
Active Names: Flexible Location and Transport of
Wide-Area Resources�

Amin Vahdat
Department of Computer Science

Duke University

Michael Dahlin
Department of Computer Science

University of Texas, Austin
Thomas Anderson Amit Aggarwal

Department of Computer Science and Engineering
University of Washington

Abstract

In this paper, we explore flexible name resolution as
a way of supporting extensibility for wide-area dis-
tributed services. Our approach, called Active Names,
maps names to a chain of mobile programs that can cus-
tomize how a service is located and how its results are
transformed and transported back to the client. To illus-
trate the properties of our system, we implement pro-
totypes of server selection based on end-to-end perfor-
mance measurements, location-independent data trans-
formation, and caching of composable active objects
and demonstrate up to a five-fold performance improve-
ment to end users. We show how these new services are
developed, composed, and secured in our framework.
Finally, we develop a set of algorithms to control how
mobile Active Name programs are mapped onto avail-
able wide-area resources to optimize performance and
availability.

1 Introduction

In this paper, we address the question: what should the
architecture be for deploying advanced distributed ser-
vices across the Internet? We argue for a programmable
naming abstraction called Active Names that combines
location and transport of resources, provides end-to-end
programmability, supports composibility of different
extensions, and supports mobile location-independent
code.

This approach is motivated both by efforts to extend
the current Internet Domain Naming System, DNS [38],
and by other recent efforts to interpose services between
clients and servers. Historically, DNS was developed

�This work was supported in part by the Defense Advanced Re-
search Projects Agency (F30602-95-C-0014, F30602-98-1-0205), the
National Science Foundation (CDA 9401156, CDA 9624082), Cisco
Systems, Dell, Sun Microsystems, Novell, Hewlett Packard, Intel,
Microsoft, and Mitsubishi. Anderson was also supported by a Na-
tional Science Foundation Presidential Faculty Fellowship. Dahlin
was also supported by an NSF CAREER grant (CCR 9733742).

to support a simple one-to-one mapping from machine
names to IP addresses, but today Internet services iden-
tified by a single name are often distributed across many
machines, which has lead to application [7], router [14],
and DNS [33] enhancements to this basic mapping ab-
straction. More broadly, academic and industrial re-
searchers have proposed a bewildering array of new
services for mediating between clients and servers, in-
cluding dynamic redistribution of replicas over the wide
area [49], compression and distillation of multimedia
content [3, 22], proxy cache extensions such as sup-
port for hit counting and dynamic content [11, 48],
client customization of web content [54], network ad-
dress translators (NATs) [20], packet delivery services
for mobile hosts [13], and so forth.

One approach to deploying such extensions would
be to develop a new protocol that closely coordinate
browsers, proxies, servers, and the name system to sup-
port these extensions. But such a system would be com-
plex and difficult to modify as new services are de-
sired or improvements are developed for existing ser-
vices. To address this need for rapid deployment and
extensibility of Internet services, a variety of propos-
als have been made to support “active” (dynamically
migratable) computation inside the network, leverag-
ing machine-independent languages such as Java [23].
Example “active” networking proposals include Ac-
tive Networks [53], Active Caches [11], Active Ser-
vices [3], RentAServer [49], and others. In addition,
a number of proposals have been made for single point
(non-migratable) extension code, such as HTTP front
ends [22], NATs, and router-based load balancing [14].
These approaches have varied in where in the protocol
stack the computation is applied – from packet filtering
to connection filtering to transparent proxies to giving
up on transparency and making the application respon-
sible for everything.

If active computation can be applied anywhere in the
protocol stack, where in the protocol stackshouldit be
done? In this paper, we argue foractive namingas a

unifying principle to efficiently support the composibil-
ity of a wide variety of new services while providing
correct end-to-end behavior. Our Active Names sys-
tem maps a name to a chain of mobile programs re-
sponsible for locating the remote service and transport-
ing its response to the destination. A service owning
a portion of the namespace has complete control over
which protocols are used to access the service along
with control over where in the network those protocols
run. Similarly, a client machine can use Active Names
to customize how services are presented to the user.
For example, when a mobile user with a small screen
and expensive wireless connection in Europe refers to
“cnn.com”, the user probably wants to go to a differ-
ent replica, fetch different data, and transform that data
differently than a user in the United States with a large
screen and T3 connection.

We have constructed a prototype Active Naming sys-
tem and have used it to implement and study a set of
complex distributed services including (i) replica se-
lection based on end-to-end performance observations,
(ii) image retrieval protocols that migrate distillation
code dynamically around the network to optimize client
response time, and (iii) a cache enhanced to support
both client customization and caching of active content.
These experiments demonstrate up to five-fold perfor-
mance improvements for end-users of our system.

We do not believe that any set of experiments can
“prove” that extensibility is a good idea since any al-
gorithm that demonstrates large gains in an extensible
system could, in principle, be deployed as part of a
new, non-extensible protocol. Instead of trying to re-
solve the argument of whether extensibility is desirable,
we begin with the premise that it is, and then we ex-
amine the properties of the Active Naming architec-
ture and programming model as a way to support ad-
vanced Internet services. In particular, our experiments
provide evidence (1) that the system is “complete” in
that it can support a wide variety of extensions, (2)
that several extensions that can be easily constructed on
our system can significantly improve performance com-
pared to existing protocols, (3) that end-to-end perfor-
mance information can be easily gathered in our model
and that providing end-to-end performance information
is important for building simple algorithms with good
performance, (4) that the programming model supports
location-independent program execution and that loca-
tion independence is important for performance, and
(5) that the programming model supports efficient com-
posibility of extensions and that composibility is impor-
tant for performance.

One might argue that a significant drawback to Active
Names is that we modify the existing naming abstrac-
tion. Traditionally, Internet name resolution returns an

IP address; the application uses the IP address to es-
tablish a socket connection to the end host. With Ac-
tive Names, name resolution and retrieval of the speci-
fied resource is a single step that combines location and
transport. A similar debate on the structure of naming
has occurred in file systems and databases; the conclu-
sion has been that it is dangerous to separate naming
from use [42]. Superficially, it can seem simpler to have
the naming system return an ID (IP address, inode num-
ber, or physical memory location) that is then used by
the system to access the named resource. However, if
the ID is visible to applications, the ID becomes hard
state, something that must continue to be supported by
the system even after the binding has changed or the
reference has become invalid. Also, to support legacy
applications, this change can often be hidden inside an
application-specific proxy; for example, web browsers
can be configured to connect to a proxy that mediates
the browser’s interaction with the network.

The remainder of this paper covers these issues in
more detail. We first discuss the strengths and weak-
nesses of Active Names by contrasting it to two popu-
lar alternatives. We next outline the architecture of our
system; we then describe several applications we have
built on top of our system. We conclude with related
work and a summary of our contributions.

2 Background

To motivate our decision to provide extensibility via
naming, we compare our approach to two popular al-
ternatives, Active Networks and Active Services, that
comprise extreme endpoints in this design space. At one
extreme, by applying arbitrary computation on packets
as they flow through routers, Active Networks can be
completely general and transparent to end hosts; how-
ever, this transparency comes at a cost of both efficiency
and in making it more difficult to express end-to-end se-
mantics. At the other extreme, Active Services provides
a framework for applications to execute arbitrary com-
putation in the network; however, each application is
free (even encouraged) to link with a different frame-
work customized to its needs, making it more difficult
to share extensions across applications. Active Names
attempt to combine the best of both worlds; of course,
our approach has its own set of limitations.

