STICHTING

MATHEMATISCH CENTRUM

2e BOERHAAVESTRAAT 49
AMSTERDAM

REKENAFDELING

Report MR 34

On the Design of Machine Independent Programming Languages

by

Dr, E.W. Dijkstra

Qctober 1961

Introduction.

In the light of the subject matter of this report it is not
surprising that a number of problems will be discussed here that
also turn up regularly in connection with the so-called "ALGOL
Maintenance". In order to avoid misunderstanding, however, I should
like to stress that this report does not deal with ALGOL Meintenance,
For instance, the semantic definiticn of ALGOL 60 does not specify
in which order the primaries of an expression are to be evaluatéd;
in conseduehce, Syntactically admissible but semantically smbiguous
expressions may be written down. When,in the following, I express
a marked preference for semantic definitions in which, amongst
others, the order in which primaries sre to be evsluated is fixed
unlguely, this must not be regarded ss a proposal for the ALGOL
Maintenance to supplement the official ALGOL 60 Report to this
effect. In my opinion it is really too late for this now, when one
thinks of the considerable amount of time and energy that has al-
ready gone into the construction of ALGOL 60 translators.,

Instead of discussing in detail 21l sorts of proposals for the
lmprovement of AIGOL 60 -or let us rather say: propesals for new
languages- and judging them on their merits, I would prefer to
pose (and try to answer) the question what the standards should be
1n judging these language proposals., This report has been written
in order that we shall have in mind as clearly as possible what
we are alming at when we create a new machine indepehdent program-
ming language, and by which ways we could reach these goals.

I shall restrict myself to programming langusges that, like
ALGCL 60, are intended for the description of numerical processes.
As the most important application I regard the possibility of using
such & language to formulate processes in such 8 wey thet they can
then be executed by an:automatic computer. Naturally, such a language
can be used. fruitfully in the lecture room and in publications, but
I prefer to regard those as secondary fields of application. I do so
because the language requirements thet seem to be dictated by "human
consumption of texts" can easily lead us astray: I am fully aware
that an algorithm of some complexity, published in ALGOL 60, is
utterly:unreadabie to most people, bhut this fact does not shock me.
Such uhreadébility is in no way caused by the usually emphasized
"defects and shortcomings" of ALGOL 60; it is rather due to the not
unusual (and of'ten very sensible) superficiality of the reader, who

2

would prefer to be spared the cverpowering number of pariiculars.Iit
therefore s=zems a wise thing to focus our attention on the "mechani-
cal consumption of texts". ¥e shall meinly regserd thne orogramming
langusge as a means of communication between man snd machine, more -
precisely: with men as the "spealter" and mschine a8s the "listener’,

On good_use of & machineg.

- Now, 1f we regard a programming language crimarily as a means
of feeding problems into a machine, the quality of a programming
1énguage becomes dependent on the degree 1n which it promotes
"good use of a machine”. Having an opinion on the gquality of a
programming language thus implies an. opinion on whet should be
esteemed "good use of & machine". As long 8s our ideas on this
matter diverge we shall never reach an'agreement-on an ideal program~
ming language and I therefore propose.g§o scrutinize our opilnions on
goaod machine use.,

For a large group of people good use of 8 machine is Synonymous
with efficient use of a machine. And the only two criteria by which
they Jjudge the qﬁality of a program or of & programming system are
requirements of "time and,space". I have a suspicion, however, that-
in ferming their judgemeht they restrict themselves to these two
criteria, not because they are so .much more important than other
possible criteria, but because they are so much easier to apply on
account ofttheir quanticative nature.

Some guotaticns mawv show that the sacrosanctity of these two
criteria is a wldesoprecd phenomenon. Thus, Prof.dr. Bruno Thiiring

= L)

writes 1in "Einfinrung in dle Methcden der Prozrammierung', page 65
_ g ’

‘ - "Raum - Sparen bedingt Zeiltverlust, Zeit-Sparen bvedingt
Reumverlust, Wiy wollen dinses Gesetz als des "Reziprozitsts - Gesetz

der Frogramuicrung” vezcichnan. Dass die Giiltigkeit cdieses Cesetzes

nicnt auf das Beispiel des § 26 beschrinct ist (womit es ja kein
"Gesetz! mehr wdre) geht aus dem.rein logischen Umstande hervor,

11

dass.... aic.atc.

