COMMUNICATION WITH AN
AUTOMATIC COMPUTER

ACADEMISCH PROEFSCHRIFT

TER VERKRIJGING VAN DE GRAAD VAN
DOCTOR IN DE WIS- EN NATUURKUNDE,
AAN DE UNIVERSITEIT VAN AMSTERDAM,
OP GEZAG VAN DE RECTOR MAGNIFICUS
Dr.]. KOK., HOOGLERAAR IN DE FACULTEIT
DER WIS- EN NATUURKUNDE, IN HET
OPENBAAR TE VERDEDIGEN IN DE AULA
DER UNIVERSITEIT OP
WOENSDAG 28 OCTOBER 1959
DES NAMIDDAGS TE 3 UUR PRECIES

DOOR

EDSGER WYBE 'DIJKSTRA

GEBOREN TE ROTTERDAM

UITGEVERI] EXCELSIOR - FRIJDASTRAAT 19 - RIJSWIIK (Z.H.)

CONTENTS
INTRODUCTION

A GENERAL DESCRIPTION OF THE XA1
2.1 Introduction
2.2 A short description of the three maln parts
2.2.1 The baslc machine
2.2.2 The memory
2.2.3 Input and output apparatus
The order code
The varlants
2.4,1 Address modification
2.4.2 Condition reaction
2.4,3 Condition-setting
2.5 The order notation
2.5.1 The address notation
2.5.2 The order
2.6 Shift and communication orders
2.6.1 Shift orders
2.6.2 Register transports
2.6.3 Normalize orders
2.6.4 The stop order
2.6.5 The fast multiplications by 10

2.6.6 The communication orders for the
tape reader

2,.6.7 The communication orders for the
tape punch

2.6.8 The communication orders for the
typewrlter

2.€.9 Timing of communicatlon crders
2.7 The synchronization with external apparatus
2.7.1 Introduction

2.7.2 The preserving function of subrou-
tine Jumps

Orders related to interruptions

2-7-3
2.7.4 The interruption by means of the
keyboard

2.8 The console of the X1
2.9 The speed of the X1

n N
4= A

2% I §

vl F DN

25
25

26
26
28
28

30
31

33

33
36

3 DISCUSSION OF SOME OF THE FEATURES OF THE X1

3.1

no

.

W W W W W W
WO 0~ O FoWw

4.1

The requirements

Arithmetical facilitles

The word length

The conditlon

The subroutine Jjump

The counting Jump

Address modificatlon

Shift orders

Some examples

3,9.1 A "step by step reduction to zero"

3.9.2 Determination of the amallest fac-
tor '

3.9,3 Punching a binary word
3.9.4 Forming a scalar product

COMMUNICATION PROGRAMS

The tape read program as independent pro-
gram

4. 1.1 General survey of the functlons of
the tape read program

4.4,2 Iniltials

4.1.3 Type indlcatlons

%.1.4% Directives for the processing cycle
4.1.5 Remarks about the use of directives

4.4.6 Starting the tape read program

The tape punch program a8 independent pro-
gram

The type program &as independent program
The keyboard program

4. 4.1 Manual input of numbers

4. 4,2 The autostarts

The tape read program &3 subroutine

The tape punch program as subroutine
The type program as subroutine

4.7.1 The type code

4.7.2 Calllng in the type subroutine

38
38
40
k2
4y
49
51
54
55

56

o7
58
59

62
62

62
64 -
66
69
70
71

72
Th
TH
75
76
78
80
82
83
88

4,7.3 Extra line blank
4.,7.4 "Tab-tape"

4.8 Some remarks about synchronizing routines
4.8.,1 The Iinterruption permlt

The end of a program

Autostart ©

Compatibllity of the keyboard pro-
gram and active communication pro-
grams

4,8.5 Reserved ctorage locatlons
4.9 Descriptlon of synchronlzing subroutines
4 ., 9,1 Tntroduction

4.,9.2 General structure of synchronizing
communication programs

4,9.3 The calls of the internal communl-
cation subroutlnes

4,9.4% Structure of the internal communica-
tion routines

5 The interruption of class 6

6 Autostart 2 and the directlve DE
4.,9,7 The possibility of translatlon

4 10 Mutually synchronized input and output

==
o o
=W P

b.9.
h.9,

SOME SPECIAL ASPECTS OF THE COMMUNICATION PRO-
GRAM

5.1 The communication program in the dead
memory

5.2 Extension possibilities of the keyboard
program

5.2.1 Input of floating point numbers
5.2.2 Multiple autostarts

5.3 The extension possibllities of the tape
‘ read program

5.4 Some closlng remarks

References
Samenvatting

30
90
91
91
92
93

93
94
a5
95

96
98

103
105
110
112
113

122
122

123
123
124

124
126

128
129

Appendix 1
Appendlx 2
Appendix 3

Appendix 4

The symbcls on the typewrlter 133

Binary representatlion of orders 134
Storage regervations In the living
memory 136

gtandard program for cluss 6 and
class 7 138

1 INTRODUCTION

In hils work as programmer the author had the privilege of
being closely assoclated wlth the development of the order
code of the X1 computer. This machine, and 1its order code,
was designed by Mr B,J, Loopstra and Mr C.5. Scholten, both
of Amsterdam.

In the final selectlon of the facilities to be Included in
the machine, I played only a small part. Where technlcal
conslderations were not declglve I was left the cholce be-
{weerr alternatives; In some minor pclnts I was able to suggest
modifications,.

When the internal code wag fixed it was my task to bulld
up a suitable notatlon for the code, In my turn I derilved
benefit from their criticism and also from that of Mr A.W,
Dek of the Hague.

This work 18 the main theme of this thesis. In 1t [present
a rather one-sided picture of the X1 as I restrict myself
solely to the order code. Those teciinlcal and economic con-
slderations which played a role in the development of the X1
fall ocutside the scope of thls thesis, Simllarly we dc not
discuss problems that arise when the computer 1is incorpor-
ated in an organization or questlons that present themselves
in the construction of a library of subroutlnes, of inter-
pretatlive and self-coding systems etec.

In comparison with all these problems a '"microscoplce”
interest in the internal corder code may seem somewhat futile:
But in which ever way and how evar intensely a computer may
affect an organization, no matter how complicated or large
the prozrams may be, the programs will always conslst of the
molecules, whlch we call orders.

The author 1s greatly indebted to the "Mathematical Centre"
for providing him with the cpportunity of engaglng in this
work and particularly to Prof.Dr Ir A, van Wljngaarden, Head
of the Computation Department, for his cooperatlon and con-
tinuous interest.

-

» A GENERAL DESCRIPTION OF THE XA

2.1 Introductlon

The X1 is a high speed electronlc computer, intended
for both clerical and sclentific work. It consists of
three main parts, the basic machine, the memory and the
input and output apparatus.

In principle the basic machine 1s always the same; it
comprises the arlthmetic unit, the control, the congole,
ete.

Up to a certain limit the size of the memory may be
chosen for every installation; in thils way it can be
adapted to sult the needs of the user,.

Similarly one can choose, wlthin a certain range, which
{nput and ocutput apparatus are to be coupled tc the machine,

The fact that the X1 is very suitable for both scilentifilc
and clerical work 1s due, not only to 1ts flexlbility, but
also to its relatively hlgh speed. Amongst others the speed
of the machine manifests itself in administrative work when
the X1 uses a number of punched card machines to thelr maxl-
mum capaclty simultaneously.

5.2 A ghort descriptlon of the three main parts .

2.2.1 The bhagic machine

The basic machine comprises the arithmetic unit, the
various registers, the control, ete, Its external appear-
ance 1s similar to that of an office desk; the varlous
awltches and indicator lights for the operator are on the
surface of the desk and also on a small vertical panel
pehind this section.

The bagslc machine 1s fully transistorized and the power
it requires is only a few nundred watt. A3 a result no
cocling apparatus lg necessary.

The arithmetic unlt operates internally on fixed point
binary numbers., All transporits, as well as addition and
subtractlion, are parallel operations. By these and other
means the designers attalned a time of conslderably less
then 400us for all operatlons, except those of multiplic-
ation and division, whilch each require 500 ws.

In the X1 the "natural" unit of Information, the word,
consists of 27 bits; words have two main interpretations,
viz. numbers and orders.

-3-

A word, regarded as a number, conslsts of a sign blt,
foliowed by 26 binary diglits,

Alternatively, a word, regarded as an crder, defines an
operation to be carried out by the machine, For thls pur-
pose the 27 blts are divided into two groupe: the most—
significant twelve (the "function") define the nature of
the operation according to fixed conventions, the least
significant fifteen (the "address” or "numerlcal part")
may serve for the specification of an operand.

The arithmetic unit comprises three registers, called
A, S and B. The registers A and S both have 27 bilts,
while B has only 16 bits (of which the most significant
one acts as sign bit).

The B-reglster, being shorter than A and S, cannot store

_ numbers as large as the other two registers; otherwlse the
three reglsters are equivalent wlth respect to additive _
operations: the X1 can add and subtract 1n all three regls-
ters, thelr contents can be added to or subtracted from the
numbers stored in the memory, etec.

Multiplicatlion and division are always executed 1n the
A- and S-registers together; each then has a distinct
function.

The distlnctive feature of the B-reglster is the follow-
ing: as soon as an order 1s extracted from the memory (see
below) but before its executlon, 1ts address may be In- .
creasad by the contents of B. The functlon of the order
1tseif indicates whether or not thls additlon 1s to take
place. The length of the Breglster was chosen to be 16
blts, so as to accommodate an address increment whlch can
have both silgns.)

Two other reglsters of some importance to the programmer
are the order register OR and the order counter T,

Before an order 1s executed 1t 1s placed In the register
OR, where the bits that form the order are analysed; these
bits remain in OR throughout the executlon of the order.

As one requlres a whole word for the definition of an order,
OR conalsts of 27 bits.

Orders placed in OR, i.e. orders to be executed, come
from the memory. The words 1n the store are numbered and
the order counter T always contains the number of the word
to be tranaported to OR as the next order. The order count-
er T is a 15-bit register,

Furthermore we menticn three small reglsters, each of
which has a capaclty of only one bit; they record "the con-
dition", "the last sign" and "the overflow indication".

4

They will be discussed in more detail later.

Finally the machlne 13 equipped with a number of flip-
flops, that play an important role 1in the aynchronizatlon
between the X1 on the one hand and the coupled communic-
atlion apparatus on the other.

The contents of all the above reglsters can be read from
indication lamps on the control panel.

2,2.2 The memory

The maxlmum number of words the memory of the X1 can
accommodate 1s 015 = 32768, These words are numbered from
0 to 32767 inclusilve, the numbers belng called the address-
es of the storage locatlons, as tney are used for reference
To a particular word.

Information 1s sent from the arithmetical unit to the
memory in units of one word. Sending a word to the memory
18 called writing a word in the memory, extracting a word
from the memory is called reading a word out of the memory.
For these operations to take place 1t 1s egsentlal that the
address of the storage location concerned be speclified.

When a word 1s written In a storage location 1ts previous
contents are destroyed; In a "pure" reading operation the
contents of the storage location remalin unaltered. Finally
the order code of the X1 ineludes combined operations, in
which, firstly, a word 1s read from a storage location and,
secondly, a new word 18 Written in that same location im-
medlately afterwards; 1n this case the new word 1s always
derived from the original one by means of an additive process,

The memory of the X1 1is divided into two parts, vlz. the
"1{ving memory" and the "jead memory". Both make use ol fer-
rite cores and have the same access time for reading operat-
ions.

The machine can wrlte in the 1iving memory, dbut not in the
 dead memory. iIn the 1llving memory the information 1s record-
ed by the magnetlc states of the ferrlte cores, in the dead
memory, however, by permanent wlring. The dead memory has
the advantage of belng relatively inexpenslve; thig makes 1t
particularly gultable for the storing of standard prograns,
especlally those for the input and the ocutput.

The owder code of the X1 is 2 so-called single-address
code, 1.e. each order refers, at most, to one word in the
memory: the storage location for the word concerned 1ls specl-
fied by the address dlglts of the order. The maxlmum capaclty
mentioned earller (215 "= 32768 words} refers to llving

-H-

and dead memory combined. This limitatlon 1a due to the
fact that in the order 15 bits are available for the
addresas.

Every time the memory delivers a word of Information,
this operation 1ls subject to & so-called parilty check,.
In all writing operations a 28th bit 1s added to the
words the value of this blf 1s such that an odd number
of ones 1s stored In the locatlon, Every time a word 1is
read the memory delivers the corresponding parity bit
too; the computer then checks whether the number of ones
actually 18 odd, If not, it stops. Words in the dead
memory are &lso provided wlth a parity bit.

2.2,3 Input and output apparatus

The 1nput and output apparatus coupled to the X1 depend
on the needs of the umer,

In this thesis we restrict ourselves to a tape reader
(150 characters per second) and a tape punch (25 charac-
ters per second) both mechanisms being for five-hole
punched tape, and an electric typewrlter operated by the
machine (10 characters per second),

At the moment of writing many other posalbllitles for
faster Input and output of data have been wholly or partly
developed, e.g. fast punched tapes, magnetlc tapes, fast
printers and punched card apparatug of all kinds.

The X1 can utilize a large number of such varled mechan-
isms s*‘multaneously. The maximum number depends on the
complexity of the processing: by the time that the ope-
rational speed of the X1 becomes the bottleneck of the
process, 1t 1s of 1little use coupling the machine to fur-
ther apparatus!

The X1 only utillzes all 1ts communication mechanisms
simultanecusly from a macroscoplc point of view; from a
microscoplec viewpoint 1t employs only one at a time. The
X1 automatically divides its attentlon between the various
mechanisms as efficlently as possible. Due to thls arrange-
ment the fact that the varicus mechanlsms are completely
asynchronous with respect to each other presents no essen-
tial difficulty. This is one ot the most Important aspects
of the flexlbillty of the X1,

The standard programs for tape reading, tape punching and
typing will fully illustrate which possibllities, whlch
problems and whet types of arrangements result from thls
facility of the X1,

10

2.3 The order code

As mentioned earller (2.2.1) the bits of the binary
representation of an order can be spllit up into "func-
fion" and "address" (also referred to as 'numerical
part"). In principle, the programmer writes each order
as functlon followed by address 1n accordance with the
above subdivision.

In the ensuing description of the order code (a summ-
ary of the existing functions!) we will denote the
address by the letter n for the time being.

The symbol (n) denotes the contents of address 1
gimilarly (A) denotes the contents of the A-reglster,
etc.

In the description of the operations we will make use
of the orientated equallty sign "=" to be read as "re-
places", cf [3]-

The followlng eight orders exist for each of the three
aprithmetic registers (&, S or B being denoted by R).

ORn (r) + (n) = (R)
AR n (r) - (n) = (R)
PR n + (n) = (R)
3R n 3 - (n) = (R)
LR n 3 (n}) + (R) = (n)
5Rn ¢ (n) - (R) = (n)
R n 3 + {(R) = (n)
7R n - (R) = (n)

OR and 1R: Addition in. The number 1n the storage location
with address n Is added, with or without a change of slgn,
to the number in the reglster R; the result 18 stored 1n
the register. The original contents of the reglster are
therefore lost, whereas the contents of the storage loca-
tion n remain unchanged.

oR and 3R: Trans ort in. The number in the storage locatlion
n is Eransporfca, with or without a change of sign, to the
register R, As in the case of "addition in", the original
contents of R are 1ost while the number in the memory 18
not altered.

4R and . Addition out, As for OR and 1R respectively, wlth
The roles of register and storage locatlon interchanged.

11

6R and 7R: Transport out. As for 2R and 3R regpectlvely,
with the roles of register and storage location inter-

changed.

Remark. The classification "in or out" 1s based upon the
direction of the transport of the result with respect to
the arithmetlic unit.

Tt 18 clear that a number in a register or storage loca-
tion may have elither sign, may be multliplled by -1, ete.
We therefore include a more detalled descriptlon of the
number representation; for this purpose we number the con-
secutive binary digits of a word as follows:

d26 d25 s d1 do .
The numerical value of a word, regarded as an integer,
18 gliven by

25
> (d,-d..).2t .
& (d1d9z6)

The most significant dlgit dpg 18 the so-called sign digit;
dpg = O indicates that the number 1s positlve. The largest
posslble gositive number that can be represented in one word
equals 220 - 1 = 67108863, in binary digits: dpg = 0, da5 =
dolf = .., = dq = dg = 1. To change the sign of a number, all
diglts of the word are inverted, l.e. zeros are replaced by
ones and ones by zeros, This method of representing negatlve
numbers ls often referred to as the one-complement or in-
verse system, cf [&4].

The inverse system implies that the number Zero may be re-
presented in two ways, viz. +0 (all digits = O) and -O (a1l
digits = 1). When a result equal to zero 1is formed by the
X1, 1t is usually shown as -0, or, more precisely, the adder
only has an output = +0 Lf both addenda are = +0., The X1
performs a subtractlon by adding the inverted subtrahend.

The following logical operations exist for the registers
A and S (R may represent elther A or S):

OLRn : +(n) ¢ (R) = (R)
1R n 3 -(n) v (R) = (R)
2IR n : +(n) Ao (R) = (R)
3IRn -(n) A (B) = (R)

Remark. Loglcal operations exist for the A- and S-reglsters
gnly, not for the B-reglster; furthermore they are always
in-operations”.

12

-8-

OIR ard 4LR: 1o 1cal mdditlon. The operations OLA and
OIS form & Tesult from The contents of the storage lo-
cation n and the reglster in question; this result has
a 1 in all those binary positions, where (n) and (R)
differ. In the remaining binary positions & 0 18 formed.
This result replaces the original contents of the regls-
ter, whlch are therefore lost; the number in address n
pemains unchanged. The instructions ALA and 113 are sl-
milar. except that they nandle the inverted word -{n)
instead of +(n). Logical addition 1s also called "earry-
Jess addition”.

2LR and 3LR: Logical multiplication. The operatlons 2LA
an form & resu from t sontents of the storage
location n and the reglster in gquestion; this result
nas & 1 in all those binary positions where both (n)
and (R) have & 1. The remaining digits of the result
are 0. Again the result 1s placed In the reglster, etc.
The instructlons 3LA and 3LS handle the word -(n) in=-
stead of +(n). Another name for logical multiplication
1g"sollation”.

The order code includes four yersions of multipllica-
tion:

oX n A] + }.[s] = sl
X n : Al - [n}.[s] =» [As)
2X n ¢t + [n].[8] = (as]
3X n 3 - [n].[s) = fAS)

The position of the -pinary- point (1.e. of the units)
hardly plays a role in addittlon, provided that the point
1g in the same place in both numbers. This ig not the
case 1n multiplication and divislon: we therefore make
use of sgquare brackels [1 to indlcate explicitly that
the word concerned must be regarded as an integer.

The symbol [AS| 1s used %o denote a double length in-
teger; the 26 most significant diglts and the sign diglt,
which precedes them, are stored in the A-reglster; the
§-reglster contalns a copy of the sign digit and the 26
Jeast significant diglts. The symbol [AS] can only be
used when sgn(A} = ggn{s); its numerical value is glven

by
fas] = (&l 220 4 s])

The X4 multiplies the contents of S by (plus or minus)
the cententa of storage location n. In the so-called

13

-9_

"gdditive multiplications’ OX and 1X this product 1is
increased by, the orlginal contents of the A-reglster,
the product heing increased at the least significant
aide! In the "clear multiplications” 2X and 3X there
{s no such increment. As implied by the notation, the
most significant half of the result 1s placed in A,
the other half in Z; in the final result the signs of
A and S are always equal to each other. The origlnal
contents of the reglaters A and S are lost, the number
in the memory remalns unchanged,

When the result of & clear multiplicatlons 1is zero,
the same zero 18 placed in both registers, the sign
being determined by the signs of the factors accerdlng
to the usual algebraic rules. The result of an additlve
miltiplication will only be +0, if, firstly, the orl-
ginal (A) = +0 and, secondly, the origilnal tS) and (n)
would have had the corresponding c¢lear product +0.

Another common interpretation of a word is as a proper
fraction with the binary point between dog and dpgs. The
word thus represents & fraction which 1is less than one
in absolute value.

This interpretation of a word 1s denoted by braces
{}. The following obviously holds:

o} = [n).27%

Similarly we introduce two further interpretations for
the double length number (AS), viz. as compound number

[as} = [as] 2726 -] + {8} ,

1.e. with the point between the reglsters, or as double
length fractlon

{as} = [as] 2752 = () + {s} 226

1.e. with the point preceding the most significant diglt.

In {llustration, the order 2X n was defined as

+ [m).[s] = [as]

by multiplying both sides or this equallty by 2'26, ve

obtain

14

-10-

+ [n] As) =+ {0} 8] = [as}
and after multiplication by 2-52 ye obtaln

+{n} s} = {as}

A programmed rounding-off for multiplication 1is
descrived at the end of paragraph 2.6.1.

The order code includes four versions of division, viz.

0D n ias) /+[n] , remainder = (8], quotient=> 5]
4aDn : [a8] /-] - "
2D n (] 228 /+ [" ;
3D n [A] 226/- [n] n n

The operations 2D and 3D begin by clearing S under
control of the slgn digit of the A-reglster. From then
onwards their operation is the same as that of 0D and
1D respectively, which may only be executed when
sgn(A) = sgn(s). (This restrlction 1s implied by the
use of the symbol [AS] !)

The double length number [AS] 1s then divided by
+[n] . The quotilent appears in S, the remainder 1s left
Tn A. By definition, this remainder has the same slgn’
as the dividend and the smallest absolute value then
possible. The original contents of the reglsters A and
g naturally disappear, while the number 1n the memory
remains unchanged.

Neglecting the remainder, a more useful definitlon
ofzghe division 2D n 1s obtained after multlplying by
2=l

[a] :] = {A} : {n} = {st

the quotient 1s then not rounded-off. A programmed
rounding-off for division 1s described at the end of
paragraph 2.6.1.

A necessary condition for a correct result after di-
vision 1s that the quotient does not exceed the capacl-
ty of one word.

The above description 18 incomplete in one regpect;
every operation tneludes the substitution

15

-11-

(T) + 1 = {T) .

1.e. one is added to the contents of the order counter

T at the beginning of the execution of every order. As

nentioned before (see 2.2,1) (T) 1s the address of the

order to be executed, Hence the instructions are obeyed
in the order in which they are stored in the memory.

The above only holds if we restrict ourselves to the
orders that have been dealt wlth so far, Besldes these,
there is a speclial group of orders that may cause the
machine to start selecting orders at a different polnt

{n the memory, They are called jump orders; from a tech-

nical polnt of view their function 1s to give (T) a new
value.

0T n : (T) + (n) = (T)
AT n : (T) - (n) = (T) ?§% 2t?8 the X1 1f
2T n : + (n) = (T)

¥7nm : (m) -1 = (m); n= (T); Osmg7T
6 nm : (T)= (m+8); n = (T); Osms75

Here the symbol (T) represents the contents of the
order counter after the increase

(T) + 1= (T)

has been effected. This additlon always takes place,
regardless whether the current order is a Jjump or not.

OT and 4T: Additive jump. When (n) =+0, both orders
have no effect. They act as skips, l.e. the control
proceeds to the next 1nstructIon without alterlng the
contents of the memory or of the registers. When (n) =
+1, the order 1T n acts as a dynamle stop.

oT: Normal jump. The substitution (n) = (T) applies
To The 15 least significant digits of the word (n);
they are copled into the order counter. The Jump has
then been executed and the next order will be read
from the storage location indicated by (n).

After executlon of the 0,1,2 T jump the X1 stops if
(n) ¢ -0. This makes 1t possible for the X1 to execute
a subroutine at full speed during the testing of a pro-
gram and to stop automatically when control returns to
the main program {see 2.8).

16

-

4T: Counting jump. In this case the address must be
followed by an index m which can have any value from
0 to 7 inclusive. The 4T-order is a Jump, slnce its
address is copled into the order counter, (NB. The
actual address digits and not the contents of address
n are copled into the order counter!) '

Furthermore the number in storage location m 1s de-
creased by one. In this context that locatlon is usu-
ally referred to as rm'and the counting is described

by
(rm) -1 = (rm)

The full meaning of the counting Jjumps wlll become
clear as soon as we are familiar with a number of ad-
ditional facilities included 1in the order codej in -
the discussion of the so-called varlants {see 2.4%) we
return to thls subject. .

6T: Subroutine jump. The subroutine Jump 18 also pro-
vided with an index m; here m satisfies the inequall-
tles 0< m €15, As 1n the case of the counting Jump the
address n, and not (n), is copied into T. Before this
takes place, however, the contents of T, already 1nh-
creased by one, are copled into storage location m + 8.
The locatlon m + 8 1s usually referred to as sm In this
context. (The sixteen (sm)'s therefore occupy the
addresses 8 to 23 inclusive,) The previous value of (s_)
18 obviously lost.

The word {s_) - alsoc called "the link" - records the
address of th® order that follows the subroutlne Jump
in the memory; this order would have been the next or-
der to be executed, were it not for the fact that the
6T-order, belng a jump, interrupted the normal sequence.
The value of (S indicates where the {nterrupted sequence
can be continued; for thls reason the fT-order is called
a subroutine Jjump.

The subroutine jump therefore "preserves" the current
contents of T by putting them in safety in the 15 least
significant digits of (sm). The subroutlne jump preserves
still more information: the remalning bits of {sm) are
used to record the current contents of a number of small
registers. The detalls are postponed untll these regla-
ters have been dlscussed {see 2.4.3 and 2.7.2).

The remaining orders form a sPecial group, known as
"shift and communication ordera’. They are of a diffe-
rent nature and will be discussed later (see 2.6 and

2.7).

17

-13-

2.4 The variants

The deseription of the orders as given in 2,3 holds
in so-called "normal cases". In actual fact there are
different versions of the orders. The functlon of the
orders can be altered and extended in three respects.
These modificatlons are controlled by the three so-
called "varlants". Roughly speaking, the varlants cover
"address modification”, 'tondition-setting”, and "condi-
tion reaction”.

o. 4,1 Address modification

The variant controlling address modification can take
one of four forms. In the normal case the address diglts
of the order are processed as described in 2.3, the other
three posslbilitles are indicated by writing one of the
three letters A, B or C behind the address.

A("Absolute") In thls case the address modificatlion is a
change in interpretation of the address digits: the nume-
rical part n of the order 1g not Interpreted as an address
here, but as a number. For this purpocse 12 zero's are added
to the 15 digits of n at the most gignificant slde.

For the absolute version "the contents of storage loca-
tion n" in the above description of the orders should be
read as "the number n".

For example, the normal order 28 n has the function
(n)=>(8); by contrast, the order 25 n A has the func-
tion n = \8].

The absolute verslon makes it possible to record con-
gtants less than 2715 directly in the address of the order;
in this way space in the memory {3 saved.

Furthermore the absoclute verslon 1s, as a rule, faster
‘than the normal version: when the order has been selected,
no second memory contact ls necessary to obtain the number.

We note:

1, that the absolute version has no meaning in the case of
out-operations.

5. that for the orders 4T and 6T (counting and subroutine
jump respectively) the address 1s automatically Iinter-
preted as an absolute address (see 2.3). The variant for
address modification does not apply to these orders, the
address may not be followed by either A or B or C. The
obligatory index m follows 1t instead.

18

b

that the absolute version of the 2T-Jump will be made
use of more frequently than the normal verslon.

B and ¢ ("B- and C-correction" respectively) In the
case of a B- or C-correction, the contents of the B-
register are added to the address of the order imme-
dlately after it has been read from the store. The
order 1s then executed with the modified address; the
latter is interpreted in the normal way and nevcr as
an absolute address.

if (B) 1s negatlve care must be taken that the B- or
C-correctlon glves rise to a non-negative address; sl-
milarly, if (B) 1s positive, the resulting address must
be less than 27,

The dlfference between the B- and C-correctlon is the
following: the B-correction leaves the order gtored In
the memory intact, while the C-correctlon also substl-
tutes the newly formed address 1n the memory. For orders
atored in the dead memory & C-correction 1s interpreted
as a B-correctlon.

Finally a word of cautlon must be added with regard to
shift and communication orders. Here the use of B- or C-
correction may give rise to unexpected results, because
the address diglts act more or less as additional func-
tion digits. By using a B-correctlon the character of
such an order can radically change.

2. 4.2 Condition reactlion

The varlant ot the condltion reaction can take one of
four forms. In the normal case the order is executed as
described above (see 2,3). To indicate one of the three
remaining possibllitles, one of the letters U, Y or N 1s
placed before the function. The name of this varlant 1s
derived from the last two versions (Y and N), as they
cause the order to react to the so-called condltion. The
latter 1s recorded in a separate one blt regilster. When
thia bit 1s zero, we say that "the condltlon is affir-
mative", if not, we say that "the condltion is negative",

Y ("Yes-conditional”) In this case the order 1s only
executed of the condition is affirmative, otherwise 1t
1s skilpped.

N("No-conditional”) In this case the order 1s only exe-

cuted If Tthe condition is negative, otherwise 1t 1s skilpped.

We polnt out again that a skipped order leaves the con-
tents of the reglsters and the memory unalitered: if, for

19

-15-

example, & C-corrected order ls skipped on account of
the conditlion, the order itself alsoc remalns unchanged
in the memory.

U ("Undisturbed destination"). When the U-version ls
used, transfer of the result of the operatlon to 1ts
final destination 18 suppressed, although 1t 1is formed.
The result of the operatlion is thus lost, whereas the
original data remain.

This version would obviously be pointless, were it not
for the fact that the result obtalned can be used to set
the conditlion (see 2.%.3).

The U-version does not apply to multiplicatlon, divl-
sion and shift and normalize orders (see 2.6), l.e. not
to those instructions in which the reglsters are used
repeatedly 1n forming the result.

The U-version has a different meaning for T-orders
(jumps), viz. "Execute the jump order 1f the overflow
{ndication = 1 and clear 1t (i1.e. make 1t = 0), other-
wise skip".

The overflow indication 18 held 1n a separate one bit
register (comparable to the condltion). Irrespective of
1ts previous value, this blt 1ls gilven the value one as
soon as an overflow of capaclty occurs in addition or
subtraction,

Overflow 18 detected when the addlition of two numbers
with equal signs results in a sum wlth the opposite slgn.
This applies only to numbers of full word length, the
orders OB to 7B therefore require a more detalled de-
scrliption,

In the orders OB, 1B, 4B, 5B, 6B and 7B the orlginal
contents of the B-register are supplemented by eleven
coples of its sign diglt at the most signiflcant slde;
the 27 bit number thus obtalned 1is processed.

In the orders 0B, 1B, 2B and 3B only the 16 least slg-
nificant digits of the result are transferred to the B-
reglster.

The overflow detection, however, reacts to the addi-
tion performed on numbers of full length., By additlon
of two positive numbers, 1t Is therefore possible that
the sign diglt of the B-reglster d, g becomes = 1, with-
out the overflow lndicatlon belng sgt.

20

-16-

2.4,3 Condition-setting

In principle the last varlant controls whether the
order assigns a new value to the condition. The normal
case, in which the bit specifying the condition 1ls left
as 1; stands, is described in 2.3, If we wlsh the result
of an operation to influence the condition, one of the
letters P, Z or E is written right at the end of the
order.

We formulate the setting of the conditlon as recording
the reply to a question; the nomenclature "affirmative"
and "negative" for the two states of the conditlon is In
accordance with the above convention.

P("Positive?") The condltlon records the reply to the
guestlion "Is the result » +0?", where, by deflnition, a
result = -0 would lead to a negatlve answer.

Z("Zeroc?") The condition records the reply to the ques-
tion "1Is the result = 07"

E{"Equal signs?") The condition records the reply to the
question "Ls the sign of the result equal to the sign of
the result of the previous condition-setting order?’

Tt 1s posaible to construct the answer to the last
question thanks to an additional memory element, the so-
called "Last Sign Reglster"; like the regilsters for con-
diticn and overflow indlcation 1t consists of one bit,

Tn t1e orders OB to 7B the questions asked refer to the
- full length result (see 2.4.3, last paragraphs). For mul-

tiplicetion and division we specify that the filnal con-
tents «f the A-reglster are to be taken as "the result'.

The zbove description of this variant does not apply
to jump orders; for them this variant acts as follows.

The syn%ols P, Z or E do not occur in the 6T-order
(subroutine jump). ,

In the ¥T-order (counting jump) P, Z or E may occur,
but they co not change the condition. In the description
of the couiting jump (see 2.3) the counting: (rp) - 1=
(rm) and tte jump: n = (T) were irrevocably connected,
By placing 2 P, Z or E after the index m, however, one
makes the etecutlon of the jump dependent on the new
value of ().

P("Jump if 18 positive") The jump only takes place
if the new Sth S 0. (NB. When the counting leaves (rm)

= 0, it is always in the form (ry) = -0.)