A principal advantage of our approach is that nam-
ing is at the top of the network protocol stack; by hi-
jacking name resolution, we can gain control over (and
therefore can extend) any network access. At the other
end of the spectrum, hijacking packet processing inside
routers likewise offers the ability to extend any network
access. For example, consider an anycast service that

routes client requests to the “best” of several different
servers according to some selection criteria. In our sys-
tem, such a new policy for server selection can be im-
plemented by mapping the service name to a program
that selects the replica. Equivalently, the same policy
could be implemented at the packet level inside pro-
grammable routers by mapping the name to a group ad-
dress, and then dynamically routing packets to the de-
sired server.

However, extending names offers simpler end-to-end
failure semantics than is possible when extensibility is
applied further down the protocol stack. Today, it is
possible to build highly available services inside of a
machine room [4, 44]. However, the end-to-end avail-
ability of wide-area services further depends on external
factors such as power outages and whether packets can
be routed from a client to the machine room. For ex-
ample, routing pathologies can make a service appear
unavailable to some clients even though the service is
otherwise “up”. To cope with these external factors, the
service needs to be replicated at multiple geographic lo-
cations, each of which may fail independently. In the
case of many read-only replicas, it is straightforward to
redirect requests to a failed replica to any member of the
group at multiple points in the protocol stack. However,
for replicas that are writable, maintain state, or require
authentication, the recovery protocol can require the co-
ordinated activity of both the client and other replicas.
For example, Bayou guarantees session consistency by
restricting clients to bind only to replicas that have seen
the client’s updates [46]. Implementing session con-
sistency correctly via transparent packet processing re-
quires the network to maintain hard state about the be-
havior of the client; worse, this state largely duplicates
what the client already has stored in its cache. Cheri-
ton and Skeen [12] have cataloged numerous examples
where failure recovery cannot be correctly implemented
inside a transparent transport layer protocol. In our
model, replica failures can be either reflected back to
the client or handled transparently, under control of the
program providing the binding between the name and
the server.

Active Names is also more efficient than packet level
filtering for those services that can be provided within
our model. By interposing on connection setup, the
overhead of programmability is typically paid once per
connection, instead of once per packet. However, there
are some services which cannot be provided above the
packet layer and thus are not supported by our system;
these include packet-level scheduling and resource al-
location in routers and multi-host transparent packet fil-
tering such as firewalls.

At the other extreme, some researchers have pro-
posed customized application-level frameworks as a

way of supporting application-specific computation in-
side the network. For example, the Active Services
framework implements dynamically relocatable multi-
media gateways; they suggest that different frameworks
would be needed to support different applications [3].
Our approach differs from Active Services in that we
are trying to provide a single, general-purpose frame-
work capable of supporting the composition of a wide
range of new services. Our goal is to allow Active
Name modules to be developed and reused in a variety
of contexts [30]; for instance, Active Services supports
customizable filtering at the media gateways, but does
not support customizable protocols for locating, man-
aging, or communicating with the gateways, nor does
the framework support dynamic installation of new im-
plementations of client software. Except for the code
to transform the multimedia stream to fit a limited link
capacity, the client-gateway and gateway-server proto-
cols in Active Services are fixed and non-extensible. By
contrast, Active Names allows all aspects of service lo-
cation and transport to be customized by the namespace
owner; code is referenced by name, allowing us to use
Active Names to locate and download new implementa-
tions of extension code whenever the namespace bind-
ing is changed.

3 Active Name Architecture

To support the functionality discussed above, four
goals drive our architectural decisions. The architec-
ture must (i) support customization and extensibility of
each namespace, (ii) support composibility of differ-
ent namespace customizations, (iii) support the efficient
use of network resources, and (iv) support location-
independent execution of namespace resolution.

Our core system is simple, and we will describe it
by first providing an overview and then examining four
key concepts of the design: the microkernel approach,
location independent active name programs, namespace
delegation, and the after-methods programming model.
Because one of the major motivations of Active Names
is to improve the performance of clients accessing ser-
vices, our design is careful to allow room for several
performance optimizations that complicate an other-
wise straightforward design.

The core of the system is fully functional, and we
have constructed a number of useful applications. The
system is complete and stable enough for our own in-
ternal use. As detailed below, some aspects of security
have not been fully integrated into the prototype.

Namespace
Name
After Methods

Resolver Virtual Machine

Namespace Program

Location

Transport

Soft State (e.g., Cache)

N
et

w
or

k
In

te
rf

a
ce Namespace’

Name’
After Methods’

Data Data’

Figure 1: Active Names Architecture Summary.

3.1 Overview

A client that wishes to access a service constructs an
Active Name for that service consisting of anameto
resolve and the name of anamespace programto re-
solve it. The client then hands the name to the nearest
resolver, which executes the namespace program to be-
gin resolution of the name. Figure 1 illustrates the basic
Active Names architecture.

A namespace program has two tasks: it must locate
the next program to run and then transport data to that
program. In doing so, namespace programs effectively
establish a path through a series of namespace programs
from request-source to reply-sink. Each program then
acts as a filter that transports and transforms its input to
its output.

A program locates the next program to run using two
mechanisms. First, each Active Name is resolved re-
cursively using a hierarchical delegation mechanism: a
client specifies a root namespace program which par-
tially resolves the name and determines which names-
pace program has jurisdiction over the remainder of
the name; the root program then hands the partially-
resolved name to the next namespace program, which
continues the process. Second, to support composibility
of services and to increase efficiency, the programming
model follows a continuation passing style: as names
are resolved the system constructs anafter methods list
that uses a list of Active Names to describe a pipeline
of services that will transport a result to its destination.
Thus, once a name is recursively resolved to a service,
rather than returning the service’s output through the
same call path used to resolve it, the leaf namespace
program pops the top Active Name from the after meth-
ods list and resolves that Active Name and the remain-
ing after methods list to transport the service’s output to
the client.

Resolvers provide the basic resource necessary to
execute namespace programs, and they are distributed

through the system. In principle, resolvers may be lo-
cated anywhere, but in practice they are most useful
when they are located at ”interesting” points in the net-
work: near clients, near servers, or near bottleneck net-
work links. We envision a system that provides suitable
resolver infrastructure at such points.

3.2 Microkernel Approach

To support extensibility, the architecture follows a mi-
crokernel philosophy of providing a basic set of build-
ing blocks and allowing services and clients maximum
freedom to customize the systems for their needs. At
a minimum, each resolver must provide a loader for
fetching and loading an active name program, safe exe-
cution of untrusted code, local soft state, and interfaces
for communicating with and invoking programs on re-
mote nodes.

For safe execution, our prototype relies on the Java-2
security system [52], but we could have just as easily
chosen another mechanism such as hardware protection
domains, or software fault isolation [51]. On top of this
basic security mechanism, individual programs define
policies for delegating namespaces they control and for
accepting requests from other namespaces.