(In trenslation: ”icohdmizlng cn séace imgplies loss of Time, eéono-_
mizing on ¢ine impliés issz of'space;'ﬁeVShall call this law the
"Reciprocity Lew of Programming”. That the validity of this law is
not restriccid to the example of § 26 (in which cése'it would not be
a "law" at all] follows from the purely logical |

circumstance that..."ete,) A11 of this sounds most impresslve, yet
it is really nothing but disgulsing, by pompous terminology, a
triviality as a scientific theory. As soon as space and time are

the only two criteria and there are two competing programs for the
same problem, then they can only compete with each cother if the

cne program 13 belter in one respect and the cother befter in the
other respect. Of 2ourse, The whole paragraph is equivalent to
"There are <wo possibilities, because.... I nave not thought of

any others." And, alas, this narrowness of outlook i1s not confined
To Thuring: in a bcok by Prof. E. Billeter, published in 1961, we
find this "Reciprocity Law" guoted with full approval., In 1961 the
"University Mathematical Laboratory Technical bMemorandum no. 61/5:
Some proposals for improving the efficiency of ALGOL 60" was publish-
ed, written by nobody less than C. Strachey and #.V. Wilkes, in which
they write "Qur concern is largely with the production of efficient
object programs. It is in this respect that an automatic programming
system will uitimately be -judged." And they mentlon their standards
for efficiency explicitly in the next sentence:",...when the shoe
begins to pinch, by way either of machine speed or of storage
limitation,.,..", 811 in all, there 13 sufficient reason to call for
some attention to the more Iimponderable aspects of the quality of '
a program or of a programming system, '

By way of introduction, I should like to draw attention to the
not unknéwnfact that it is impossible.to prove a mathematlcal .
theorem completely, because when one thinks that one has done sc, ore
still has the duty to prove that the first proof was flawless, and ‘
so on, ad infinitum, So much for human fallibility, One can never
guarantee that a'prdqf is correct, the best one can say is "I have
not discovered any'mistakgs.” We sometimes flatter ourselves with-
the idea of glving wétertight proofs, but in fact we do nothing but
make the correctness of our conclusions plausible, And let us be
honest: even extremely plausible. We achieve this high degree of
plausibility by a means specially desighed for this purpose, viz,
theorems. On the one hand, so many people have, each in thelr own
way, derived these theorems, that there i1s a non-negligible
probabiiity that they do indeed follow from the axioms, on the
other hand, the pretended concluslons are subject tc condlilons sc
ordériy'that the user's task of showing that he has applied the
theorem correctly is not too cumbersome.

The programmer is in exactly the same position, since 1t is
not posgsible for him ts prove the corrvsctness 3f his programs,
And yet the correctness of the programs is of vital imperfance:
everybody working with an autcmatic computer knows Ifraom sad
experience that it is very ezsy to produce an awful 1ot of numbers,
but he also knows that they are worthlessg if their correciness is
subject to doubt. Instead of only staring with envy at the fabulously
convincing power of the proofs in pure mathematics, it seems more
fruitful tc me to 1inguire whether wé can'learn from the way the pure
mathematician works. He has theoréms, we have subroutlnes, A theorem,
however, 1s (see above) only useful 1f we can apply it under a
minimum number of clear condltions. In the same way the usefulness
of a subroutine {or, in a language, a grammatical construction)
increases as the chance decreases, that it will be used incorrectly.
From this polnt aof view we should aim at a brogramming language
consisting of a small number of concepts, the more general the better,
the more systematic the better, 1n short the more'elegant the better,

In particular I would reguiré of a progrémming language that
it should facilitate the work of-theiprcgrammer'as'ﬁuch‘as possible,
especially in the most difficult aspects of his task;.such‘as
creating confidence in the correctness of his program. This is
already difficult in the case of a specific program that must
produce a finite set of results. But then the programmer only has
the duty to show (afterwards) that 1if there were any flaws in hls
program they apparently did not matter (e £. when the canverging
of his process is not quaranteed beforehand) lhe dut ty of verification
becomes much more difffcult cnce the orﬁgrammer sets hlmself *he task
of constructing algorithms w1th the pretence of geqeral applicablllty
But the publlcation of such algar;thms is precisely one of the _
important frelds of appllcatlJn for a gﬁnerally accepled nachine
lndependent programmlng language. In this co nnection, the dublious
quality of many of the ALGOL 60 algorithms published so far is a

warning not o be iguacred.

T am convinced that these problems will prove to be much more
urgent than, for example, the exhaustive exploitation sf specific
nachine features, if not now, fChen at any rate in the near future,

In order to get as clear a picture as possible of the real
1eeds of the programmer, I intend to pay, for a while, no attention

to the well-known criteria 'space and time"., Those who on the
ground of this remark now doubt the honest fervour with which the
following is written, should remember that, in the last instance,
a machine serves cne of 1ts highest purposes when its activities

significantly contribute to our comfort,

[{3]

¢n the needs 2f the user.