21

-47-

7 ("Jump if (rp) equals zero”) The jJump only takes
place 1f the new {rm) = U,

E ("Extra jump") The Jump only takes place 1f the new
value (rm) » 0. (If this order 1s executed repeatedly,
one more jump ls made than In the case of P, hence the
name "Extra jump".)

A countin ump may be conditional to the overflow
indication Ug or the condltion (Y or N), in which case
the counting jump ls skipped 1f the requirements con-
cerned are not fulfilled. Thls 1implles no counting and
no_jumping. If the order 1s not skipped, the counting
always takes place and the order 1s considered as executed
_ in the U-version the overflow indication is cleared! -,
even if, after counting, 1t 1s found that the Jjump must
be suppressed.

The variant only exists in the P-verslon for the re-
maining jumps (OTr 1T and 2T). The Jump is then called
a "restoring Jjump”. For the present a partial descrip-

tion must sufflce.

The order "2T n" transfers the 15 least significant
bits of (n) to the order counter. The order "2T n P"
does this tco, but performs a number of secondary svb-
stitutions depending on the values of the more signi-
flcant diglts of (n). For the moment we mentlon the
processing of three of these blts.

(n) for the orders C, 1, 2I' n °©
d18 = 0 make the condition affirmative
= 1 1 n 1 negative
dq7 = 0 make the "Last Sign" positlve
= 1 negative
1 Al rt 1
d16 = place a O in the overflow
indication (l.e. clear it}
= 1 place a 1 In the overflow indlcatlon.

The inverse of the above operatlons always takes place

in subroutlne jumps: besldes the fact that {(T) is pre-
served in the corresponding s_ (see 2.3), the conditlon,
last sign and overflow indica¥®lon are recorded in the
digits d48, d47 and d4g of (sp). It is therefore possib.e
to call in a subroutine, at the end of whlch the control
is returned to the mailn program, wlth the restoration of
the status quo at the moment of calling in, as regards
the condition, last sign and overflow Indlcatlon.

If the subroutine jump was condltional to the overflow
{U-version of the Jjump order), an already cleared over-

flow indication 18 recorded in 8-

22

_18-

2.5 The order notatlion

2.5.1 The address notatlion

In discussing the address notation we regard the
memory as belng divided Into pages, each consisting
of 32 consecutlve storage locations.

An address is written in two parts, viz., line
number followed by page name. For this reason the
lines of a page are numbered from 0 to 31 incluslve.
Line 31 of a page is followed by line O of the next
one.

The standard program sheets for the X1 are designed
in accordance with this convention and have 32 lines;
starting at the top they are numbered from O to 31.

In their turn pages are grouped into so-called para-
raphs., A page name consists of so-called paragraph
letTters followed by the page number. The latter may
have any value from O to 10 inclusive, it numbers con-
secutlve pages of the same paragraph. Thus a paragraph
is characterized by 1its paragraph letters and 1t com-
prises, at most, 17 consecutive pages of 32 words each,

During input of orders the X1 deduces the blnary re-
presentation of the address from these symbols. In this
deduction the page number, multiplied by 32, 1s added
to the line number; this sum 1s added to the address at
which the paragraph starts, l1.e. the address of llne O -
of page O of the paragraph. Hence line 3 of a page may
alsc be referred to as lline 35 of the previocus page.

The programmer may choose from 169 possible paragraph
names; they all conslst of two letters and he may use
one of the followlng thirteen for both the first and the
second letter:

7z, E, ¥, H, X, L, R, 8, T, W, U, ¥, N,

An address is written in three columns, from left to
right:

1. the 1line number

2. the first paragraph letter

3, the second paragraph letter followed by the page
number,

Remark. If a line number or a page number happens to be
zero, one 1s nevertheless obliged to wrlte this O down.

-19-

It 18 useful to regard those paragraphs wlth the same
first paragraph letter as peing the paragraphs of one
chapter. If the first paragraph letter equals that of
the previous address, 1t may be omitted. A special co-
1umn is reserved for the first letter, so that this o-
mission 1s clearly seen: a blank in this column acts &s
"d1ttos".

Thus it is only necessary to write down the first para-
graph letter when it changes, and one s3aves mach wrlting
and punching when one avolds changes in this letter as
much as possible. The 1ldea of chapters now becomes clear:
{f those paragraphs, that refer to each other most fre-
quently, are grouped under one chapter, we obtaln a
clearer and more concise notatlion, By contrast to pages
in a paragraph, the paragraphs of a chapter need not di-
rectly follow each other in the memory.

The address at which each paragraph starts may be chosen
by the programmer; thils address functlons as an arblirary
reference point, with regpect to which the programmer can
number his addresses,

There are, however, two fixed reference polnts, each of
which 1s indicated by a single letter (viz. X and D res-
pectively). The processing of these letters is independent
of the chapter in which they occur; their use does not
give rise to a change 1in the filrst paragraph letter in the
sense described above. For thls reason the symbols X and
D are written in the last address column, together wlth
the page number, that may have any value from O to 31 in-
clusive after these letters. The X refers to address O,
the beginning of the (living) memory; the D refers to a
fixed poilnt Iin the dead memory section.

2.5.,2 The order

Orders are written in seven columns found on the standard
program sheets; for the moment we number the columns from
O to 6 as shown below. (At the extreme left of the columns
we find the numbers C to 31 for the llnes, at the right a
fair amount of space 1s left for notes and explanatlons.)

| \
| i
1 t
I I
! ‘
['
| |
1 1

Y

0 2'3 4 5 6

24

-20-

From left to right they are reserved for:

column O: Conditlon reactlon (When 1t occurs, U, Y or
N is entered in this column.)

column 4: Function, 1.e. function digilt followed by
function letter(s)

columm 2: Line number

column E: First paragraph letfer (usually omitted) address

Second paragraph letter followed by rage

number

column 5: Address modification (When it occurs, A, B
or C is entered in this column. In the orders
4T and 6T, where these letters cannot be used,
the index m < 7 or € 15 respectively 1is
written In this column.)

column 6: Condition-setting (When it occurs, P, 2 or E

1s entered in this column.)

colum

In short: functlon and address are written between the

thick lines, outside of these space i{s provided for the
variants.

In many of the orders in the absolute verslon, the
programmer will prefer to write the numerlcal part In
decimals. For example, when one wishes to multiply (S)
by 1000 the notatlon

2X 1000 XC A

is clearer than
oYX & X31 A

{although the last form is permlssible} As a result A
{s often preceeded by "X0", as nothing 1s to be added
to the decimal number. The combination "XO A" occurs

so often that a shorter notation has been introduced:
in this particular case the XO in column 4% may be o-
mitted, and the usual notation for the saild instructlon
is

2X 1000 A

2.6 Shift and communicatlon orders

The order code includes a speclal group of instruc-
tions known 2s "shift and communlcation orders"., The
address digits of these orders never refer to a storage
location, but hold additional informatlon about the na-
ture of the operatlon {according to a speciflc code).

25

-24-

They can all be denoted by the function letters ¥
and Z. For many of these operations, however, this
would lead to & rather cumbersome notation: the pro-
grammer would have to be famillar with the codlng of
the address portion of the shlft and communication
orders. To avoid this, a speclal function letter P
is lntroduced.

The function letter P 1s the indication that the
tape reading program has to process the symbols that
then follow in a special way, as they have an entire-
ly different meaning from ordlnary address symbols.
The subdivision into pages does not apply here, these
"addresses" never bring about a change in the first
paragraph letter as described in 2.5.1. As a remlnder
the column In question is always left open for these
orders.

2,6.1 Shift orders

Shifts can take place in four so-called "circuits".
They are .

Circult AA B] A]
(27 bits) e =

Cilrecult SS t
(27 bits) e

_,
1
L

1a

Circult AS 41 A b S
(53 bits) r-lzk L L z

e mr mr o = —r o s mm me e e e e A e o = e e e = w

Circuit SA A 3
(54 bits) C - -1 B

'
|

&
3
b

The sign digilt of the first register named acts as
"the sign diglt of the circult”, in the diagrams 1t 1ls
indicated by t. We note that the slgn digit of S 18 not
Included In the circuit AS.

Digits of a cilrcult may be shifted in elther directlon,
as shown by the arrows in the dlagrams.

There are two different ways of shifting, "round shift-
ing" and "clear shifting". Shifting around needs 1little
further explanation: the digits of the circuilt are cycllc-
ally shifted over a gilven number of places, elther to the
right, or to the left. In the clear shift the clrcult 1s,
as 1t were, cut open at the sign digit t of the clrcuit.

26

-0

(The part of the circult indicated by dotted lines in
the diagrams then no longer applles.x The sign digit
t does not change during the clear shift; the digits
leaving the clrcult at the cut are lost, at the other
side of the cut coples of t are sent into the circuit.

The kind of shift 1s indicated in column 1 of the
program sheet, i.e.

OP Round shift to the left
1P - Round shift to the right
2P Clear shift to the left
3P Clear shift to the right

In column 2 we write n, the number of places over
which the digits are to be shifted (0gn £31).

Columm 3 1s left open, in column 4 we write the two
letters denoting the cilrcult.

The U-_version does not exist for shift orders; nelther
does the A-version, because the interpretation of the
address digits 1s already fixed. The B- or C- correctlion
may be applled, but with due care: if the resulting n
should for example become greater than 3%, the order
would become a different shlft or communication order!
The P-, Z~ and E-versions all exist, but we must speclfy
that the term "the result" refers to the final contents
of the A-register for the circults AA and AS, and those
of the S-register for the circults SS and SA.

In 1llustration, we gilve a rounded-off version of mul-
tiplication and division. The program below rounds the
product {0 X1} .{1 X1} off and places the result in {a} :

25 O X1
2X 1 X1 P
0P 1 AS
Y (oA A1 A
N (1A 1 A
1P 1 AS

The following program rounds the quotlent (0 X1)/(1 X1)
off and places it in {S}:
24 0 X1 P
25 1 X1 E
N |5P SS -(s) = (8), see 2.6.2.
3p A1 53
oD A X1

27

-23-

The above examples show that rounding-off 1s a rather
complicated matter when nothing is known about the signs
of the numbers involved,

2.6.2 Register transports

The contents of any one register may be copled, with
or without inversion, into another or the same register
py means of a "register transport order". Columns 2 and
3 are left blank. The general form of these orders 1s

yp! (R) = (R®)
5P! -(R) =» (RF)

i
i
3

a2
' RRE

1 .
1 1
| '
] 1
] b
+ '

where R and r* represent A, S or B.
The A-verslon does not exlst and B- and C-correctlion

are difficult to apply. The varilants of condition reac-
tion and setting may be used without restriction.

2.6.3 Normallze orders

In normalize instructions columns 2 and 3 are also left
plank. What has been said about the varlants in 2.6.1 ap-
plies here as well, but B- and C-correction are of less
importance,

Normalize orders are, in fact, shift orders to the left.
The number of places shifted, however, ls not gilven in the
order; the digits in the circult are shifted to the left
until the most significant diglt of the number differs from
the slgn bit t (in other words, over the maximum number of
places for which a clear or round shift makes no difference).
The normalize order places thils number in the B-register.

Normalize orders exlst only for the circults AA, AS and
SS (see 2.6.1). The maximum number of places shifted in
normalizing is 26 for the circuits AA and 33, and 52 for
the clrcult AS. These numbers are only reached if all
digits of the clrcuit are the same.

The normalize orders are wrltten as follows:

; |6R) | AA o normalize (A)

: 6Pt | 88| ! 1 normalize (8)
1

L o|ePt L As| normalize (AS)

28

_oh-

(The above description of the order 6P AS 18 not
completely correct, as the order may be glven when

sgn(A) # sen(s).)

2.6.4 The stop order

e G e

' ' 1

The order 7P stops the X1; 1t exists in the Y-verslon
and in the N-verslon.

2.6,5 The fast multiplications by 10

Two speclal multiplications are included to speed up
the conversion from decimal to binary representation and
vice versa.

i

10(s) = s} (or 10{st = fas})
10 [8] = (8

62132 | XX
I
67133 | XX

'
|
1
1
t

1 |
\ 1
In the first order the original contents of A are lost,

in the second they remain intact. The first order is of
special gignificance In the output, the gecond in the 1n-
put, of data in decimal form. The itwo orders are technlc-
ally the same but for the fact that transport of the "carry"
to A is suppressed 1in the second order; the latter only
gives & correct result 1f the product does not exceed the
capaclty of one word! In both orders the final contents of

S act as the "result" for the purpose of condltion-setting.

The time taken by both multl lications is 64 ps (normal
multiplications require 500 psg

-

The "actual" communication orders are of only small
interest to most programmers, because 1n most cases the
standard communicatlon programs will meet thelr needs.

Since the communication programs for tape reader, tape
punch and Lypewrlter will be discussed in detall in this
thesis, we now describe the communication orders that con-
trol these mechanisms.

29

-25-

2 6.6 The communication orders for the tape reader

The tape reader handles five-hole punched tape: the two

most significant pdsitions are on one side of the sprocket

hole, the three least significant on the other side.

Tape read instructlons regard the output of the tape
reader as a positive number of 5 digits (a hole = 1 and
no hole = 0); the number 18 supplemented by 22 zeros at
the most slgnificant side. This number 1s denoted below
by (BL); 1t may be added to or subtracted from (A) or
(S), or transported to one of these registers with or
without change of sign. As soon as a symbol has been read
by one of the following tape reading instructions, the
tape 1s stepped up by one posltion, so that the next sym-
bol can bhe read.

oY 1 XpP (A) + (BL) = (A) and step up
¥ 1 XP {(A) - (BL)== (A) » v =
2Y 1 XP + (BLY = (A) w v m
3¥y 4 XP - (BL) = (A) v n w
0Z 1 XP (s) + (BL)=>(8) w n n
142 1 XP (8) - (BL)=3 (S) v n n
2Z 1 XP + (BLY=»(S) « v n
3Z 1 XP - (BL)=(S) w «

The variants of condltion-setting and reactlon may be
used without restrictlon,

2.6.7 The communication orders for the tape punch

The five least significant diglts of (A) ar (S) can be
punched with or without inverslon. They are sent to the
so-called type-punch-relays TP. As soon as a symbol has
been punched, the tape is moved up over one position.

6Y 1 XP +(A)=(TP), punch and step up
7Y 1 XP -(A)(TP), Wooom
6Z 1 XP +(S)=> (TP), nooomon
72 1 XP -{S)=(TP), wooonoon

Tn condition-setting the complete word +(A) or +(3)
functions as the "result"; the varlant of condlitlon reac-
tion may be used in the Y- and N-version, but not in the
U-version.

30

_26-

©.6.8 The communicatlon orders for the typewriter

The type order The operation of the type order is ana-
Togous to that of the punch order; 1n thils case however,
OB N eans significant dlglts of +(A) or +(S) deter-
mine the symbol to be typed. The type-punch-relays TP are
used here too.

6Y 2 XP +{A) = (TP) and type
7Y 2 XP -(A) = (TP) ™ "
6Z 2 XP +(8) = (TP) " "
772 2 XP -(8) = (TP) " "

The ume of slx blts makes it possible to operate all
the keys of the typewriter. The "Capital Ietter key" can
also be used; the typewrlter will remalin in this posltion
untlil a signal 1s sent to the "Small Letter xey".

The correspondence between (TP) and the typed symbol 18
given in Appendix 1.

The "echo" orders The purpose of these orders 1is checking
the output by means of the typewriter as fully as possible,
The typed symbol can be gent back in binary form from the
type relays TR to A or S. The number (TR) 1is supplemented
by 21 zeros at the most glgnificant side.

oy 2 XFP {A) + (TR) =» (A)
¥ 2 XP (a) - (TR) = (A)
2Y 2 XP + (TR) = (&)
3y 2 XP - (TR) = (B)
0z 2 XpP (s) + (TR) = (8S)
12 2 XP (s) - (TR) = (S)
27z 2 XP + {TR) = (8)
37 2 XP - (TR) = (8)

2.6,9 Timing of communication orders

As mentioned before the tape reader can handle 150 sym-
bols per second, the tape punch 25 and the typewriter 10
(see 2.2.3). When the sontrol encounters a tape readlng,’
punching or typing order, one of two situations may arilse.

It ls possible that so much time has elapsed since the
executlon of the last similar order, that the apparatus

31

-27-

in question can deal with a new order immedlately;
the communication order 1s then executed in 36 ps
and the X” contlnues 1ts program without delay.

On the other hand the apparatus in question may stlll
be engaged in the completlon of the previous similar
order; in this case the X1 automatically walts untll
the new communication order can be executed and only
continues the program after the necessary delay.

It is therefore possible to make a communication
program for the X1, wlthout paying any attention to the
relative timing of the external apparatus on the one
hand and the X1 on the other hand.

The X1 can contlnue with the program ilmmediately
after obeying a communication order, although the ac-
tual completion of thls operatlon may require a consl-
derable time (viz. 7, 40 or 100 ms); thls is possible
thanks to the fact that the external apparatus has a
separate control.

The tape punch and typewrlter make use of the same
control apparatus, while the tape reader has 1ts own.
As a result, the blocking of tape read orders on the
one hand is entirely independent of the blocking of
punch, type and echo orders on the other hand.

When a tape read order has been obeyed, no new tape
read order is accepted for 7 ms.

When a tape punch order has been obeyed, no new punch,
type or echo order is accepted for 40 ms.

Wnen a type order has been obeyed, no new punch, type
or echo order 1s accepted for 100 ms, (If the type order
sends a Tab-slgnal to the typewrlter, the blocking lasts
longer, after a NICR-slgnal 1t lasts much longer.)

The execution of an echo order does not glve rise to
any blocking.

When the X1 encounters a communlication order that
cannot be accepted immedlately, it automatlcally walts,
as mentioned earlier, until the restriction is removed.

Sinece the X1 would be nonactive durlng this perlod, a
system has been devised whereby it 1s posslble to avoid
walting time; during the period of blocking the X1 con-
tinues with some other program but as soon as the res-
triction ls removed, the X1 is "warned" that the follow-
ing communication order can be executed without delay.
This "warning" 1s called "an interruption signal”.

32

-28-

2.7 The gynchronization with external apparatus

2.7.4 Introduction

The communication orders for tape reader, punch and
typewriter have been described in 2.6.6 to 2.6.9.

Besides these, the order code includes instructions
for otner input and output apparatus whlch may be
coupled to the X1, e.g. fast tape punch, reproducers
and fast sorters for punched cards, tabulators, fast
printers, magnetlc tape mechanisms. They will not be
consldered here; we prefer to direct our attention to
a general problem that arises in connection with the
coupling of the X1 to external apparatus, viz. the
problem of sxgchronization.

The fact 18 that these orders (which will occur in &
commmication program) ensble the X1 to make contact
with such apparatus, but the construction of the latter
will, as a rule, impose the restriction that the time
of execution of such a communication program cannot be
arbitrarily chosen.

For example, we have already seen that an interval of
at least 100 ms must have passed after the execution of
a type order, before the next one can be obeyed. For a
punched card machine, which can deal with cards at fixed
intervals, the "consciousness of time" 18 even more pro-
nounced. In consequence, 1t is desirable (1f not necess-
ary) that the moment at whlch the X1 starts on the com-
munication program, be determined by the external appa-
ratus rather than by the X1,

For example, in the case of the typewriter, thils 1s the
moment at which another type order can be accepted, in
the case of a reproducer this is the moment, at which a
card has jJust passed the brushes, etc.

The so-called "4nterruption" has been bullt into the
machine to enable the X1 to execute a specific communl-
cation program within a period of time, that is Indepen-
dent of the maln progran. Broadly speaking, the inter-
ruption involves the following: at the beginning of such
an interval the program under execution is interrupted as
soon as possible, a so-called "interpuption program’ at-
tends to the external apparatus concerned, and afterwards
the program which was Interrupted is continued as 1if
nothing had happened.

We can picture the interruption as follows: on comple-
tion of an order, the following order 1s not selected,

33

-29-

but a special subroutlne Jump 13 placed 1n the order
register ingtead. As the ingserted instruction is a
subroutine jump, the current contents of the order
counter and the conditlon etc. are preserved in the
corresponding link (sp) and control 1is transferred
to the beginning of the interruption program. As a
rule this will begin by storing the current contents
of the reglsters A, S and B In locatlons speclally
reserved for the purpose. Thereafter the Interrup-
tion program proper attends to the apparatus in ques-
tion, and finally the status quo of the interrupted
program 18 restored with the ald of the preserved
data.

In other words: as soon as more urgent work has to
be done, the X1 can be automatlically "lent" to an in-
terruptlon program so that it can be speedily attended
to. By comparlson to solutilons without an interruption
facllity, the efficlency of the X1 is conslderably in-
creased In this way.

If the X1 has to attend to several external mecha-
nisms, one can understand that 1t is desirable that
different mechanisms produce thelr own interruption.
These interruptions should have an order of prlorlty.
For example, a small interruptlon program, which must
be executed within a2 short and specified range of time
may not be interrupted by a long interruption program,
which can probably be postponed longer than the short
one; the reverse case, however, should be permitted.

For any interruptlon, the so-called "interruption per-
mit" indicates whether the interruption Is permitted or
not. It can be modified by the program: lnterruptions
therefore take place automatlcally, but only lnasmuch
as allowed by the program!

If one prevents an Interruptlon by means of the Inter-
ruption permit the actual interruption 1s postponed un-
t1il the permit 1s suitably modified. To make this post-
ponement possible mechanlsms (or parts of these) which
require attention do not bring about the interruption
directly, but they only send a so-called "interruption
signal” to the X1. (This signal remains until it is re-
moved by the appropriate order in the corresponding in-
terruption program.) The permit then determines when the
signal will bring about 1ts corresponding interruptlion.

Provision 1s made for seven different interruptlons at
most. It is possible for different slgnals to call for
the same interruptlon. Those interruption signals that
cause the same interruption form a so-called class. The
interruption permlt can specify per class, whether 1its
signals are to have an ilmmediate effect or not; 1n other

34

-30-

words the interruption permit can postpone certaln
interruptions, The classes are numbered from 1 to 7;
interruptions from class 7 cannot be suppressed by
the permit (see 2.7.4) and the interruptlon permlt
therefore consists of six blts.

As far as Interruption slgnals are concerned the
presence of one from 1ts class 1s sufficient to pro-
duce an interruption., The interruption program must
then be able to declde which of the signals of 1ts
class are present, Special orders have been bullt
into the machine for thls purpose: they read the so-
called "class word" and transfer it to A or S. Every
interruption signal of & class corresponds to a spe-
cific bit of the class word that keeps a record of
the presence or absence of the interruption signals
of the c¢lass 1n questlon. As soon &3 the presence of
an interruption signal has been recorded in the arith-
metic unit, i.e. when the class word has been read,
the interruption signal ceases to exlst.

Finally there 18 a method of preventing all inter-
ruptions without altering the permit. The X1 may be
in one of two states, viz, "gusceptible" or "non-
susceptible". The above description holds for X1
susceptibie'; for'X1 non-ausceptible” no interruptlon
takes place, regardless of the permit. Transition from
susceptible to non-susceptible and vice versa can be
brought about by special orders. Furthermore, the X1
becomes non-susceptible, as soon as &an interruption

has taken place.

The hilerarchy of Interruptlons can be controlled by
the interruption permlt. The state of susceptibility
of the X1 serves another purpose. With the Interrup-
tion facility an entirely new element 1s introduced:
the actual order In which the X1 performs 1lts diffe-
rent tasks is no longer determined by the program only.
To enable the program to Fulfil its total functlon pro-
perly, it is desirable that uncertainty about the order
of execution be excluded at certain critical stages of
the program. (This applles particularly to those sltu-
ations where the different tasks are connected to each
other.) This has been realized - without altering the
interruption permit! - by +he Introduction of the non-
susceptible state. As a rule non-susceptibllity only
lasts for a few orders.

2.7.2 The preserving function of subroutine jumps

A detalled descrlption of the preserving functlon of

35

~31-

the subroutine jump 6T can now be glven. The word (sp)
records, from left to rlght:

stop at end of subroutine

d26 stop bit 1
0 do not stop o o n "

d25 interruption permit blt, class 6] =1, permit inter-
! ruption
L]
d20 n " w , class 1| = 0, prevent in-
terruption
d19 susceptibility bit = 1 when susceptlble
= O when non-susceptible
d18 condition bit = 4 when negatlve
= O when affirmative
d17 last sign bit = 41 when negative
= 0 when positive
dag overflow blt = 4 when overflow
= 0 when no overflow
dgg = 0 (unused, see 3.5)
41y
K instruction counter bits .
)
4

The reverse process takes place in the restoring Jump;
the restoration does not only cover condition etec. isee
2.4%,3), but also the interruption permit and the suscep-
tibility.

2.7.3 Orders related to interruptlons

The setting of the interruptlon permit can be done by
means of & restoring jump, for instance in the adaitive
version OT when a non-apsolute address n 1s used. Une
makes the 15 least significant digits of (n) equal to
nought, control therefore does not Jump. Note that the
order destroys condition ete!

(If we wish to make the X1 susceptible with all classes
allowed by the interruptlon permit but we do not wish to
change condition, last sign and overflow indicatlon then
we could make use of the followlng plece of program. It
1s assumed to start at address O Z EO.)

36

-32-

DA O Z EO DI (see #.1.3 and }.,1.4%)

o | 6T 1 EO | O

4 |28 8 X0

2| | oP 11 AA

3| |eLA 7 A

4 loLA 24 x31| A

5 | 1P 11 AA

6 | 6A 8 X0

71| or 8 X0 P

8

Another way of modifying the interruption permit 1s
to use the following order:?

© loxt ai Gxs| i (0¢n <126) .

This order removes those classes from the tnterruptlon
permit that are indicated by a 1 1n the binary represen-
tation of the number n (1.e. & type of collation with the
inverse of n); as there 1s no class O, n 1s always even,

Two orders from this group have a speclal function, viz.
for n = O and n = 126.

without al-
\ lOYi 0 1XS‘ .+ make the X1 susceptible tering the
' loy, 126, 'xs| | | make the X1 non-susceptibl ;gggizﬁption

The following orders enable the interruption program to
detect which interruption signals from & class are present,
their presence belng indicated by a 1 and their absence by
a 0. They are {1¢k¢T7)3

bR § 1XP\ . % pead k-th class word into A
1

I{Z: 1" 1! !'XP L] " " n " [} " S -
The interruptlon signals cease to exist as soon as thelr
class word has been read out by one of the above orders.

The interruption of class k 18 effected by means of an
ingerted subroutine jump which uses 8gi- Of the (sp)'s
with 9 ¢m <15 the programmer can only use those that cor-
respond to unused classes,

Remark. The seven "interruptlon subroutine jumps" which

can pe 1nserted are stored In consecutive addresses in
the dead memory, viz. 1-T D16 (see Appendix #).

37

_33..

2.7.% The interruption by means of the keyboard

Class 7 is somewhat different from the others. Its
{nterrupticn signals are not obtained from an 1ndepen-
dent mechanism, but from the keyboard on the console
of the X1 (see 2.8). Pressing the keys while the X1 is
in actlon has no effect at all; pressling the key when
the X1 has been stopped will start the X1 and produce
an immediate interruption of claas 7, irrespective of
the contents of the interruption permlt and of the
susceptibility of the X1, The fact that the X1 was
started by the interruption is recorded by dgg = 1 in
845. At the end of the keyboard interruptlion program
thé status quo is restored, amongst others, by means
of a restoring Jump via s4g, which then stops the ma-
chine. The keyboard makes ise of an interruption in
order to be able to restore the status quo and does
not use 1t for the purpose of synchronization!

In class 7 the reading of the class word 1s replaced
by a reading of the number of the key that has been
pressed. For thils purpose the keys 0Oto9, ., +s -, F,
G and H are numbered from O to 15, In thils order. The
keyboard program can thus detect which key has bheen
pressed. This may have conslderable Influence on the
action of the keyboard program, as will be clearly
ihﬁwn)when we discuss the so-called autostarts (zee

A4.2).

2.8 The console of the X1

A number of switches and indication lights are to be
found on the nearly vertical panel behind the section
wlth nineteen keys and two swltches on the surface of
the desk. The latter are arranged as follows:

BNA + 1 2 3 F

SNA BCA - 4 5 6 G
SCA DO . 7 8 g9 H
0

The two switches at the extreme left of this sectlion
control the stopping of the machine.

3NA "Stop Next Address" When this switch is switched on
while EEE YT {8 working, the machine completes the order
under execution and then stops. The order counter T then
contains the sddress of the next order to be obeyed.
Amongst others this switch 18 used to stop the machlne
instantaneously. When one starts the machine while SNA

_34-

1s on, it stops after completing the first order. When

a subroutine jump 18 executed while SNA 1is on, the stop
bit of the link concerned 1s made = 1. The switch SNA
therefore enables us to execute a program order by order
for the purposes of inspectlon. If this program calls in
a (standard) subroutine, the intermediate results of
which do not interest us, we can put the switch SNA off
and let the X1 execute the subroutine at full speed. As
the position of SNA made the sign bit of the link = 1,
the X1 stops automatically after completing the subrou-
tine (see 2.3).

SCA "Stop Chosen Address" This switch enables one to
stop the machine at any deslred point 1n the program,
the point being fixed by means of the 15 awitches of the
stop address. When SCA 1s on the X1 stops as soon as the
order in the stop address has been executed; the order
counter again contalns the address of the next order.
The 15 switches of the stop address are at the top of
the vertical panel on the right hand side; any address
can be specified by these switches (down = 0, up = 1).

The mechine is started by means of push buttons.

BENA "Begin Next Address" On pressing (and releasing)
this key the machine starts working, beginning at the
order to which the order counter refers. When SNA is

off the machine continues working, when SNA is on the
machine stops immedlately after the executlon of the

first order. The key BNA 1s therefore used to allow a
stopped program to continue 1ts operatlon, 1t 1s also
used to carry out (part of) a program order by order.

BCA "Begln Chosen Address" By using thls key it 1is
possible to start the machine at any specifled point.
The address of the first order to be executed must be
given in the 15 switches of the gso-called start address.
The start key BCA coples the start address into the or-
der counter; from then onwards its actlon is the same

as that of the key BNA. 4

The switches of the start address can be found at the
top of the vertical panel on the left hand slde; as 1in
the case of the stop address the address 1s given In
its binary form.

DO The key DO is used primarily in testing. Once thls
key has been pressed the X1 executes the order apecl-
fied (in binary form) in the 27 so-called word switches;
these can be found at the base of the vertical panel.

39

35

when SNA 18 on, the order in the word swiltches 1s
obeyed only once; when SNA is off the order 13 exe-
cuted repeatedly, untll SHA 18 thrown. Provided this
arder 1s not & non-sklipped Jjump order, the contents
of the order counter will not be altered by pressing
DO.

The term "keys of the keyboard" applles particu-
larly to the remaining 10 keys on the horlzontal sec-
tion (see 2.7.4). They are used to cause the X1 to do
all kinds of standard service operations. These In-
eclude typlng informatlon stored in the memory or in
the reglsters, introducing orders or numbers by hand,
starting the tape read program, etc.

We have already mentioned the swltches of the start
and stop addresses and the word swltches on the ver-
tical panel. Each of these three rows of swltches cor-
responds to 2 particular word In the dead memory:

(1 DO)=start address] supplemented by 12 zeros at

(2 DO)=stop address

(3 DO)= console word (1.e. the contents of the word
switches).

the most slgnificant slde

Although these words can be varied, they belong in
the dead memory: they can be read DYy the program, but
not filled in! The facillty to read these words is of
the utmost lmportance: 1t enables the programmer to
construct programs, the course of which can be "ex-
ternally" influenced.

The remainder of the vertlcal panel 18 used for pur-
poses of display. There are two rows of 28 and 27 lamps
on which the contents of a number of registers can be
seen: the upper row can show the contents of OR, U and
M, the lower one those of A, S, B and T. For each row
the selection of the reglster to be shown 1s made with
the ald of a rotary swltch.

The registers U and M requlre further explanation.

The U-register is the central reglster of the X1; 1t
was not necessary to discuses it before as the programmer
has no access to it. In general one can sSay that the a-
rithmetic result of every operatlon 1s left in the U-
register. If one makes the contents of this reglster
visible on the indicator lights, while the program is
run through order by order, the intermediate arithmetle
results can be seen in U, no matter where they are form-
ed, in A, or 3, or B, or in the memory. The results of
transports also pass through the U-register. (What 1is

40

-36-

left in the U-reglster can pe deduced from the fact
that condition-setting orders analyse the final con-
tents of U.)

The M-reglster acts as "gate" to and from the memory,
and 1s the only place where one can gee the parity blt.

In this context it should be pointed out that 1t 1s
possible to look at a number in the memory without af~-
fecting the contents of any of the "actlive' reglaters.

To do S0 one may place & "U oh-order - with the appro-
priate address - in the word switches and push the button
DO. The word in question then appears in U and M.