To provide a hook for Active Name programs to en-
force security, the interface also provides as input a ca-
pability certificate that identifies the caller and which
may grant a subset of the caller’s rights to the callee. If
the program is invoked from a remote node, the certifi-
cate will be authenticated via encryption techniques; if
the program is called locally, the identity of the caller
is guaranteed by the integrity of the local operating sys-
tem. An Active Name program is free to use this infor-
mation about the caller for access control. For example,
a program could choose to run only on behalf of pre-
viously registered users. Similarly, if a program needs
to enforce that its after-method is invoked, the down-
stream program the right to reply to it but not the right
to reply to the original caller. Certificates may also be
required from the machines used to run the programs
and after-methods, since a program’s results should not
be trusted unless it is run on trusted machines. We ex-
pect Active Names programs to leverage the work of
other researchers in showing how to provide authenti-
cation and access control for mobile computation [2, 6].
We have implemented a prototype of such a certificate-
based capability system, but we have not yet integrated
this functionality into the Active Names prototype.

In a production system, nodes would enforce re-
source limitations using technology such as Jres [15];
such functionality is not implemented in our prototype.

3.3 Active Name Programs

To support efficient use of network resources, location-
independent Active Name programs represent services
and handle name resolution for them.

To run a namespace program, resolvers must first
fetch and load the code for the program. Like other
resources in our system, code is identified by the Ac-
tive Name that describes how to locate it and transport
it to the resolver. This allows us to use the Active Name
system itself to load programs, which provides the abil-
ity to customize how to locate an available or nearby
replica storing the program, to maintain version consis-
tency, or to compress/decompress the binary. Of course,
the recursion has to stop somewhere: a small number of
initial programs (e.g., DNS, HTTP, etc.) are loaded onto
each Active Name machine to bootstrap the system.

Given that Active Names programs can run in any
resolver, an important question is determining where
they should run. Each program is responsible for lo-
cating the data and computational resources it needs to
complete its task, and each program works to minimize
the cost of accessing these resources. For example, if a
pipeline of programs needs data from a particular node,
each step in the pipeline should take the request closer
to the data. The details of how these decisions are made
are namespace-dependent and can range from simple
(e.g., the name being resolved includes the IP address
of the node on which to run) to sophisticated (e.g., run-
ning a cost/benefit analysis comparing several different
locations). Because location preferences are namespace
dependent, one program does not typically know where
the next prefers to run. Therefore a program generally
invokes the next program locally; if the invoked pro-
gram prefers to run somewhere else, it uses the remote
execution interface to invoke the same program on a re-
solver node more to its liking.

3.4 Hierarchical Name Space

Active Names are organized hierarchically intonames-
paces, analogous to domains in the Domain Naming
System (DNS) and directories in a UNIX file system.
Names within a namespace can be, in turn, namespaces
(subdomains in DNS or subdirectories in UNIX); they
can also be terminal leaves in the naming tree (machines
in DNS, files in UNIX). Each namespace has a program
associated with it that is responsible for interpreting that
portion of the namespace; this program is free to inter-
pret the names within the namespace in any fashion it
wants. A root namespace interprets all names. Each
namespace has an owner with the right to determine the
program bound to the namespace. The client, by de-
fault, is the owner of root. This allows the client to in-

stall a program to mediate how its names will be trans-
lated. For example, a PDA could install a root program
to take whatever is returned by lower level name spaces
and compress any images to fit the screen size [22].

To illustrate how delegation works, consider how our
system implements the WWW namespace to support
per-service naming and transport. Traditionally, users
type web requests that specify a specific transport pro-
tocol (e.g., “http”) along with the service name (e.g.,
“cnn.com”). But the transport used to communicate
with a service should not be the concern of the end-user.
In our framework, users simply name the service they
wish to contact, and services specify the transport for
names they control via the hierarchical namespace del-
egation mechanism. In particular, the root namespace
sends web requests to the WWW-root Active Name pro-
gram, which implements the WWW-root namespace.
For bootstrapping (and by default), WWW-root dele-
gates incoming requests to a series of Active Name
programs that implement the default HTTP caching
and transport protocol. But under the Active Names
paradigm, rather than delegate resolution of all names
to HTTP-default, the WWW-root namespace has the
right to delegate portions of the WWW namespace to
other Active Name programs according to any policy it
chooses. The WWW-root’s policy is to set these map-
pings as follows: the response for a request to a URL
may include in its MIME header a directive specifying
an Active Name program to be invoked for subsequent
requests for which that URL is a prefix. For exam-
ple, the reply to a request towww.cs.utexas.edu/
home/smith can delegate thewww.cs.utexas.
edu/home/smith/active/* namespace, but it
cannot delegate thewww.cs.utexas.edu/home/
jones/* namespace, thewww.cs.utexas.edu/
* namespace or thewww.cs.duke.edu/home/
smith/* namespace.

3.5 After Methods

To support composibility and network efficiency in the
transport of services, our programming model is to
construct a chain of unidirectional filters from request
source, through intermediate services, to reply sink. In-
tuitively, if an Active Name program acts as a layer in a
protocol stack, each program should also provide a bi-
directional pipe between the layer above it and the layer
below, to provide a path for bytes to be sent between the
client and the server. Each layer would then be able to
filter the bytes sent on the connection as needed.

For efficiency reasons, we take a slightly more com-
plicated approach. Frequently, an Active Name pro-
gram is only a forwarding agent – it points to where the
named resource can be found. In this case, it would be

inefficient to treat the chain of Active Name programs
as a pipe, forcing all bytes to traverse back through
the chain of programs that led to the server; the ineffi-
ciency is particularly pronounced when the forwarding
agent runs on a machine remote from both the client
and the server. Rather, our system uses a form of
“multi-way RPC” based on a distributed continuation-
style programming model: before passing control to
the next namespace program to interpret the remain-
der of the name, the current namespace program bun-
dles up its remaining work into an Active Name repre-
senting an “after-method” and prepends it to the list of
after-methods created by earlier programs. The chain
of after-methods is effectively a script of filters used to
transport and transform the data being returned by the
service once the name is fully resolved. For example,
a program to compress data to increase network band-
width would add the decompression routine as an after-
method. Like other Active Name programs, these after-
methods are free to run anywhere and subsequent pro-
grams may reorder the list.

3.6 API

At the API level, a namespace program takes a string
(the remaining part of the name to be resolved), a ref-
erence to a data stream (the input to the service the
name represents), and a list of after methods (the Active
Names of services needed to transport the result of this
service to its destination.) The namespace program first
determines which namespace program to call next by
partially evaluating a name and then delegating further
resolution to a sub-namespace or—if the namespace is
a leaf and the name is fully resolved—by popping the
top after-method from the after methods list.

Then, if the program wants additional work to be
done with the result of the call, it adds the correspond-
ing after methods to the after methods list.

Finally, the program calls the next program with
the partially resolved name, the remaining list of after
methods, and a data stream that comes from either (1)
passing the incoming data stream to the next program
unchanged, (2) creating a new data stream by filtering
the incoming data stream, or (3) creating a new data
stream from local state (e.g., by reading data from a
cache).

To be practical, our Active Name architecture must
be able to be smoothly integrated with legacy clients,
servers, and name databases. We accomplish this by
using either a library or a proxy that provides default
translations between legacy names and corresponding
Active Names. For example, we provide a web proxy
that allows unmodified browsers to use the Active
Names system.

0

0.05

0.1

0.15

0.2

0.25

0.3

0 2 4 6 8 10 12 14 16 18

Offered Load

R
es

po
ns

e
T

im
e

(s
)

Nearest
Round Robin
Active

Figure 2: Replicated Service Access.