I should now like to investigate those needs of the user that
are not =z direct consequence of his own specifile problems. Somebody
who only integrates ordinary differential eguatlions will in aill
probability not De very interested in matrix cperations but somebody
else might perfectly well want to <perate on guaternions, For yet
ancther person i1t may he vital to be able to exercise control on the
precision in which (parts of the) computation should be performed.

I would like to focus nmy attention on the linguistic demands he
may make, irrespective of "the representative problem” that always
underlies the design of a particular language.

Wnen I speak of the user of the language I mean the man that
programs. Unfortunately I feel obliged to mention this expliecltly,
as there is a tendency to design programming languages so that they
are easlly readable for a seml - professional, seml - Interested
reader. (Symptoms of this tendency are languages the vocabulary of
which includes a wild variety of Engliish words to be used in a
nearly ncrmal sense, and some translators that even allow a steadily
expanding list of synonyms and misspellings for these words.
Particularly, languages designed under commercial pressure have
suffered seriously from this tendency.) It looks so attractive: -
"Everybody can understand it immediately." But giving a plausible
semantic interpretation to a text which one assumes to be correct
and meaningful, is one thing; writing dcwn such a text In accordance
with all the syntactical rules and expressing exactly what one ' -
wishes to say, may be gquite a different matter! ' .

For purposes of clarification let us consider ordinary English-
as language, in the use of which, however, certain additional rules
must be obeyed. The simplest of these may be of the following nature.
words of more than 15 letters are forbidden; the total number of
letters of three consecutive words may not be greater than 40;
sentences of more than 60 words are not allowed; in one and the
same sentance the same word -may not be used twice as a subject;

furthermore a list of, say 200C, words ls given, that are so

rarely used that they have peen fovbidden for the sake of
convenience, ete,ete,.. Inere 1s no rezzcn to agsume that these
extra condificons will te detrimental to the readsbpility I the

text, and what 1s acre, orne can read and understand such 2 fext

just as well without knowing of the exlstence of these restrictions,
But if the number of such restricticns is sufficiently large and
particularly if they impose hignly implicit conditions, 1t hecomes
almost ihpossible to construct a cecrrect text, In the sxftreme case
one would need a large computer with a complicated program to chegk

whether cne's text dces not violate the rules!

Of course, this example was an exaggeratiosn, but it clearly
shows us the direction which we must definitely not take., We mustmaké
1L e3emy &8 possible for the user to master the language. And we
can immediately indicate two ways of making this difficult., In the
firet place, implicit conditions for which it is difficult to check
whether a given text satisfies them or not, 1in the second place
conditiocns that forbid a construction with a straightforward semantle
implication, A language which neatly caters for algebraic expressions
but, for'example, restricts the number of enclesing bracket pairs
to eight;'is one which I would discard. The reguirement is toco
impliq;t to‘my‘taste and I do not like to burden the programmer
with the extra task of counting tu see whether he has exceeded the-
maximum,depth,‘and this really is an extra duty because a priori
there is nothing'to prevent him from writing mcre than eight nested
bracket palrs: for even then the semantiec interpretation is perfectly

clear,

From this one shouid not draw the ecnelusion that I am an
ardent supporter of sc deeply nested bracket pairs. On the contrary,
fer the correspohdence between opening and clcsing bracket becomes
increasingly difficult o see at a glance when the depth increases,
1f, however, socmeone wiéhes, under certain circumstances, ts write
down such a perfectly scund expressicn, I see no acceptable reasons

from the point of view of the user to disallow tnls.

Inh exactly the same way I have not the slightest inclination
to foreild, as some people suggest, type procedures with sc-called
"side effects” in ALZOL 60. Under certain circumstances such

procedures can be very useful and perfectly natural constructions,

and I completely fail to see how it can serve the user to impose
guch an extra conditizn on hils language, thereby restricting

his power of expressicn.

On semantic definition and the nesd for conversatizn.,

s already mentizned, I d7 not regard the supposed readabllity
faor & general reader as 2 valid crifericn., I have good reasons for
thls. In human communicatizon the "unpredictabllity"” of thnose we
address plays a fundamenta. role, If we now apply the norms of human
communicatiosn to an artificial language, in which we wish fo address
a computer, then we ignore cne cf the most essential characteristics

of the automatic computer, viz. the "predictability? of ifs behaviour.

When I ask myself what my words zctfuzally mesan, 1,e, when-I ask
for the semantics of my language, I can say ncthing about it without
congldering the listener, Without listeners -e.,g. when I deliver a
monologue on an gctherwlse uninhabited isle- 1t makes remarkably
little difference whether I speak nonsense or not, so little, in fact,
that under these circumstances "meanlng" becomes an empty concept.