When the contents of the order counter T are shown,
the interruption permit and the susceptibility are dis-
played in the more significant positions. More preclise-
ly, they show the 1link which would have been formed 1if
the order had been 2 subroutine jump, except for the
fact that the lights in positions dq8-dqg are not used.
They need not be used as the condition, the last sign
and the overflow indication are permanently displayed
by three separate indicator llghts at the top of the
vertical panel. Finally there are two llghts which In-
dlcate "wrong order” or "wrong number" respectively
when the machine has atopped on account of a discrepan-
cy of the parity check.

The reader will understand that indicatlon lights are
not used as long as program and machine are perfect.
While the X1 1is running there 1s not much to be seen
on the lamps elther: the contents of the regilsters
change far too frequently. An experlenced observer will
perhaps be able to follow the course of the program to
some extent by looking at (the most significant side of)
the order counter. The advantage of the tndicator lights
wlll be fully reallzed when the X1 18 stopped: in the
debugging of programs they are invaluable.

2.9 The speed of the X1

The terms "additive" and "olear", used below, serve
to distingulsh those orders that do lnvolve an "actual"
addition {i.e. carry propagation) from those that do
not; both transports and logical operations fall under
the heading "clear".

Register transports are included in the category "Abso-
lute and communicatlon" as no second memory contact is
required for thelr execution.

41

-37-

We note that the variant of conditlon-settlng never
influences the time taken by an order, Conditlon reac-
tion only has an effect when the order is skipped. The
A,B,C-variant may affect the time except In skips, mul-
tiplicationse and divisions.

The times are:

1. Skip {(in all cases) 32 us

2. Multiplication and division (in all cases) 500 ps
Remark: Under all circumstances the fast *

miltiplications by 10 require 64 ps

3. Shift and normalize orders (shift over n 40+8n ps
places)

4, Absolute and communication, clear 36 M8

additive 44 us

5. Normal: clear 64 us

additive in 64 us

additive out 76 w8

6. B-correction no change

7. C-carrection (except those under 1. and 2.) 8 ps extra

42

-38-

3 DISCUSSION OF SOME OF THE FEATURES OF THE X1

This chapter 1s devoted to some of the consldera-
tions which played a role during the design of what
1g described in the previous chapter. Where possible
we shall mention the arguments for and against the
declisions, especially when these arguments were of
significance in programming.

The reader should not expect to be presented wlth
a set of conclusive arguments, In the flrst place, 1t
18 not possible to mention all the various arguments
considered in the deslgn, in the second place the X1
18 definitely the product of steady growth and de-
velopment: many techniques and methods were copled from
esrlier machines without much dlscussion, as experlence
had shown us that they were perfectly satisfactory.

Some of the motives, however, cannot be appreclated

without a knowledge of the requirements the machine had
to meet.

3,1 The requirements

Although important from other points of view, we may
ignore some of the requirements here, such as price,
reliability, volume, power consumption etc. We are more
concerned with the fact that the X1 had to be: "general,
fast, adaptable and elegant'.

The term "general purpose computer" 1s often appled to
machines speclally designed for scientific computations.
When we say that the X1 must be a "general" computer, we
mean that the machine must be sultable for both scientl-
fic and clerical work. This requirement had a bearing,
amongst others, on the compoaltion of the order code. We
tried to avold orders which would only be used in certaln
types of work as far as posslble.

As 1s well known, the speed a machine must attain before
we call it "fast", 18 not clearly defined and continually
increases. Until now, the demands made by the aclentiflic
user in this respect appear to be without upper limlt,
and 1f the needs of the clerical user have been given more
attentlon it was for this reason. The outcome was a machine
which can cope, for example, with a number of punched card
machines, one being a fast sorter (42000 cards per hour);
1f the required processing does not involve too many ope-
rations, it must even be possible for the X1 to use two
such sorters (both working at their maximum capaclty) as
fast input mechanlsms.

43

_39-

By the term "adaptable' we mean that the standard
basic machine can be provided with all kinds of re-
quisites and apparatus which may be necessary for a
apeclfic task. Once an organlzation has a machlne the
demands made on it often Increase as time goes on,
and the possibility of enlarging an Installation which
was 1lnitially a modest one, 1s a major aspect of the
adaptabllity of the machine. Such an enlargement may
conslat of extending the memory, or adding more comnmu-
nicatlion mechanisms. In this respect it is essentlal
that the way in which a mechanlsm 13 coupled to the
machine will nct be affected 1f further apparatus 1s
added later.

As we shall gee later the factor of adaptablilty was
also considered 1n more than one way In the making of
the tape read program.

The adaptabllity - belng an aspect of the required
generality - ls separately mentioned here, because 1t
has had definite consequences: 1t must be possible to
extend the basic design, but provislon for this possl-
bility should not be too expenslve as the extenslons
may never take place. The same applies to the baslc
tape read program, that should not include pleces of
program that are, as yet, superfluous: its structure
must be such that programs for additional facllitiles
may be Incorporated.

The term "elegant" refers particularly to the struc-
ture of the order code Efficient solutions should pre-
sent themselves to the most common problems encountered
in programming. There 18 redundancy in the code, how-
ever, if & large number of equivalent solutions present
themgelves at any moment. Such redundancy 1s harmful in
two respects, 1n the flrst place because the user pays
for 1t, In the second place, because each programmer
becomes accustomed to his own personal methods, so that
reading another man's programs - dlifficult enough in
1tself'! - becomes even harder.

On the other hand a code should not be so rigid that
there 1ls only one reasonable solution in any particular
situation. One should be able to modify an "average'
program in one of two ways: elther by speeding 1t up
(at the expense of more memory space%, or else by making
1t more compact (at the expense of time of executlon).

In the case of a machine wlth a relatlvely expensive
memory, the latter is often not too large. It may then
be 1lmportant to find a satisfactory compromise between
the conflicting requirements "fast" and "compact". In
sclentific computations 1t often happens that some parts

44

40~

of the program have to be passed through much more
often than others. It is then worthwile to make those
parts of the program which are most 1ntensively used

ag fast as posslble, pe 1t at the expense of some me-
mory space; 1f necessary, the space can probably be
regalned 1n the less intensively used parts of the pro-
gram. To arrange programs along these lines should not
coat too much time and energy: an elegant code should
facillitate the meking of more gpeedy Or more compact
programs.

3.2 Artithmetical facllitlies

Historical factors undoubtedly played a great role In
the cholce of the representation of numbers in the ma-
chine and the facilities the arithmetic unit should pro-
vide. The regilsters A and S, for example, can be found
under the same names in three older machines designed
by the same gZroup; in all three they already functlon
as independent accumulators. We wlll nevertheless try
to give some justificatlons.

Some consideration makes evident what experlence has
taught us, viz. that programs for & machine equipped
with two accumulators run mich more efflciently than
those for a machine with only one sccumulator: in the
latter case programs are considerably lengthened by nu-
merous transports to and from the only accumulator.

Ag we add more reglsters to the arlthmetlic unlt the
relative gain in efficlency continually decreases, un-
less ... the new reglster has a speclal function and
thereby provides us with entirely new racilities! The
B-reglster definitely gatisfies this condition, due to
the facillty of B- and C-correction: the presence of
the B-register 1is justifled by the usefulness of these
facilitles, although 1ts inclusion would not have been
worth while if 1t had merely been a third accumulator.

Amongst others, technical consideratlions were respons-
ible for the development of B into a reglster with all
accumulator faclilities: the difference In price between
an accumulating and a non-accumulating B-reglster was
relatively small, and the former was gufficiently attrac-
tive to justlfy the extra cost.

The term "all accumulator facilitles" used above In-
cludeg the addlitlve out-order, by which the contents of
a storage locatlion are increased or decreased by the con-
tents of a register. (The concept of the additive out-
instruction originated through technical considerations.

45

kA

As readling from the ferrite core memory 1s destructilve,
each word must be rewritten after it has been read; but
then, another possibility 1s to wrlte the sum there!)

An important applicatlion of the additlve out-order ls
making a sum (in the memory) when each new term is form-
ed 1n one of the regisfters, If the addlitlve out-order
were not incliluded in the code the addition of a new term
would coat two orders, which would imply a repetltion of
the address of the partial sum, l.e. "'low Informatlion
density" (see 3.3). The additlion of a new order to the
code tends to make the latter more complex. In this case,
however, I am of the opinion that the addltlve out-order
makes the code easler to handle: adding a new term to a
partial sum 18 felt to be one operatlion to such an extent
that spending two orders on 1t seems unnatural. If many
numbers in the memory are to be increased or decreased
by the same quantity the additive out-order enables one
to program thls in a very compact way.

The contente of the registers A and S must be conslder-
ed as one double length number after muitiplications (CX
to 3X) and before divisions (OD and 1D). In additive mul-
tiplications the product 18 Increased by a single length
number at the least significant side; a carry, if present,
1s covered by a sultable adjustment in “he more signifl-
cant half, irrespective of the comblnation of signs in-
volved. Nevertheless the X1 1s not equipped with a double
length accumulator as such., To use A and S together as a
double length accumulator and yet retaln the possibllity
of using each independently, 1t would be necessary to have
a kind of "coupling" between A and S. This did not really
fit into the general 1dea of the design, and the double
length accumulator was eventually rejected as 1ts field
of application 18 virtually restricted to double length
arithmetic: multilength arithmetic has 1little use for 1t.

(In the course of our investigations we were able to
formulate two speclal forms of addition. By using themn,
both double length and multi-length addlitlons could be
performed, They are, however, not included in the code.)

The three previous machines were binary machines too,
which also made use of the inverse system to represent
negative numbers. A strong argument in favour of the 1ln-
verse pystem was the exlstence of the loglcal orders,
¢f {4]) . The advantagesand disadvantages of the blnary
number system have been discussed too often and too ex-
tenslvely to go into the subject any further here, cf
[31,[6]. The dlsadvantages are confined to communlcation
with the outside world - used to declimalsa! - and we there-
fore mention the measures taken to meet this dlifficulty.

46

_ko.

Fast multiplications by 10 (see 2.6.5) are included
in the code as the time factor can play a role In au-
tomatic communication, e.g. when punched cards are used.

To enable the operator to introduce decimal numbers
into the machine manually, the console holds, amongst
others, the decimal kevs of the keyboard (see 2.7.4,
2.8, 4.4). Furthermore, it is possible to type out the
contents of an arbitrary storage locatlon by uslng a
single key autostart (see 4.3). ¥)

Operations for floating polnt arithmetic have dellbe-
rately been excluded from the order code. Thelr iInclu-
sion seemed to be inconsilstent with the required "gene-
rality” in two respects: in the first place because the
clerical user is seldom interested in floating polnt a-
rithmetlic, in the second place because it was not clear,
to us at anv rate (cf [1]), how bullt in operations for
gingle length floating point arithmetic could profltably
pe used In programming arithmetic operations on floatling
point numbers of greater length.

However, normalize orders have been 1ncluded, primarily
to facilitate the programming of floating point arithmetic.

3.3 The word length

Tn order to make the X1 sufficlently fast 1t has been
provided with a ferrite core memory, and all transports
and additions are performed in parallel. In consequence,
the costs per arithmetic unit and per storage locatlon
are nearly proportional to the word length. Thus there
are numerous arguments of an economic nature which do not
encourage the choice of a long word length. On the other
hand, there are strong ocbjections to too short a word
length: one then has to resort to multi-length technlques
too of'ten,

Tt is difficult, however, to draw a definite conclusion
about the ideal word length of a general machlne from con-
siderations of the size or requlred accuracy of the num-
bers the machine wlll have to handle. For example, one
%) In my oplnion the most important of the two forms of
"ineldental" communication Just mentioned is the input of
numbers and not the output: I have seen many programs de -
bugged at the machine by inspection of the blnary words,
without a single intermediate result being typed out.

47

43~

can obviously not support the statement that a word of
56 bits 1s too short for most calculations, whlle a
length of 27 blts would be sufficlent!

(The only positive conclusion I can draw from these
observations is the following: the order code of a
selentific machine should at any rate be suitable for
efficient programming of multi-length operations, be-
cause a word length which would diminish the need for
them sufficiently 1s absurd.)

Apart from numbers, the memory has to store instruc-
tions., When one tries to find a word length ideal for
this purpose, one can come to a more definite conclu-
gion. In the early stages 1t had already been declded
that the memory should nold 2715 words at most, each of
them being &t the immedlate disposal of all orders: 15
bits are therefore reserved for the address part of the
order. The function part gradually grew to 12 blts; the
worth length then grew to be 27 bits, i.e. the minimum
number of bits necessary to accomodate both functlon
and address,

Longer addresses bring wlth them arguments in favour
of longer function parts. A shorter function - l.e. a
less powerful code - results in longer programs, which
econtain more orders with addresses that are, In conse-
quence, less interesting (viz. repetitions of addresses,
addresses of jumps, more references to working space by
means of addresses that are, In themselves, unimportant,
etc.). The longer the address part, the larger the num-
per of bits spollt by an excess of addresses,

A functlon part that is too long, however, 1s harmful
in two respects. The code then provides so many facili-
tles that many of them wlll often remain unused; the re-
dundancy brings with 1t an unnecessarily large number of
bits for the function. Also, excesslve flexiblllity makes
a code too difficult to handle. There are then so many
possible functions that the programmér no longer Knows
them all individually, but views them as congisting of
different constituent parts. The number of "constituent
parts", i.e. the various aspects of a whole operatlion,
should not be so large as to be confusing. What we under-
stand by "confusingly large" does not only depend on the
expected intelligence of the future programmers, it also
depends on the way in which whole operatlons can be subdl-
vided. The role of each constlituent part should be well de-
fined and independent of the others as far as possible;
furthermore the order notation should be such that the
various aspects of each order can be clearly shown on the
program sheets.

48

by

Obviously the above arguments are all purely qualitative
and they did not compel us to decide upon a functlon part
of 12 bits; there are 6 for the main function and 6 for
the variants. The latter do not specify six Ilnaependent
variants, instead they specify only three variants, each
using two bits. This was done intentlonally, to avold con-
fusion. We were able to define the main functions and va-
riantg 1n such a way that the number of meaningless combl-
nations remained small enough to be acceptable. The X1 order
code 1s not an easy one to use to full advantage, due to lts
high degree of flexibility. For this reason the notatlion
for the main function, and particularly that for the va-
riants, was chosen with the utmost care.

In one respect the above considerations about the word
length are more or less obsolete: they date from a time
when 1t was not sure that the dead memory could be con-
structed at relatively low cost. As soon as a consider-
able portion of the orders required for a program are re-
corded in the dead memory, l.e. in a less expenslve medlum,
the motives for choosing the word length exactly equal to
the order length, and not one or two bits longer, become
considerably weaker, The arguments are further weakened
because another method of reducling the number of order
bits has not been investigated extensively: less address
bits would siffice if one is willing to sacrifice the fa-
cility that every possible storage locatlon 1is at the im-
mediate disposal of every order.

Finally, one should realize that the need for a long
word length - often only a supposed one! - ls felt almost
exclusively by the sclentiflc user; in his dreams he 1s
inelined to be rather demanding in this respect. Nor will
his consclence deter him, as this is a form of redundancy
that will never inconvenience him. On the contrary, it can
only make things easier for him and considerations of prlce
seldom enter into day-dreams!

3.4 The condition

In the code of EDSAC 1 (ef {7}) - quoted as a classical

example - the condltional jump orders react to the sign

of the (only) accumulator; in one of the conditional orders
the jump 1s executed if the number 1n the accumilator 1is
positive, otherwise 1t 1s sklpped, In the other the inverse
reactions take place. An extension of thls system to a two-
or three-register machine would imply an Increase 1n the
number of jump orders in the code, viz. a palr for each
reglster,

49

45

The same number of Jjump orders, however, wlll suffice,
1f a speclal so-called condition reglster of one blt is
introduced. The reactlon to a sign diglt then takes
place 1in two stages: In the first stage the sign diglt
is copled into the conditlon register (condition-setting),
in the second stage condltlonal orders are executed or
skipped depending on the current content of the condltion
register (condition reaction).

One of the advantages of this arrangement 1Is that con-
dition-setting need not be restricted to the copylng of
2 sign digit, but may take place according to other cri-
teria. The X1 computer - being a three-register machine -
18 equipped with a condition whilch can be set according
to one of three criterlia, the sign test, the zero test,
and the test for equality of signs (see 2.4.3).

Once the whole process of condlitlonal executlion 1is
split into two stages, one must declde where the possi-
- bility of inversion 18 to be included. An Inverslon
possibility in both stages - although loglcally per-
missible - would be superflucus, no inverslon posslbi-
lity gives rise to less efficient programs.

One method 1s to have the possibllity of lnverslon

in the condition-setting (there are then two different
sign tests In which the slgn diglt, or 1lts inverse, 1s
copled into the conditlon register) while conditional
orders react uniquely to the conditlion., Alternatively,
no possaibility of inversion is incorporated in the con-
dition-setting (in the case of the sign test the sign
diglt, and not its inverse, may always be copled Into
the conditlon reglster), and two kinds of conditional
orders are Included in the code.

As long as all condltional orders of a code are Jjumps,
1¢£ does not matter very much to the programmer in which
of the two stages one incorporates the possibility of
inverslion. As soon as eve order can be conditlonal,
however, 1t 18 definlitely preferable to Iinclude the
" posaibility of inversion in the condition reactlon.

Indeed, if every order can be made condltlonal, the
machine can, dependent on the conditlon, skip a number
- of orders wlthout a conditional JumP belng used. lowever,

one often wishes to execute elther "operation A" or "ope-
ration B", as indicated by the condition: thls can also
be done without using jump orders If the Inverslon possail-
bllity 18 included in the reactlon to the condltion. Con-
ditlon-setting 1s then followed by the orders for opera-
tions A and B and, depending on the condition, the orders

50

- -h6-

of elther operation A or operation B are executed,
whlle the other set 1s skipped.

Thls decrease in jump orders considerably shortens
many programs. One should bear in mind that the gain
in space may be accompanied by a loss in speed: if a
large number of orders 1s to be Bkipped considerationsg
of time may make it worth while to use a conditional
Jump; this 1s definitely not the case 1f the orders
concerned are only to be skipped in exceptlonal cases!

The U-version 1s grouped under the variant of the
condition reaction. This variant is descrlbed by two
bits in the functlon part, and the U-verslon glves a
worthy meaning to the fourth possible combination. It
1s pointless tc use an order with "undisturbed desti-
nation" unless the result 1s used to set the conditilon,
The supposition that conditional condition-setting 1is
such a complicated operation, that the need for it will
be negligible, reconcilled us to the fact that the U-
verslon on the one hand, 18 incompatible with the Y-
or N-verslon on the other. To be honest we should men-
tion that the ingenuity of some programmers, at least,
was underestimated by thils supposition.

In the U-verslion jump orders are conditional to the
overflow Indication (see 2.%.,2), Sometimes the absence
of an inversion possibility "costs” an extra order,it
1s true, but the considerable gain that results from
the facillty of overflow detection at all is fully at-
tained. At the moment of writing no programmer has, to
my knowledge, felt the incompatibility of the U-version
and the normal reactlon to the condition as a restric-
tion in the case of Jjump orders.

It 1s posslble to execute & number of ordinary orders
between the condition-setting and the subsedquent con-
dition reaction, thanks to the separate condltlion regis-
ter {and the posslbility for orders to leave the condl-
tion unaffected): in other words, the conditlon register
" 18 really a memory element that leaves the arithmetic
reglsters avallable for other information. Condltlional
reactlon of an order to the slgn of a register may actu-
ally amount to using a whole arithmetic reglster to store
one bit!

Two bits in the function part deseribe the variant of
condltlon-setting; the four possible combinations indi-
cate "leave condition unaltered", and "set conditlon
according to P, Z or E", The problem of incompatibllity
does not arise here. Once the Iinversion possibility is
excluded from the condltion-setting, it must be declded

51

47—

in which form the questions will be asked, e.g. in
Zhe Zero test, shall we ask "Result = 0?" or "Result

07",

When only one criterium 1s applled for conditlon-
getting, 1t does not matter how this question is for-
mulated: inversion of the question then only amounts
to interchanging Yes- and No-conditlonallty (two sym-
metrical possibllitles of reaction!). Since the X1
has three crilteria one must ask oneself - for the appll-
cation of the second and third e¢riterium - whether there
are reasong for preferring one question to the other
(1ts inverse).

As soon as the programmer thinks of condition-setting
as recordlng the answer to a questlon, it is preferable
to formulate those questlons in thelr most natural form,
1.e. wlthout negatlion. Hence, in the Z-version, one asks
whether there 1s equality to zero, in the E-verslon,
whether there 1is equality of signs. A second argument
in favour of thege choices 1s related to the preference
of the X1 for -0.

A test which is often used is the slgn test as applied
to & result that can only be > O or = -0, Here the P-
version sets the conditlon inversely to the Z-version!
This possibillty may be of importance when the setting
of the condltion for a certain condition reaction in the
program can take place at more than one polnt.

The use of the E-verslon is not restrlcted to compari-
son of the (unknown) signs of two numbers. Thus one can
make use of the fact that with "last sign negative" the
E-version sets the conditlon inversely to the P-verslon.
One can even use the E-verslon to let an order ask, elther
whether the result is positive, or whether the result is
negative, by letting the order be executed (1ntentionally!)
with last slgn positive or negatlve respectively.

Tn illustration we discuss a section of the tape read
program. In reading the symbols that speclfy an corder,
the tape read program must detect whether the address 1s
followed by "A, B or C" and/or "P, Z or E"; 1if so, the
function part under construction must be suitably modl-
fied and a new pentad must be read.

A detalled description of the operatlons to take place
is given in the flow dlagram below. We use the conventlon
that a block 1s entered at the top and 1s left at the
bottom., If a questlon occurs in a block, we leave it on
the right hand side if the answer 1s "Yes", on the left
hand side if the answer is "No".

_48-

In explanation: the letters P, Z and E correspond to

¢ = 16, 17 and 18 respectively; the letters A, B and C
correspond to ¢ = 13, 14 and 15 respectively. The func-
tion part 1s built up in the word denoted by b; 1in thils
l

Y
read pentad = ¢
c >182
| I
¢ »157
P,Z or E
1
e >129 b + (e-15)2775 b
A,B or C
l ' b + (¢-12)279 5 b
{

word the pair of bits describing A, B or C are to be
stored on the ilmmedliate left of the palr of bits de-
scribing P, Z or E.

: | For the purposes of clari-
(A).219 = (A) ty we make use of a flow dla-
b + (A) b gram to describe the procedure

- in the X1 program., Where rele-
E vant the content of the last
read pentad =c gign reglster 1s shown by +
c = (A) or -. The question about equa-
[a] - 18> 07 ity of signs is 1indicated by

"E?", Conditlional executlon is
T T explicitly shown by dividing
A 5= Al E? the block in two by a vertlcal

line.
el

+|P,Z2 or E
> (N.B. To appreclate the com-
(A).27°= (A) pactness of thls plece of pro-
gram, one should reallze that
+ -1+ a single order corresponds to

every line in the diagram, in
contrast to the previous dia-
gram; furthermore no Jumps were
shown there.)

(8] + 3= [A]; E?

+ +A,B or C
Jump

The sectilon
is to be found
program at the
to 22 D12 (see

described here
in the tape read
addresses 14 D12
Appendix 4).

53

-49-

Tt 18 not the ordinary use of the E-veraion that is
shown by the above example! On the contrary, it illus-
trates its hidden possibilities; they become apparent
when it 1e used in an unconvential way.

Neither condition-setting, nor conditlon reaction
cost extra time. This sometimes makes 1t posslble to
speed up a program without 1ncluding extra orders, for
instance by skipplng the addition of a new term to a
partial sum, when the new term happens to be =0 (see

3.9.4),

Finally: with the exception of the counting jump, nc
order reacts conditionally %o its own result. It 1s for
example not possible to subtract, by means of one order,
a certaln quantity from the contents of a reglister only
Lf the result is positive. Similarly, orders that operate
on the absolute value of numbers are not included in the
code,

Operatlons on the abaolute values of numbers must be
executed with the aid of the condltion; for example
-assuming that y = (2 X1)-:

1
1

281 2! ';x1l P Pi oy (A)y +0? total function:
: ((&)

‘v [sp! ! ' aa if not: -(A) lv] = (A)

and

EU 21\': 2': ':X’l P' v 3 +0? total functlon:
'y foa) 2 tx1| o) Lf sor (A) + y=(A) (A) + |y]=> (&)
i ! !

N olaat ol txal L if not:(R) - y=(A)

3.5 The subroutlne jump

The index m that follows the address of a subroutine
jump can have a value from O to 15 incluslve (see 2.3).
The programmer can use the subroutine Jumps with mg 8
freely; those with m3 9 are regserved for the effectua-
tion of the interruptions (see 2.7.3).

This makes 1t possible for the maln program to call in
a subroutine, which in 1its turn calls in a subroutlne,
which in 1ts turn calls in a subroutine, etec. untll the
ninth subroutine has been called in.

Tt is convention to choose m = O for those subroutlnes
that do not call in another subroutine; for subroutines
that call 1n a sub-subroutine wlth at most m = 0, the m

54

-50-

is chosen = 1, etc, All this applies to subroutines
that call in other known subroutines. However, as

goon as a subroutine calls in an "arbitrary" subrou-
tine (as in the case of a standard integration sub-
routine which calculates the integrand with the aid

of a speclal subroutine) thils is no longer possible,
In such cases 1t is always safe to call in the outer
subroutine with m = O; the latter starts off by trans-
ferring (8g) to 2 location in 1its own working space.
The restriction that the index m can "only" take on
nine different values can be circumvented by the same
technigque. (If need be a single value of m, e.g. m = O,
would suffice; transferring %so) would then be rule
and not exceptlon., We will encounter something of this
nature in the communication subroutines to be dealt
wlth later; they restrict themselves to the use of
844. The reason for this is the same as that for which
they do not use counting jumps {see 3.6).)

A1l this is only possible thanks to the fact that
subroutine Jumps wrlite thelr 1link in the ordinarily ac-
cesslble address 8 + m. A further possible applica-
tion 18 the technique of "program parameters', as de-
veloped for EDSAC 1, cf [7] . Here one or more para-
meters, glving further specifications of the funetion
of the subroutlne, are placed in the storage locatlons
Immedlately following the subroutine Jump; on comple-
tion the control (usually) returns to the address that
follows the last parameter. As these parameters will
be read by B-corrected orders, the subroutine first
places (Bm) in the B-register; it is for thls reason
that the bit d45 1s = O 1in sy (see 2.7.2). When (sp)
1s transferred Eo the B-register, d4g5 1is copled into
the sign digit of B (mee 2.%,2).

The subroutine Jjump to the subroutine and the Jump
at the end of the subroutine (with the non-absolute
address 8 + m) to return control to the main program
are. as a rule, the only two extra orders toc be execu-
ted in comparison to an open subroutine. They each re-
dquire 64 us. The fact that calling in a subroutine
needs only one order in the malin program (leaving the
contents of the arithmetlic reglsters intact) 13 also
attractlve as far as program space 1s concerned; as a
result 1t is worth considering programming even rather
simple operations as subroutlnes. This 1s one of the
ways In which the gpeed of the machine, and even more
the efflclency of the code, compensates for the price
of the memory.

The fact that orders to "plant the 1ink" are not ne-
cegsary on entering the asubroutine, faclllitates the

55

-51-

making of compact, fast and flexlble subroutines even
further. (The same advantage can be found in machines
with less refined subroutine Jumps but more B-regls-
ters.) It 1s then posslble to make subroutlnes with
different points of entry elegantly.

Much space can often be saved by combining subrou-
tines that perform practically the same operatlon -
in slightly different verslons - into one single sub-
routine in such a way that the different verslions are
distinguished from each other by different points of
entry. In the simplest case one version can be derlved
from another by omitting a number of orders at the be-
ginning: one then jumps to the flrst order to be exe-
cuted by means of a subroutine jump (with the same m).

A simple example of a subroutine with more than one
point of entry is the computatlon of the slne or the
cosine. The cosine subroutine beging by increasing the
argument by 3w, after which the sine of the sum thus
formed 1s calculated. The entrance for the calculatlon
of the sine 1s such that the additlon of 2w is omitted,
so that the sine of the gilven argument ls computed.

3.6 The counting jump

Counting Jumps are designed especially for loops that
must be passed through a certaln number of tlmes. As
they are not used in the communication programs to be
dealt with later, we illustrate the way to use them by
& few examples,

The communication programs to be dealt with later are
executed at moments that are not exactly known 1n the
maln program {see e.g. 4.5). As a result the communica-
tion programs and the main program may not have working
space in common: the Information that the maln program
would like to store in such an address 1s then under
permanent danger of being destroyed by the communication
program, In order that all counting Jumps may be at the
disposal of the main program, they are not used in the
communication program; the communicatlon programs In
question naturally make use of (B4h) - due to the Inter-
ruption of class 6 - but further restrict themselves to
gubroutine Jjumps with m = 14, so that the programmer of
the maln program 1s not denled the use of more subrou-
tlne jumps.

In the counting Jump the executlon of the Jjump may de-
pend on the new value of (ry). In order to avold confusion

56

-52-

with the ordinary condition in flow dlagrams this
dependence 1s 1ndicated by one of the letters P,

7 or E without the question mark, and the control
leaves the block at the side in case of the execu-
tion of the Jump, otherwise 1t leaves 1t at the
bottom.

For instance, if the process A has to be executed
n times, the flow diagram would roughly take the
following form: {

n = {ry)
(and other preparation)

process A
Eexecuted n times)
rm) - 1=>(rp), P

!

This diagram only applies to the case n»1. Parti-
cularly 1n the case where the number n is a previous-
1y computed quantity, 1t often happens that the minl-
mum value of n is = O. Here we can use the last crl-
terium E ("Extra Jump") for the counting Jump and
save a separate test for detection of n = 0O or the
formation of n + 1. *

n =» (rp)
(and other preparation)

J

1

process A (n times)

(rm) - 1= (I"m),E

'

It often happens that a loop has to be passed through

n in

n - " times, l.e. one part (process A) must be done
n times, the other part (process B) only n - 1 times.

This 1s shown in the followlng flow dlagram.

57

53

!

n=>(ry), ete

et

—

process B (n-1 times)

- |
1 .

process A (n times)
(rg) - 1 = (rm),P

p—

T
The same process can be accomplished by maklng use
of a counting jump in the Z-verslon:

¥
n=>(rp), ete

1
process A (n times)
(rm) L %(rm) Ny

|
process B (n-1 times)
i

e

In the previous dlagram the counting jump functlons
as the inverse of the counting Jump In the latter. The
first dlagram ls to be preferred, because there the
inconditional jump is not included in the locp itself,
this 1n contrast to the second arrangement. Of course
this consideration of time 1s only lmportant for small
loops that must be passed through frequently: neverthe-
less one should make it a hablt to test - even In the
case of longer loops - "whether the loop must be passed
through again". In this way programs become MOre homo -
geneous and the probablllity of errors thus decreases,

A "pure" applicatilon of the counting Jump 1in the Z-
version 1s given 1n the next example., We are aaked to
place a sequence of numbers ag (k = 1,2,3,...) 1 the
S-register, omitting, however, aj.

i -
3 3
Jo2) K2) L
! 1

Preparatlion Selection of the next ay

-54_

Being additive out-1lnstructions, counting Jumps
always require 76 us, in other words they belong
to the group of rather tlme conguming operatlons;
as they do not use the registers A, S or B, however,
they can be particularly useful.

3,7 Address modification

The field of application of the A-version gsee
2.4.1) 1s restricted to Integers less than @ 5 in
absolute value. The A-version is applied mzinly In
"administrative" sections of programs, for lnstance
in the manipulation of addresses, address increments
and decrements; 1t can also be used to great advan-
tage 1n more general "red tape operations” (counting
etc), because, as a rule, only small integers are
involved here.

The gain in space and time due to the A-verslon has
already been mentloned (see 2.4.1), Finally, 1t makes
things more convenlent for the programmer, for there
1s no need to reserve a storage location for thls con-
stant, or to refer to it wlth the aid of an - arbil-
trary - address, Instead he can wrlte the constant In
the order stralght away.

The A-verslon 1ls Incompatible wlth B- or C-correctlon;
this 1is not due to a loglical necesslity but to conslde-
rations of economy (for the simllar case U versus Y and
N, see 3.%). If the absolute verslon were compatible
with B-correction, the significance of the B-reglster
as arithmetic regilster would have tncreased conslder-
ably (so much so that 1% would have been worth conslder-
ing extending the length of the B-register to full word
capaclty). For then 1t would be possible to let (8},
tnereased by a constant that 1s glven by the address
bits, functlon as the operand in each order: one could,
for example, multiply (S) by (B)!

The function of the B-correctlon 1is well known: an
order to be executed with a varilable address remains in
the memory without the address veing altered, whille the
contents of B are added before 1ts executlon.

The C-correctlon was suggested by technical conslde-
rationg similar to those leading to the additive out-
order. (The fact that C-correction cannot be applled
to or%ers in the dead memory ls an analogous restric-
tion.