4 Applications

Given the Active Names framework described above,
this section demonstrates the power of three key Ac-
tive Name principles: extensibility, location indepen-
dence, and composibility. First, we describe how Active
Names support flexible end-to-end bindings between
clients and replicated Internet services. Next, we show
how Active Name filters are dynamically allocated to
strategic wide-area locations to maximize client per-
formance, reduce consumed wide-area bandwidth and
server load. Finally, we demonstrate the generality of
the system by showing how individual Active Name ex-
tensions are composed together to provide significant
performance benefits over any individual extension.

4.1 Extensibility

Active Names allow service-specific programs to ac-
count for any number of variables in choosing among
server replicas, including client, server, and network
characteristics. It is beyond the scope of this paper to
determine the appropriate replica-selection policy for
arbitrary services. However, we attempt to motivate
the need for programmability in locating wide-area re-
sources and the benefits of using end-to-end informa-
tion for replica selection. We conduct the following ex-
periment to demonstrate these points. For these mea-
surements, between one and eighteen clients located at
U.C. Berkeley attempted to access a service made up
of two replicated servers, one at U.C. Berkeley and the
second at the University of Washington. The clients use
one of the three policies to choose among the replicas:

� DNS Round Robin: In this extension to DNS, a
hostname is mapped to multiple IP addresses, and
the particular binding returned to a client request-
ing hostname resolution is done in a round robin

fashion. Services employing DNS round robin
achieve randomly load balanced access to repli-
cas. In our experiments, we implement the Round
Robin approach in Active Names by randomly
choosing among available replicas.

� Distributed Director: This product from
CISCO [14] executes specialized code in routers
to allow services to register their current replica
set. Requests (at the IP routing level) bound for
a particular service, are automatically routed to
the closest replica (as measured by hop count).
While still not extensible, Distributed Director
achieves geographic locality for service requests.
In our experiments, we implement the Distributed
Director approach in Active Names by always
choosing the nearest replica.

� Active Names: With this instance of programmable
replica selection, the program uses the number of
hops (as reported by traceroute) from the client
replica to determine the choice of replica. Repli-
cas further away are less likely to be chosen than
nearby replicas. However, this weighing is further
biased by a decaying histogram of previous perfor-
mance. Thus, if a replica has demonstrated better
performance in the recent past, it is more likely to
be chosen. For example, if replicaA is 4 hops from
a client, while a replicaB is 5 hops away,A is ran-
domly chosen 55% of the time. This probability is
equally weighed with observed performance from
the replicas. Thus, if performance histograms pre-
dict a 5 second access time forA and 4 second
access time forB, based on performance alone,B
will be chosen 55% of the time. Based on confi-
dence in performance prediction and desire to lo-
calize traffic, different weights can be assigned to
these two components. For our experiments, the
components were weighed equally.

Figure 2 plots the average latency as a function of of-
fered load as perceived by clients continuously request-
ing a 1 KB file from the replicated service. At low
load, the proper replica selection policy is to choose
the “nearest” replica at U.C. Berkeley. Thus, the Dis-
tributed Director policy shows the best performance at
low load. However, as load increases, the U.C. Berkeley
replica begins to become over-loaded, and the proper
policy is to send approximately half the requests to the
University of Washington replica. In this regime, high
load at the U.C. Berkeley server offsets the cost of go-
ing across the wide area. Such load balancing is imple-
mented by DNS round robin, which achieves the best
performance at high load.

Note that the simple Active Names policy is able to
track the best performance of the two policies by ac-
counting for distance and previous performance. At low
load, both factors heavily bias Active Names toward the
U.C. Berkeley replica. However, as load increases and
performance at the U.C. Berkeley replica degrades, an
increasing number of the requests are routed to the Uni-
versity of Washington achieving better overall perfor-
mance.

Our algorithm for replica selection is not purported
to be optimal. However, it demonstrates the utility of
programmable replica selection and the importance of
using end-to-end performance measurements in choos-
ing among wide-area replicas. While the above exam-
ple simplisticly measures performance based on the la-
tency for accessing fixed-size files, more sophisticated
Active Names programs could account for the size of
requested objects (e.g., optimizing latency for small ob-
jects and bandwidth for larger objects) or for the cost of
dynamically generating content at the server (e.g., se-
lecting strictly based on estimates of server load when
making computationally-intensive requests). Only the
end client has information about thetypeof request be-
ing generated, and thus only the client can use this in-
formation to influence replica selection in an end-to-end
and application-specific manner. Schemes such as DNS
round robin and Distributed Director are both too static
and too far removed from the clients to utilize all rel-
evant information in the replica selection process. For
this type of application, Active Networks suffer from
a similar lack of end-to-end information because of its
focus on applying programs to individual packets in the
middle of the network.

4.2 Location Independence

As discussed earlier, the proper way to present web con-
tent to a particular client depends upon its individual
characteristics. For example, it makes little sense to
transmit a 200 KB 1024x768 color image to a hand-
held device with a 320x200 black and white screen be-
hind a wireless link. To address this mismatch, one cur-
rent approach [22] is to mediate client access through
web proxies. These proxies retrieve requested resources
and dynamically distill the content to match individual
client characteristics, e.g., by shrinking a color image
and converting it to black and white.

At a high level, clients name a web resource but
would like the resource transformed based on client-
specific characteristics. This model fits in well with Ac-
tive Names. Clients specify the name of a resource (e.g.,
a URL retrieved by an HTTP namespace program) and
an after-method that specifies the distillation program
to be applied on the resource once it is located. The

distillation program ensures that the object returned to
the client will match its characteristics. A benefit of us-
ing Active Names to encapsulate distillation is the abil-
ity to flexibly place the transformation of a requested
resource at arbitrary points in the network. For exam-
ple, if the network path between a server and a proxy
is congested, it may not make sense to transmit a large
image over the congested network to perform a trans-
formation that greatly reduces the size of the image.
In a classic function versus data-shipping tradeoff, it is
usually more efficient to perform the transformation at
the server and then to transmit the smaller image to the
proxy (or directly to the client). Conversely, if the trans-
formation function is expensive, a fast network connec-
tion is available, and the server CPU is heavily loaded,
then it is often more efficient to transmit the larger im-
age to a proxy (or client) where more CPU cycles are
available. Thus, the location-independent programs that
comprise Active Names allow for flexible evaluation of
function versus data shipping, trading off network band-
width for computation time.

To demonstrate the above points, we implemented
distillation within the Active Names framework and ran
the following experiment to evaluate its utility. A client
at U.C. Berkeley requests, through a local proxy, an im-
age located at Duke University. This request is made
under a number of different circumstances. The first
variable is the place where distillation takes place. Ac-
tive Name resolvers are available at both U.C. Berkeley
and Duke so distillation can take place at either loca-
tion. Three different policies are evaluated in choosing
the distillation point: i) Statically assigning distillation
at the proxy, the current approach to distillation, ii) Stat-
ically assigning distillation to the server, transmitting
a smaller image across bottleneck wide-area links, and
iii) an active approach where distillation is randomly
assigned biased by estimates of end-to-end distillation
cost at both the proxy and server sites.