My utterances can only have meaning by virtue of a listener, and
what is more, the reaction 2f my listener defermines what my

utterances mean,

Whether 1 explain scomething to a six-year-old or t: nis father, .
has a marked influence on the choice of my words, The limitsd voca~-
bulary of the boy ilmposes definite restrictions on the choice of my
words: there are many words that are "meaningless” as far as he 1s
concerned and if I do not respect these restrictions my exblaﬁation
will very soon {and in a very real sense) become ”meaﬁingless”.‘

A more striking example of how the listener dsfines the semantics
of my language will perhaps be glven by a2 somewhat more artificial
setting, viz. the writing of an article. When it has been cumpleted
one reads it over to see whether it z2ctually says what one wanted to
say. For this purpose one tries to read it as if one had not written
1t oneself. one invents an "average reader" and tries ts play the -
role of this imaginary perssn as well as possible. And if, in reading,
this imaginary person is startled by a rash coneclusion, one alters
the paragraph! The way in which the imaginary person reacts becomes
onets norm: he determines whether something is elear or not, he’
defines fthe meaning of our text, i1.e. the semantics of sur language.

Gl

In this light we only kncw what we have said, when we have
sesn how our listener reacted o it; we only know what the things
e going to say will mean in a3 far as we can precdict his

T
reacticn, However, we conly know cTier pesple u4p D 2 (lswf) psint

and in human communication every message is thersfsore to 2 nigh
degree a trizl, a gamble to see whet!

her the >ther will understand
us as we had noped. 4s we do nct master the tehavicur of the other,
we dbadly need in speaking the feed back, known as lgonversaticn”
(Testing a2 prcgram is in a certain sense ccnversatlion with a
machine, but for other purposes. We have to test our programs in
order tc guard oursslves againgt mistakes, which 1s something elsge
than imperfect kncwledge of the machine. If a program error shows
up, one has learnt nothing new abcut the machine -as in real
conversation~-, one Jjust says to oneself "Stupid!’.)

We can fully master, however, the way in which & computer
reacts and this is precisely the reason why addressing an automatlc
computer presents us with undreamt-of lingulstic possibililitles.
Mastery of the reactlon of the computer must not only be a theoreti-
¢al possibility but a real, practical one, if one is to able to
make full use of those linguistic possibilities, It 1s therefore
mandatory that our machine be not prohibitively complicated,

(From this point of view the way in which ALGOL 60 i3 defined is
rather alarming. "Pure ALGOL 60" is defined by the official
"Report on the Algebraic Language ALGOL A0", edlted by Peter Naur,
but reasonably speaking one cannot expect z user of the language
to know this Report by heart, Specific implementaftlons of the
language are-defined by translators ete, °f a zauple of thousand
machine instructlons, a gquantity which exceeds our powers of
comprehension even further,)

As the aim of a programming language 1s ©2 describe groacesses,
I regard the deflnitlon of its semantlics as the design, the
degcription of a machine that has as reacticn to an arbitrary
process description in this langauge the actual execution of this
process., Cne could also glve the semantic definitlon of the
language by stating all the rules accerdling o wnicn one cculd
_execute 3 process, givean its description in the language.
Fundamentally, theré is nothing against this, provided that
nothing is. left to my imagination as regards the way and the order
in which these rules are to be applied. But 1f nothing 1s left to

my imagination I would rather use the metaphor cof the machine that
fby its very structure defines the semantics of the language. In

the design of a language this concept of the "defining machine"
should help us to ensure the unambiguity of semantic interpretation
of texts,

When we have thug defined cur language, its semantlcs are
completely fixed and its syntax - I owe this remark to Prof.dr.ir.
A,.van Wijngaarden- does not have z definig functicn anymore: we
can do without the syntax as it 1s merely a summary cf
"admissible constructicons”, 1.,e., all constructions to which the
machine does not produce the uninteresting reaction "Meaningliess",
(Such a possibility of escape is very useful for our machine, when
we remember that we may feed it with an entirely arblfrary sequence
of symbols, We sghall return to this subject later.)

At this moment it is very definitely not'my intention to
give any suggestions for the design of this defining machine .
(i.e., for the design of a next programming language); I would rather
direct the reader's attention to some properties of thls machine
that seem desirable to me 1f it is to serve 1its purpose.