59

-55-

When a program loop operates on a sequence of num-
bers stored in the memory, both B- and C-correction
can be applied. If B-correctlon 1s used, the contents
of B are modified every time the control passes through
the loop. If a test applied to the contents of B can
then answer the question whether one must remain in
the loop, B-correction often results in a slightly
faster program than C-correction.

For program loops operatlng on more than one sequence
of numbers, C-correctlon may give rlse to a faster pro-
gram, particularly 1in cases where every sequence has
1ts own spacing, or where, for Instance, the program
in passing through the loop, dees not necessarlly use
the next number from each sequence. (To program thls
with B-correction one would llke to have as many B-
registeras as there are sequences to be processed; In
C-correction the addresses, which vary lndependently,
are recorded in the C-corrected orders.)

The C-correction modifies orders stcored in the memory;
the programmer 1ls therefore obliged to see to 1t that
the cycle 1ls preceded by suiltable preparation, in which
the orders In question are set to thelr initlal values;
for B-correctlion the preparatlon is usually considerably
simpler,

3,8 Shift orders

In the early stages of the deslign 1t was decided not
to include shift orders 1in the code, There were two
reasons for this: in the first place there 1ls less need
for shift orders in a code that already Includes colla-
tion than in one that does not - as in the case of our
earlier machines -, in the second place shifting in a
parallel machine 18 not an attractive operation, and
certalnly not a fast one, Where loglcal operations did
not gilve the sclution, multipllcation and/or dlvision
would have to do so.

Further investigatlon, however, showed that thils argu-
ment did not hold. Besides the fact that shlfts had to
be simulated by multlplication or dlvislon more often
than was expected, such simulation usually lead to slow
and cumbersome programs. Thls had various causes.

Firstly, multiplication and divislon use both the
registers A and S, and they use them differently; thils
resulted in numerous transports: to preserve contents
of reglsters in the memory, and to tranafer them to the

reglster where multiplication or division would need them.

60

-56-

Secondly - in contrast to addltlon, subtraction and
logical operations - multipllication and division are
the very operations In whlch sign dlglts play a spe-
cial role. Thirdly, 1t turned out that two multlipli-
catlions or divisions were often needed per slmulatlon,
viz, where numbers of double length had to be shifted,

Fortunately, renewed investlgations of the technlcal
poasibilities resulted in a comparitively inexpenslve
method of effecting shifts twice as fast as origilnally
concelved,.

The shlft orders included 1n the code are basically
those which already occur in the code of the ARMAC

the most recent of the three earller machines, cf

2]); the facility of shifting to the left 1s added.
They are of such a variled nature that I cannot glve
an account of all the possible applicatlons. Some re-
marks will have tc suffice.

The circult AS (the sign diglt of S being excluded
1s speclally deslgned to handle the (sign consistent
double length number (AS) as 1t occurs in multiplica-
tion and division. As the clear shift has a more pre-
clse arithmetlc meaning than the round shift, the lat-
ter will probably be applied less frequently to the
circult AS than the former; 1t is not improbable that
the reverse holds for the circult SA, whlch does not
have a precise arithmetic meaning.

Despite the many possibllitles of the shift orders
we are Jjustified in retaining logical orders in the
code. They are consliderably faster and they can further-
more be executed with "Undlsturbed Destination',

3.9 Some examples

3.9.1 A "step by step reduction to zero'

An integer d ¢ -0 18 stored In the memory. Thls must
be reduced to zero in steps, more preclsely, 1t must
be reduced to zero by additlon of integers 1n as few
steps as poasible; in our example the maximum value of
the constant ¢ to be added is ¢ = 8, A certaln process
must be carried out at every step; the process 1s de-
pendent on the length of the step, and 1t 1s deslrable
that this length be stored In the B-reglster. The pro-
cesg 1tself will not disturb the contents of B, To start
off with B contains the size of the maximum step.

61

-57-

More precisgely:
as long as d + 3(13] < 0, the addition @ + [B) => d must
be executed 2ad [B] remains unaltered;
when d + [B) > O, the substitution -d — [B] must first
be made, as this 1s the dlstance that separates d. from
zero; when d = -0, there must be some indication that
the process 1s complete.

The problem 1s encountered in the subroutine for the
conversion from decimal floating to binary floating re-
presentation. The solutlon consists of only three or-
ders, which can be found in the communication program
at addresses 28 to 30 D4 (see Appendix 4). We describe
1t by means of a flow dlagram.

: {

process dependent
on [B] 8 = [8]
1 g
In
fB] +d > 07

-d=> [B] = 0?

d + [B]l=4d

3.9.,2 Determination of the smallesat factor

As next example we gilve a program that determines
the smallest factor { > 1) of & given odd number
{0 x1] » 3, and places that factor In the S-reglster.
The program starts at address O FRO and uses the
addregs 1 X1 as worklng space.

D 2B 2 A :
1 28 3 A !
2 6A 1 X1 :
8- 3 34 0 A "
4 38 0 X4 :
5 oD 1) & 7
6 |x|4B 1 X1
7IN|0osS 4)y & P,

62

-58-

8|N|2T 3 F Ro|a) —>
9 25 1 X1 EE
10]Y]28 o X1 :
11 |

In the above program the number [0 Xﬂ] is divided by
3,5,7,9,... ete, each test taking 776 us. The process
can end 1n one of two ways: vlz, when a factor has been
found, or when the number turns out to be prime: when
the cycle 1s left these two cases are distinguished
from each other by 2 negative and positive last sign
respectively,

3.9.3 Punching a plnary word

It 18 required to punch out the contents of S in binary
form, By convention a word of 27 bits 1s supplemented by
three bits on the most 8lgnificant side; from lef't to
right they are a 1, a O ang a parlty bit u, The parity bit¢
U la = 1 whea (S) contains an even number of ones, other-
wise u 18 = 0. The 30 blts thus deflned must be punched
in slx pentads from left to right as shown below:

10U (5) g
,]Et 2nd 3I‘d uth 5th 6th pentad

The program is shown here In the form of a flow dlagram;
the program itself can be found at addresses 4 to 14 D14,
(see Appendix 4) (The subroutine Jump at address 11 D14
sees to the synchronization of the punching mechanism and
the X1; as 1t 1s of no arithmetic importance whatsocever,
1t 18 left out of the flow diagram,)

It was desirable that the program should not make use
of counting jumps and should not use the B-register. Be-
8ldes 11lustrating the use of the condition, this program
shows the use of shift orders: round shifts are Indicated

by 1t H).

63

after 1Stpentad
after 6thpentad

-59-

(27.16 - 10 =)422 = [A]

"1(5)" > (8) > 407

[A]v 3 =>[2]

eycle for

forming the

[A] - 16=> [a] > 07

parity bit

jump order

—
-4 sets condition
n 1t
_LE (SA)"=» (S4) > +07 affirmative
+| 1=
='1]
"2_5(As)"=:» (AS) E? 5
punch five bits of (A) £
= ~Tarter 2°- | §8
th Qo
+ 5 pentad . 8
-2=> [A] E? 2 %
—L_{ u o
Jump order 52
Y [S)

3.9.% Forming a scalar product

n
g;ﬁ ak‘bk

With the proviso, that no overflow occurs, the scalar

is calculated in the following flow diagram.

-60-

!

n =Kk _
0=>(S)=w

(S)=$2A;
ak=.> 3
() + (S)bk=#>(AS); (A)=0%

I 1

w+ (A= w

k - 1= k » 0%

jump order

1 -

The scalar product 1s delivered in two words: the
most significant half in the working space w, the least
significant half in the S-register. The halves need not
have the same slgn!

The fact that the least significant half of the partlal
sum 1s placed in the A-repgister by means of a reglister
transport, and is then added during the additlve malti-
plication, 1ls not only of importance when a and b, are
{ntegers; 1if they are (rounded) fractlons, gome re%iable
digits stlll appear in 8§ after every multipllcatlon; the
gain Iin precision thus achleved may be of greatb signifil-
cance, partlcularly In cases where n 1s large.

The addltion of the most significant half to w (py
means of an additive out order) 1s skipped when (A) = O,
The execution of the addition requires 76 ps, sklpping
1t 32 pa. There can therefore only be a small gain in
time, but 1t costs no time at all!

Tf the elements of both vectors are stored In consecu-
tive locatlons, reference may be made to the numbers a
and by with B-correctlon, provided the index k 1s storgd
in the B-register. In that case a passage through the
cycle takes 756 ws (or 712 ps Lf the aaditive cusorder

65

-61-

18 skipped, i.e. & possible galn of 6%) .

From this example it 1s clear that parallel processing
of two vectors 1is faster 1f the locations of the vector
elements are equally spaced, If we are not free to choose
a storage allocatlon of numbers suitable for thils purpose,
the process can sometimes (and with some luck!) be rearranged
so that the sequences to be processed are st1ll equally
spaced. The followlng example iIs an 11llustration.

The elements ajy (0€1,j<n) of an nxn matrix are stored
rowwise In the me%ory with flxed spaclng in both rows and
columms, e.g.

ay4 = (¢ + ni + J)

If one has to transpose thls matrlx, one can construct
this process by Iinterchanging the elements of equally
spaced sequences, viz, sequences of elements aj;y with a
constant difference 1in Indices 1-J. The spacing” ln.these
sequences 1s the sum of the row and column spaclng of the
original matrix. (This problem only has a point 1f the ma-
trlx is not symmetrical; if 1t has to be symmetrical, one
can apply the same trick to check 1ts symmetry.)

66

-62-

4 COMMUNICATION PROGRAMS

4 1 The tape read program as independent program

4.1.1 General survey of the functions of the tape read
program

Information to be introduced into the machine can be
punched on paper tape in a sultable code. For orders this
code ig)the order notatlon deseribed previously (see 2,5
and 2.6},

All symbols used in the code can be found on the key-
board of the X1 tape punch. The symbols that appear on
the keys are tabulated below: there are two symbols on
nearly every key. In the table the secondary symbol 1s
written to the right of the main symbol. The latter runs
from O to 31 and 18 equal to the numerical value of the
pentad punched on the tape.

c 0 8 16 P 24 8
1 I 9 17 2 25 T
2 J 10 . 1) 26 W
2 G M + 19 F 27 U

M 12 - 20 H 2 Y
5 Q@ 13 A 21 K 29 N
6 Vv 1 B 22 L 30 D
7 15 ¢ 23 R 31 X

When the punched tape 18 inserted into the photo-elec-
tric tape reader 1t can be read by the tape read program,
The latter has an ilmportant "translating" function. For:
the programmer has written the orders 1ln a code that 1s
convenient to him, next the orders are punched directly
from his program sheets and thereafter it is left to the
tape read program to construct the internal binary repre-
gentation of the orders from the symbols on the tape l.e.
from the pentads, Furthermore, when the tape 1s used for
the Input of numbers (punched in decimals!) the tape read
program must perform the conversion from decimal to bina-
ry number system, We call all such operations "agsembling",
by which term is meant all computation,in the widest sense
of the word, that the X1 must perform to construct binary
words from groups of symbols that specify the words accord-
ing to some code.

Apart from "assembling" pentads into words, the tape
read program 18 able to process these words. There are
two forms of processing, viz. "writing" and "checking".
When the processing cycle "writes", all constructed words
are written In the proper locations in the memory; at this

67

-63-

stage the actual input of information into the memory
takes place. When the processing cycle "checks', each
word delivered by the assemblage is compared with the
contente o° the corresponding storage location; in the
cage of a discrepancy the machine stops. Thls glves cne
of the methods of checking the input of data; other ap-
plications of tape reading in the checking mode will be
mentioned later.

Other pentad comblnations besides groups from which
binary words are assembled, occur on the tape, vliz.
the so-called directives. They give further specirica-
tions about one of the operations (assembling or pro-
cessing) of the tape read program; as a result there
are two main groups of directives.

The first group glves further specifications about
the assemblage. In this group we have the so-called
type-indications, which specify according to which
Tules assemblage must take place. Two different "types"
are, for example, orders and numbers. The type-indica-
tion therefore actually indicates the language (code)
in which - until further notice - Input data are punch-
ed on the tape.

The second group of directlves has a bearling on the
processing cycle of the tape read program. The most
{mportant directives belonging to thls group are the
address-indicatlon and the change of mode .

The address-indication shows in whlch storage loca-
tion the next assembled word 1s to be stored. (This
appllies to the writing mode, I1n the checking mode the
address-indication specifles the storage location of
which the contents are to be compared with the next as-
sembled word.) Unless otherwise Indlcated - e.g. by a
new address-indication - consecutlve words from the
tape refer to consecutlve locations in the memory.
Thus, if one wishes to f111 a number of consecutlve
addresses with information - as is usually the case -
one only needs to speclfy the destination of the first
word of the sequence expllcltly.

In the description of the address notation glven pre-
viously (see 2.5.1), we mentioned how the addressesa are
numbered with respect to the beginning of the paragraphs,
In the building up of addresses these reference polnts
(i.e. the beginning of the paragraphs) are used as ad-
ditive parameters; before this can take place, however,
the value of these parameters must have been gilven to
the machine. This 1s done with the ald of special direc-
tives, the so-called "paragraph definitiona”; together

68

64~

they form the so-called "inltlals" which can always
bve found at the beginning of the tape.

One can deduce from the previous sections that an
active tape read program thus far keeps record of
five forms of information:

4) the (current) type indicatlon

2} the value of the (specified) parameters

3) the transport address, l.e. the address of the
storage locatlon for the next word to be agsembled
from the tape. (As successlve words from the tape
generally refer to consecutive storage locations,
the transport address ig increased by one after a
word has been processed.)

4} whether the processing cycle 18 engaged in writing
or in checking

5) the last initial paragraph letter that was expliclt-
1y mentioned (thls flrst paragraph letter 1s the
letter that may be omitted as long as 1t does not
change (see 2.5.1): the X4 must then lnow which filrst
paragraph letter has been omitted).

Finally we mentlon that (possible) extra pentads X at
the beginning of units of information (directives, or-
ders, numbers, etc) are skipped by the tape read pro-
gram. The X (numerical value = 31% corresponds to the
pentad in which all the holes are uged, and can functlon
as "Erase". This makes 1t possible for a person who 1s
punching to correct mlstakes noticed while punching im-
mediately; beglnnling at the first pentad of the incor-
rect information unlt he punches X's over all the punch-
ed pentads of the unit and punches it over agaln.

4. 4,2 Initials

We can sum up what has peen said previously (see 2.5.1)
as follows. With a view to the address notatlon the me-
mory is divided 1into paragraphs (each with a maximum of
47 consecutive pages of 32 words). Each paragraph 1s de-
noted by two paragraph letters; paragraphs with the same
initial letter together form 2 chapter.

The programmer 1s left free to choose the points at
which new paragraphs begin. Tt 1s wise to choose mul-
tiples of 32 for the first lines of paragraphs; by dolng
a0 one makes the flve least slgnificant binary diglits of
the address equal to the 1ine number. For longer paragraphs
the cholce of a multlple of a higher power of two as start
address 18 recommended where possible; this cholce makes
checking at the machlne easler,

-65-

The start address of a paragraph 1s given to the
machine by means of a speclal directive, the so-
called paragraph definition. This conslsts of:

1} the letters DP, followed by

2) the paragraph letters which are to be glven a new
value (both letters must mentloned), followed by
3) the new value, 1n address form {l.e., llne number,
paragraph letter{(s) and page number)., Here one may
only make use of those paragraph letters for whilch
a paragraph definition has previously been glven
to the machine. In the address of the first para-
graph definition on the tape the letter X (or D)
will therefore be used.

The division of the memory into paragraphs has been
introduced in order to meet the needs of the program-
mer. In practlce only very simple programs are con-
ceived as & whole and written down order by order from
beginning to end. Very soon it 1s found more convenient
to spllt up a computation into sections, each havling a
separate function which can be {solated to a greater or
lesser extent from that of the other sections, It 1=
very important to choose these sections with care: the
more clearly isolated the functlon of these sections
the clearer the arrangement of the program.

Normally one allocates a separate paragraph to each
gection and supplies each paragraph with 1ts own letters,
Thepe different letters make the program easler to read,
furthermore they make 1t possible for one to start pro-
gramming one paragraph while one or more of the others
is incomplete. One does not know how much memory space
an incomplete one wlll requlre; however, as the starting
points of paragraphs may be chosen at will one can de-
lay the cholce until they are all complete. One then
knows thelr length and can subdlvide the memory as seems
best.

Which paragraphs one groups under one chapter 1ls suggest-
ed only by the logical connection between the paragraphs;
it 1s quite independent of their final positlon in the me-
mory. In contrast to the pages of one paragraph, paragraphs
of one chapter need not be consecutlvely placed In the me-

mory.

The paragraph definitlons which determine the subdivl-
sion of the memory for each program are referred tc as
the neral initials. When the tape bearing this informa-
tion %Es been read by the machine, the starting points of
the paragraphs have been [lxed and the rest of the tape can
be read.

70

66—

A second application of the facillity to vary the
arrangement of paragraphs 1s the way in whlch stan-
dard subroutines can be incorporated into a program.
Although the programmer makes use of standard tapes
here - in any case of mechanically reproduced coples
of the tapes - he has complete freedom in decldling
in which memory locations he wishes to store the
standard subroutlnes.

A standard subroutine usually consists of one para-
graph and the programmer using 1t 1s left to choose
the starting polnt of this paragraph ln the memory.
The paragraph itself 1s referred to by a certaln pa-
ragraph name on the standard tape of the subroutine.
A11 the programmer has to add to the beginning of
the standard tape 18 the so-called specific 1lnltlals,
by which the parameter in question I1s glven the de-
sired value,

As a rule all subroutlnes are punched in terms of
the same paragraph letters (viz., those with a Z as
the flrst letter?; such a paragraph name can there-
fore cccur several times on the tape of a program
that makes use of a number of subroutines, but each
time wilth a different meaning. In consequence letter
combinations that begin with a Z are not sultable for
reference to an arbltrary address In the memory and
they may not be defined under the general initilals.

In practlce it 1g customary to glve the paragraphs
of the standard subroutines two names: a paragraph
name beginning with a 2 and & further name wlth a
meaning as defined in the general initials. The name
first mentioned serves only as a means to be able to
make use of the standard tape. The programmer only
has to consider exactly whlch paragraph name of the
Z-group is used for this purpose when he complles the
specific Initials of these subroutines; this new value
of the parameter in question, and also every reference
to this subroutine in the maln program, is made Iin
terms of a paragraph name that has been determined by
the general initlals. At the same time one ensures
that 1n this way the final locatlon of the program as
a whole can be altered by altering the general Inl-
tials only.

4,1.3 Type indications

The group of directives that shows the most variation
is that of the type indications. They speclfy accordlng

67-

to which code - until further notice (i.e. until
the next type indication) - the units of Informa-
tion that now follow are to be punched.

In the following we deal with filve type Indlca-
tions, We regard the type indications for double
length and floating point numbers as part of the
associlated arithmetic programs; these fall outside
the scope of this description,

DO "Skip blank tape"

The directive DO indicates that as yet 1t 1s not
known according to which code the assemblage program
willl 1nterpret the symbols on the tape. Thus the lack
of a "real™ type indication 18 also regarded as a
type indication.

When the directive DO has been read the machlne
akips zero's and pentads X until 1t has found a D.
If the tape read program encounters a pentad # D,
the machine stops as an indicatlon that there 1ls a
mistake, viz. there 1s a tape indlcation missing.
(Iike all dlrectives, this begins with the letter D.)

If the new D is the initlal letter of a non-type-
indicating directive - such as a paragraph definition
or an address Indication (see 4%.1.4) - the tape read
program goes on skilpping blank tape (and X's) when it
has dealt with the directive, until it finally meets
a (real) type indlcation. The skipping of blank tape
then comes to an end for the time being.

DI "Read instructions"

After this type indication and until further notice
(L.e. until it meets a new type indication) the tape
read program expects orders and dlrectives excluslvely.

Orders are punched as they are written, from left to
right; nothing is punched for blank columns.

No additional symbols are needed to separate the or-
ders from each other (such as, for instance, Llne Feed
or Carriasge Return; these symbols do not occur on the
keyboard of the tape punch)., At the beginning of each
order any possible extra pentads X are skipped by the
tape read program,

72

-68-

The page number, also the 1ndex m of speclal Jump
orders, must be punched as one pentad. The llne num-
ber, 1f ¢ 31, may be punched as one pentad,

Further: if one inserts a minus sign between line
number and page name, the line number 1s interpreted
as a negative number in the calculation of the address
(1t is therefore a minus slign with retroactive effect).
The final address may not become negative in this way;
this Testriction 1s not essentlal In the speclal ap-
plication for which this facility was included. In
orders with function letter P (OP to 3P inclusive)
this minus slgn must not be used.

DN "Read Numbers"

After the type indlcatlon DN the tape read program
expects only directlves and single length numbers until
further notlice. Pentads X are sklpped at the beginning
of each number (i.e. before the sign); in punching the
numbers one uses only the digit keys O to 9 and the
keys for the plus and minus signs and the decimal point.

After DN the assemblage program is able to handle
conversions from decimal to blnary system for integers
and proper fractions.

A1l numbers start with a sign (+ or -). The sign must
always be specified and 1t may therefore not be omitted,
for example, in the case of positive numbers; on the
tape the signs actually serve as points of separation
between the decimal digits of consecutlve numbers.

Integers consist of a slgn followed by the decimal
digits; non-significant zero's at the beginning may be
omitted. The restrictlon thgt the absolute value of the
number must be less than 220 = 6710 8864 is imgled by
the word length.

Tn fractions the sign is followed by the point and then
the decimal digits; non-significant noughts at the end
may be omitted. In view of the word length of the X1 1t
1s rather futile (although it is allowed) to intruduce
the fractions into the machine with more than eight decli-
mals after the point. (The integer formed by the decimals
after omitting sign and polnt must be less than 952 =
4 50359 96273 70496; 1f this condition 1s not satisfiled
the X1 stops.) An arbitrary number of zerc's may be 1n-
serted between sign and polint,

73

-69-

We point out that after DN integers and fractions
may alternate without further directivesa. Here two
different interpretations of the binary word there-
fore fall under one type-indilcation; the cholce between
the two possibllities 1s determined each tlme by the
pregence or absence of the declmal polnt.

DB "Read Binary words"

After the type indication DB the tape read program
only expects directlives and blnary words as these are
punched out by the X1 (see 3.9.3). As described there,
each word on the tape is supplied wlth a parity blt;
after the type Indication DB the assemblage program
checks the parity of the groups of symbols read from
the tape.

DT "Read Type codes'

After ths type indication the tape read program only
expects directives and type codes (see 4%.7.1).

4.1.4 Directives for the processing cycle

Five directives control the operations of the process-
ing cycle of the tape read program.

They are:

DA "Address indication"

This directive serves to specify the storage locatlon
of the flrst word that follows. Hence, the letters DA
should be followed by the address concerned, l.e. by the
line number, the paragraph letter(s) and the page number.

DX "Skip a number of addresses’

After the directive DA the words coming from the assem-
blage prograem refer to successive addresses in the memory
in the order in which they are delivered. It often happens
that one wishes to leave a few locations blank - because
they are to be fllled in by the program; the directlve
"Skip 2 number of addresses" has been introduced especlally
for this purpose. The letters DX must then be followed by
the number of places that are to be skipped by the process-
ing cycle. The maximum value this number may have = 31 and
1t must be punched as one pentad.

-70-

DC Change of mode

A programmed swltch determines whether the processing
cycle reads or checks. A change of mode can he effected
by means of the dlrective DC: 1f the processing cycle
wag busy wrlting 1t then starts checking and vice versa,.

Normally programs are punched as follows. After leaving
a plece of blank tape one punches a page of program. This
starts with at least two directlives (address and type in-
dicatlions) and 1s finished off with DCDO and a small plece
of blank tape. Immedlately after thls one punches a com-
plete duplicate. One checks whether no mistakes have been
made visually, vlz. by placing one half over the other
and holding the two topether against the light. When such
a so-called "self-checking" tape 18 read into the machine,
the iInformatlon is introduced by the first half and, once
in the machlne, it 1Is checked by the second half. Thanks
to the fact that the directlive DC is repeated, the process-
Ing cvele la left in the wrlting mode, ready to read the
next self-checking tape.

The effect of the directlve DC depends on the way in
which the tape read program was started (see 4.1.6).

DS Stop

The directive DS iIndicates the end of the tape; when the
tape read program meefts lt, 1t ends 1lts actlvity. If the
tape read program was worklng as an independent program
(1.e. 1f 1t was started by the operator, see 4.1.6) then
the X1 stops after the directive D3 has been read. If the
tape read program was Iincorporated as a subroutine (see
4.5) the directive DS ends reading from the tape but the
X1 goes on working in fhe maln program,

DE Exit

The dlrectlve Exlt conslsts of the letters DE followed
by an address. The control Jumps to the address indicated.
This directive can be used to let the X1 perform a non-
standard operatlon during reading of the tape. Further-
more, 1t can also be used to start a program dlrectly from
the tape, l.e. without using fhe switches of the start
address (see 2.8 and 4.9.6).

4.1.5 Remarks about the use of directives

The above directlves all bring about a certain modiflcation

-71-

in the "state™ of the tape read program, and only the
particular modification mentloned. In all other res-
pects they leave the state of the tape read program
exactly as it was, Thus type indications do not alter

the state of the processing cycle in any way, the address
indication leaves the type indication and the condltion
of the mode switch unchanged, etc. As a result type and
address indications at the beglinning of a tape may be
punched in an arbltrary order.

Finally, the following points about self-checking
tapes should be noted. Apart from the essentlal general
initisls, it 1s advisable to provide each self-checking
tape with the necessary directives to make 1t a complete
unit on its own. It 18 true that this costs some extra
symbols, but one evades a posslble source of errors in
this way. This also ilmplles that one must make 1t a ha-
b1t to write the first paragraph letter expllicltly in
the address indicatlion at the top of each page. This
agalin, is in accordance with the normal way of using
ditto's., Things like these make 1t easler to handle the
tape and improve the general arrangement of the program
in no small measure.

4 1.6 Starting the tape read program

When a2 standard program is started by pressling one
(or more) keys of the keyboard (see 2.7.4 and 2.8), we
use the term autostart (see 4.4.2). The autostarts bear
the names of the corresponding keys: autostart 1 starts
the tape read program as an lndependent program, viz,

Autostart 1: with console word positive: start tape read
program In the wriEIng mode with directive
DC effective;

with conascle word negatlive: start tape read
program In the checﬁ%ﬁg mode with directive
DC ineffectilve.

Autostart 1 starts the tape read program after having
set the type indication to "Skip blank tape”. As a result
1t may only be used 1f a plece of blank tape actually lles
under the reader and the necessary directlves are stlll to
come,

When the console word is positive, the tape read program
starts working in the writing mode and each time it meets
the directive DC on the tape the processing cycle changes
its mode.

-72-

When the console word is negative, however, the tape
read program starts working 1n the checking mode and
it goes on checking no matter how often 1t encounters
the directlve DC on the tape.

In both cases the dlrective DS brings the reading of
the tape to an end: the machlne stops after having re-
stored the status quo of the moment the autostart was
used.

If one fears, during the testing of a program, that
an erroneous out-order has destroyed the initlal infor-
mation In one or more storage locations, one can Ilnves-
tigate this by letting the tape be read agaln, but this
time with a negative console word. With this application
in view this autostart was so constructed that the di-
rective DC 1s 1lneffective when the tape read program is
started 1n the checking mode.

When the contents of a part of the memory have been
punched out on a binary tape (see 4.2), one uses auto-
start 1 with negative console word to check whether the
tape produced is correct. If the X1 does not stop during
the checking of this tape, one knows that the contents
of the memory have been punched out correctly; at the
same time one has verified that the correct parity bit
was added to each bilnary word when it was punched out,

4 2 The tape punch program as independent program

The standard tape punch program is able to punch out
binary words, As a parity diglt is punched out with every
word (and this parity is checked every tlme the tape 1=
read) binary tapes are not punched in duplicate; the di-
rectlve DC does not appear on them.

One can let the X1 punch out the contents of a number
of consecutlve storage locatlons in binary form, using

Autostart 9: "Punch Binary Tape'

For this purpose one speclfies before hand:

1) the address of the first word to be punched out in the
switches of the start address (1 DO);

2) the number (> Q) of words to be punched out in the
switches of the stop address (2 DO};

3) the so-called punch code in the word swltches (3 DO);
the punch code must be positive,

7

73

The tape punch program consists of six parts, the
punch code 18 speclifled in the six least slgnificant
bits of the console word: they indlicate, from right
to left, whether the correspondling part must be exe-
cuted {1f so = 1, Lf not = 0). In order:

dy = 1 Punch plece of blank tape (about 19 cm)

d, = 1 Punch "DB"

d, = 1 Punch first address in tne form "DA.....XQO"
d3 =1 Punch the binary words

d4 = 1 Puneh "DO" followed by a plece of blank tape

(about 6 cm)

d5 = 1 Punch "D3" followed by a plece of blank tape
(about 6 cm).

Normally these six swltches will all be up (= 1).
If the information to be punched out 1s, however,
stored (for example) in two separate parts of the
memory, one punches (for example) the first part with
punch code = 15 {1l.e. 001111) and then the other part
with punch code = 60 {1.e. 111100). Ancther possibi-
11ty 1s to use punch codes = 31 and = 62 respectively;
the two parts are then separated by a plece of blank
tape.

The switches used to give further specifications of
autostart 9 must always be set before the key 9 is
preased; once the key has been Te leased the X1 starts
punching almost immediately. The tape punch pregram
has then already copied the data from the swltches and
while the X1 punches the first part of the tape one
can already set the switches for the following auto-
start 9.

When the whole tape has been punched the X1 stops
after having restored the status quo of the moment that
autostart 9 was glven. It 1s therefore possible to stop
a computation at a certain point, to punch out some re-
levant intermediate results by means of autostart 9, to
check the tape with autostart 1 under negative console
word, and then to let the X1 continue 1its computation
by pressing the button BNA ("Begin Next Address”, see
2.8? ag 1if nothing had happened.

Remark., Naturally reading in the checking mode does not

check, whether one has placed the correct first address
and length in the switches. Thls should therefore be
done with the greatest possible care.

78

-Th-

4.3 The type program as_independent program

Two autostarts enable us to let the X1 type out the
contents of storage locations or of reglsters at any
degired point of a program.

In order to type out the contents of a storage loca-
tion one puts 1ts address in the swltches of the start
address (1 DO). Three addresses have a speclal function:
during the operation of the keyboard program there 1s a
one to one correspondence between these addresses and
the reglsters, viz.

(0 X2) = (&)
(1 x2) = (S)
(2 x2) = (B)

If one puts one of these three addresses in the sawitches
of the start address the contents of the corresponding
register are typed out.

The autostarts in questlon are:
Autostart 7: "Type integer"
Autostart 8: "Type fraction" .

In autostart 7 the sign is followed by elght dlglts of
which zerds at the most significant side are replaced by
spaces. In autostart 8 the sign is followed by 2 unit digit,
a point and then seven decimals; naturally the unit digilt
1s nearly always = O: however, as the type routine rounds
the fraction off correct to seven decimal places, 1t may
become = 1.

When the typing has been completed the X1 stops again
after having restored the status quo; 1f one does not
wish to type out any more at thls stage, one can let the
X1 continue 1ts computation by pressing the key BNA (Be-
gin Next Address, see 2.8). See also 4.8.4.

4.4 The keyboard program

Provided the stop switch SNA 1s off one can let the i1
execute different standard operations by pressing diffe-
rent keys of the keyboard (see 2.7.%). At the end of such
a standard operation the X1 will stop agailn after having
restored the status quo of the moment the key was pressed.
(A number of speclal storage locatlons that function as
working space for the keyboard program are naturally ex-
cepted).

79

-75-

4.4.1 Manual input of numbers

The keyboard can be used for the lnput of numbers by
hand. This applicaticn of the keyboard, llke most of
the others, i3 not meant to be used frequently but 1t
13 nevertheless extremely useful. Using punched tape
for a single number that 1is not known before hand is
rather cumbersome !

We restrict ourselves to the input of double length
numbers: for thls purpose one presses the slgn followed
by the successlve decimal dlgits, when necessary the
polnt, and finally the key G once. The number 1ntro-
duced in this way can then be found in addresses 30 XO
and 31 X0 in double length representation: 30 XO con-
tains the most significant half of the number, 31 XC
contalns a copy of the sign digit and the 26 least sig-
nificant binary dlglts.

We must now distinguish between three different cases.