In the active scheme, a Active Name after-method
caches CPU load information at both the server and
the proxy. Cache values are considered fresh for one
minute. When cached load information expires, a sep-
arate thread is spawned to refresh cache information
(the program responsible for maintaining load informa-
tion, being an Active Name, can run either locally or
remotely). The distillation Active Name program uses
this load information, in addition to an estimate of the
cost of unloaded distillation based on the size of the im-
age to calculate distillation cost at both the server and
the proxy. The program also calculates the cost of trans-
mitting either the full or distilled image to the proxy to
arrive at an end-to-end cost of distilling the image at the
two locations. The distiller uses this information to bias
a random selection of the location for distillation. Thus,

if it is estimated that it will be twice as expensive to per-
form distillation at the proxy, the chance of performing
proxy distillation will be one in three.

Another variable considered in our experiments is the
load on the server machine at Duke. In one case, the
Name Resolver at Duke University runs on an other-
wise unloaded machine. In another, the resolver must
compete with ten CPU intensive processes. The load on
the server CPU will impact the placement of the distil-
lation program. A third variable in our experiment is
the dynamically changing available bandwidth between
U.C. Berkeley and Duke (located at opposite ends of a
continent). For this experiment, only the first two vari-
ables are modified. Available bandwidth is kept con-
stant (as much as possible) by running the experiment
late at night. In the future, we plan to investigate the
use of SPAND [45] to estimate available bandwidth be-
tween two wide-area sites, and to use this information
to more intelligently choose the location of distillation.
The Active Name resolvers (including all distillation
code) are compiled and run with the Java Development
Kit, version 1.2 beta 4. The target image is 59 KB and
is distilled to 9 KB. Distillation of the image consumes
approximately 1 second of CPU time.

Figure 3 graphs the client-perceived latency of re-
trieving distilled versions of the target Jpeg image as
a function of the number of clients simultaneously re-
questing the image from Duke for the three evaluated
policies (static proxy, static server, active). Figure 3(a)
shows performance in the case where the server is un-
loaded, while Figure 3(b) addresses a heavily loaded
server, competing with ten CPU-intensive processes.
Figure 3(a) shows that, at low levels of offered load (few
simultaneous clients), unilaterally placing distillation at
the server produces the best results because a smaller
amount of data (9K versus 59K) is shipped across the
wide area. However, as the number of clients increases,
the server at Duke becomes overloaded and the perfor-
mance degrades relative to the active policy that intel-
ligently allocates distillation of a random percentage of
the requests to the proxy. Figure 3(b) shows that, at low
levels of offered load and high server CPU load, it is
beneficial to place distillation at the proxy site. In this
case, distillation at the server is an expensive enough
operation to justify the larger long-haul transmission
costs. However, as offered load increases, the active
policy of splitting requests between the server and the
proxy sites once again outperforms the static policy be-
cause the single processor at the proxy becomes over-
loaded.

0

10

20

30

2 3 4 6 8 10 12 15 20

Number of Clients

D
is

til
la

tio
n

La
te

nc
y

(s
)

Active

Server

Proxy

0

10

20

30

40

2 4 6 8 10 12 15 20

Number of Clients

D
is

til
la

tio
n

La
te

nc
y

(s
)

Active

Server

Proxy

(a) Unloaded Server (b) Loaded Server

Figure 3: Mobile Distillation Performance.

4.3 Composibility

A key design goal of Active Names is composibility.
Not only should applications be able to inject exten-
sions into the network, but they should be able to com-
bine these extensions to provide new services and op-
timize existing ones. In this subsection, we first exam-
ine the costs composibility imposes on the system. We
then study the benefits composable extensions bring to
a key problem: web caching. Caching is a key tech-
nique for reducing both long-haul bandwidth and client-
perceived latency. Table 1 breaks down the reason for
web caching’s relatively low hit rates that hang stub-
bornly near or below 50% [18, 26]. This table suggests
that composing different extensions may be a key tech-
nique for addressing the web caching problem. More-
over, these extensions are likely to be provided and im-
plemented by a number of different entities, ranging
from clients, to service providers, to third party software
vendors. The experiments in this section demonstrate
how the Active Name framework is utilized to compose
multiple independent extensions, resulting in greater
end-to-end performance gain than available from any
single approach.

Our continuation passing architecture imposes the
overhead of indirection through the “after methods”
script when one Active Name program transfers con-
trol to another. On a Sun Ultra-10 with a 300MHz
UltraSparc-II process running JDK1.2fcs, it takes 3.2�s
for one Active Name program to call another and return
via this mechanism, compared to 0.2�s if it were al-
lowed to make the procedure call directly. Although
this is more than an order of magnitude worse, the per-
formance is sufficient to support the composition of rel-
atively coarse-grained services such as we envision.

To determine whether composibility is worth this

cost, we examine the composition of several server-
initiated customizations with a client-initiated cus-
tomization. The semantics of the sample service we
implement are that when a client fetches a base page,
the service (1) uses the server-side include interface to
update the page for the current request, (2) randomly
selects two out of eight candidate “banner ad” inline
images, repeating the random selection on each view-
ing of the page, and (3) logs the cookies provided by
and the ads selected for each request. We implement
these server semantics in two ways. First, we con-
struct them using standard mechanisms that run at the
server: the server uses server-side includes to update
the page and to execute a perl program that randomly
selects advertisements to include on the page; we do
not add additional logging to that already provided by
the HTTP server. Second, we implement a version
of the service by delegating a portion of the HTTP
namespace to a set of three Active Name programs
(provided by the service). The default HTTP names-
pace delegates control of all HTTP requests destined
to www.cs.utexas.edu/users/anonymized/
service to a “controller” Active Name program that
alters the return path for such requests through a “ssi”
Active Name program that provides server side-include
semantics and through an “advertise” Active Name pro-
gram that does ad rotation and logging. In the first con-
figuration, all requests for the base page must go to the
server; requests for the inline images may be cached.
In the second configuration, once the delegation Active
Name programs have been installed, both the base page
and the inline images may use the cache because cached
results will pass through the ssi and advertise Active
Name programs before being returned to the client.

For the client-initiated customizations, clients use
Active Names to customize their namespace to

Source of Miss Fraction of Requests Available Approaches Client/Server Initiated

Compulsory 19%-30%[47] 45%(ISP) Prefetching [27, 34, 43] either
Server replication [49] or push caching [29] server
Increase number of clients sharing cache system [10, 18, 26, 47] client
Transcoding [22, 3], compression and delta-encoding[39] client or either

Consistency verify (unmodified) 10%(ISP) 2-7%[18] 4-13%[5] Server-driven consistency [36, 55] server
Consistency miss 0-4%[18] delta-encoding[39] either
Dynamic (cgi or query) 21%(ISP) 0-34%[37] Active cache [11], HPP [17] server

TREC [48] server
Pragma: no-cache 9%(ISP) 5.7-7.2%[26] Hit logging server

Active cache [11], function-shipping server
Server-driven consistency [55] server

Redirection 3.7%(ISP) Server selection/anycast [8, 56] server

Table 1: Workload requirements. Numbers are taken from the literature as noted or from our trace of a large ISP that
serves seven million requests containing 65.4GB to 23080 clients over a six-day period .

transcode images sent across a slow modem link. Be-
cause clients control their own namespace, adding this
transformation to the pipeline is straightforward. The
main subtlety is that clients cannot store the distilled im-
ages in the standard HTTP cache lest one client’s map-
ping of the URL to the customized image disturb other
clients. Rather than cache such results in the HTTP
namespace, the client caches such results in the “dis-
tiller” namespace instead.