For the sake of uniqueness I would prefer a strictly sequential
machine, 1,e. a machine for which at every {(discrete) moment there
is not the slightest doubt as to what is happening. I feel on the
safest ground if this machine 15 concelved as consisting of a
finite arithmetic unit coupled to a store that is, by definition,
sufficiently large. In particular: whenever an operation has to
process an arblirarily great amount of information, 1t should do so
in finlte portions and in a well defined order,

In this respect our defining machine reflects one <f the
most important discoveries embodied in present day automatic
computers, wviz. that in the evaluation of arbitrarily complicated
algebraic expressions one need not resort to an arbitrarily
complicated arithmetle unit, but that this evaluation can always
be performed by a finite arithmetic unit, provided that the
anonymous intermedlate results (now no longer produced simultane-
ously) can be stored until they are needed again. In other words:
we can choose the strictly sequential machine without the slightes
loss of generality. And as we shall require the ccncept of
"sequencing” sooner or later anyway, I see no reason why we should

10

not introduce it right from the start,

Furthermore, we should se yrspared to face the fact that zur
defining machine will become incredibly tnpractical and unrealistic:
ations

i r i &
it will be so wasteful o7 storsge space and number - orer
that 1t will hurt the eyes 2f eve
how fzr does our defining machine differ from a real cne that is
provided with a good translator? This translzator probably demands
thousands of instructions ams 1- 71 .70 & SCErCELY 2 realistic
proposition as language definition. We shculd rezlize, however,
that the size of the translator 1is largely due to the fact tnat
the process has tc be carried cut as efficiently as possible
(and furthermore by a machine not specially designed for thils
language). By disregarding all zfflciency requirements and
talloring the machine to the language we can cbtain a much
simpler organization, so simplei:. fact thét it can very well be
used as a means of language definition.(This must be possible;
otherwlse, how could we, poor humans, ever-master the language?)
If, on being confronted with our deflning machine, a pfdgﬁammer
now jumps up, vrotesting against chis waste: "It can be doné far
more efficiently, if one...'"etc,, then we can be content, We have
sown our seed in fruitful ground: he has accepted the challenge
and has'already_started dn_the construction -of ‘his translator!

.

On unnecessary redundancy and coptional Infsrmation

Tnere are uwo declaratisns in ALGOL 60 with a hybrid nature,
viz. the switeh declaration and. the. procedurs declaration. Like
all aeclaration, they reserve an identifier for a.special sord
of objeét but, besides, they immediately define this cbject and: do
30 statizally, In this respect they are comparabls to the go-called
"oonstant" declaratiosn, which has been suggested for numerical
quantities. We all know that by replacing static definitions by
dynamic cnes one c¢an only gain in flexibility. rurthermore,

ALGOL 60 includes the assignment gtatement that assigns a value
dynamically but, alas, only in the cass that this value is a
logical value or a number. 3y extendlag the concept "assignment

of a value" go that liste, statements etc. can also act as
"sgsigned values’, one can remove the value-defining function of
the switch and procedure dealarétion. The declarators switeh and
procedure should then only be followed by a list -of identifiers,
£o which suitable assignments should eveniually be made. {1 regard

11

such @ modification 25 an improvement: the language then becomes
more systematic and more powerful at The same time, &s all value-~
relations have now become dynamic.)

egerd the notorious loglcal expression
ol

M

I, 25 a8 next step, w

i

"if E then T glse D = E" eg slid

[l
/4

ITE BYNTEY., Decause ihe

2
syntactical grcuping of These symbols depends on the guesticon
whether the variable C 1s logicel or nou, then the Sype-declaration
Beolean hes pecome superflucus: whether 1% 18 & logilcsl varisble

or not wWill become sppsrent from the way in which it 18 used.
Finally we can omit 81l type ndéicsticons in the declsraticns if
we furthermore assume that there is no logical necessity to introduce
the type initsgger (semanticel it conly »leys & recle in Two minor
cases, viz. in the deflnltion of eTb sn¢ in the implicit rounding

> 1
of f on sssignment fo on integer varisblie).

The srray declaration is then left as the only odd case, 38
the subscript vounds must be specified there. Fortunaiely, however,
the explicit specification of subscript bounds is logically spesking,
not necessary: during the course of the computation i1f will
transpire which 2rray elements occur. e therefore omit the. -
sukscript bounds, since they can be regsrded as redundant informatlon

Finzlly, we reduce the number of declarstions to cne; the
function of this universal declsrator is merely to introduce new
identifiers local to the block in guestion,

‘ In this way the pregrammer's powers of expr9551on arerl_
1ncreased considerably. There ig8 no longer the slightest reason for
an array to be rectangular, the triangulsr 8rray, for 1nstance, is
automatically included in the language. It is no longer necessary
that an srray be homogeneous: some elements of en erray may even
be arysys.again, or procedures or log-cal veluee, ete. Once ther
Type of a:'variable is: zlways defined dvnamlcelly,-tnere is not even
a reason for it to be constant in time. The power of expresslon
is incessed as the language contsins 2 smaller number of @ifferent
kinds of elements snd all kinds of artificial barriers have fallen
away, An ordinsry verisble is nothing but a trivial examble ef 2
parameterless procedure. In short, the progremmer now no longer
needs to sgueeze the relevant informaticn intc the rigid forms
permitted by ALGOL 60.