Integer If the point is not pressed the decimal dlglts
are regarded as forming a whole number, which (anaiogous
to the notation [A3] = 1Al .2206 + [3]) is stored in the
representation [30 X0, 31 X0}, If the introduced number
1s less than 226 = 6710 8864 in absolute value, [30 XOl
therefore becomes = +0, whlle [31 XO] 1is equal to the
number,

Mixed number If the point is pressed, but not immedlate-
1y after the sign, the decimals are regarded as forming

a mixed number, which (analogous to the notation [AS} =
[A]l + {S}) 1s stored in the representation [30 X0, 31 x0} .
In this case [30 XC] 1s equal to the whole number formed
by the diglts before the point, and {31 X0} 1is equal to
the fraction formed by the digits after the polnt. An ex-
ception to this rule is the case where the fractlon lles
so close to 1 that In rounding it off we get an overflow.

Proper fraction If the point 1s pressed immedlately after
The §ign the decimal digits are regarded as forming a
double length fraction, which (analogous to the notation
fast = {a} + {s}.2-26) is stored in the representatlon

{30 X0, 31 X0} .

One should therefore, note that pressing "+0.137 G" and
"+.,137 G" glves rise to different results! In the Input
of single length fractions it 1s advisable to make 1t a
habit to insert a nought between sign and declimal polnt,
In the flrst place the fractlon 1s then rounded off cor-
rectly, in the second place the result is then dellvered
to the same address (1.e. 31 X0) as single length integers.

80

-76-~

Remark. In all cases the lkeyboard program demands that
{Tgnoring the sign, and the point when present% the in-
teger formed by the diglts must be less than 2 2 =

b 50359 96273 TO96.

As soon as one 1s afraid of having made a mlstake in
pressing the keys, one presses the key H and starts
again, Pressing the key H brings the keyboard program
into 1ts "neutral state".

The keyboard program, which can be in different states,
18 normally in what is called its neutral gtate. It must
be in the neutral state when one begins wlth the manual
input of numbers. If one of the signs 1s then pressed in,
1ts state 1s then no longer neutral; the keyboard program
then only returns to this state when one presses the key
G or H. (The key F, which is not considered here, will
subsequently also be able to restore the neutral state.)

The way the X1 reacta to the pressing of a key depends
on the state in which the keyboard program finds 1ltself.
However, this does not apply to the key H: at all times
1ts function 1s to bring the keyboard program to its neut-
ral state.

4. 4.2 The autostarts

One effectuates a so-called autostart by pressing a
non-sign key without having pressed a sign key before
hand (i.e. when the keyboard program 1s stlll in its
neutral state). The autostarts bear the names of the
corresponding key(s). At the moment of writing definlite
functions have been assigned to ten of them; the keys
., F and G are still regerved for multiple autostarts.

Autostart O: Start the program that beglns at 02z Z0

Autostart 1: Start tape read program (see 4.1.6)

Autostart 2: Preparatlion for interruptlon program class
6 (see ¥.9.6

Autostart 3: Transport {31 XO)

Autostart 4: Transport (30 X0, 31 X0) see below
Autostart 5: Transport console word

Autostart 6: Complete active type-punch program (see

1.8.3)
Autostart 7: Type integer (see 4.3)

81

~-T7-

putostart 8: Type fraction (see 4.3)
putostart 9: Punch binary tape (see 4.2)

autostart H: Restore neutral state keyboard program
(see 4.1)

Autostarts 3 and % make it possible for one to fill
in the number that has Just been introduced manually,
in an arbltrary place 1in the memory; autostart 5 trans-
ports the contents of the 27 word swltches at the bot-
tom of the vertlcal panel (see 2.8). In other words,
one uses the autostarts 3 and 4 in bringing in decimal
data, autostart 5 in introducing binary data.

Tn all three cases the destinatlon is glven by the
fifteen switches of the start address at the top left
of the vertical panel (see 2.8). Autostarts 3 and 5
£111 the storage location Indlcated by these swltches;
in autostart 4 the most significant part is written
there, whlle the least gignificant part is written In
the next storage location.

As the start address and the console word correspond
to (1 DO) and (3 DO) respectlvely, we can represent the
function of the autostarts that have been mentloned as
follows:

Autostart 3: (31 x0) = ([1 DOJ)
sutostart %: (30 X0, 31 X0)=s ([1 b0}, [1 DO} + 1)
Autostart 5: (3 DO) = ({1 DOJ])

The fact that, during the operation of the keyboard
program, there 18 a one to one correspondence betlween
0, 1 and 2 X2 and the reglsters A, 5 and B (see 4,3),
enables us to transport information to the reglsters.
4s a result (&) 1s modified by autostarts 3 and 5 1f
the destinatlon is O X2, while autostart 4 then modl-
fies (AS).

Remark. The operator who wishes to make use of thils fa-
clliity must know the one to one correspondence, by con-
trast to the special role of addresses 30 XO and 31 XO.
As the reader will have noticed, manual Input of num-
vers could also have been described along the following
lines: "To fill in a single length number at a desired
address one puts this address in the swltches of the
start address and successlively presses the two keys

G 3 after the last decimal” etc.

82

~-78-

4.5 The tape read program &s subroutine

We have already seen that, 1f the X1 has stoppeg,
the tape read program can be started by autostart 1
(see %.1.6). The functlon of autostart 1 with a posl-
tive console word can be effectuated by a program with
the ald of a speclal subroutine call:

6T 24 D7 0 =)

This subroutine has the function: "Start the tape
read program in the writing mode with directive DC ef-
fective”.

When the control returns to the maln program below the
call, (A), {8), (B) and (mg) have been modified. However,
the control does not walt for the completion of the tape
reading before returning to the maln program, but returns
to it as soon as the X1 would have to walt for the next
pentad on the tape! As soon as the following pentad can
be read, the program followlng on the call is interrupted
again and the tape read program proceeds for the time be-
ing, etc. The actual executions of the tape read program
and the mailn program following the call are thus inter-
twined; during this time the tape read program restricts
1tself to the working space reserved for tape reading
(see 4.8.5). Naturally, after every intermediate inter-
ruption the control returns to the maln program with com-
plete restoratlon of the status quo.

As in the case of autostart 1 the tape read program
reads from blank tape up to and including DS, If auto-
start 1 was used to start the tape read program, the
latter reacts to the directive DS by stopping the X1
after having restored the status quo (see 4.1.6). Now,
however, the tape reader stops after DS, but the X1 goes
on working and the reaction to the directlve DS 18 con-
fined to noting the fact that the tape read program has
ended 1ts activity.

The main program can lnquire after thls with the aid
of the followlng condition setting subroutine call:

6T 5 DO O =) "Tape read program Actlve?"

The subroutine modifies (A) and (8p) and records the
answer to the questlon whether the tape read program 1s
st111l in action, in the condition. Before the maln pro-
gram uses the data Just read from the tape, 1t can there-
fore verify whether the desired informatlon has actually
all been introduced with the ald of the subroutlne just
mentlioned.

83

-79-

If it transpires that the tape read program 1s stilll
active the main program can find ocut how far 1t has got:
[28 X0l = "the so-called tranaport address", l.e. the
address of the storage locatlon to which the next word
from the tape will refer. If the tape ig a blnary one
and will therefore only be read in the writing mode,

(28 X0) makes it possible for the impatlent programmer
to uge informatlion from the beginning of the tape, before
the end has been read.

The mogt common appllcation of the transport address
is the following. If the tape contains an unknown number
of words which are to be consecutlvely stored in the me-
mory, starting at a known address, the number can then
pe deduced from the final value of the transport address
after the directlve DS has been read. The required number
1s equal to the final value of (28 XO) decreased by the
address of the first word of the sequence. Of course
(28 X0) must then be inspected before a new plece of tape
ig read In!

The second applicatlon of the transport address ls read-
ing a bilnary tape whiech lacks an address indication: be-
fore the subroutine call that starts the tape read pro-
gram is glven, one fills in the destlnation of the flrst
word in address 28 X0. Of course this may not be done while
the tape read program 1s stilil busy reading the prevlous
gsection on the tape.

The subroutine call "Start tape read program in the
writing mode" is equipped wilth so-called "semi-automatic
synchronization”, i.e. one 1is only allowed to call in the
gubroutine 1f there 1s no tape read program active anymore;
1f necessary a walt should be programmed:

- T 5 DO O =) Tape read program active?
Y 1T 2 A — If so, Jump back.

(48 a rule the maln program will already have checked
whether the previous actlivity of the tape read program
has ended, because 1t 18 necessary that this condition
ahould be satisfied before the information can be used.)

If the X1 stops in the tape read program e.g. due to a
fallure of the tape reader, one puts the tape back with
the plece of blank tape preceding the re jected sectlion
under the reader. One can usually start the tape read
program anew with autostart 1. However, tnis 13 not al-
lowed in the following two cases.

84

-80-

1) If the tape read program was started as independent
program by autostart 1 (with the result that the X1
would stop at the directlve DS) with the Intentlon
of making use of the restoratlon of the status quo.

2) If the tape read program was started by the subroutine
call. (In this case a part of the main program follow-
ing on the subroutine call has also been executed al-
ready!)

In these two cases one starts the X1 at

address O Dg: "Restart address tape reading in the
writing mode"

after the tape has been put back.
{As we have already seen, 1t 1is posslble that the address
indiecation may not appear on the tape In the second case.

If so, the operator must first glve the transport address
at 28 X0 its initial value.)

4.6 The tape punch program as subroutine

Autostart 9 (see 4.2) is not the only means of starting
the tape punch program: it can also be started by a pro-
gram and it then has exactly the same facllitles. The pro-
gram then uses the subroutine call

6T 24 D21 1 =) "Punch binary tape"

The three parameters requlred by the tape punch program
are supplied 1In the reglsters, viz.

A}l = punch code
[s)
(3]

When the control returns to the maln program under the
subroutine call, (&), (S) and (B) are modifiled, also (sg),
(s4) and (0O X1}. From then onwards these three addresses
are at the disposal of the programmer agalin, although the
punc.aing has not yet been completed. As a matter of fact
the actual execution of the tape punch program is inter-
twined with that of the main program following on the call
(in the same way as that of the tape read program (see 4.5)
and the tvpe programs (see %.7)). From then onwards the
punch program restricts itself entirely to the working
spaces reserved for this purpcse (see 1.8.5); in autostart
9 the tape punch program only uses these working spaces
and (sph (s4) and (c X1) are therefore not used.

first address
length

_81-

In order to determine, some time after calling in
the subroutine "Punch binary tape", whether 1ts exe-
cutlon has been completed 1ln the mean time, one may
make uge c¢f the condition setting subroutine call:

6T 5 D1 0 =5 "Type-punch program active?"

The subroutine modifiles (A) and (=) and records
the answer to the question whether the type-punch
program is sti1ill in action, in the condition. The
term "type-punch program' is used here to refer to
a program that operates elther the typewrlter, or the
tape punch, or both (In the last case neither of the
two mechanisms work at top speed contlnuously; a pro-
gram of this kind is not included in the set of pro-
grams described here.) Tape punch and typewrlter have
some of thelr controlllng apparatus in common (see
2.6.9); as a result the synchronization between the
X1 and these mechanisms 1s governed by the same sig-
nals and the same piece of admlnistrative program.
Tape-punch and typewrlter on the one hand and tape
reader on the other are completely independent. As a
" result 1t 1s permissible to start the tape punch pro-
gram as subroutine while the tape read program 1ls
stl1lll active, and vice versa.

The subroutine call "Punch binary tape" 1s equipped
with automatic synchronization”, i.e. 1t is permissible
to glve the subroutine call "Punch binary tape" while
some type-punch program is still active. In that case
the control automatically walts until thls prcgram has
ended its activity and only then returns to the maln
progranm,

N.B. Of course the contents of the addresses that are
to be punched out must be left intact until the punch-
ing out has actually taken place. The program that fol-
lows on the call "Punch binary tape" must therefore not
write in these addresses, before

1) the subroutine "Type-punch program active?" has given
a negatlive answer, or

2) a new call of a type-punch subroutine with automatilce
synchronization has been executed (see 4.7).

If it transpires that the binary tape 1s not yet
finished, it is possible to let the maln program de-
termine how far it has got. The impatlent programmer
can use the fact that [27 X2] = the number of words
st11ll to be punched.

Finally: 1f one only uses the subroutine "Punch binary
tape" in order to punch a plece of blank tape and/or some

82

directives, we need not speclfy the "superfluocus"”
parameters, In particular: 1f do = d2 = O in the
punch code, then [8] (= first agdresg) is of no
consequence; if dg = 0, the length does not have
to be specifled ih B.

One could ask why the punch subroutine 1s equipped
with fully automatic synchronization, whereas the
tape read subroutlne only has gemi-automatlec syn-
chronization. The reason 1s that the punch subrou-
tine may have to walt for the completion of & type
subroutine (which, see 4.7, also has fully automa-
tic synchronization), while the tape read subroutine
may only need to walt for the end of previous tape
reading. The question, whether the tape reading has
been completed, 1s of great significance to the main
program that wishes to use this information, When the
main program wishes to gtart the tape read progran,
1t will therefore 1in general already have verified
that the previous actlvity of the tape read program
has ended. The situation 1s qulite different for the
type subroutine: 1f this subroutine is presented wilith
a number to be typed out, 1t 1s, loglcally speaklng,
immaterial to the main program at which moment the
typing out of the number has been completed.

Finally we wish to draw the attentlon to the punch
code: it controls six separate functlons of the punch
program., An alternatlve gsolution would have been the
construction of six separate subroutines. However, at
every call of a synchronlzing communication subrou-
tine, the main program and the process of communica-
tion are, for a moment, synchronlzed with respect to
each other. The less often this occurs, the more effi-
cient the combination of the two processes tends to be.
For this reason the six functions of the punch program
are comblned into one subroutine, that 1is controlled
by a punch code.

4.7 The type program as subroutine

The standard type program types single length numbers.
Which decimal digits the type program derives from the
binary word, depends on the interpretation of thls word:
the standard type program can choose between two Iinter-
pretations, viz. integer and fraction. This classiflica-
flon only has a bearing on thé posifion of the binary
point and is Independent of what the result looks like
on paper: apart from thils classiflicatlon the programmer
i1s free, for example, to shift the decimal point in a

87

1)

2)

-83-

fraction over a number of places during typing, or
even to omlt 1t altogether, or, on the other hand,
to insert one or more polnts in the typing of an
integer,

The way in which the type routine must type out
a2 number 18 recorded in the memory with the aid of
a so-called type code. The binary representation of
& type code 18 of no significance at the moment {how-
ever, see 4,7,.1); for the present it 1is sufflclent
to know that & type code always occuples one address.
We will now describe the way In which the programmer
specifies the type code, and at the same time expialn
the facilitles of the type program.

4,7.1 The type code

Absolute value or signed number When the type code
Pegins with an &, the absolute value 1s typed out, 1l.e.
the typing of the sign 1s suppressed. If one emits thils
A at the beginning of the type code, the type program
begins by printing the sign of the number.

Integer or fraction Next one specifies In the type code
whether the binary word 18 to be interpreted as whole
number or as fractlion. There are three poasibllitles:

Gn (0 ¢<n <8) "Integer with n digits”
Bm (O¢mg7) "Fraction with m digits”
Em (0O¢m«7) "Fractlon with 1+m digits"

In the case (Gn the word 1s regarded as a whole number,
that 1s typed out in n decimal diglts; the whole number
must be less than 10" in absolute value (for n = 8, this
condition 18 satisfied automatically).

In the cases Bm and Em the number 1ls regarded &as a
fractlion and 1s rounded off exactly to the mth declmal
place. The difference between the two forms is that In
the case Em the diglt before the decimal point is In-
cluded, in the case Bm this 18 not so. In the case Em
it 18 permissible that in rounding off the fractlon be-
comes = 1; by contrast, in the case Bm the fractlon must
be less than 1-310~™ in absolute value.

At this point, the digits which are to be typed out,
have been specified in all three cases.

88

_84-

3) Number layout After thls one specifies how the decl-

mals Just defined are to be typed out. For this pur-
pose the diglts are subdivided into, at most, three
groups of consecutive digits. The number layout 1s
degscribed from left to right for each separate group.
Per group the apeciflication consists of three parts

in the following order:

a) indication for the (possible) insertion of a symbol
b) indication for the (possible) suppression of zeros
¢) number of digits in the group (»1)

A symbol can only be inserted at the beginning of a
group; the descriptilon of a group can begin In four
ways:

. ¢ 1insert point

- : 1insert minus sign (dash)
S : 1ngert space
N : 1insert nothing .

One uses the N when one starts a new group for some
reason other than the insertion of a symbol. (As every
group contains at least one digit 1t is therefore not
possible to insert, for example, a polnt and a space
next to each other.)

The second symbol of the group description controls
whether or not spaces are to be substituted for noughts.
There are three possiblliltles:

I : 1mperative
F : facultative
L last dlglt imperative .

By "imperative typing" we mean that all digits, including
the noughts, are typed out; by facultative typlng we mean
that those zercds that cccur at the beginning are replaced
by spaces. As soon as a digit # 0 1ls encountered, the
"transition to imperative typing takes place": from then
onwards any zeros, which may occur, are typed out untill
further notice. If such a digit # 0 1s not present, only
spaces are glven. The possiblillity L was included, because
1t 1s often desirable that this last nought should be typed
out normally: the typlng starts as for F, but the last di-
git of the group is always typed out, irrespective of the
value of the previous diglts.

89

%)

-85-

N.B, By F and L zero's at the beginning of a
group are replaced by spaces, unless the previous
group was tvped according to F and the transltlon to
imperative typing had already taken place there,

The group description ends wlith the number of digits
In the group. .

Closing symbols When the groups have been dealt wilth,
the closing symbols are written down. There are three
pogslibilities:

XT : Tabulator slgnal
XS : Space signal
XN : Nothing

The first set of closing symbols causes the carriage
of the typewriter to move on to the next tabulator
stop when the last dlgit has been typed. The second
set of symbols only gives rise to a space after the
last digit. If, however, we wish to go on typlng imme-
dlately after the last diglt of the number, the type
code is ended by the letters XN,

In 1llustration we give a number of examples. We
begin by polnting out that the version L could always
be constructed with the ald of the two cther versions,
e-go

"S14" = "SF3 NI1"

Here, however, the four diglts must then be divided
Into two groups: without the L version the maxlmum of
3 groups 1ls more apt to be an Inconvenient restriction,

To type the contents of a reglster including 1ts slgn
ag a whole number facultatively, followed by a space,
one uses

G8 NIL8 XS

If, however, we know that the number is pesitive, so
that we are not interested In the sign, if furthermore
we wish the eight digits to be split Into two groups
of four, separated by a space, and 1f, in addltlon, the
carriage must move on to the next tabulator stop, then
the type code takes the form

A 38 NFY SI4 xT .

(According to this type code a million would be tTyped
out as:

90

_86-

100 O00C , and not as
100 O

Here we see the reason why, after a group under F,
the type program does not begin by unconditionally
substituting spaces for noughts in the following
group, When the latter 1is typed under F or L.)

With the ald of the type code
A GB SI2 - 12 - I4 XS
one types the number 25091931 as the date
25~ 9-1931 .

Tnsertion of horizontal dashes will as a rule he
used in the typing of code numbers.

One useg8 the following type code in order to type
out a fraction In four decimals:

By JI¥ XT .,

As fractions are rounded off by the type subroutine,
both 0.3478503 and 0.3479332 will be glven as +.3479
on paper.

If one must allow for the case that the absolute value
of the fractlion may exceed 0.99995, one uses the type
code

B4 NP1 LIE X2

Then posslble results on paper are

+ ,7382
- .0031
+1.,0000
+ 0000 .

The version E can thus also be used to insert a space
between slgn and point; 1l the first group had been spe-
cifted by "NI41", a nought would then have been inserted
between 3ign and point.

One often wishes to suppress or shift the point., In
order to type a fractlon as a percentage with one decl-
mal, one uses, for example,

A B3 NLZ2 I1 X5 .

91

1)

4)

-87-

As metitioned before each type code occuples one word
in the memory: they are bullt up by the assem lage rou-
tine under contrc® of the type indicaticn DT,

After the type indlcation DT the tape read program
expects only type codes and directlves until further
notice. At the beglnning of every type code extra pen-

tads X are skipped. The type code ls wrltten down accord-
ing to the above rules and is punched from left to right.

The binary representation of a type code can be derlved
from the following:

O 1if A

d
26 1 1if non A

I H

d..d., = 00 if Gn
2572% — 13 {F Bm
= 10 1f Em

To the right of these there follow:

]

for Gn : 8-n zeros
for Bm : 8-m zeros followed by a 1.
for Em ¢ 7-m zeros

(The number of noughts.is thus equal to 8 - the number
of typed decimals.)

Imnediately to the right again follow the descrlpticons
of the groups from left to right. Each group descriptlon
conglista of

3a) Two bits describing the insertion of a symbol, viz.

OO fOI’ Tl_ll
01 for "N"
10 for "."
11 for "8"
3b) The next two bits describe the zero suppression,viz,
0_1 fOI‘ HIH
10 for "L"
11 for "F"

3¢) Thereafter, the number of diglts k31 of the group
is recorded by a string of k-1 zeros followed by a
one,

The closing symbols are recorded 1ln the three least slg-
niflicant dlgits of the type code, viz,

d.d, 4

" H
od4dq 010 for "XT

001 for "Xs"
110 for "XN"

Eouou

92

-88-

The unused digits, if any, between 3) and 4) are = O.

4, 7,2 Calling Iin the type subroutline

The type subroutlne, which is equipped with automatic
gynchreonizatlion, 1is called in with the number to be typed
out in the S-register. The type code needed is stored in
the locatlon following on the call, the control returns
to the maln program at the address that then follows.

The general form of such a call 18

6T O D22 O =) Type (S)
DT DI Address for Type code
=) Return address

A consequence of this method of giving the type code
1s that the subroutine Jjump to the type routine may, as
a rule, not be skilpped conditionally: for then the X1
would interpret the type code as order.

Analogous to the aubroutines for tape readlng and type
punching, the type subroutine returns control to the maln
program as soon as the X1 would have to wait for the ex-
ternal apparatus (the typewrlter 'n this case). There-
after, the actual executlon of the rest of the type pro-
gram automatically takes place, 1n parts, in between that
of the main program that follows the call.

Wwhen the control returns to the address following on
that of the type code, thls happens with complete resto-
ration of the status quo of the moment the type routlne
was called in: (A), (8), (B), the conditlon etc. and the
interruptlon permit are a1l unchanged; (sn), whlch was
used for calling in the type routlne, is t%en agaln at the
disposal of the maln program.

Like the subroutine call "Punch binary tape" (see 4.6),
the subroutine call "Type (S)" is equipped with automatic
synchronization, l.e. one i3 allowed to call in the type
subroutine while a type-punch program ig s8tlll active.

If so, the control automatically waits untlil the previous
type-punch program has ended, and only then returns to the
main program.

A secondary function of the type routine 1s counting the

number of times it 1is called in per 1ine: after the typlng
of every n-th number the slgnal NICR 1s automatically glven.

93

-89-

For this purpose the number n = "the number of numbers
per line" must previously have been fllled In at address
31 X2, In typing the last number on the llne, the closing
symbols have no effect: if, for example, the type code
ends with XT, the tabulating signal 1s not glven after
the last number on the line for reasons of speed; Instead
the signal NICR 1s gilven immedlately.

The process of typing 1s completely checked. The decl-
mals sent to the typewriter are read back out of the
type relays by means of the echo orders. From these data
the number 1s converted back to the binary number system
agaln and the result is compared to the origlnal number.
When a discrepancy occurs the type routine automatlcally
types the incorrect number again In the same column, but
one line further down,

The type check also checks whether the gilven number
gatisfies the conditions demanded by the type code, viz,
that for Gn the absolute value of the number must be less
then 10" and that for Bm unity may not be reached in round-
Ing off.

For the purposes of checking too 1t is necessary that
the type routine keepa count of the numbers,that have
already been typed on the line, In the case of an error,
the signal NILCR 1s glven., The counter shows how many ta-
bulator sipgnals must then be sent to the typewrlter, in
order to return the carriage to the poslitlon it had at
the moment the typing of the incorrect number started.
With a view to this reposltioning of the carrlage one
sets a tabulator stop at the begimning of every number,
with the exceptlon of the first, which starts at the left
margin (see 4.7.4).

It is possible to call In the type routine ln such a way
that the paper remains blank, One can use thls possibllity
if a column must be left open In a line, In the program
one writes, for example,

28 © A
6T © D22 O =
DT A GO XT DI

=

As a result a tabulator signal only 1s sent to the type-
writer: a column 18 skipped and all precautions for syn-
chronization are automatically taken. Of course, the column
18 counted!

The type check demands that (S) = 0. If we happen to know

94

-90-

that the two most significant dlgits In 3 are equal to
each other, there is another possibility:

60 o D22 O =3 provided |{s}l < %
DT A BO XT DT

4,7.3 Extra line blank

Another member of the set of type subroutines 1s called
In by:

6T 40 D28 O =~ Extra line blank

If the counter shows that the carrlage 13 at the be-
ginning of a new llne only one signal NICR 1s glven, other-
wise two are given and the counter 1s cleared. When control
returns to the main program, {A), (8) and (B) have changed,
for further detalls see the calling in of the type subrou-
tine "Type (S)" (see %.7.2). The subroutine "Extra line
blank" is also equipped with automatic synchronization.

By deliberately changing the value of the counter one_ can
modify the function of this subroutine. Normally (30 x2} =
"the number of typed numbers on the line'; hence, when the
carriage is at the beginning of a new line, this situatlon
is characterized by [30 X2] = O, Reversely, one can force
the subroutine to act as if the carriage were at the begin-
ning, by f1lling in a zero at this address. This enables us
to break off a line before the end, and to go on typlng on
the next line, for example by means of the orders

DA O A
6A 30 X2 0 = [30 x2]
6T 10 D2B O = only 1 NICR

We advise the programmer to leave (30 X2) intact as long
as type program is active.

4,7.4 "Tab-tape"

One should provide a so-called "tab-tape" for every pro-
gram that uses the typewriter; this gmall plece of tape 1s
used to flx the positions of the tabulator stops on the
carriare of the typewriter. If, considering the tabulater
stops from left to right, the distances between a stop and
the preceding one (for the first stop: "the left hand mar-
gin”g are equal to a,b,...,m, the text of the tab-tape must
he as follows:

95

-91-

DN

DE 130 D27
+a
+b
+m

D...

Tt is essentlal that the dlrective DN should precede
the directive DE, After the directlive DE the program
glves a signal NLCR, reads a number from the tape,
gives that number of spaces and walts 1.6 seconds be-
fore reading the next number, to allow the operator
time to set a tabulator stop. This process 13 repeated
untll some new directive 13 encountered. (Before the
tab-tape is read by the tape read program, the opera-
tor must have removed all stops from the carriage. The
tab-tape may not be read while a type program is active.)

4.8 Some remarks about synchronizing routines

4.8.1 The lnterruption permlt

For both the semi-automatic synchronizing call of the
tape read program (see 4.5) and the automatic synchro-
nizing calls of the tape-punch program (see %.0) and the
type programs (see 4.7), the following holds as regards
the interruption permit and the susceptibllity of the X1.

Tn these respects the status quo at the moment of the
call is fully restored when control returns to the main
program. As interruptions of class 6 must be possible
from then onwards, this state should imply that the X1
is susceptible and that interruptlons of class 6 should
be allowed by the interruption permit. Normally this 1s
always the case.

During the execution of the communication program -

both after the call and during the interruptions to follow -

the state is, in these respects, as at the moment of the
call, except that class & has been removed from the inter-
ruption permit.

As a result, interruptions from other classes that were
allowed at the moment of the call, can only be prevented
afterwards with due precaution as long as the communica-
tion program just started 1s still active. The easlest
way is to make the X1 non-susceptlble for a short whlle.

96

——-

-92-

It can also be achleved by means of the Interruption
permit, provided that class 6 is removed from it as
well. This last method will be used In interruption
programs for other classes, As a matter of facl Inter-
ruptions of class f never have priority because they
can always be postponed: for class 6 the interruptlon
signal indicates that the mechanism concerned may be
used agaln, and not, that it mugt be used agaln wilthin
a speciflc period of tlime.

I 8.2 The end of a program

If a program starts the tape read program as subrou-
tine, it does so because 1t wants to use the informa-
tion on the tape: the maln program will therefore de-
tect that the tape read program 1s no longer actlve
at a certaln moment.

The situation is different for the tape punch and
type routines. If the maln program has started an out-
put program the latter will be completed during the
part of the main program that follows, unless the X1
stops prematurely! The programmer must be aware of thils
af the end of hls program: the stop instructlon should
only come after the program has agcertained that it is
no longer necessary for the X1 to remaln actlve because
a type-punch program must stlll be completed. The pro-
gram should be ended, for example, as follows:

6T 5 D1 O =) Type-punch program actlve?
Yy 17 2 A — if 8c, Jump back
TP otherwlse stop

If the programmer has forgotten this, autostart 6 can
save the situation (see %.8.3).

Another way of ending the program 1s by means of a
dynamic stop (e.g. 1T 1 A). One may prefer this me thod
of endlng the program when the X1 has to remalin actlve
wlth a view to other interruptions. If this 1is not the
casé, I prefer the method described above, where the 7FP-
order is finally obeyed, for then the control panel glves
a clear indicatlion of the state of affalrs: a green light
goes off and a red one goes on as soon as the machine
stops, and 1t can further be arranged that a buzzer then
starts buzzing.

97

93

4.,8.3 Autostart 6

With the aid of
Autostart 6: Completlon active type-punch program

the X1 is kept working as long as a type-punch program
has not been completed; thereafter the X1 stops with
the usual restoration of the status quo. (If no type-
punch program is active at the moment autostart 6 is
glven, the X1 immediately stops again.)

This autostart was 1lncluded with a view to the testing
of programs, When the X1 is stopped at a certaln pcint
in the maln program in order to type out a number for
the purposes of inspectlon, 1t may happen that a type-
punch program 1s still active. If one then uses one of
the autostarts 7,8 or 9, (typing and punching respec-
tively) then the half completed type-punch program 1s
cut and will never be completed. If one prefers fthe pro-
gram to perform the entire output process flrst, one
uses autostart 6

L,8.4% Compatibllity of the keyboard program and active
communlicatleon programs

If a communicatlon program of class 6 1s actlve, one
should use the keyboard program with due care.

Tt is forbidden tc use the keyboard for the Input of
decimal numbers as long as the tape read program 1s ac-
tive. The reason for this restrictlon is that the key-
bocard program makes use of the same conversion subrou-
tines (and the related working spaces!) as the tape read
program, so that in using the flrst, information belong-
ing to the second may be destroyed.

The probability that this situation will arise is falrly
small, amongst others because the tape reader has a rela-
tively hiph speed. Should this situation nevertheless a-
rise, a small trick can be used to let the tape read pro-
gram fulfil its task. For thls purpose one presses auto-
start 6 "Completlon active type-punch program’; as a re-
sult type-punch program that happens to be actlve is com-
pleted and during that time the tape is also read! Should
the X1 stop before the tape reading is finished, one then
makes use of the fact that an active tape read program ls
1s continued during the punching of a binary tape: by re-
peated use of autostart 9 one punches small pleces of tape,
until the tape reader definitely stops. If necessary the
tape punch mechanlsm is switched off, before autostart 9
1s given!

-gl-

A second remark concerns the restoration of the status
quo after autostarts 1,6,7,8 and 9. It is incorrect to
use these autostarts when the X1 has stopped at an order
of elther a type-punch program or a tape read program.
Should one nevertheless do 30, the means of contlnulng
the main program afterwards have been irrevocably lost.
One therefore uses these autostarts exclusilvely 1f the
X1 has stopped at a certain polnt in the maln program

e.g. due to the contents of the stop address swifches
see 2.8)).

The reason for thils restriction 13 as follows. The or-
ders of read and type-punch programs form part of the in-
terruption program of class 6. In order to execute them
the main program was interrupted at an unknown point;
the interruption program, however, has recorded in the
memory how and where the maln program 1s to be contlnued
at the end of the interruption. This record, which holds
informatlion that 1s vital for the continuation of the
maln program, would be destroyed by the incorrect use of
the autostarts as described in the preceding paragraph:
restoration of the local status quo 18 necessary, but
not necessarlly sufflcient, to be able to contlnue the
computation. Fortunately there 1s little reason to use
the autostart mentioned at any point other than in the
maln program.

4,8,5 Reserved storage locations

A number of storage locatlons in the living memory
are regerved as working space for Interruption programs,
The moment at which an interruption program ls executed,
18, to a large extent, undefined with respect to the
main program. Hence these storage locatlons are unsult-
able for the storing of information occuring in the main
program,.

The communication program under dlscussion here uses
the last ten addresses of pag. X0 and the whole of pag.
X2 (see also Appendix 3). Pag. X1 1s reserved for ordi-
nary subroutines; because 1t 1s known when these subrou-
tines uses these addresses, the main program can make
use of them %too. (Address O X1, 1t 1is true, 1s used in
the call of the automatiec synchronlzing subroutine "Punch
binary tape", but 1t 1s free agaln as soon as control re-
turns to the main program!)