Our experimental set up consists of three machines.
The client, a 133 MHz Pentium machine running Mi-
crosoft NT3.5 and Sun JDK1.2beta3, communicates
with the proxy, a 300MHz Sun UltraSPARC-II machine
running Solaris 5.6 and JDK1.2fcs, over a 28.8 kbit/s
modem. Both the client and proxy run the Active Name
framework. The service being tested is hosted on a
departmental web server running on a dual-processor
Sun SPARCServer 1000e running Solaris 5.5.1 and the
Netscape Enterprise Server 3.0(J) HTTP server. The
proxy and server are connected by a department-wide
switched 100 Mbit/s Ethernet.

The base page and its header are between 657 bytes
and 2393 bytes (depending on where customization oc-
curs) and the advertising banner images range in size
from 8421 to 16928 bytes before distillation and from
2595 to 4365 bytes after distillation. The JAR files con-
taining the server’s controller, advertise, and ssi cus-
tomization programs are 2622, 4700, and 3274 bytes,
respectively. We begin the experiment with cold caches,
except that we fetch two unrelated HTTP documents
through the system to cause the JVMs to pre-load most
of the basic classes associated with the system’s stan-
dard HTTP data path, and we fetch two unrelated im-
age files to cause the proxy to load the client’s distiller
Active Name program.

Figure 4 shows four cases representing the permu-
tations of distillation (on/off) and server customization
(on/off). Our client driver program uses the Active
Name system running at the client to fetch the base doc-
ument and then, using parallel connections, to fetch all

inline images specified by the base document. After the
driver receives each page and associated inline images,
it pauses five seconds and repeats the process. The vari-
ation in response times from request to request is caused
by cache hits and misses to the base page and the ran-
domly selected inline images.

With respect to server customizations, there are three
phases to consider. On the first request, no delegation
has yet been specified to the client’s Active Name sys-
tem, so theServer: onperformance closely matches
the Server: offperformance. Reacting to the delega-
tion directive in the first request, the client’s Active
Name system spawns a background thread to down-
load and install the specified customizations. This back-
ground thread is active during the second phase of the
experiment—request two for the case when distillation
is turned off and requests two and three when distilla-
tion is on. As a result, performance for these requests
is noticeably worse under server customization than for
the standard case. In the third phase—after request
three—the client has installed the server customization
into its namespace and thus no longer needs to go to
the server for ad rotation, hit logging, or SSI expan-
sion. Performance is now significantly better under the
customized version (modulo cache hits to the inline im-
ages). For example, as Figure 4-a indicates, after the
cache is warm and when the inline images are hits, the
Server: oncase provides response times under 0.26 s
while the other case requires over 1.3 s per request. In
this situation, the Active Names system provides a 5-
fold performance improvement. This result is particu-
larly significant in light of human factors studies that
suggest that driving computer response time from about
a second to significantly less than a second may result
in more than a linear increase in user productivity as the
system becomes truly interactive [31, 9].

Figure 4 also shows that distillation significantly im-
proves performance for the initial series of requests, and
makes little difference once the images are cached at
the client. For example, when server customization is

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16 18 20

R
es

po
ns

e
T

im
e

(s
)

Request Number

Server: on Distillation: on
Server: on Distillation: off

Server: off Distillation: on
Server: off Distillation: off

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16 18 20

C
um

ul
at

iv
e

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(s
)

Request Number

Server: on Distillation: on

Server: on Distillation: off

Server: off Distillation: on

Server: off Distillation: off

(a) (b)

Figure 4: (a) Per-request and (b) cumulative average performance of customizations of the HTTP namespace.

turned on, the five most expensive requests require an
average of 15.3 s without distillation, whereas the five
most expensive requests averaged 6.67 s under distil-
lation, a speedup of 2.3. Without server customiza-
tion, the five most expensive requests average 14.1 s and
6.39 s when distillation is off or on, for a speedup of 2.2
for distillation.

Other researchers have noted the advantage of server-
controlled caching [11] and distillation [22]. The above
experiment suggests that a combination of server and
client customizations may be particularly effective. On
average for the 20-request sequence, the combination
outperforms the distillation-only case by 50% and it
outperforms the server-only case by 104%.

5 Related Work

As discussed in Section 2, Active Names are inspired by
and provide an alternative to related research in Active
Networks and Active Services. Also closely related to
Active Names are Transaction Processing monitors [24]
(TP monitors). TP monitors provide functionality sim-
ilar to Active Names for access to databases. The TP
monitor directs transactions toresource managers, ac-
counting for load on machines, the RPC program num-
ber, and any affinity between client and server. Re-
source managers are usually SQL databases, but can
be any server that supports transactions. While Ac-
tive Names and TP monitors target a number of simi-
lar applications, Active Names provides a more general
environment for programmable access to wide-area re-
sources. In contrast, TP monitors tend to be more static
and more closely associated with the service.

Active Names are also related to the Intentional
Name System [1]. Similar to the Active Name ap-

proach, Intentional Names take the stance that appli-
cations use naming to describe what they are looking
for, as opposed to where to find it. Intentional Names
utilize declarative style data structures for maintaining
attribute-value pairs used to bind a user-specified name
to an appropriate instance of the target resource. How-
ever, Intentional Names are not programmable, thus
difficult to specialize to individual application require-
ments, and are also not designed to operate in wide-area
environments, targeting single administrative domains.
Further, while Intentional Names do support flexible re-
source location, they do not incorporate efficient trans-
port of resources back to clients.

Other systems have also supported programmable
name translation. For example, object-oriented systems
such as Smalltalk have long provided application con-
trol over the binding between caller and callee. The
Mercury RPC system did the same in the mid-80’s for a
distributed client-server environment.

Current wide-area computing research proposals,
such as Globe [50], Globus [19], and Legion [28], pro-
pose a number of schemes for locating computational
resources across the wide area. These proposals are or-
thogonal to our work as any of them could be incorpo-
rated within the extensible Active Names framework.
Ninja [25] proposes a pipelined data flow model for
composing services in a clustered and/or mobile envi-
ronment. While this model is attractive, it does not to
date address dynamic migration of computation, as we
have demonstrated is crucial for performance. A recent
proposal [16] for implementing URN’s advocates lever-
aging DNS and rewriting of names through regular-
expression matching in an iterative manner to locate
wide-area resources. This scheme could also be imple-
mented more generally within the Active Names frame-
work with namespace programs responsible for name

rewriting and namespace delegation.
Prospero [40] also supports extensible naming to sup-

port mobile hosts and the integration of multiple wide-
area information services (e.g., WAIS and gopher).
Prospero allows users to customize their own names-
paces, grouping related information (from an individ-
ual’s perspective) together. However, customization
code runs on the client. Relative to Prospero, our work
demonstrates the utility of location-independent and
portable programs for name resolution. Programmabil-
ity in Active Names is similar to Smart Clients [56].
Smart Clients retrieve service-specific code into the
client to mediate access to a set of server replicas. Ac-
tive Names are more general than Smart Clients, with
location independent code able to run anywhere in the
system allowing for the deployment of a broader range
of applications.

Anycasts [8], Nomenclator [41], and Query Rout-
ing [35] also allow for resource discovery and replica
selection. Anycasts allow a name to be bound to multi-
ple servers, with any single request transmitted to a sin-
gle replica according to policy in routers or end hosts.
Nomenclator uses replicated catalogs with distributed
indices to locate wide-area resources. The system also
integrates data from multiple repositories for hetero-
geneous query processing. Query Routing uses com-
pressed indexes of multiple resources and sites to route
requests to the proper destination. These approaches
show promising results and should, once again, fit well
within our extensible framework.