12

This incresse 1in expressive power 3 2 practical advantage;
ven mere 1mparcant that

by
ip
Q
fa
oy
D
'..—J
',_J-.
)
7
[
l,—?
{a
ct
l.—l;
[p]
(v
O
=
m
ot
&
iy
=5
t
D
t
NN
)
1
b3
r
-
lar]
L

in this way the languazg made less redundant., For: the
a

Tiong hea3 fwo undes_raple

e
recdundancy of the ALGOL 50 decler
o) il

effects (even zpart from che duty of inseriing s number of extra

symbols). As the declarations are oblizelfory, the user is forced

to s8fate explicitly & number of properties of the remzinder of the
blocks the declaraticns lay down condivions which the rest of the
block must satisfy and as such fthey are highly implicit restrictions.
In the second place, if The redundant znformation is to be a vital
part of the langusge, vhe cGefining maecnine must take note of 1it,
l.e. it must detect whethner the rest of the program is in
accordance with it and tnis makes the defining wmachine considerably
more complicated. EZy excluding redundant information from the
language, means of contradicting himself have teen taken away from
the user snd langusge Cesigners are spsvréd the temptation of
assigning (afterwsards) a specisl meaning to 2 particular
contradiction {as in ALGOL 60 in which "go to" followed by a switch
element may, under certain circumstaunces, ke eguivalent to a

dummy statement).

4s I sm probsbly not using the word "redundant" in its
official, technical sense, I should like to insert some clarification
of my point of wview. Cur defining machine should be so complete as
to react in & well-defined way to every arbiirary string of symbols
presented to it. The special signal "Mesningless'" may be one of its
possible reactions. The concent "redurdancy” only hnas a right of
gxistencs as long 831t is not our i1ntention to provoke This
special signal "Meaningless” as the machine's reaction: as soon
as we 1nclude this resction in the sei of "intended reactions’
no pregram can sin against the language rules anymore and we must
therefore regard every arbitrsry text as acceptable. I assume
that evoking the reaction "Meaningless" will never be cur intention
and our langusge therefore remsins redundant as long as the signal
"Meaningless" belong to the set of possible reacticns of the
defining machine. In itself I have no ovjection to thnis, I only
have objeciiens to "unnecessary redundancy” i.e. language rules
thrat I can regard &s restrictions.

1

N N ' - . "
I hope that my distinction between "rules" and "restrictions

is not purely emotinal. Roughly speaking, a langusge rule enables

13

me tO express something, whereas a restriction prevents me from
doing so, The language definition consists of a number of rulesg of
reaction; some of these rules may under certain circumstances
prescribe the reaction "Meaningless'. When, however, the reaction
"Meaningless" is preserited n a slituation for which the remaining

o

ules cater, ther I speak =f z restrictiocn, 2f unnecessary redundan-

c¥. This in ccnirast tc a rule that prescribes the reacticon
"Meaningless" in a case for which the sther language do potu cater,
Then I do nct regard this rule as an objectionable restriction: it

is Just a consequence of the fact that we can write down a string

of symbols for which we will not take the trouble to define a meaning-
ful reaction (at the cost of who knows how many complications of

the defining machine}.

On behalf of the user I envisage a not unnecessarily redundant
language, the semantics of which have been completely fixed by our
defining machine. But ncw it is time for us to remember that it was
also our intention that the processes described should be executed
by a real computer in a reascnably efficient way. o

In this connection I should like to quote from the "University
mathematical Laboratory Cambridge Technical iMemorandum no 51/2;
Some reflections on Automatic Programming and on ﬁhe design of
Digital Computers." by M.V. Wilkes the following remarks, with
which I wholeheartedly agree: ‘ _ ‘ ,

"If a ‘small machine is used for cdmpﬂing, however, it is desi-

rable for the programmer to be able to lighten the task of

the compiler by providing extra inform&tion; much of the in-

formation given in the declarations in ALGOL is of this type.

I believe that, in desigﬁing future automatic_programming

langaages, a clear distinetion Shouldrbe made between the

thread of esséntial inférmation ﬁeéessary to define the pro-
gram and the addiiionél informdtion put in to‘h;lp the compiler.

This'paragraph expresses exactly my own sentiments.

From a linguistic point of view it may be very a+tract1ve to
formulate our process in a not unnecessarily redundant language t hus
only being coliged to.glve the absolute minimum that is needed to
define the process, But what is the translator going to do with
this? I assume that the structure of many a machine is such that it

14

is desirable that the translator thorcoushly analvzes this program
. Enly J

"special caeses” of our zenersl

and tries to detect 211 kinds of
cconcepts, for example whether an array has a2 regular form
(rectangulsr, trlangulzr etc.), whether an array is perhaps
‘homogengous, whether a veariable is zlways simole and never defined
in the form of & procedure, whether & procedure is used recursively
or not, etec. In short, the translator will search for "unused
generality”withAthe alm of geining something. These analyses are

no child’s play and furthermore, as the analysis is carried out
statically, the trzaslator must always remain on the safe side.