During tape reading the memory must hold a table of the
first addresses of the pargraphs. In thls table each

99

-95-

chapter occuples thirteen consecutive addresses; per
chapter the paragraph names, and the chapters them-
selves, occur in the order

7 EF H KL RS T W U Y N.

The beginning of the paragraph table 1s fixed for
every installastlon; as soon as one knows which chap-
ters are used In a program, one therefore knows from
which point onwards the memory 1s free.

Pag. X3 et sed. are reserved for interruptlon pro-
grams of other classes. The paragraph table follows
on these reserved storage locatlons, The beglimning
of the table of paragraph names 1s recorded in address-
es O D16 and 27 D16. The address O X5 can thus be found
here when X3 and X4 are reserved for additional inter-
ruption programs. By changing (0 D16) and (27 D16) one
ghifts the paragraph table to another position in the
memory.

The communicatlon programs dealt with here occupy
pages DO up to D27 and part of D28 1in the dead memory.
Address O DO = 24576 (= 3.273); in binary form ODO=
4100C 00000 00000,

The interruption Jumps of classes 1 to 7 can be found
at addresses 1 D16 to 7 D16.

4.9 Description of synchronizing subroutines

4,9,14 Introductlon

The use of automatic synchronizing calls of the type-
punch programs can imply a loss of potentlel computing
fime if two such calls succeed each other too quickly:
when the second call is encountered the control walts,
1f necessary, untll the prevlious type-punch program has
been completed before actually starting on the new type-
punch program. Only when the latter has been started does
the control return to the maln program. (In the dlscusslon
that follows we restrict ourselves to the case where the
X1 does not have to attend to other mechanlsms simulta-
neously: if, for example, a tape read program were active
at the same time, a large part of the walting time caused
by the typewriter could be used by the X1 to continue
with the tape read program.)

If the time required by the typing 1s so much in excess
of the total time necessary for the computatlon that the
typewriter nevertheless operates at full speed, this loss

100

-96-

in computation time is fictitlous. Real lcss in total
time only occurs when the X1 18 unproductive durlng a
"concentrated" number of calls of the type-punch pro-
gramg, while the typewriter 1s not active at a later
stage, because the X1 is still busy forming the next
result., In the following we will describe how a compu-
tation of this type can be speeded up by means of a
somewhat different arrangement. We should point out,
however, that under the most favourable circumstances
the total speed can at most be doubled, viz, when the
times required for typlng and computing are equal.
This, then, is the only case where the X1 and the type-
writer can both be productive contlnuously,

},9,2 General structure of synchronizing communication

programs

In the followlng the term communicatlon program re-
fers to elther a tape read program or a type-punch pro-
gram. The diagram glven below shows an automatlc syn-
chronizing communication subroutine: without the walt-
ing cycle at the beginning it would be equipped wlth
semi-automatle synchronlzation.

-

a
) =% Communicatlon program
concerned active?

| I

b) = Standard Entrance for
communication program concerned

One or more internal com-
munlcation subroutines

I

Standard Exlt for communica-
tion program concerned

a) Call with automatic synchronizatlion
b) Call with seml-autcomatic synchronizatlon

101

97

When the subroutine 18 called in, the X1 is suscept-
ible and class 6 1s allowed by the interruption permit;
in call a) the interruption can therefore take place
and a previous communicatlon program of the same kind,
which may sti1ll be active, 1is continued and therefore
completed sooner or later. We now restrict ourselves to
call b) as shown in the flow dlagram.

The simchronizing comminication subroutine starts witn
a standard entrance and ends with a standard exit, The
first consists of three orders, the last of one.

The standard entrance begins by removing class & from
the interruption permit. This is done because the pro-
gram soon changes 1nto an interruption program of class
f and In every interruption program interruptions from
1ts own class are prohiblited.

The next operation concerns the link, for this must
not be used at the end of the communlcatlon subroutine
but as scon as the X1 would have to walt for the appa-
ratus. The corresponding (sp) which refers back to the
maln program is placed in the A-register for thls pur-
pose, and 1s thus glven to a preparation subroutine as
a parameter.

The call for this preparation is the third and last
order of the standard entrance; the function of the pre-
paration subroutlne 1is twofold. In the first place the
1ink given in the A-reglster 1s recorded amongst the
administrative data belonging to the interruptlion pro-
gram of claas 6; 1n the second place a note 13 made of
the fact that the communlcation program concerned 1is
(by definition!) active from now onwards. On account of
this note the preparation subroutine exists in dupllcate,

mhe standard entrance of a tape read subroutine takes
the form '

0Y 64 XS Remove class ©
2A 84m XO l1ink = (A)
6T 7 DO 14 =) Preparation tape read program .

The standard entrance of a type-punch subroutine takes
the form

oY 6% XS Remove class 6
2A B+m XO l1ink = (A)
6T 8 D1 14 = Preparation type-punch program .

The preparation subroutines change (S).

102

Remark
interruptlon permlt the 6-th interruption can no longer

take place.

-98-

Ag Bogn as class & has been removed from the

For thls reason {sqy) 1s temporarily at the

disposal of subroutine jumps and will be used excluslve-
1y between the gtandard entrance and exlt of communlica-
tion programs

gee 3.6).

The standard exit of a communication subroutine con-

slsts of one Jump order; as 2 result a note 1s made that
the activlity of the program 1in question has been ended
again. Accordingly the exlt also has two forms:

2T

ot 12 DO A
and
13 D1

=» Ex1t tape read program

= Exit type-punch programn .

Tn the first instance control goes to the central ad-

ministration program of class £:; as the communication
program has now been completed, the control (flnally)
goes back to the maln program.

The communication subroutines that may be called in

between the entrance and exit, must be gpeclally adapt-
ed to this situatlon., A subroutine having the structure
requlired 1s called an internal communication subroutine.

A clear 1llustratlion of an automatic synchronizing

subroutine 1s "Punch binary tape", which can be found
at address 2% D21 et seq. During the walting cycle the
contents of the A-register (the punch code) 1s stored
at address O X1 (see %.9.3).

4.9,3 The calls of the internal communicatlon subroutines

The internal tape read subroutine (the so-called assem-

blage subroutine) may only be called in between the stan-

dard entrance and exlt of a tape read program (see 4.9.2).

Tt is therefore only called in when class 6 is not allowed
. to interrupt and is accordlngly called in by using 814.

The subroutine has no synchronlzing analogue. We only

mention the ordinary way of calling it In:

Lig}

6T 0 D10
2T 15 X2
1T 3

14 =) Assemblage subroutine
=» Point of return after det. of direct.
A => Point of return after proc. directive
Point of return with (S) = new word

103

-99_

The assemblage subroutine Is a falrly compllcated
plece of program; amongst others this 13 shown by the
fact that control returms to one of the three addresses
that follow on the call, depending on the kilnd of 1n-
formation that was encountered on the tape.

Ag soon as a dlrectlve is detected on the tape, the
control comes back to the firat polnt of return, this
directive not having been effectuated yet. (The symbol
that follows D can be found In A, the next sgymbol has
also been read and can be found in S.) If control finds
the order 2T 15 X2 here - as shown above - then the as-
semblage routine goes on to process the directive (and
more symbols are read if necessary). Finally the link
of the assemblage routine ls Increased by 1 and used
agaln so that the control now comes back at the second
point of return; as a rule i{ wlll find a Jump crder
here which directs 1t back to the call of the assem-
blage routine, This arrangement of different polnts of
refturn was delliberately chosen to enable the user of the
assemblage subroutlne to detect the occcurrence of dlrec-
tives on the tape and to take speclal measures before
or after thelr processing, should he wish to do so. A
simple application can pe found in the program process-
ing the tab-tape, that can be found at address 30 D27
et seq. The number of spaces tc be glven 1s read from
the tape hy the assemblage subroutine, but when a dilrec-
tlve occurs, control 1s redirected fo the processing
cycle (see 4.7.4). Further applications fall outside
the scope of this descrlptlcon,

However, when the assemblage subroutlne is to dellver
a new word, 1lts link is Increased by 2 before 1t 1s used:
control comes back at the thlrd polnt of return with the
new word In the S-reglster, When the assemblage routilne
1s called in repeatedly, the words are delivered in the
order in which they are normally stored Iin the memory.

In the above scheme of calling in the assemblage sub-
routine, all directives pass "unnoticed". The consequences
of the dlrectives DA, DX and DC are restricted to the pro-
cessing cycle of the tape read program and have no effect
on the assemblage proper. The type indications have thelr
full effect and the paragraph definitions DP are, In the
flrast instance, only effective In as far as the paragraph
names speclfied are actually used by the assemblage., The
" directlive DS ends the activity of the tape read program
in the ordlnary way, i.e. it effectuates the standard
exit 2T 12 DO A (see 4.9.2) of the tape read program. As
a result, the standard exif of the tape read program need
not be programmed explicltly 1n a special tape read program

-100-

1f the form of the latter 1s such that its activity is
to be ended by the occurrence of DS on the tape. One
programs the standard exit expliclitly 1f one wants the
activity of the tape read program to come to an end for
reasons other than the occurrence of DS, e.g. when a
rixed amount of data have been read 1in,

The use of this subroutine demands two fold prepara-
tion. For, when the subroutine reads the tape, thls 1is
done 1n the way that 1s specifled by the last type In-
dication. Another way of saylng that the assemblage sub-
routine 'remembers” the last type indlcation, is that
the assemblage subroutine can find i{tself in different
"states", in this case 1in as many states as there are
type indlcations. Thls, however, 1mplies that the user
13 obliged to bring it Into & definite state before 1t
1s used for the first fime. We will assume that initi-
ally there is a plece of blank tape under the reader,
and that therefore the "current" type indicatlon must
be set to "Skip blank tape", (The current type indica-
tion 1s specified by a characteristic address stored In
18 X2; for "Skip blank tape", for example, the value of
this address is = 7 D7.)

Furthermore, 1ln the assemblage of many units of infor-
mation it 18 essential that the assemblage routine has
already noted the flrst pentad of the next information
unit. (Thus the end of a number, for example, 1s indicated
on the tape by the first symbol that does not belong to
1t, 1.e. as a rule the sign of the next number.) As this
necessity is the rule rather than the exception, the as-
semblage routine consistently assumes that each time &
new unit must be assembled, its first gymbol has already
been read (and can be found at address 24 X0). We are
therefore obliged to supply the tape read subroutine with
s "suitable" first pentad before 1t is flrst used. We can
use 31 (= X, Erase) for this purpose. The entlre prepara-
tion could therefore be performed by

23 7 D7 A get current type indicatlon
63 18 X2] to "skip blank tape"
25 31 A gimulate
S 24 X0] first pentad = X .
The subroutine "Punch binary tape" also exists in the
form of an Internal subroutine, be 1t with somewhat less

elegant conventions for specifying the parameters, than
in the case of automatic synchronlzatlon, viz.:

105

=

-101-

6T 25 D19 14 =) Internal subroutine "Punch blnary

tape"
with (26 X2] = punch code
[28 x2] = firat address
(8] = length .

The addressges 26 X2 and 28 X2 are working spaces for
nearly every type-punch program: therefore the parameters
concerned may only be filled in "Just before hand" (see
addresses 24 D21 et seq.) For further detalls we refer
the reader to the description of the synchronizing sub-
routine (see 4.6 and 4,2); however, the words (sg), (s4)
and (0 X1) are not modified by the internal routlne.

Next we mentlon one other internal punch subroutlne
{but without synchronlzing analogue):

6T 2 D14 44 =) Internal subr."Punch(s)in binary form" .

When control returns under the call (A) and (S) have
peen modifled, while (B), conditlon, etc, remain unchanged.
The subroutine punches (3) as binary word (parity bit in-
cluded) in six pentads (Bee 3.9.3).

We now give two Internal subroutines for typing.

6T 18 D22 14 =) Internal subroutine "Type (S)"
prDI Address for type code
Point of Return .

The internal type subroutine also types the contents
(3) according to a type code; thls 1s supplled as pro-
gram parameter in the same way as to the synchronlzlng
subroutine. The control returns at the address below the
type code with (S) and (B) as at the moment of calllng
in. The A-reglster containg the type code actually used,
the condition glves the answer to the questlon "Was this
the last number on the line?"., (If this was the case,
the signal NICR has already been gilven.)

By contrast to the automatlc synchronizing call, the
X1 has in this case completed the typlng when 1t re-
turns under the type code. If desired, the contents of
the A-and S-register make a final check on the typing
possible. As a matter of fact the type routine checks
the typing of (S). As, however, the S-register 1s not
supplled with a parity bilt, we have - strictly speaking -
no guarantee that the number supplied to the type routine
was equal to the number we wished to type out, unless we

106

-102-

make a check afterwards. For similar reasons, the final
contents of the A-reglster are the type code actually
used.

The second internal type subroutine ls
6T 4 p1g 1% = Internal subroutine "Extra line blank"

The function of this subroutine is the same as that of
the automatic synchronizing analogue (see 4.7.3). When
the control returns, only the contents of the B-regilster
are unchanged. The condition gives the answer to the
question "Has only one signal NICR been given?" In thils
case too, the function of the subroutine can be modifled
by changing the count = [30 X2].

Tn illustration, we give an example of the use of the
internal type routines, in whlch the entire layout adml-
nistration is dealt with by the synchronizing program.
Let the computation form its results one line at a time
‘and offer them to the type program. Thls type program
must see to it that fifty lines are typed per page and
also a copy of the first line of the following page. A
‘heading" must be typed at the top of each page.

In the followlng flow dlagram of the computation we
agsume that the table starts at the top of the page.

Start

0=t
and further preparatlon

Calculate next line, l.e. X1

Subr. "Type line, 1.e. xi"
(with automatic synchronization)
i

The test for the end of the table has been omitted Iin
the above diagram, The results of the computation are
stored per line at a number of addresses, regserved for
the variables Xy these addresses are fo be regarded as

107

~-403-

working spaces for the computling main program and as
"parameter addresses” for the subroutine "Type line",
which is8 now gilven.

r
=% Type-punch program actlve?

L

Standard entrance type-punch program

Transport: Xy = ¥1
t = 0%

J——

Type "heading"
51 = t

Type the numbers y4 on a llne
(using the internal type routine)

t -1=%¢ > Q°

Standard exlt type-punch program

The test "t = 02" was Introduced in order to type the
very first line only once. The transport X, = yj 1s ne-
cesgary because the one line still has to %e typed while
the main program 1s already engaged in the calculatlon
of the new values x3y for the following llne. The address-
es for the numbers yi are to be regarded as working space
belongling to the type-program; it is strictly forbldden
territory for the maln program!

4,9,4 Structure of the internal communicatlon routines

In internal tape read programs the tape read order (see
2.6.6) need not occur explicitly. In order to obtaln the
value of the new pentad we make use of:

108

-104-

6T 15 DO 1% =3 Tape read program "Wait switch" (LWW)

Control returns under the call with complete restoration
of the status quo. The subroutine investigates whether
the tape read order can be executed at this moment with-
out delay. If so, control returns immediately under the
call; if not, the tape read program 1s temporarlly stopped
and a main program (viz. that following on the synchro-
nizing call) is continued, until the tape read order can
now be executed again wilthout delay. The main program 1s
then interrupted and the tape read subroutine 1s contl-
nued under the call IWW. When the control returns under
the call of IWW the followlng pentad has, however, al-
ready been read and stored in address 2k X0, The tape
read program 1s therefore organized as though the X1 were
equlpped wlth a tape reader that has to be stepped up ex-
plicitly (by the subroutine call ILWW), after whilch the
penta? wan be read repeatedly (being the contents of
24 X0).

Internal type-punch programs are organized somewhat
differently. Here the communication orders concerned
(see 2.6.7 and 2.6.8) are actually used, In using these
orders, which place the flexibillty of the elementary
code of the X1 entirely at the disposal of the program-
mer again, one rule must be strictly oveyed: the X1 must
have executed the subroutlne

6T 15 D1 44 =) Type-punch program "walt switch" (TPWW)

once and only once before every type or punch order. As
above, control returns under the call with complete res-
toration of the status quo, but 1t only returns as soon
as the next type-punch order can be executed wlthout de-
lay. It is not necessary that the type-punch order now al-
lowed follows the call TPWW {mmediately: a number of or-
ders may be executed first but not the call for one of

the internal type cr punch routines ment ioned (see b,9.3),
for these, in thelr turn, contain a call TPWW before the
first type-punch order. In that case the necessary alter-
nation would be disturbed.

The echo order, as used In the checking type subrou-
tines, glves rise to a minor complication, for the echo
order may only be gilven when the next type-punch order
could be executed without delay. To obtain the echo of
the last dlglt of a number an additional call TPWW must
therefore be gilven. If no further layout slgnal is sent
to the typewrlter now, we can restore the disturbed al-
ternation by the call

67 o4 D1 1% =3 "Obliterate TEWW"

109

-105-~

This subroutine call, which destroys (S), brings the
central program for class 6 back into the state 1t would
have had if a type-punch order had been executed last.

Now a TFPWW can come again without 111 effect (or, as the
case may be, the standard exlt of the type-punch program).

4.9.5 The interruptlon of class 6

When the Interruption of class & takes place, the sub-
routine jump (stored at address €& D16)

6T 26 D1 4 B

138 executed. (The only difference ln the executlon of
the interruption subroutine Jump is that the 1ilncrease
in the order counter T 18 suppressed and that the X1
automatically becomes unsusceptible.)

The interruptlon only takes place 1f class 6 1s allowed
by the interruption permit, 1f the X1 is susceptlible, and
if at least one of the two interruptlon slgnals of class
6 18 present. Which interruption slgnals are present, be-
comes apparent when the 6-th class word 1s read (into A
by the order &Y 4 XP):

dop = 1 interruption signal from tape reader present,

i

d1 1 interruption from typewriter or tape punch
present.

When these signals are absent, the corresponding blts
are = 0; the more significant bits of the class word are
always = O,

As soon as the class word has been read out the inter-
ruption signals detected cease to exlst (see 2.7.3). For
class 6, however, this 1s not the only way of ending the
Interruption signals. Should a tape read order be glven
while the corresponding Interrupticn signal is still
present, the latter dlsappears; a new Interruption aslg-
nal only appears when, followlng on the last tape read
order, a new one can be executed agaln without delay.
The same applles to the other interruptlon signal wilth
respect to the tape punch and the typewriter. (In the
communication program discussed here, we do not make use
of this property.

Furthermore the communication orders are equlpped wlth
an automatic blocking, should fhe control encounter two

110

-106-

auch (similar) orders too quickly after each other, l.e.
the second order 1s blocked as long as the interruptlon
signal is stlll to come. Only when this moment has ar-
rived, the executlon of the order ls completed, and the
previous communication order does not engender an inter-
ruption signal.

The communication program makes use of thils automatic
blocking Ln its reactlon to the tab-tape (see 4.7.4),
where a number of space slgnals are sent to the type-
writer in the middle of the tape read program (see
address 30 D27 et seq.). It 1s, however, not our Iinten-
t1ion that extensive use should be made of thls blocking;
it is primarily an electronlc safety measure to protect
the apparatus in the case of program errors. Apart from
the fact that thls use of the automatic blocklng may
imply a loss of useful computing time, there 1s ancther
complication. When any interruption signal has arrived,
fhe mctual interruption is (at least) postponed untll
the current order has been completed. Once orders are
introduced that may take 100 ms, there 1s a risk that an
urgent interruption must be postponed for the same perlod
of time. Thls could be fatal. During the reading of the
tab-tape, however, these difficultlies do not arlse.

The situation that one of the three mechanisms wouild
accept a next communication order only with some delay,
18 characterized under all circumstances, by the fact
that the corresponding interruptlion signal is atill to
come. The central program for class & keeps a record of
fhis situation in the four least significant bits of
(26 X0) = "state record class A" . Numbering the dlglts
from right to left, we speclify:

dp = C a taps read order can be executed ilmmediately

1 the program will postpone the execution of the
next tape read order until the X1 has recelved
an interruption signal from the tape reader .

d,1 - 0 a type-punch order can be executed immedlateiy

= 1 the program will postpone the execution of the
next type-punch order until the X1 has recelved
an interruption signal from the typewriter or
the tape punch

there 1s a tape read program active

no tape read program 1ls actlve

C
.1

d. = 0 +there 1s a type-punch program active
1 no type-punch program 1s active

111

-107~

€ Sp <= (1a pus g ‘Jsd

mr_ Pl vr_ P b g EERB1O J0J weIBOJ
- == " |- - - —— - 18JI4UIO JO WBAZBID
Japdao yound weldoad pead

-9d£kq suo fweadoad adey Jo a0a1d

i
1
d-ad£ d
yound-ad4Ag Jo 2937 [s _Mmu ALYLS <= 54,
i “ ma¢emnuuH%
BIUD B3I
mLyns <% _JmﬂmﬁwMWMMaumw|- - -
-« P 50 = us bp 0
6] ¢ AR L 70 = fp v usoq
L _
: 20 = °p pug Op y3o0q
| (0 = paomsae1o J1 ‘d8Y3jau JI0)
L lp<=0 ao/pus Op <o
| :quagsad gr1eudie uoljdnagajul
| Mﬂ JOo spuncdd uo {pICMEERID Y3ig puad
[
T . _
I1e ' . 11 <= N
G LE=HLYLS &= P & HLVL &=
TJ . K _IJ . 4
{
tMMdL dum[aupqnoaqns i M7 dumf
faopao yound-adig juianoIgns {pejusd 3Xau
1xau 03 dn uwwadoad | J0J puewap o3 dn weld
yound-adfy Jo avatld ,—oxd peaa adwy jo @o91d
....... 4 L______24
et R o Seboath IR onen
Hy <=
q 9y, <= ALYIS . 91 <= HLVIS farmaad uotdnaequ]
qaimIad uojadnixajquy fqrmaad uolsdnadaajul .
C]woly 9 s8810 daouway & 2] woxy 9 88810 oway = .ﬂ_Eo.Hm 9 ESBIO Ia0WIY 4

112

-408-

Besides these four bits, the central program for class
6 handles three "states" of the machine.

TE6 = the state of the machine in the external program
at the moment that 1t was interrupted by a signal
from class 6

T = the state of the machine in the tape read program
where it was broken off by LWW.

Tt = the state of the type-punch program when 1t was
P broken off by TPWW.

These "states" each refer to the contents of the regls-
ters A,S and B together with all that 1s recorded in the
1ink by a subroutine Jump, l.e. the contents of the order
counter, the interruption permit, the condition,etc. (see
2.7.2). For the recording of each of these three states,
four speciflc addresses are regerved 1in the memory.

The operation that is denoted in the dlagram by "STATE
=> Ty" only takes place in the central program after en-
try via & subroutine Jump: the current contents of the
registers A,S and B, and also the 1ink Just formed, are
filled 1n in the four reserved storage locatlons. The in-
verse operation is indicated by "Ty = STATE"; here the
status quo 1ls restored in four orders, viz, a 2A, a 28
and & 2B order and finally a restoring jump (see 2.%.3
and 2.7.2).

Bloeck 1 describeg the beginning of the interruptlion pro-
gram of class 6; here the fourth word of the "state" 1is
derived from the link formed by the (inserted} interrup-
t1lon subroutine jump. Next class $ 1s removed from the
interruptlon permit. (This 1s a particular case of "the
class itself and the classes of lesser riority": every
other class has prlority above class 6.) After thils the
X1, which became non-susceptible due to the executlon of
the interruption Jjump, 1s made susceptible agaln: from
this polnt onwards Interruptions from all other clasaes
may take place again.

Block 2 represents the standard entrance of a synchro-
nizing read subroutine, block 3 that of a synchronlzing
type-punch subroutine. The iink to bve filled in In the
fourth word of T 18 the one formed 1In the executlon of
the subroutine Jggp from the main program to the synchro-
nizing subroutine: it is the link that is gilven In A as
a parameter to the correspondlng preparation subroutlne
(see 4.9.2). (N.B. In these blocks, as in the standard
program, the specificatlon of TE6 does not automatically

113

-109-

include the reglsters A,S and B; as a result, contrcl
will in general return to the maln program under the
call with the contents of the reglisters A,3 and B
changed.) 4s the program 18 on the polnt of becoming
interruption program of class 6, class 6 must be re-
moved from the interruptlon permit and thls must be
done before Tgg 1s fllled In! Finally dp or d3 1s
made = O. From now onwards z read or type-punédh pro-
gram 18, by definitlon, active.

In the diagram only the central program for class
6 is enclosed by lines. Some plece of communicatilon
program is represented Ilmmedlately below blocks 2 and
3. The only necessary requlrement 1is that 1t 1ls exe-
cuted with class 6 removed from the interruptlon per-
mit, and that the subroutine call LWW or TFWW respec-
tively 18 executed once before the first contact wilth
the apparatus concerned,

In blocks ¥ and 5 a record is made of the state of
the correspondling communlecatlicon program. For, we have
arrived at the polnt where the machine wlll declde
whether the communication program can proceed wlthout
delay or not.

In block 6 the inverted class word is collated with
the "state record class 6" = (26 XC). When an inter-
ruption signal has been read out, there is a 1 in the
class word, l.e. 8 O in 1ts inverse, and the diglt
(do or d1) of the state record therefore becomes = O,

Reading of the tape must be postponed If dg = 1, for
In that case an interruption signal from the tape reader
1s s8tlll to come, Cnce 1t has arrived, 1t wlll be read
out sooner or later in block 6, and dpo will become = O
as described above. At the end of block 6 the question
is asked whether dg and do are both = 0. (This 1s done
by collating the state record with fhe number +5 and
asking whether the result equals zero.) As a matter of
fact the X1 will only concinue with tape read program
1f a double condition 1s satlisfied: apart from the fact
that 1t must be possaible to read the next pentad 1lmme-
dlately, it must be of interest! If these condltions
are both satisfled the control proceeds to block 8.

‘In block 8 a pentad 18 read and copled into 2% X0. In
additlon, the diglt dp is made = 1 in order to prevent
an afflirmative answer to the question at the end of
block 6, before a new interruption signal from the tape

114

-110-

reader has arrived. Finally, the substitutlon "T{=>
State" causes the tape read program to Dbe continued
pelow the last LWW executed.

If the questlon at the end of block 6 received a
negative answer - which can happen, for instance,
when two calls LWW succeed each other sufficlently
quickly - then control goes to block 7. Here the ana-
logous question 1s agked wlth respect to the type-
punch program (by collating the state record with
+10)}. In the case of an affirmative answer the con-
trol goes to block 9.

The functlon of block ¢ is analogous to that of
block 8, only the actual execution of the communica-
tion order 1s left to the type-punch program that 18
now to be continued. In the central program of class
& this order 1s antlclpated by the subsatlitutlon 1=>
dq. If this antlcipation should be incorrect, then
the type-Punch program must perform the call "Oblite-
Eateu%‘PWW'; {ts function 1s to substitue 0 =>d, (see

.9. .

If the question in block 7 also has a negative answer,
then block 10 follows. The substitutlon "Trg = State”
results 1n the continuatlon of the external program.

At this moment class 6 re-enters the interruption per-
mit. While a communication program 1s active, control
can only arrive In bloek 10 1f the corresponding in-
terruptlon slgnal was still to come,.

After bloek 10 the period of tlme that elapses before
that interruption signal arrlves, 1s utilized by the
external program; as soon &as the interruption signal
has come, control jumps to block 1 and the communlca-
tion program 1is continued.

Blocks 11 and 12 are merely the standard exlts for
tape read and type-punch programs respectively.

Tn thig scheme we have made use of the fundamental
possibility of reading out interruption slgnals that
did not result in actual Interruptions (because the
interruption permit did not allow them).

4.,9,6 Autostart 2 and the directive DE

From the precedling paragraph it is apparent that the
interruption program requlres some preparatlon. For,

115

-111-

1f one of the blts dy or dq of the state record of
class 6 happens to be = 41 wlthout the corresponding
interruptlon slgnal actually being due fto come, then
the correspondlng communication program never starts
worklng! Wnen the X1 13 switched on, no Interruptlion
signals are present: the state record of class 6 must
be set accordingly. Thls is done wlth the aid of

Autostart 2: Preparation class ©

The state record of class 6 = (26 X0) 1s given the
value +12, 1.e. no comminication program is active
and the X1 18 not to wait for lnterruption signals
from class 6. Furthermore +12 1s filled in (for the
time being) at addresses 30 X2 and 31 X2 (= current
number count per line and = number of numbers per
line, respectively); this also happens at the three
addresses that are reserved for the contents of the
reglaters in TE6‘

It 1s immaterial what 1is fllled in in these last
addresses, as long as something 1s fllled In there;
awltching the machine off or on may have disturbed
the parlty of the words in the memory and this should
be restored. Finally, a constant 1s fllled in at
address 25 X0, By modiflecation of this cconstant 1t
is possible to insert a translatlon program between
the reading of a (physicalg pentad and the delivery
of a symbol 1n 24 X0 (see 4.9.7). Autostart 2 sets
the tape read program to "no translating”.

Remark Cnce the machine 1s awitched on, but before
autostart 2 1s used, the keyboard program should be
brought to lts neutral state by means of autostart H,.

In this connectlon we should like to point out that
the directlve DE leaves the tape read program active.
The dlirective DE can therefore be used for an exten-
slon of the facllitles of the tape read program, after
which the tape read program can be continued. If one
wishes to use the directive DE at the end of a program
tape in order to start the calculatlon immediately,
then the program should start wlth

28 12 A }set Interruption program class
6 26 XO & to neutral state

0T 21 D21 P X1 susceptible and all classes
allowed

116

-112-

The constant 1n address 21 D21 has zero's in the
address portlon,as & result the OT-order does not
Jump. The other bits ensure that all classes are in-
¢luded in the interruption permit and that the X1 is
made susceptible.(This 1s the normal state of the X1.)
At the same tlme the condition becomes affirmative,
the last slgn positive and the overflow indication 18
cleared.

4. 9.7 The possibility of translation

The central program for class 6 (see 4.g9,5) 18
atored in the dead memory and can therefore not be
altered by the programmer. There is, however, & pos -
aibility of "agcape” in block 8; after the operation
1=>dp the X1 performs the Jump order 2T 25 XO. Nor-
mally address 25 X0 contalns & constant, viz. the
address 18 D1, which jeads to block 8 belng continued
ag described above. By f£illing in a different address
at 25 X0 one can, amongst others, replace the opera-
tion "read pentad = (2% XO " py a more complicated
process, 1in other words provision has been made for
pentad translation.

In the following the configurations read from the
tape will Dbe denoted by "pentads"; for the purpose of
distinction the numbers in address 24 XO that are con-
gecutively offered to the tape read program will be
denoted by "gymbols" .

The simplest translation program derives (from a
table for example) & definite symbol from each pentad.
We will now deacribe the structure of a more compll-
cated tpranslation program which meets the requlrement
that 1t should be possible to derive more than one
gymbol from one pentad and, conversely, to derive only
one gymbol from a number of pentads. The word {25 X0)
should equal the first address of the translation pro-
gram,

This translation program can find itself 1in different
states and therefore demands & sultable preparation.
The various states of the translation program can some-
times be characterized very efflclently by different
values of (25 XO).

The jump to (25 X0) also enables us to call in the
asgenblage routline (zee }.9.3) and at the game time

117

-113-

!

Any symbols in symbol store yet?

Read and procesas 0=>dg
a pentad; has at
least one symbol

then been put into

the symbol store? Transport from symbol
‘ store a symbol=s (24 XO)

l ' Tl=$.State

to block 6 (see %.9.5)

to have a list of the individual pentads used at our
disposal when control returns under the call. For a
last application see 4.10,

%.10 Mutually synchronized input and output

We have described a set of communication programs
ag acting in conjJunction wilth a certalin main program,
that may want to use Informatlon provided by the Input
and may want to print or punch the results. The syn-
chronization always covers the maln program on the one
hand, and one or both communlcation programs on Lhe
other hand. In this Interplay the maln program may
have to wait for the completion of a communlcation
process, conversely the communication programs will
only be started when certaln points in the main pro-
gram have been reached. In the first instance input
and output are asynchronous with respect to each other.

They may be coupled Indlrectly, for 1lnstance when a
certain result to be typed or punched out requlres a
number of data from the input for 1ts constructilon.
Untll now such coupling was accomplished by the main

program!

Our next problem 13 to construct a program that reads
a tape and types and /or punches out data depending on
what has been read. One of the simplest examples is
merely reproducing a tape. Another example 1s typing
out the bilnary words from a tape In decimal form. In
the latter case a number of symbols to be typed out

118

input
of x

~114-

are derived from a group of consecutlve pentads each
time,

We now demand that it must be possible to execute this
program simultaneously with any other program; at first
we restrict ourselves to the case that the latter pro-
gram does not use any of the mechanlsms of class 6.