Active Caches [11] allow for customization of cache
content through Java programs similar to our extensi-
ble cache management system. With Active Caches
however, retrieved data files contain programs, with the
cache promising to execute the program (which may
change the contents of the file) before returning the data
to the client. On the other hand, our extensible cache
management system uses service-specific programs to
mediate all accesses to a service. This approach is more
general allowing, for example, the program to manage
local cache replacement policy or to perform load bal-
ancing on a cache miss. We use a technique similar
to Active Caches for delegating programs to individual
names, but in keeping with the namespace paradigm,
we allow parent directories to control the delegation of
entire subdirectories rather than doing delegation on an
object-by-object basis. Note that this approach of as-
sociating a program with each level of a hierarchical
namespace is not new. The HP Brevix and MIT Exok-
ernel research file systems, for example, have examined
allowing users to define application-specific programs
for each directory in a file system [21, 32]. A direc-
tory’s program is completely responsible for managing
the bits stored inside the directory; for example, this al-

lows applications to customize on-disk data structures
to optimize for application-specific reference patterns
(e.g., storing HTML files with cross-links in the same
disk cylinder).

6 Conclusion and Future Work

This paper describes a framework supporting extensi-
bility for wide-area distributed services through the in-
troduction of location-independent programs that inter-
pose on the naming interface. These Active Names can,
for example, customize how a service is located and
how its results are transformed and transported back
to the client. Our approach is compared to existing
schemes for introducing programmability into the net-
work such as Active Networks and Active Services.
The paper then describes the implementation of the Ac-
tive Name prototype and illustrates its utility through
a number of sample services, including replicated ser-
vice selection and mobile distillation of service content.
In each case, end-to-end application performance infor-
mation is leveraged to match or exceed existing static
approaches. The need for composibility is illustrated
through Internet service access that incorporates exten-
sions from multiple sources. Our results show that Ac-
tive Name extensions can offer up to a five-fold per-
formance improvement relative to existing static ap-
proaches, and that it is necessary to compose multiple
extensions to achieve this benefit: no single extension
achieves comparable performance.

References

[1] William Adjie-Winoto, Ellio Schwartz, and Hari Balakr-
ishnan. An Architecture for Intentional Name Reseolu-
tion and Application-level Routing. Work in Progress,
February 1999.

[2] D. Scott Alexander, William A. Arbaugh, Angelos D.
Keromytis, and Jonathan M. Smith. Safety and Security
of Programmable Network Infrastructures.IEEE Com-
munications Magazine, 36(10):84–92, 1998.

[3] Elan Amir, Steven McCanne, and Randy Katz. An
Active Service Framework and its Application to Real-
Time Multimedia Transcoding. InProceedings of SIG-
COMM, September 1998.

[4] Thomas E. Anderson, David E. Culler, David A. Patter-
son, and the NOW Team. A Case for NOW (Networks
of Workstations).IEEE Micro, February 1995.

[5] Martin F. Arlitt and Carey L. Williamson. Web Server
Workload Characterization: The Search for Invariants.
In Proceedings of the ACM Sigmetrics Conference on
Measurement and Modeling of Computer Systems, pages
126–137, May 1996.

[6] Eshwar Belani, Amin Vahdat, Thomas Anderson, and
Michael Dahlin. The CRISIS Wide Area Security Ar-
chitecture. InProceedings of the USENIX Security Sym-
posium, San Antonio, Texas, January 1998.

[7] Time Berners-Lee, Robert Cailliau, Jean-Francois
Groff, and Bernd Pollermann. World Wide Web: The
Information Universe. InElectronic Network: Research,
Applications, and Policy, number 1 in 2, Spring 1992.

[8] S. Bhattarcharjee, M. Ammar, E. Zegura, V. Sha, and
Z. Fei. Application-Layer Anycasting. InProceedings
of IEEE Infocom, April 1997.

[9] J.T. Brady. A Theory of Productivity in the Creative
Process. InIEEE CG&A, May 1986.

[10] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker.
On the Implications of Zipf’s Law for Web Caching.
Technical Report 1371, University of Wisconsin, April
1998.

[11] Pei Cao, Jin Zhang, and Kevin Beach. Active Cache:
Caching Dynamic Contents on the Web. InProceedings
of Middleware, 1998.

[12] David Cheriton and Dale Skeen. Understanding the
Limits of Causally and Totally Ordered Communication.
In Proceedings of the 14th ACM Symposium on Operat-
ing Systems Principles, pages 44–57, December 1995.

[13] Stuart Cheshire and Mary Baker. Internet Mobility 4x4.
In Proceedings of the ACM SIGCOMM’96 Conference,
August 1996.

[14] Cisco. Distributed Director. http://www.
cisco.com/warp/public/751/distdir/
technical.shtml , 1997.

[15] Grzegorz Czajkowski and Thorsten von Eicken. JRes: A
Resource Accounting Interface for Java. InProceedings
of 1998 ACM OOPSLA Conference, October 1998.

[16] Ron Daniel and Michael Mealling . Internet Draft. Res-
olution of Uniform Resource Identifiers using the Do-
main Name System. Internet Draft, seehttp://www.
acl.lanl.gov/URN/naptr.txt , May 1997.

[17] Fred Douglis, Antonio Haro, and Michael Rabinovich.
HPP: HTML Macro-Preprocessing to Support Dynamic
Document Caching. InProceedings of the 1997 Usenix
Symposium on Internet Technologies and Systems, Mon-
terey, California, December 1997.

[18] Brad Duska, David Marwood, and Michael J. Feeley.
The Measured Access Characteristics of World Wide
Web Client Proxy Caches. InProceedings of the 1997
Usenix Symposium on Internet Technologies and Sys-
tems, Monterey, California, December 1997.

[19] S. Fitzgerald, I. Foster, C. Kesselman, G. von
Laszewski, W. Smith, and S. Tuecke. A Directory
Service for Configuring High-Performance Distributed
Computations. InProc. 6th IEEE Symp. on High-
Performance Distributed Computing, pages 365–376,
1997.

[20] Marc E. Fiuczynski, Vincent K. Lam, and Brian N. Ber-
shad. The Design and Implementation of an IPv6/IPv4
Network Address and Protocol Translator. InProceed-
ings of the 1998 USENIX Conference, June 1998.

[21] Martin Fouts, Tim Connors, Steve Hoyle, Bart Sears,
Tim Sullivan, and John Wilkes. Brevix design 1.01.
Technical Report HPL-OSR-93-22, HP Laboratories,
April 1993.

[22] Armando Fox, Steven Gribble, Yatin Chawathe, and
Eric Brewer. Cluster-Based Scalable Network Services.
In Proceedings of the 16th ACM Symposium on Oper-
ating Systems Principles, Saint-Malo, France, October
1997.

[23] James Gosling and Henry McGilton. The
Java(tm) Language Environment: A White Pa-
per. http://java.dimensionx.com/
whitePaper/java-whitepaper-1.html ,
1995.

[24] Jim Gray and Andreas Reuter.Transaction Processing:
Concepts and Techniques. Morgan Kaufmann, 1993.