But we can hardly speak of "good use of s computer” when the
translator spends 3 considerable amount of time and trouble in
trying to come to discoveries that the programmer could have told
it as well!l It may be a auisance thai ALGOL 60 arrays must be
rectangular, but we should not close our eyes to the fact that a
réctangular array is a fairly common phenomenon, and that the user
is usually awars of its rectangularity. It is undesirable that the
progremmer is forced to give this extra information, but it is
unwise to prevent him from inserting such additional information
"for ta2 possible benefit of the translator". I would like to

call this "optional information", ontional in the sense that »
correct and complete progrem remains when it is left out.

For translator makers partlcularly I caanot stress enough
that they actually have no right to this optional information: the
whole concept is a concession to the weakness of the flesh. The
qualisy of a translator naturzlly diminishes if it simply does
net accept certailn parts of the language or if 1t demands
unconditionally certain forms of ovtional information -for then we
have Callen pack into the rigorous scheme of ALGOL.GO—; it is also
to the Jdetriment of a traﬁsiétor, when the efficieﬁcy loss as result
of omiszion of the optional information is so 1arge'£hat the user is
virtually compelled -be it not "de jure'then "de facto- %o insert
it, In this connection I should like %to point ocut that the reactions
To ALGOL'éO Have‘éhown that suggestions for sc-called improvement
of ALGOL 60 should fill us with great suspicion, especially if
these suggestions come from unsuccesful translator makers.

The fact that this helpful information is kept outside the
language improves the machine independence, because one machine will
want to b2 helped in guite another way than another machine. The

15

second advantsge could be that the language i1tselfl may remaln
up to date longer: information which iz very helpful now may

be of no interest at all in & number of years, when there may be
more sultable machines snd more sophisticated itranslators. It
would be very sed if we were then bound by restrictions which
can then no longer be justified (say :the rectangularity of an array).

It is cf course desiravle that the possible forms. of opticnal
informaticn be standardized. And for the making of proposals in
this direction probably just as much tact and wisdom are reguired
as for the design of the language itself. The genersl language
msy be very stiractive logigally snd linguistically, »ut its
practical merits may very well depend cn the specisl cases for
which we want to be able to give the translator a hint, as long
as they are of interest but prohibitively difficult to detect
autometically. In any case it is an advantage that the defining
machine will provide a clear terminology in which we can express
these special cases (in ALGOL 60, it is -see below- not clear,
when & procedure is used recursively). -

One final remark about the bearing of the semantic definition
and the conseguent task of a translator. our defining machine
incarnates a detailed prescription of how one can execute a given
process as described by a text in the language,hhow one can
compute the required result. By this we do nct mean that every
implementation should be an exact copy or detalled simulation
of the defining machine. ¥When, for example, the defining machine
leaves no doubt about the order in which the primaries of an
expression should be evalusted, then this 15 only with the intention
of defidrg the answer uniguely as soon @s it depends on this order, As. ‘
long as.i% does not depend on this order, every implementer is
free to change the order as he sees fit. I regard every implemen-
tation as 8 correczt one as long &s the answer is correct, l.e.
undistinguishable from the: snswer that our defining machine
would have given. In this sense, the "net semanties” of a language
is only defined if we know what "the answer" is and we musst
include output statements as an essential factor in the semantic
implication of a program. Regarded in this light, the net sementics
of a program in pure ALGOL &60. which, as we know, contains no
output statements, is empty. (The semantics of our lsnguege is
defined by the resction of our listener, but can we speak about his

16

reaction if na part of it reaches us?)

Cn _some propcsalg by Stracney and Wilkes,

These who nhave read the Technical demzrandum 21/% by C. Strachey
and #,Ves Wilkes, quoted earlisr, will not be surprised after all this;
that the only one of their suggestions that attracts me is in the
last section, in which the concept of sptional informatiosn has
been worked out in more detail. I will give a simple example. Cne

of their propocsals is:

"Procedures shall be recursive if introduced by the deciarator
recursive procedure; otherwise they may be fLreated as non-

recurglive

Consldered in the light of the concept of the osptional informa-
tion introduced earlier by Wilkes (Tecnhnical Memcrandum 51/2) 1t
would have been more elegant to present the non-recursive procedure
ag the special, restricted case, and not the recursive oneas the
exception. A competing preposal wouid be:

"In general all procedures may be used recursively. If the
programmer, however, happens to know for certaln that one

of his procedures will not bte used recursively in his program,
he may state so, for the possible beneflit of the translator,
by Inserting the prefix "nonrecursive’” 1immediately in front

of its declaration.”