Standard entrance of tl
the tape read Program;
£111 in a
"suitable" T¢p

— . S—

g
1
output Et TPWW '
1
!
t

[LWW (1ncl. read order),
|

of y ype-punch order

The program 1s constructed as a (seml-automatic)
synehronlzing communicatlion subroutine. Because 1t
must be possible to combine this program with any
program, we cannot expect the gubroutine Jjump to
bloek 4 to occur in the latter program. In order to
atart the above communicatlion program, one stops the
X1 at & polnt in the maln program, places the subrou-
tine jump to block 1 1n the word gswitches, and lets
the X1 execute thls order once by means of the key
"Do" (see 2.8). Using the start key BNA one lets the
computation proceed, It ia necessary that one should
have stopped the X1 at a point where use is not belng
msde of the 1link which is given a new value by the
gubroutine Jump in the word switchea! Furthermore, we
assume that the X1 is then In the normal state, l.e.
susceptible and all Interruptions allowed by the In-
terruption permit. Finally the main program must leave
the addresses of the communicatlon program (and 1ts
working spaces!) intact.

119

~115-

The dlagram shown by blocks 41 to 7 omits some de-
talls; in partlicular 1t does not show how the process
ends.,

In block 1 the standard entrance of the tape read
program takes place; in addition the four addresses
reserved for Ty, are glven such values that the flrst
operation "Ty,=> State" causes the type-punch program
to start 1ts &ctivities correctly. (It 1ie assumed that
these values are Iindependent of informatlon stlill to
be read. If necessary, the type-punch program can pur-
posely ?e arranged in such a way that thls requirement
1s met.

The information read from the tape denoted by "x";
this is handed over to the type-punch program which
types or punches "y", by the transport "x =>y". Poss-
ible additional processing of this information (trans-
lation etc) may take place elther when x 1is formed or
when y 1s given to the output; these operations are not
Indlcated in the dlagram elther, It 13 essential that
the storage space for x and that for y does not over-
lap: whlle the type-punch program sends one unit of
Information from {the addresses for) y to the output,
the following unit of Iinformation is being bullt up
in (the addresses for) x by the tape read program.

After bdlock 1 & new x 1s contructed from one or more
pentads. Thereafter the program investigates whether
d3 = 0 1n the state record of class 6 (see 4.9.5),
17e. in bloeck 2 the question "Type-punch program ac-
tive?" 18 asked. (The asklng of this question, 1.e.
the analysis of the corresponding digit of (26 XO)
must be written out in full, and may not be performed
with the ald of the subroutine call: 6T 5 D1 0 = "Type-
punch program active?" as we may not use 8 X0 without
precautions!) To start off with, the questlon in block
2 recelves a negative answer,

In block 3 the gubstitution O=¢-d3 makes the type-
punch program actlve; the transport”x -—= y offers the
Information for the output to the type-punch program,
and the tape read program proceeds to builld up the
next iInformation unit x.

If the question in block 2 received an affirmative
answer, thls meant that the output of the previous y
was not yet complete. Accordingly the transport x =y
does not occur in block 4, where the substitution
1=>do temporarily stops the activity of the tape read
program, which is already more than one information
unit ahead. The tape read program is continued up to

120

-116-

the first LWW but, for the time being, control will
not return to it. ‘

The first time control enters the type-punch pro-
gram wlll be after the executlon of block 3; the
point where control then enters the output program
was specified at the end of block 1.

In block 5 the question 1is asked whether do = 0,
1 .e. whether the tape read program ls gtill actlve;
1f not, control enters block 6.

Evidently the tape read program was made non-actlve
in block 4 and as a result the transport x=>y did
not take place. Therefore the transport takes place
i{n block 6 and the temporarlly stopped tape read pro-
gram becomes active again due to the substltutlon

O=>dop.

Control arrives in block 7 when the tape read pro-
gram 1s still active, l.e. when 1t has not yet com-
pleted the building up of the following x. The type-
punch program 1g left no alternmative but to end its
activity for the tilme being by means of the subsatitu-
tion 1=»d-. As soon &as the construction of X has been
completed,” the question in block 2 will detect that
the type-punch program is walting.

It 1s apparent from the diagram that after the stan-
dard entrance in plock 1 at least one of the blts 4
or d- is = 0, l.e. all the time from then onwards a%
1easg one of the two programs is active. As a result
control can only arrive in the external maln program
1f at least one interruption signal 18 still to come,.
Sooner or later, therefore, control will return to the
communication program. There i3 not the slightest ob-
jectlion to prohibiting the interruption of class 6 in
the main program for 2 while, e.g. for an interruption
program of greater priority. In a like manner there is
no difficulty at all when the communication program
described here ls interrupted by an interruption of
greater priority.

It is not improbable that the external program will
be somewhat slowed down by this additional task: In atl
normel applications this effect will be practically ne-
gligible. If the overall speed of the external program
is limited by the capaclty of {other!) communication
mechanisms, so that the ¥1 has a surplus of computing
time, then the additional task may leave the speed of
the main program unaffected: one makes more efficlient
use of the X1. -

121

-417-

In the scheme just described the input can, at most,
be two information units ahead of the output. By pro-
viding more storage space for buffering the whole pro-
cess may be Bpeeded up in some cases (e.g. if, as a
rule, the lnput program requires less time per unit
than the output, but 1t occasionally has to sklp a
long plece of tape). The program then becomes more
complicated, but from the point of view of mutual ayn-
chronization 1t contains nothing new. As 1in all proba-
bility this program will be executed in the spare time
of a maln program, there 18 In this case probably little
Interest in speeding it up this way.

Finglly: I1n thils example no use has been made of any
knowledge of the times required by the input of x and
the output of y. Even 1if, in certain cases, one knows
these times and thlnks one can make use of this know-
ledge by omitting some test with respect to the syn-
chronization, we nevertheless strongly dlscourage one
to do so. For example, the idea that after the output
of an Informatlion unit the input of the next unit has
already been completed (the tape reader being a faster
mechanism), should never tempt anybody to omit the test
in block 5 and the substitution in block 7. If the tape
gets stuck, the tape reader will not send an interrup-
tion signal to the X1 until the difficulty has been re-
moved and the tape moves on. Furthermore, one should
reallze that, in view of the fact That cur communlcation
programs are subject to interruptlions from other class-
es, one only knows minimum times! In conclusion: Lf one
does not take all possible precautlons, a complete chsaos
seems unavoldable,.

Next we turn to an analogous problem. The program re-
quired must read a tape and another tape must be punched
dependent on what has been read. It must be possible,
however, to execute this program simultaneously with an
unknown main program, which uses nelther tape punch nor
tape reader, but may use the typewriter. The fact that
the tape punch and the typewrlter send the same inter-
ruptlion signal to the X1, makes this problem conslder-
ably more complicated than the previous one.

As punching and typlng are mutually exclusive, we spe-
clfy that the typlng of the main program must have prio-
rity above the punching., Obviocusly 1t 1s polntless to
ask our program to work together with a main program that
makes continuous use of the typewriter! Agaln we demand
that all precautions to be taken occur in the additicnal
commmication program. We demand of the main program that
1t leaves the working spaces of the standard tape read
program untouched.

122

~118-

Since 1t must be possible to interrupt the "punch
Program" in favour of the type program at the first
'gummons" of the main program, we leave all common
standard type-punch facilitles at the disposal of the
type program and accept the fact that no use 1is made of
the standard punch subroutines. For: the latter make
use of the same working spaces as the standard type
programs, and information stored there for the pur-
pose of punching would be in contlnuous danger of
being destroyed by the type programs.

The working spaces previously allocated to the type-
punch program are now reserved for the typlng in the
main program and new worklng spaces are introduced for
the punch program. In partlcular, in this interplay
the four addresses Tgp will record the state of an
interrupted type program and four new addresses are
introduced to record the state of an interrupted punch
program; their contents will be denoted be Tpunch .

To f111 these addresses, we program a new gubroutine
entrange, called Punch WW, to the central program for
class b:

punch

Tt is analogous to blocks 4 and 5 in the dlagram in 4.9.5.

We modify the function of the bits dp and dq of the
state record of class 6; furthermore wé shall also make
use of dy and d5.

dy = 0 and permanently so, to be able to make use of
the possibility of translation (see below)
d3 = 0 type program active, otherwise 1

dy = O tape read program active, otherwise

1

Il

ds = O punch program active, otherwise = 1 .,

The diagram of the program that reads and punches 1s
analogous to the prevlous one,

In order to let this scheme work, in particular in order
to let the new blts of the state record function properly
we must interfere with the operation of the central pro-
gram of class 6, as it was described in 4,9.5. We do so
by changing the address in 25 X0, the translatlon possibl-
1ity. If we now choose ds = O permanently, we can always

123

-119-

O=dy, 1=>d

;
F1l1ll in a "suitagle" T

Standard entrance of the
read program (incl. O=»dp)

punch

R i

IWW{incl.read order) :

l o

d5=

0?

O=$vd5
X=7

1=>4dy

Punch WW
punch order

|

07

dy =

0 =>dy
xX=>y

interfere as long as reading 1s permissible. When the

Jump to

(25 X0) 1s executed the substitutlon 1=>dp

has already taken place in antlclpatlion of a read order.

from block 8

] 1
both dy and d = 07 3 0=>dg; 1=>d, A
c— Ttp=$ STATE
1
15 16
both d5 and ci,1 = 07 O==»d0; 1 ﬁpd,}
e Tpunch = STATE
1
dy = 07 7 read pentad => (24 KO?B
| Sw———— Tl =» STATE
0 =>do 19
TE6 = STATE

-420-

As the blocks in the diagram in 4.9.5 - of which
this 1is =sn extension - were numbered from 1 to 12,
the blocks 1n this dlagram are numbered from 13 on-
wards.

Since d» 18 = O permanently, the answer to the
question %n block 6 depends only on dg: when an in-
terruption signal from the tape reader is still to
come {l.e. dg = 1), block 7,9 and 10 will function
normally, 1.e. typing will then take place in the
ordinary way.

The address in 25 X0 directs the control from block
8 to block 13, after substituting 1=>d,. In order to
be sure that we are not going to punch when we should
type instead, block 13 ptarts off with the question
that control would otherwise have met in block 7. If
the answer is affirmative we continue the type progran.
Block 14 1s analogous to block 9.

If a negative answer is glven to the question in
bloek 43 (1.e. no typing), we investigate in block 15,
whether punching must tape place, 1f so, control 1s
gsent, in block 16, to the punch program.

If not, the program in block 17 finally investigates
whether the tape read program is to be continued. Here
only dy 1s considered, for 1t is known that the inter-
ruption signal from the tape reader has already arrived
(this was established in block 6).

Block 18 is analogous to the continuatlon of block 8.

When reeding 1s not allowed either, the control re-
turns to the main program via block 19.

The test whether the tape read program is to be conti-
nued takes place in block 17 after it has been eatabllished
that there 1s not to be typed or punched. The reason for
this is that d, will be = 1 for some tlme after an affir-
mative answer gas been glven to this questlon: during thils
period controcl will not enter blocks 13 to 19.

Again we can deduce {but now from the fact that at least
one of the bits dy or dr will be = O) that control will
not be sent to the main”program unless 2an interruption
slgnal from class 6 18 to come. For thls purpose it is
esgential that control goes to block 6 on leaving block
12 and that 1t does not go directly to block 10! For,
after block 14 no interruption signal from the tape reader
18 8ti11 to come: if, firatly, only an echo order ls exe-
cuted in the continuatlion of the type program, gecondly,

125

~124-

the substitu*ion 1 =>d1 13 annihilated by the c¢all
"Obliterate TPWW" (zee 4,9.%) and, thirdly, the
standard exlt of the type program then follows, 1t
18 essential that either reading or punchlng takes
place before the main program 1s continued.

126

=122~

5 SOME _SPECIAL ASPECTS OF THE COMMUNICATION PROGRAM

In the previous sectlon the communication program was
described, emphasis being particularly lald on the fact
that 1t is an interruptlon program; after an additional
remark in this connectlen the rest of thls chapter is
devoted to a number of other sspects.

As already mentioned In 3.6, the communication program
uses no counting Jumps and only subroutine Jumps with
m = 44 or = 15. Without this restrlctlon the "state”
Esee 4.9.5) would also include a number of (rpy)'s and
sm)'s, which would retard the recording and the restor-
ing of states. As per interruption of class 6, only a
small number of bits of informatlion are transported to
and from the external apparatus, thils would not be advan-
tageous. In dealing with punched cards, for example, the
situation 1s quite different: in that case there 18 one
interruption for at least one whole card and then 1t will
be worthwhile to streamllne the interruption program 1t-
self at the cost of more elaborate recording and restor-
ing of states.

5.1 The communication program in the dead memory

The fact that there are no C-corrected orders in the
communication program 1s a trivial consequence of 1its
being designed to be atored 1n the dead memory. This
1ast fact, however, had a number of other consequences.

Programs in the dead memory make use of a number of
fixed working spaces In the 1iving memory: as the com-
munlcation program, an interruption program, ls execu-
ted at moments hardly known to the maln program, we
may Jjust as well regard these working spacesg as entire-
1y reserved for the communication program. For this
reggson 1t was the more desirable to keep the number of
guch working locatlons &aB small as possible, be 1t at
the cost of some program space!

Furthermore, special steps nad to be taken with regard
to the possiblility of extension of the facllitles of the
communication program. For technical reasons it was de-~
sired to concentrate 2all words of which modification could
be expected, in two consecutive pages; D10 and D17 were
chosen for this purpose.

At all points at which extension was expected {amongst o-
thers more -~ and multiple - autostaris and more directives)

127

-123-

the stendard program restricts 1tself to the detectlon
of the situation for which no program ls Included yet.
In moat ceses control then jumps to address 23 X2 or

24 X2, reserved for thls purpose. (Despite the "merging"
1t 18 then possible to trace which situatlon was en-
countered.) The jumps &o 23 X2 and 24 X2 enable us to
actually try out and use certain extenslon possibill-
tles by means of a plece of program in the llving memo-
ry, before any actual modification is made in D16 or
D17, 1.e. before the extenaion 18 definitely included.

5.2 Extension possibilitlies of the keyboard program

5.2.1 Input of floating point numbers

The program that handles the Iinput of flocatling point
numbers by means of the keyboard 1s not included In the
standard program; what has been Included 1is the detec-
tion whether somebody is using the keyboard for the
input of a floating point number. In that case the ex-
tension program can find all relevant data in the memory.

After the last diglt of the numerical part the declmal
exponent 1s pressed in { preceded by its own sign) and
afterwards one presses the key F. If the exponent iz = O,
1t may be omitted. To introduce, for example, +23.4% one
may press

+ 23.4 F
+ 234 42 P
+ 0.234 +2 F
+ 23.4 -1F

Two addresses In page D16 are connected with thls ex-
tension: in the final version address 24 D16 must contaln
the address at which the keyboard program must be contil-
nued when elther the F or the sign of the exponent has
been detected. Address 25 D16 provides the extension possl-
bility for the subroutine for the conversion from floating
decimal to floating binary notation, viz, for the case
where the given decimal exponent 1s » +0. (For the case
§ -0 the subroutine has been Iincluded: the converslon of
fixed point numbers makes extensive use of 1t in both the
input via the keyboard snd via the punched tape.)

To make this extension loglcally posslible we were com-
pelled to prescribe the presping of key H (to bring the
keyboard program back to 1ts neutral state, (see 4.&))in
cagse of an error: otherwise the next slign would be mls-
taken for the sign of an exponent,

128

124

5.2.2 Multiple autostarts

No meaning has been assipgned as yet to the three
autostarts ., F and G, (Addresses 18, 21 and 22 D16).
In order to be able to Introduce more than three new
autostarts, they will probably all three bhe used as
introductory symbols of so-called "double (or poss-
1pbly multiple) autostarts”. Agein, only the detectlon
facility was included in the standard program. The
"state record of class 7" = (27 X0) 1is > +0 during
the input of numbers, 18 = -0 durlng the neutral state
of the keyboard program; the latter now also teasts,
whether (27 XO) happens to be < O. This will be the
case s Boon as the Introductory key of a multlple
autostart has been pressed. In the final version, 1l.e.
with the extension included, address 23 D16 contalns
the address where the keyboard program will then have
to be continued.

5.3 The extenslion possibilities of the tape read
program

In all type indications dealt with, the agssemblage
routine remajins sensitive to all directlves, l.e. to
the introductory symbol D. The lines of page D17 are
in one to one correspondence to the 32 possible sym-
bols that can follow this D, A Jump order to some
point In the dead memory ig f1l1led In at the corres-
ponding line for the incorporated directives, for the
time being there is a jump order to the address 24 X2
on the remaining lines. When a not yet incorporated
directive is met, control therefore arrives at 24 X2
in the living memory. For detectlon purposes the sym-
bol following the D can be found in the A-reglster,

while the following pentad 1is recorded in S{and 24 XO),

Definite Inclusion of & new directive lmplles modifi-
catlon of the corresponding line of page D17.

Ags the reader will realize, the maximum number of
directives is not restricted to 32: the number of dl-
rectives can be extended at will by a technique iml-
lar to that used 1n the double autostarts (see 5.2.2)
The most obvious extensions are additlonal type indi-
catlons,

Due to the type indlcations the information on the
tape could be punched In different codes and these
codes are entlrely Independent of each other. The end
of a number on the tape, for example, (under type 1in-
dication DN, see 4.1.3) is Indicated by the first

129

-125-

symbol of the next Informatiom unit, l.e. a slgn, D

or X. If it were permlssible for a number on the tape
to be followed without warning by an order, the detec-
tion of the end of the number would become considera-
bly more compllcated if not impossible: for, an order
can begin with one of the digits C to 7.

This convention costs some extra symbols on the tape
as soon as8 '"the type" changes: the individual codes,
however, being independent of each other can be made
more efficient. The total effect of the Introduction
of the type indication is that tapes are probably some-
what shorter. The most important argument in favour of
the introduction of type indications was, however, fthat
thereby the possibility of unrestricted extenslon was
retained,.

In this connectlon we should llke to draw attention
to the possibillty of constructing type indicatlons
under which the assemblage subroutine temporarlly be-
comes "blind" to directives. It 1s only posslble to
detect a directlive if no information unilt starts with
a D: once information units are allowed to start with
the symbol D, the assemblage routine rmust be insensi-~
tive to normal directives. In that case one therefore
chooses some kind of convention o announce a directlve
or to end the validlty of the type indicatlon concerned.

Tn the second place, we should like to mentlon the
possibllity of making type indicattions under which in-
formatlon units are constructed that occupy two (or
more) words in the memory, e.g. double length numbers
or floating point numbers,

When the assemblage routine 1s called In for an in-
formatlon unit of this kind, control returns for the
firat time with the first assembled word; at the next
call no tape 18 read but the next word that was stlll
in store 1s handed over. In other words as many states

of the assemblage routine as there are words derived from

one Information unlt correspond fto such a type 1lndlca-
tlon,

When the assemblage routlne encounters a directlve
that announces a multiple-word-type, not only must the
type be recorded, but the assemblage routlne must also
ne brought into the corresponding 1nitlal state, As a
matter of fact the type indication is recorded by flll-
ing 1In an address at location 18 X2; the assemblage
rcutine reacts to this specificatlcon of the current
type indication by Jjumping (in its third order, see
address 2 D10) to the address indicated there (by means

130

-126-

of the order 2T 18 X2). The contents of address 18 X2,
or only the more significant bltas of this word, are
particularly suitable for distingulishing between the
different "sub-statea" of the assemblage routine that
then succeed each other cyclically.

5.4 Some closing remarks

The design of the X1 cen be regarded as an effort to
pass, as successfully as possible, between Scylla and
Charybdis, viz. complexity and ease of handling., In the
gbove we have described our efforts to make this narrow
passage lock like an open sea,

A large number of these efforts concerned the notation
of the orders. Thus the position of the columns In which
“the programmer writes down the variants was purposely
chosen so that they can be loglically read from left to
right. First one notes whether the order should be "part-
ly or sometimes not" executed, next comes the kernel of
the order, immediately following the address one wrltes
down the varilant of address modificatlion and finally one
specifles whether, and if sc how, the order fiﬁalix sets
the condltion.

Due to the use of two paragraph letters, the first of
which can be omitted in most cases, the address notatlon
1s able to cover a large memory when necessary, but in
such a way that 1t does not lead to an unnecessarlly
cumbersome notation as long as the program requires only
a small memcory.

The subdivision of the memory into pages of 32 lines
was chosen so as to make the correiation between the
address as i1t is written down and its binary representa-
tion as simple as possible, It was a lucky colncldence
that 32 lines 18 a conventient number for a standard pro-
gram sheet, that all kinds of five hole paper tape mecha-
nisms are commercially avallable and that - as experlencge
has shown us - most people have little difficulty In re-
cognizing binary numbers of flve digits Immedlately, and
conversely in putting them in swiltches wilithout hesltation.

In the notatlion of the function part (with the excep-
tion of the P-orders) we also adhered to the prilnciple
that the programmer and the operator can find the bilnary
repregentation from the programmers symbols and vice versa

131

-127-

without calculation or the use of extensive conversion
tables. Without these features the facllities of the
operator's desk could never pe used to full advantage.

The last aspect of the complexity of the X1 1s shown
in the interruption faclility. The communication routlnes
described serve a double purpose: on the one hand 1t 1s
hoped that they form & well balanced set which the pro-
grammer mAy use, paylng practically no attentlon to the
problems of parallel programming, on the other hand it
18 hoped that they provide the more ambitious programmer
all the faclilities he may need for more refined work in
this fileld, :

Finally: the introductlon of the autostarts consider-
ably increased the ease of handling the X1 - in the
literal sense of the word!

132

-128-
References

4. A.C.M. The Western Joint Computer Conference: "New
Computers, Report from the Manufacturers”,
los Angeles, March 1957 ;

2, DiJkstra, E.W.: "Programmering voor de ARMAC, Deel 1",
Rapport MR 25 van de Rekenafdeling van het Ma-
thematisch Centrum, Amsterdam, 1656 ;

3. Hartree, Douglas R.: "cgleulating Instruments and
Machines", University Press, Cambridge, 19503

}. Poel, W.L., van der : "The Loglcal Princliples of some
Simple Computers", Thesls, Amsterdam 1956 ;

5. Rutishauser, H.: "Magsnatien zur Vereinfachung des
Programmierens’, Nechrlchtentechnische Fach-
berichte, Friledr. Vieweg und Sohn, Braunschwelg,
Band 4, 1956;

6. Scott, Dana S.: Techn, Rep. no 1,
Princeton University, 10 June 1958;

7. Wilkes, M.V., D.J. Wheeler and S. Gill: "The prepa-
ration of programs for an electronle computer“,
Addlson-Wesley Press Inc., Cambridge (Mass.),

1951.

-120-

SAMENVATTING

De X1 18 een automatische rekenmachine, dle ontworpen
iga met het doel voor ogen een machine te construeren,
dle zowel voor wetenschapvelllk als voor administratief
rekenwerk goed gebrulkt kan worden.

Tn verband met de wtjd ulteenlopende eisen moet het
daarom mogelijk zijn, meer of minder ultgebrelde lnstal-
laties op te bouwen. We verdelen daartce de complete Iin-
atallatie In drie onderdelen: de basismachlne, het gZe-
heugen en de in- en ultvoerapparatuur.

Terwlj]l de basismachine in principe voor elke instal-
latie dezelfde is, kan de omvang van het geheugen, even-
als de hoeveelhelid en noedanigheld van de aangekoppe lde
communicatie-apparatuur van installatle tot installatie
gterk verschillen.

De basismachine werkt intern In net tweetalllg stelsel,
de woordlengte is 27 bite (tekenbit, gevolgd door 26 bi-
nalen). Alle transporten en optellingen worden woordsage-
wijs parallel uitgevoerd, hun t£1jdsduur varieert van 36
tot B84 ws, vermenigvuldiging en deling vergen 500 ps.

Het rekenorgaen, dat alle operaties met vaste komma
ultvoert, ls ultgerust met twee reglsters (A resp. 8)
van 27 bits, welke als volledig onafhankellJke accumu-
latoren gebrulkt kunnen worden, maar 1ln de vermenigvul-
diging en deling (evenals in speclale schuifopdrachten)
gekoppeld zil]n. Afgezien van deze koppeling, waarin de
registers A en S5 een verschiilende rol spelen, zljn zl]
gelljkwaardig. Voorte beschikt het rekenorgaan over v ozg.
B.reglster van 16 bilts (teken en 15 binalen), dat wel de
volledige accumulatorfuncties heeft - z1] het, dat er
niet In geschoven kan worden en dat loglsche operatles
en commnicatleopdrachten in tegenstelllng tot Aen S
de inhoud van het B-regisfer ongemoeld laten - maar zijn
pbelang ontleent aan het feilt, dat het gebrulkt kan wor-
den voor automatische adresverardering van opdrachten.

Het geheugen kan één opdracht per woord bergen, de op-
drachtencode is (1in principe) een één-adres-code. In het
opdrachtwoord staan 15 bits ter beschikking van het a-
dresgedeelte, 12 voor het functiegedeelte; deze 12 ziin
verdeeld ln 6+2+2+2. Het zestal beschrljft de kern van
de functle, de drle tweetallen beschrijver. elk een Zg.
varilant.

134

-130-

De eerste variant beheerst, of de opdracht soms
conditioneel geskipt moet worden. Hierbl] 1s onder-
gebracht de mogelljkheld de bewerklng 1n beginsel
wel ult te voeren - Om het resultaat aan een crite-
rium te toetsen - edoch zonder wijzigling aan te bren-
gen in het geheugen of de reglsters A, S en B.

De tweede variant beheerst de adresverandering, Tesp.
-interpretatie Hiepin 1lgt vast of het adres van fe
opdracht, zoals deze in het geheugen vastligt, voor de
ultvoering met de tnhoud van het B-reglster vermeerderd
noet worden. (NB. De inhoud van net B-register kan ne-
gatief zijn.) Hlerbi] 1s ondergebracht de mogell jkheld,
de sdresciljfers nlet te lasten verwijzen naar een plaats
in het geheugen, maar ze meteen te verwerken als operand.

De laatste variant - die der conditiezetting - maak?t
het mogelljk, het regsultaat van een operatle aan een
vraag te onderwerpen: er zijn drle ecriteria, nl. de te-
kentest, de nultest en de test op gelijkheid van teken.
Het antwoord op deze vraag wordl vastgelegd 1n een aparte
f1ip-flop - de ZzZg. conditie - , de inhoud waarvan OP elk
gewens?® moment door de eerstgencemde varlant in de afloop
van het proces petrokken kan worden.

Dankzl] de varisnten ontstaat een machtige opdrachten-
code met een grote flexibilltelt. Omdat het nlet eenvou-
dig is, alle mogellJkheden van de code op zlJn efficientst
11t te bulten en pogingen in die richting aanleilding kun-
nen geven tot tamelljk ingewlikkelde constructies, 1ls de
grootat mogelljke sandacht besteed aan de manler, waarop
de programmeur de varianten noteert. In de gekozen nota-
tie zljn voor de varianten drie kolommen gereserveerd,
waarvan de plaats strookt met tun loglsche functile, in-
dien we de cpdracht van 1inks naar rechts lezen. In het
normale geval blijven deze kolommen oningevuld, anders
wordt in zo'n kolom een gpeclale letter ingevuld om aan
te geven welke variant op welke wijze wordb toegepast.
Wanneer de ulteindeli ke opdrachtencode ondanks zlJn com-
plexitelt nanteerbaar 18 geworden, 18 dat voor een nlet
onbelangrijk gedeelte aan de notatle der varianten en die
van de kern van het functlegedeelte te danken,

De structuur van de basismachine 18 met zorg zo gekozZen,
dat een, wat geheugen of communicatie-apparatuur petreft,
aanvankell]lk begchelden installatle desgewenst later kan
worden uitgebreid.

Een ultbreldlng van het geheugen bledt tot een max lmum
van 215 = 32768 woorden geen logische moeilljkheden, aan-

135

-131-

gezien In de opdrachtencode - een facet van de basls-
machine - 15 blts ter beschlkklng van het adresgedeelte
staan,.

Om de basismachlne echter vruchtbaar samen te laten
werken met allerhande communicatie-apparatuur moet het
daarbl] optredende precbleem van synchronlsatle van te-
voren ziJn opgelost Een van de manileren om dit pro-
bleem op te lossen 13 om voor de informatietransport
tugsen reken- en communlcatleproces voldoend grote
buffers ter beschlkklng te stellen en voorts de commu-
nicatle-apparatuur te laten besturen decor afzonderlljke
controle-apparatuur, dle cnafhankelilk van en simultaan
met de baslismachine werken kan. Het streven blj het ont-
werp van de X1 1ls geweest, om deze extra buffers en ad-
ditionele controle-apparatuur tot een nog practisch mil-
nimum te beperken en zoveel mogeliJk van deze addltio-
nele talken aan de basismachine te delegeren., (De grote
snelheld van geheugen en rekenorgaan, dle voor hef we-
tenschappelljk rekenwerk gewenst was, wordt hlerdoor
blJ processen, waarbl] communicatie de hoofdschotel
vormt, te nutte gemsakt.) D1t nauwere contact tussen
communicatie-apparast en haslismachine, dat vaak plaats
zal moeten vinden op ogenblikken, die niet zozeer be-
paald zlJn door de preclese staat van vordering van het
rekenprcces, dan wel door de toestand van het externe
comnunlcatie-apparaat, dat een eigen snelheld, een elgen
"t1jdsbewustzljn" heeft, impliceert de noodzaak het pro-
bleem van synchronlsatle Iin de'basismachine zelf op fe
losgen. Daartoe is de zg. "ingreepfaciliteit” geschapen.

Deze maakt het mogellJk, dat de baslsmachlne op grond
van een ultwendig signaal (uitgezonden door een of ander
communicatie-apparaat) het programma, dat op dat moment
onder behandellng is, onderbreekt ten gunste van een zg.
"ingreepprogramma"”, dat het verelste contact tussen het
geheugen en het apparaat in kwestle verzorgt en daarna
de machine het onderbroken programma laat vervolgen "als-
of er nlets gebeurd was",

De ingreep maakt het mogelljk, dat de X1 omschakelt op
een urgentere taak, zodras het tiJ)dstip daarvoor 1s aan-
gebroken. Het 18 begrijpelik, dat de X1, wanneer hlj met
verschillende apparaten gamen moet werken, dasartoe voor
prioriteltsregels ontvankelljk moet zljn., Behalve dat er
facilitelten ziJn ingebouwd om - vila het programma - de
prioritelt te regelen, kunnen bovendien door het pro-

gramma over bepaalde trajecten alle ingrepen tegengehouden

worden, Men reallsere zich, dat door de ingreep de afloop

136

-132-

van het hele proces nilet meer bepaald 1s door het pro-
gramma alleen, maar tevens door de onbekende momenten,
waarop contact met de externe apparztuur gewenst is. Om
desalnlettemin een programma te construeren, dat zijn
totale taak naar behoren verrlcht, 1s het noodzakelljk
om over bepaalde critleke stukjes programma de onzeker-
heid of daarin soms ingrepen zi1jn opgetreden, ult te
kunnen bannen.

De 'parallelle programmering''- dwz. de compositie van
programma's, dle op in mlcro onbekende wljze door elkaar
heen ultgevoerd worden - mag een fasclnerende opgave zljn
vecor hem, die geinteresseerd 1s in deze methode ter ver-
hoging van de efficiéntie waarmee de machlne gebruikt
wordt, het is duidelijk dat dit geen taakverzwaring mag
inhouden vcor hem, dle de machine primalr gebrulkt als
werktulg om aan zljn resultaten te komen. De conceptle
van de ingreep geeft dus de verplichting om een organi-
satie van subroutines op te bouwen, dle enerziljds een
relangrijk gedeelte van de mogelljlke vruchten van de pa-
pallelie urcerammering plukken, anderzijds de gebrulker
nlet nodeliocos hbelasten.

Voor schrijfmachine, bandlezer en bandponser ls een
aantal communlcatle-subroutlnes ontwlkkeld; deze appara-
ten veroorzaken dezelfde 1ingreep, zl] behoren zoals wlj
zegren "tot dezelfde klasse'. Z1J) hebben uilt oogpunt van
synchronlsatie gemeenschappelljk, dat een Ingreepsignaal
van een van hen nlet betekent, dat de X1 binnen een be-
paald tiljdsbestek lets moet doen, maar dat het slechts
betekent, dat de X1 van nu af aan wat kan doen: deze appa-
raten kunnen nl, altljJd wachten en plaatsen daardoor de X1
nimmer 1n een zg. essentl&le haastsituatie. De communicatie-
programma's voor deze drie apparaten hebben daarom na het
hoofdprogramma de laagste prioritelt.