[25] Steve Gribble, Matt Welsh, Eric Brewer, and David
Culler. The MultiSpace: an Evolutionary Platform for
Infrastructural Services. InProceedings of the 1999
Usenix Technical Conference, June 1999.

[26] Steven D. Gribble and Eric A. Brewer. System De-
sign Issues for Internet Middleware Services: Deduc-
tions from a Large Client Trace. InProceedings of the
1997 Usenix Symposium on Internet Technologies and
Systems, Monterey, California, December 1997.

[27] J. Griffioen and R. Appleton. Automatic Prefetching in
a WAN. In IEEE Workshop on Advances in Parallel and
Distributed Systems, October 1993.

[28] A. Grimshaw, A. Nguyen-Tuong, and W. Wulf.
Campus-Wide Computing: Results Using Legion at the
University of Virginia. Technical Report CS-95-19, Uni-
versity of Virginia, March 1995.

[29] James Gwertzman and Margo Seltzer. World-Wide Web
Cache Consistency. InProceedings of the 1996 USENIX
Technical Conference, pages 141–151, January 1996.

[30] Norm C. Hutchinson and Larry L. Peterson. The x-
Kernel: An Architecture for Implementing Network
Protocols.IEEE Transactions on Software Engineering,
17(1):64–76, January 1991.

[31] IBM. The Economic Value of Rapid Response Time,
pages 11–82. Number GE20-0752-0. White Plains,
N.Y., 1982.

[32] M. Frans Kaashoek, Dawson R. Engler, Gregory R.
Ganger, Hctor M. Briceo, Russell Hunt, David Mazires,
Thomas Pinckney, Robert Grimm, John Jannotti, and
Kenneth Mackenzie. Application Performance and Flex-
ibility on Exokernel Systems. InProceedings of the 16th
ACM Symposium on Operating Systems Principles, Oc-
tober 1997.

[33] Eric Dean Katz, Michelle Butler, and Robert McGrath.
A Scalable HTTP Server: The NCSA Prototype. InFirst

International Conference on the World-Wide Web, April
1994.

[34] T. Kroeger, D. Long, and J. Mogul. Exploring the
Bounds of Web Latency Reduction from Caching and
Prefetching. InProceedings of the 1997 Usenix Sympo-
sium on Internet Technologies and Systems, December
1997.

[35] P. Leach and C. Weider. Query Routing: Applying Sys-
tems Thinking to Internet Search. InProceedings of
the Sixth Workshop on Hot Topics in Operating Systems,
pages 82–86, Cape Code, MA, 1997.

[36] C. Liu and P. Cao. Maintaining Strong Cache Con-
sistency in the World-Wide Web. InProceedings of
the Eighteenth International Conference on Distributed
Computing Systems, May 1997.

[37] S. Manley and M. Seltzer. Web Facts and Fantasy.
In Proceedings of the USENIX Symposium on Internet
Technologies and Systems, 1997.

[38] P. Mockapetris and K. Dunlap. Development of the Do-
main Name System. InProceedings SIGCOMM 88,
April 1988.

[39] Jeffrey Mogul, Fred Douglis, Anja Feldmann, and Bal-
achander Krishnamurthy. Potential Benefits of Delta En-
coding and Data Compression for HTTP. InProceed-
ings of ACM SIGCOMM, pages 181–194, August 1997.

[40] B. Clifford Neuman. Prospero: A Tool for Organiz-
ing Internet Resources. InElectronic Networking: Re-
search, Applications and Policy, pages 30–37, Spring
1992.

[41] Joann Ordille and Barton P. Miller. Distributed Active
Catalogs and Meta-Data Caching in Descriptive Name
Services. InIEEE International Conference on Dis-
tributed Computing Systems, pages 120–129, May 1993.

[42] John Ousterhout.CMU Computer Science: A 25th An-
niversary Commemorative, chapter The Role of Dis-
tributed State. ACM Press, 1991.

[43] V. Padmanabhan and J. Mogul. Using Predictive
Prefetching to Improve World Wide Web Latency. In
Proceedings of the ACM SIGCOMM ’96 Conference
on Communications Architectures and Protocols, pages
22–36, July 1996.

[44] David A. Patterson, Garth Gibson, and Randy H. Katz.
A Case for Redundant Arrays of Inexpensive Disks
(RAID). In Proceedings of the 1988 ACM Conference
on Management of Data (SIGMOD), pages 109–116,
Chicago, IL, June 1988.

[45] Srinivasan Seshan, Mark Stemm, and Randy H. Katz.
SPAND: Shared Passive Network Performance Discov-
ery. In Proc. 1st Usenix Symposium on Internet Tech-
nologies and Systems (USITS ’97), December 1997.

[46] Douglas B. Terry, Marvin M. Theimer, Karin Petersen,
Alan J. Demers, Mike J. Spreitzer, and Carl H. Hauser.
Managing Update Conflicts in Bayou, a Weakly Con-
nected Replicated Storage System. InProceedings of the
Fifteenth ACM Symposium on Operating Systems Prin-
ciples, pages 172–183, December 1995.

[47] R. Tewari, M. Dahlin, H. Vin, and J. Kay. Design Con-
siderations for Distributed Caching on the Internet. In
Proceedings of the Twentieth International Conference
on Distributed Computing Systems, May 1999.

[48] Amin Vahdat and Thomas Anderson. Transparent Result
Caching. InProceedings of the 1998 USENIX Technical
Conference, New Orleans, Louisiana, June 1998.

[49] Amin Vahdat, Thomas Anderson, Michael Dahlin, Es-
hwar Belani, David Culler, Paul Eastham, and Chad
Yoshikawa. WebOS: Operating System Services for
Wide-Area Applications. InProceedings of the Seventh
IEEE Symposium on High Performance Distributed Sys-
tems, Chicago, Illinois, July 1998.

[50] M. van Steen, F.J. Hauck, P. Homburg, and A.S. Tanen-
baum. Locating Objects in Wide-Area Systems. In
IEEE Communications Magazine, pages 104–109, Jan-
uary 1998.

[51] Robert Wahbe, Steven Lucco, Thomas Anderson, and
Susan Graham. Efficient Software-Based Fault Isola-
tion. In Proceedings of the 14th ACM Symposium on
Operating Systems Principles, pages 203–216, Decem-
ber 1993.

[52] Dan S. Wallach, Dirk Balfanz, Drew Dean, and Ed-
ward W. Felten. Extensible Security Architectures for
Java. InProceedings of the 16th ACM Symposium on
Operating Systems Principles, pages 116–128, Saint-
Malo, France, October 1997.

[53] David Wetherall, Ulana Legedza, and John Guttag. In-
troducing New Network Services: Why and How. In
IEEE Network Magazine, Special Issue on Active and
Programmable Networks, July 1998.

[54] Yahoo. My Yahoo.http://my.yahoo.com , 1996.

[55] J. Yin, L. Alvisi, M. Dahlin, and C. Lin. Using Leases
to Support Server-Driven Consistency in Large-Scale
Systems. InProceedings of the Nineteenth Interna-
tional Conference on Distributed Computing Systems,
May 1998.

[56] Chad Yoshikawa, Brent Chun, Paul Eastham, Amin Vah-
dat, Thomas Anderson, and David Culler. Using Smart
Clients to Build Scalable Services. InProceedings of the
USENIX Technical Conference, January 1997.