In passing -to underline my desire for rigorous, strictly
sequential semanties- I should like to point out that I do not
feel imuch 1neclined to support this proposal, not sven in 1its
mitigated form, because the question whether a procedure call
gives rise to recursiveness in the object program is not answered
by the language bhut by the ilmplementation, Thus, in the ALGOL 60
translatsr developed by the Computatiocn Department of the #Mathematical
Centre, Amsterdam, the call "sqrt {sgrt(x))" does not give rise to
any recursiveness when the identifier "sgrt" refers tc the undeclared
standard procedure for the square root, but it does sc in all
other cases.

The authors' motivation for their proposal is very illuminating:

"An example of unnecessary generality 1s provided bty the
requirement that all procedures should be recursive. In ordinary

17

cqmputing -2g8 distinct from symbol manipulation- 1t will be found
that the need for procedures to be recursive is the exceptlion rather
than the rule, and the requirement that zll procedures shnould be
recursive leads to inefficiency, =ince & recursive procedure 1is

both lconger and slower than a non-recursive cne.,"

Let us assume that thelr cbservation is correct and not purely the
result of the fact that until,fecently most programming systems did not
cater for recursivensss. I hope to have made clear in the above that

I regard such a statistical observation as insufficlent grounds to
Justify the conclusion “"unnecessary generality". Finally they make an
appeal %o the fact that "... a recursive procedure is both longer and
slower than a non-recursive cne.," But the recursive procedure 1s such

& neat and elegant concept that I can hardly imagine that it will not
have a marked influence on the design of new machines 1n the near
future, And this influence could guite easily be so considerable, that
the possible gain in efficiency that can still be bocoked by excluding
recursiveness, will become negligible. Personally, it will not surpfise
me 1f this will prove to be the case, To me the whole propecsal shows
too great a similarity to a proposal along the following lines: "As in
most multiplications both factors are positive, we propose that the
ordinary multiplication sign may only be used if both factors are
indeed pcsitive; for multiplication of factors without slgh restriction
the new operator 'general mult" is intrcduced." Pethaps there are still

machines in which a special multiplication of poSitive factors is
executed faster than the general one; otherwlise we can easily deslgn
such a machine,

The same sort of remarks can be made with regard.tp their_proposal
to abolish the "left to right brecedence rule”,'a rule which they
fortunately extend to the order cf primary evaluation I do not feel the
slightest inclination toc do this. The result of such. shaky semantics is
clearly shown at the end of the paragraph in question,‘wﬂere the
authors write: |)

"If, however, compilers become so sophlstlcated that they can
rearrange whole seguences of statements in the interest of
complling efficlent programs, it may be necessary to resort to a
note which, prefixed to a compund statement, would indicate
that it was to be compiled in the order in which it was written.”

If we read this carefully we see that it is suggested here, that the

18

advent of more scphisticated translators would give us the duty,
under certain circumstances, of adding an extra “note” to the
trogram, because octherwise the transiatsr would translate scmething
else. If the semantics sof the language areweli-defined, then, in

my opinion, such a "scphisticated translator” is Jjust plainly wrong,
The paragraph qusted creates the impression that these authors have
in mind a sort of flecating semantics, that becomes more and more
vague the translators should like to nave more and more {reedom.

A disturbing pilcture for the future: a program being correct today,

false tomorrow!.

Furthermore, thege authors write:

"The above restrictions appear to be sufficient to enable

the terms af an expression Lo be evaluated in any order.

We would, ftherefore, abolish the left fo right precedence

rule and, if further investigation shows that there are loop-

holes that we have overlocked, we would seek te close them

rather than re-introduce the precedence rule,”
This is plain language: rather than closing the gap in the semanties
they propose restrictions to prévent all circumstanceSin which this
lack of definition matters, no matter how implicit these restrictions
may prove to be, If these authors had their way, I should have few
1llusions left about the ease with which the eventual language
could be used, Their proposals strike me as fighting the symptoms
rather than the illness, as solving a minor ovroblem at the expense

of a major one,

Acknowledgement.

I should very much like to add that, wherever the oSpinions
stated above should prove t: mnake scme sense, this could very well
ke the resultrof'the pumercus discussions I was privileged to have
with the staff members of the Computation Department of the
Mlathematical Centre, Amsterdan, about thesge and allied subjects,
They are, nowever, not in the slightest way responsible for

the contents of this repoart.

It is a pleasure to express my sincere thanks to mrs. J.M.
Goldschmeding - Feringa, who assisted in the ¢translation of this
report.

