the question of how to con-
vince ourselves and others that our implementation cap-
tured the essence of the systems we were aiming to build.
The fourth “aha” was when we realized that we needed to
precisely define the equivalence between two systems in
a way that captured the key trade-offs any system makes
in addressing the CAP [10] and PC [22] dilemmas.

The Ursa architecture uses these observations to dra-
matically reduce the effort needed to construct a new
replication system or enhance an existing one. Given
Ursa we can prototype many interesting replication sys-
tems in a day or two using a handful of lines of system-
specific policy code.

With Ursa building replication systems is easy to
bear.
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