WiJ] beperken ons hiler tot de beschrijving van die commu-
nicatie-programma‘s, waarbl] de mate, waarin rekenproces
en communicatieproces slechts in zeer beperkte mate uit
de pas kunnen zijn. Staat men toe, dat dit ult de pas zl]Jn
zich over meer Informatlie ultstirekt, dan verelst dit buf-
ferriimte in het geheugen. De brokstukken, waarult de be-
gchreven communlicatie-programma's zljn opgebouwd, kunnen
ecnter eveneens dienst doen in een organisatie, waarbi]
men een verder onderling ult fase zijn wilil toestaan. De
brokstukken ziJn eveneensg brulkbaar, ind'en men de ver-
richtingen van twee communicatie-programma's wll synchro-
niseren met betrekking tot elkaar, ongeacht een onafhanke-
11 jk hoofdprosramma, dat zelf de betrokken apparatuur hnele-
maal niet sebrulkt.

137

-133-~

Appendix 1. The symbols_on the typewrliter

The correspondence between (TP) and the typed symbol
is ghown below.

sl = gmall letter

CL = capltal letter

Tad = tabulator

NICR = New Line Carriage Return.

(TP} 81 CL (TP) 81 CL (Tp) s1 CL
0 o 3/4 17 | " k4 n N
1 1 1/% 18 CL 35 o O
2 2 1/2 19 sl 36 p P
3 3 £ 20 37 qQ Q
k4 ¥ 0§ 21 a A 38 r R
5 5 % 22 v B 39 g8 S
6 6 f 23 ¢ C 40 t T
7 7 & 24 d D 41 u U
8 8 25 e E 4o v vV
9 9) 26 £ F 43 w W
10 Tab 27 g G Wiy x X
11 NICR 28 h H 45 vy Y
12 - 29 1 I k6 z Z
13 + = 30 3 J 47 ‘ *
14 . 31 k K 48 ~
15 s ? 32 1 L
16 /s 33 m M 56-63 space

-134-

Appendix 2, Binary representation of orders

The digits of the order word are numbered
d26 d25 . e . d1 dO
The name of the order (function letter(s) and functlon
number) determines the contents of the six most slgnifi-
cant diglts dog...dpq of the order word. The number form-
ed by these slx bilnary dlglts can run from C to 63; its
value 18 found by adding 2 number of times eight to the

function number. The multiple of eight 1s determined by
the function letter(s) and 18 glven In the tabel below.

1

A: O LS: 33
S: 1 B : 4
X: 2 T : 5
IA: 23 Y : 6
D: 3 Z 7

The value of the next six bits 1s determined by the
varlants

Address modification Condltlon-setting Condltlon reaction

dpg dqg dqg 447 dig d45
normally 9] 0 normally 0 0 normally 0 0
A 0 1 ' P 0 1 U 0] 1
B 1 0 Z 1 0 Y 1 0
C 1 1 E 1 1 N 1 1

The bits dqy ... dp sive the bilnary representation of the
address.

According to the above rules d2 would be = QO in count-
ing and subroutine Jjumps (4T and 8T); however, 1t is used
for the index m, more precisely, if the binary diglts of
the index m are bo bq by (for KT) or b3 by bq bg %for 6T),
then the following holds.

=2

d =

24 2
dag = P4q
dig = Pg

and for 6T: d,g = b3

(In the subroutine Jump, the binary dlgit bj 1s there-
fore placed at the least significant side.)

The binary representation of the P-orders is given in
the table below Ehe special paragraph letter C causes
an increase of 214 in the address: 0 CO = 16384 X0}.

139

-135-

000 XL - - - - - - - -

- - oLXe AL OLX2 X9 - - - - gad
- - OLXL XL OLXL X9 - - - - sd
- - OL¥%0 XL OLXO X9 - - - - vd
- - 6xz XL 6X2 X9 - - - - ds
- GXo z90 6XL XL 6XL X9 LXU ZL LXU Z9 OXU ZL OXU Z9 g8
- - 6x0 . 6X0 X9 €Xu 7z, €Xu z9 @XU zZL 2XU Z9 ¥S
- - gXe XL gX2 A9 - - - - qy
- L¥0 X9 g%l XL Q%L K9 €xu AL £Xu X9 XU AL 3XU A9 SY
- GXO X9 §X0 AL §X0 A9 LXu AL LXU X9 OXU AL OXY X9 vy

dl d9 as d% u 4t u 4¢ u db u 40 3INOLTH

140

Appendix 3. Storage reservations in the living memory

136

o2
23
2l
25
26
27
28
29
30
31

OO~ g Fowe o O

0 S P U G N G N
O W O N g FEw Y .s O

XG:
pAOH
X0:
PAOH
X0z
XO:
X0O:
pAOH
b AOH
X0:

X2:
X2z
X2
X2
X2
X2:
Xe:
X2:
X2:
X2
X2
X2:
X2:
X2:
X2:
X2:
X2+
X2:
X2:
21
X2:

Link interruption Jjump class 6
Link interruption Jump class 7
Last pentad read '
Translation possibllity

State record class 6

State record ciass 7

Transport address
Check switch

Head double length number
Taill
3
S STATE TET
B
AT
3

STATE TE6
B
1ink]
A -
3

STATE Tt
B %
link
A
S STATE T4
3
1ink]
binary exponent
decimal exponent
gign of number of function diglts
current type indicatilon
current 18t paragraph letter
1ink of tape read subroutines (order O)

141

21
22
23

24

25
26
27
28
29
30
31

-137-

1ink of tape read subroutines (order 1)
1ink of tape read subr-utines (order 2)

extenslon possibllity for all cases other than
directives

extension possiblllity for addltional directives

link of type-punch subroutine

initial type code, punch code

initial number, length of bilnary tape
transformed number, start address of bilnary tape
transformed type code, link for punch routine
column count

number of columns per line

142

-138-

Appendix 4. Standard program for class 6 and class 7

DA h DO DT

0 unused
1 START ADDRESS
2 STOP ADDRESS
3 CONSQOLE WORD
g D2 = 4| 2T 19 D18 Pl=> for autostart 6
=) 5 [2a & A Subr."Tape read program Active?"
6 2T 6 D1 | A =
=7 |38 & A Subr."Preparation tape read pr."
8l |2T 9 D1 {A |=>
25 =09 |OLA 1 A 1f "reading desired and permitted”,
10| |6A 26 X0 1=pdg &nd Jump via possibllity
11 2T 25 X0 = of translation
=12 [2a &4 A Exlt tape read program

14 D113 |#a 26 X0
14| |oT 21 DO |& |=

=315 |6B 13 X2 LWW=Subr.Tape read pr."Walt switch”
16 2B 8 A
30,17 D117 [6A 3 X2 |B Tr6
18{ |65 4 X2 |B STATE = T;
19| |2An 22 X0 Teo
20| |6A 6 X2 |B |
14 21 6Y 4 XP read 6th clags word
o2l |5P AA
23] l2LA 26 X0
24l Uj2LA 5 A Z readlng desired and permitted?
o5l Yl2T g po |&o |— _
26| U|2LA 10 A Z type-punching desired and permltted?
271 ¥YioLA 2 A if so, ’I—_—.},d,I
28| {6A 26 X0
og|Ni2A 3 X2
30| N[2s & x2 | T => STATE

31 N| 2B 5 X2

143

S AT

PNBER

BB ovowod o

=5
6 DO—> 6
T

=) 8

8 D0O—> 9
25 »10
11

12

=13

14

= 15

16

17

11 DO=»18
19

20

21

22

23

—3 ob

25

4 26
27

28

29

30

L3

DA

2A

2LA

6A
213
63

2A
2T
6B
2B
2T

63
24
25

eT
38
2T
)4
oY
6B

2T
BA

o

oW o~ T

-

D1

X2
X2

Sl

X0
X0

X2
Xo
X0
X0

Do
X2

DO
Ipr
X0
X2
X2
X2
X2

D1
X8
X3
Xe

DO
X2

DI

b

-139-

o

s

=

contlnue main program

T, . = STATE

tp

continue type-punch program
Subr,."Type-punch program Active?"

Subr."Preparation type-punch pr."

] 0=»d,,d, or d3

Exit type-punch program

TPWW=Subr.Type-punch pr."Wait switch"

1 read pentad = (24 XO)

T1=,*~. STATE

continue tape read program
Subr. Obliterate TPWW

non 6 in I.P. INTERRUPTION 6
X1 susceptible

to the recording of TE6

INTERRUPTION 7

144

W o=~ W\ WD O

. ¥
= O
=

12

13

14

15

16

17

18

19

20

21

11 D3 — 22
23

24

9 D2=»25
9 D2— 26
27

28

29

27 D33;27— 30
31

2

< H O g

ok g

DA

63
6B

1A
2T
23
4y

4p
2T

1A
6B
2T
1A
27
OB
28
0).4
6S
23
)4
63
6B
2T

27
2T
64
24

6A

OoOg EN A O

21
10
16

12

31
10
31
30
10
30
21

31
30

30

D2

X2
X2
XP

D3
X0

33
D16
X2

X2
D3

D3

X0

X0
X0

X0
X2
D3
DO
X0
D2
X0
X0
DO
X0

= B B B

=

DI

-1%0-

STATE = TET

read Tth class word (=key)
) key H? if so, restore
neutral state
distinction between
single and multiple
autostarts

-br im it decimal input?

1f not, autostart

digit count in B

if point, record

current diglt count
and finished

1f non-digit

count digit; numerical part?

1 decimal to binary

converslion for
numerical part (Y)
or exponent (N)

breserve diglt count

and finished
Autostart 4
Autostart 3

in case of 3
gtore tall

store head, console word
or single length number

145

10

11

15 D2=:12
13

14

15

16

17

18

19

20

21

22

23

24

. 25
g D2=26
27

15 D1728
29

30

=31

=

Moo g2

DA

33
63
2A
28

2T
6A
25
2B
75
63
27
1A
2T
2A

5B

4p
2B
6T
6T
6T
HA
6S
2T
2A
2T
24
TA
2T

27

-

23
17

16
31
22
14
24
16

16
26

52

31
30

31

30
29
29

12

D3

X0
Xz
X2
X2
X0
X2

X2
X0
D2

D16

X2

X2

AA

D5
D4
D3
X0
X0
D3
DO
D2
X0
X0

Dg

14
14
1l

141~

DI

111

4

bring keyboard program
into its neutral state

Tyy7 => STATE
(and stop 1n the main program)

store sipgn. Autostarts + and -

set counts etc. to zero
and remove neutral

| state
key G?
if F or sign of exponent
point encountered?
1f not, whole number
1f so, adjust decimal exponent
if mixed number

or wag 1t a double
] length fraction
Subr.Decimal—Binary Floating
Subr.3hift for fixed polnt
Subr. +{AS) = (AS)

] store result

finlshed
Autostart 5
console word
Directive DC

with (A) =

Subr.+(AS) = (AS)

146

40 —» ==

\OOD-QCDU'!-P\»JI'\}AO

A 4 A A A oA
v\l Fw Ao
=

14 D5 =17
18
19
20
21
22
23
o4
25
26
27

29
30
31

2+

e o

= 2

DA

OB
5P
5P
2T
3A
TP
1B
3P
4p
2A
2T
08
23
OA
3LS
1P
27
3A
OA
3P
oD
78
338
3P
oD
3A
OA
Y.\
OB
3B
B

2T

7

a2

26
25

A A a0 A F O

22
30
15

15
30
15

15
23

15
16
16
16
22

D4

X2
AR
35
pAn

A3
AS

Dl

AS
X0
X0
D1k
AS
D14
X0
DAY
388
D1k
D14

X2
X2
X2
X2
X0

o

N

w

DI

-142-

minus sign?
] 1f so -(AS)=a (AS)

Subr. Shift for fixed point
Stop: overflow of capaclty
18 one shift sufficlent?
shift one place less than needed
71 41f shift over more than
26 places 1s still to come

rounding-off
and final shift
gver one place

= finilshed

T
divide by 10 Bl |

halve 1f necessary

and adjust the

binary exponent = [15 x2}
that 1s under constructlon

continue, using 1its

current 1ink, with!
Subr. Negative power of ten

reduction completed?

147

L4
CW WO AN FWw i ao

.Y

Y
2
<

12

13

14

T =15
16

17

18
192, 25015
20

= 21
22
20— 23
24

25

26

27

28

29

3G

31

2 d g

Da

24

6A
3A
35
6B
6P
2T

PEBF

2T
6T
27T
5P
24
3B
27
6T
2T
2s
68
28
13
2T
18
27
6T
2A
6T
23

52
22
20
30
31
15

15
30
15

16
25
28
17

30
15
20
15
23
22
20
24
31
19
30
20
15
2k
15

D5

X0
X2
X0
X0
X2
AS
D5 | A
X0
X2

X2
D16
D4 ni
D4 | 4
Ss
X0
X2
X2
DO M4
D5 | A
X0
X2
X0

o

D5

Xe
DO hi
X0
DO 4
D17| A

—143-

DI

&1

VL

2

1y

Subr. Decimal—=Binary Floating

] transport link

store preset value blnary exponent

normallze
if numerlical part = O

decimal exponent 3 +0?

Subr.Neg.power of ten. Finished?

if not, divide by power of ten
is either the numerical part
or the blnary expcnent = 0%
(in these cases no shift for
fixed point representation)

"Skip 0" and U,Y,N

] Subr. Analyse ¢
transport link

LWW] new pentad after "Skip X",

] transltion pentad ¢ = X?
if so, skip K
c =D (irective)?
non D: return to assemblage
LWwW] 1f directilve

] next pentad = (A)
LWW for 2nd pentad after D

148

L4l
v o~ U FE N = O

wd
o

24 5 11
12

13

14

15

16

7

18

19

26 - 20
10 D11 — 21
22

23

24

25

26

27

28

29

2 D10 == 30
31

= =

Z 2

Ma =2 ga o

DA

LA
23
2T
63
25
2a
6A
2A
2B

OB
9):4
68
23
Lp
ox

63
25
6B
6T
24
1A
2T
1A
2T
2

2T
6T
6T

15
15
2k
22

17

22
20

16

10
31
30

10

30
31
16
15
2k

11
10
20
16
16
20
21

D6

X2
X2
X0
X2

X2

X0
X2

X2

X0
X0

X0
X0
X2
DO
X0

D6 |

D6
X2
X2
X2

D5

D6

14

P o

DI

14k

] set distribution address
for directlives

= via link of assemblage routine!
Subr. Read decimal number

} transport link

7 set dec. exp. = -0

] and condition to Yes
diglit count

1 decimal to binary
conversion for double
length whole number
(with 1 multipllcatlion

| as long as head is = O)
Stop: overflow of capacity

1f point 1s detected
=) LaW

—» new declmal

— polnt
hag polnt been encountered?
] then adjust decimal exponent
=» Teturn, retaining condltlon
- Subr. Analyse ¢ Assemblage (DN)
L) Subr. Read decimal number

e

149

2 D10 =
(10-)

WV o~ v\ FEFow oA O

10
11
9 D2 =12
13
14
15
16
17

18
4 DO
0 D1]=>19

0 D1 — 20
22— 21
22

23

= 24

25

26

27

28
38]3%*”29
_ 30
31

=
Ak B

2z

6T
e
6T
2T
6T
4p
7P
27

DN +

J

2A
3A
TA
2A
33
6T
oT
oA
2A
2LA
2T
27
2A
GA
oY
2A
6T
23
63
6T

26

100

D7

D5
DY

D3

o
4

14

D12} A

D5
33

D5
Q00
DO

X0
D9

D1
D7

X0

D7
D3

X0
X3
X0
DO
D7
X2
Do

€

=

i

i

-145-

DI

DI

V'

i1il

{ L

R

=

=

1f whole number

1f fraction

Subr. Decimal—=»Binary Floatlng
Supr. Shift for flxed point
(A) # 0: overflow of capaclty
Subr. +(AS) = (AS)

to end of assemblage

Subr. Analyse ¢ Assemblage (DO)

Stop if not blank
back tc Analyse ¢ for next pentad
(see 10 D20)

1f writing +0

Autostart 1
1f checklng —1}

== check switch

place quasi-link in (A)
1 ¢=dy and O=>d,

"empty" main program
that merely walts for
completion of communi-

| cation program °
Stop X1, restore status guo
Internal Subr.Start Tape Readlng

7 Standard

Entrance

Tape read program

Set current type Indication
] to DO

IWW for 4st transition pentad

150

2,10; 7 D28 >0
- 1
=» 2

- 3
i

Ow -9 0w

1

2 D10=»11.

12
13
14
15
2616
7
18
2219
20
21
22
23
24
25
26
27

2811

29
1% DA7=»30

31

DA

6T
et
2T

2A
63
18

23
ks
27T,
6T
218

SBER=

08

1P
OLA
0B
2T
OF
6T

27
2LA
27

28
eT

28

21

2%

30

24

= A

19
15

30
16

27

11

D8
D10} 14
X2
D8 | &
X0
X0
X0 | B
X0 | B
A
X0
D8 | A
D5 |14
A
X0
A
X0
S8
X0
A
53
A
A
D8 | &
ss
DO |14
X0
D8 | A
A
D12| A
D8 | A
D9 | A

146-

DI
=)

N
=

1

—>

-

—

Assemblage Subr. Processing ¢yc¢
after detectlon]of a dlrective
after processing
when word is delivered
teat check switch
store 1 under control of the
check} transport address
Stop if dlacrepancy
Increase transport
] address by one
close the cycle
Subr. Analyse ¢ Assemblage (DB

] set pentad count

set count for
cycle investigating
five bits with a
view to the
parity check

LWW
pentad count
word not yet complete
test parilty
to end of assemblage
Stop, wrong parity
Directive DB

151

=> 0

1

2

0 D17 = 3
4

29 D17 =» 5
6

7
16 011 1,8

3 BQE”

21; 2 ;27]‘*9
10

16 D17 = 11
12
13
14
15
16
17
18
19
20
21
13 D17 = 22
23
24
31 D17=» 25
26
27
18 D17 . 28
29
30
31

29

29

@~

18

30
18

28
13
256
15
2k
17
15

17
27
18

28

28

15

16
16
20

D9

X0
D7
D7
D9

D16

X2

D12

DO
X0
X2
DO
D10
X2
D16
X0
D9
D10
X0
D9
X0

Dg
D10
X2
Xe
DT

b o

o o

14

14
14

14

14

14

-147-

DI

! 1y Li

¥y Lyl

Restart tapé readling
in the wrilting mode

Directive DO

Directive DN

1f DNE

set current type indlcation
Return from assemblage
] after processed directive
Directive DP

IWWw for 2nd letter.

LWW for 1st address symbol
Subr. Read address

enter address read

in paragraph table

directlve processed
Subr.Read Address Directlive DA
new transport address
directive processed

Directive IX
LWW for translitlon pentad
directive processed
Subr.Read Address Directive DE

] and jump

(X1 susceptible and 6 permitted
see 15 DT)

152

=0

=3
—) 4
=5

25 — 9
10

11

12

13

14

15

16

17

18

19

14 D41 —-20
21

22

23

2h

25

26

27

28

29

12 D11;22—30
31

N R =

DA

24
BA
27
6A
28
24
6A
2T
6T
6A
1A
2P
Lp
2T
1B
1B
1B
1A
08
1A
6T
2A
2T
1A
6B
27
2B
OB
OB
0S
2P
(04

e2
22
18
17
24
22
21
28

30
16

24
24
24
224

240
15
2k
30
16
19

19
30
ar
18

D10

X0
X2
X2
X2
X0
X0
X2

D16

D6
X0

AA

14

D11| B

X0
X0
X0

DO

DO
X0

=

14

D10| A

X2

D10) A

X2
X0

D16

X0
AA

DI

-148-

1)

Assemblage Subroutine

transport link
distribute on type Indicatlon
Subr. Read Address

transport link

extenslon poss. octal address
Subr. Read decimal number

1 after conversion of
the line number

analyse next pentad

distribution jump if + - ABCP
1 paragraph letter
(possibly the first!)
J times thirteen

= D?

if not, then = X?
LWW for page number
or 2nd paragraph letter

if D, Xor A
two expliclt paragraph letter
change "current st par. letd
and Jump back

addition of

the start address

of the paragraph

addition of page number

153

O~ U FEw D a0

13 D10 = 9
10

13 D10 =311
12

13 D10 =13
14

1 D17 =15
16

2 D10 =17
18

(21-) 19
20

21

22

23

24

25

30 = 26

27

28

29

30

31

]

a K« S

6T
28
27
0A
OA
0A
0A
oA
OA
5P
27
2A
2T
08
2T
28
o
2
6T
18
3p
2T
6A
08
7P
2A
6T
28
15
0A
o
18

15
24
21

29

11
30
13
31

21
16384
30
16384
20
17

21
26
12
19
15
19

2l
15
2k
22
20
26
16

D11

DO
X0
X2
D16
D11
D11
D16
D11
D16
Ss
D6

D10

D10

D1

D5

SA

D5
Xz

X0
Do
X0

D11

14

R

-
> =

14

L

-14g-

DI

next symbol =p (A)
=» address complete

+7 distridbution

- { addresses

for speclal
closing symbols

of the line number

= wa]

m QW o

- after line number

A after line number

C after line number

Directive DI

Vo

Assemblage (DI)

=) Subr. Analyse c

= U, Y or N? _
7 if so, shift bits in A
and read new pentad

!

3top, if function digit > 7

=} LWW for function letter
= L7

— aBk for functlion letter anew after L

154

O @~ g Fw O

L |
2 O

12

13

22 s 14

15

0 D14 -» 16
7

11 18

19

20

21

22

23

24

25

26

28 DB;6 D7—27
10 Dg—28
29

0= 30

31

A =

o2 a

DA 0

2T 30
18 17
0LS 25
18 30
0LS 25
0s 14
0X 32
oD 216
14 171
6T 15
6T 3
2T 18
2LA 8
oA 1
1 8
ha 15
6T 15
2A 24
14 18
14 15
1P 2
0hA 3
ar 1k
oP 6
2 17
1P 6
08 15
28 2
hp 22
2T 22
6A 17

1A T

D12
D12| A
A
A
A
A
A
A
A
A
DO |14
D10 {14
D12| A
A
D14
AA
X2
Do |14
X0
A
A
AA
A
D12| A
Ss
X2
SA
X2
A
X2
X2
X2
A

-150-

DI

—» function letter P

1 convert function diglt
and function letter(s)
into the required
representation in

the six least significant
bits of the A-reglster

4T or 6T? (1.e., index m oblligator
—) INW for first address symbol
L= Subr. Read address
—, if nelther 4T nor 6T
transport most significant
] bit if m > 8
add to the varlants
under construction
=) IWW]| after Index m, ABG, PZE
] a new symbol

not PZE?

not ABC?

|, 1f PZE or ABC
1 construct order
word from its

constituent partis

1 exit of the assemblage
subroutine wlth a

—» | new word in 3

if P-order

155

16,1—>

O W W~ " Fw b 3 O

.Y

—
-
O RV R R D R RV R R:

12
13
T
15
16
17
18
19
20
21
22
23
ol

26
27
28
29
30
31

M oa o

=2

M 2 g 2 g

= g =\ g

DA

25
2T
1A
1A
6T
25
oP
6T
03
2L
6s
3P
0S
0S5
2L
0S
2T
2A
0)3
6T
6T
1A
08
1A

o8B
24
3LA
08
2TA
0B
6B

16352
25

15
24

15
24
231
2k

24
33

99
224

25
128
27

15
24
64
13
62
54
17

4
32

1

17

D13

D43

Do
X0
33
DO
X0

X0

R
X0

D13
SA
D&

DO
X0

X2

X2

o o

14

14

= P g

14

o =

= J e

DI

-151-

=3

11

] 1 7P
——

] 4P or 5P7
LWW

Construction of
the address blts
for the reglater
trangport orders
4P and 5P

-

= 6P? (ohterwise 0-3 P)

Subr. Read decimal number
IWW for 2nd circult letter

take the circult
letters into account

take the function
digit into account

156

-152-

DA 0 D14 DI
2T 16 D12| A —» now final test for variants
DN + 6710 8856 DI constant for m) 8, see 13 D12
2A 22 X0 Internal Subr. Punch Binary Word
6A 25 X2 transport link
DA 422 A
1P 1 33 P ecycle for the
N[OoLA 3 A determination
1A 16 A P of the parity blt
YieT 5 Dk A —
P b SA P 1
()4 5 AS E cycle for the
6T 15 D1 |14 =3 TPWW |punching of
6Y 1 XP aix pentads
Ni3a 2 A E
Yi2T 10 DA4| A —)
2T 25 Xe E |= finished
DN + 4194 3040)
+ 5242 8800
+ 6553 6000
+ 4096 0000 table of normallized
+ 5120 0000 powers of ten
+ 6400 0000
+ 4000 0000
+ 5000 0000 |
+ 4]
+ T
+ 10 table of
+ 14 corresponding
+ 17 binary exponents
+ 20 '
+ 24
+ 27

157

10— 8

10
11
=3 12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
9 D2 =29
30
31

=

DN + 1000 0000

i

DA

-6710 8863

3p
6Y
2T
2B
2A
6A
2A
6T
1B
27
27
2A
6A
Lp
2A
2A
5P
6T
6Y
2A
oD
13
6T
62
2D
0S
2B
27
2A
2T

0

5
1
15
25
22
25
0
2
1
8
25
22

29

13
12

15
2
0

31
0

15
2

31
1
6

29
1

28

D1

D15

AA
XP
D1

X0
X2

D15

D15
X2
X0
X2
35

383
D1
XP

D15

XP
D15

Xe
D18
D18

153

DN

DI

1golated slgn digit
Auxiliary subroutilne
for punch programs

= (punches pentad)

Auxiliary subroutine
for punch programas

=] (punches pleces of

blank tape)
—
=]
Auxiliary subr. for simple type
transport link routines

take absolute
value and type
= TPWW | original sign

type 18t decimal
facultatively;
prepare for

= TEWW deconversion and
set count;
return, retaining
the conditlon for
Zero suppresslion
==

Autostart 7
=> Jump with quasi-link in A
(see 25 D15)

158

\om—qmm-P'\»nDAo

mummmmmmmmmm__s.x_\,\A_;_x_s_\
_XO\OOD—»]G\\ﬂ-F'\JJI\).AO\DODﬂO\\ﬁle\)-\O

DA

6T
6T
6T
6T
6T
6T
6T
OA
OA
OA
OA
OA
OA
OA
OA
OA
0A
OA
OA
OA
CA
OA
OA
OA
OA
OA
0A
OA
T
2T

LWL
OAQ\OOOOOOO

PRV I l\)l\)g.&'_\
FROY &= W - M

OOOODOOOOOOOO\O’\O

(ST T T o I~

0l BN N NN

= =

D16

D16

Z0
EO |9
FO [0
HO f4
KO n2

D1 hi
D4 (%

D7
D21
D2
D2
D3

D15
D21
D19
RO
D3
D3
SO

WO
Jo
YO
NO
Z0
D10
ZOo |A
EO
EO A

T

- 154

DI

s Autostart O
Interruption jump class 1
" " " 2
n " i 3
" " n 4
n " n 5
" " H 6
n n " T
Distribution address autostart O
LL I i} n 1
n n n 2
n " n 3
" " " J"
" H " 5
n 1 " 6
" n n 'T
n n i 8
] " " 9
n " n -
n n I +
1" it H b
n " n F
" " " &

" wmualtlple autostart
if F or sign exponent (see 13 D3)
if pos.dec.exp. (see 12 D5)

i DNE (see 6 D9)

start address paragraph tabel (see
possible octal address (see

= Lf + after line number (see 3 D11)
= 1f B " n n (see 6 D11)

=»> 1f P i 1 i (Bee 8 D'V\)

159

O 0o~ v\ & w o a o

W R O oD NN NN DD NN 2 a0 A O A a3 4 A A
O W O AU FWh adowy o~ Wy &Zwpn a0

(v
-

DA

2T
27
2T
2T
27
27
2T
2T
2T
2T
2T

2T
2T
2T
2T
2T
2T
2T
2T
2T
2T
2T
27
2T
2T
eT
2T
27
2T
27

w O

1

Ui

O 0 0O OO0 O O O 0O OO0 o O
HEEBERBRBRBB H B

no 0w
o O a ¢ O

o0 O 0 o
o I I B B

1
2

[0 B4

on O O O

25

5 I

D17

D9
D11
FO
HO
KO

RO
80
T0
WO
uo
YO
NO
Dy
D8
D3
D9
Z0
Dg
FO
HC
KO

RO
Do
D26
WO
uo
Y0
D9
NO
D9

A A B R R T R S A

-155-

DI

AR AR ERRR R RA

(Standard exit tape read program)

160

OWwW W1 Ay Fw o

M2

3 P19 —

}

}

=S

18 «—» 11

3 D19 — 21

23 D21
30 D15]=>28
29

30
31

DA

oA
6A
6T
Lp

162

1A
1B
6T
6Y
5P
27
hn
eT
3A
OA
38
6T

27
(034
2A
6A

3P
o)
6T
24
2T
6A
2A
38
6T

22
25
12

32

15

30
25
30
31
11
15

1
19
22
25
31
a5

12
14

25
19
10

D18

X0
X2
D15
AA

p1
XF
BA*
D18
X2
X2
X2
X2

D1
XP
D18
DT
X0
X2
D15
SS

D15
D18
X2

D18

D1

14

14

14

14

14

-156-

DI

=

D mike

Internal subr. Type [S]
transport link

type sign and 1st declmal
Imperative typing?
next decimal =3 (A)

diglt count

TEWW

type digit (or the point)

ensure last digit imperatlve

as long as (B) » -0

column count (or setting to zero)

not at end of lilne?
otherwise NICR

TPWW

type space or NLCR

quasi link (see 29 D18 and 20 D19)
Internal subr. Type 15}
transport link

rounded-off
multiplication by 107

type sign and 1st decimal
insertion of the point
with condition affirmative
Entrance for the
type-punch program

after autostart 7 and 8

0 =.>d,1l and O =%-d3

161

-157~

DA O D19| DI

o 2B 1 DO Place number to
1 25 0O X0 |B]be typed In S
2 24 13 D1 |A quasi-link = standard exit
31 [2T 25 X2 — to 1 D18 or 21 D18
= 4] |2A 22 X0 Internal subr.Extra line blank
5] |6A 25 X2 transport link
6] [2A 30 X2 A carriage at beginning of line?
7 25 11 A
8iN|BA 30 X2 1f not, set count to zero
g9|N|6T 15 D1 |14 =) TPWW |and give extra
10N {62 2 XP NICR-s8lgnal
14| |6T 15 D1 |14 Ly TPWW
12 6Z 2 XP NICR
13 2T 25 X2 Z= finished
9 D2=p14| |20 3 DO Autostart 9
15 64 26 X2
16} {38 10 A

17| (6T 10 D1 |14 =)] 0=»d, and 0=>d3
18] 28 1 DO
19 2B 2 DO
20| {2A 19 D18 Standard entrance type-punch pr.
31 D21-=»21 68 28 X2
g2 6T 8 D1 |14
23| |6T 25 D1g |14 Internal subr.Punch binary tape
24| |27 13 D1 |A = Exit type-punch program
= 25} |6B 27 X2 Internal subr.Punch binary tape
26 25 26 Xz

11

27| |2A 22 X0

28| leA 29 X2] transport link

29| |6T 415 D1 |14 =) TPWW

30|02l A1 A yA Blank tape to be sklpped?

31IN(2B 75 A

O

A
o
2o 2 e 2 s e 2 =R E g =

- . ¥
n

16 —=13
14
15
16
17
18
19
20
21
22
23
2g — 24
25
26
27
28
29
30
31

-1 o FEFwn SO

- =

b=

DA O
6T 5
2LS 2
28 30
ET 2
6T 1
213 4
2A 30
6T

6T 1
2A 28
2D 11
08 1
2B

6Z 32
6T 2
B 1
2T 13
28 31
6T

6T 1
25 26
2L 8
6T 24
28 28
28 O
6T

OB

2A

5A 27
2T 24
28 26
6T 15

D15

X1
D15
D15

X13
D15

D15

Xe
D7

D15

D20

D15
D15
X2

D1
X2
X0
D14

X2
D20
X2
DA

14

14
14

14
14

14

-158-

DI

TT

11

Subr. Punch plece of blank tape
Skip DB?

Punch D
Punch B
Skip address?

Punch D
Punch A

¢cycle punch
address in
five decimals

NB. Punch code positive!
Punch X
Punch O

Skip binary words?
Cbliterate TTWW

_1

Punch binary word

number count

NB. Punch code posltive!
TPWW

163

QW 0~ Oy Ew N a O

=

9 D2 = 11
12

13

14

15

16

17

18

19

20

21

g D2 =22
23

=y 24
26 —» 25
26

27

28

29

30

31

ZZ 2 En g 2R R g

DA

213
2A
6T
6T
218
2A
6T
6T
6T
6T
EUN
2A
6A
6A
6A
6A
6A
6A
23
63

3LS
24
2T
6A
6T
oT
oY
2A
6A
2A
27

16
30

32
30

-

24
29
12
26

s w

30
31
18

25

21
28

25
64

21

D21

D15
D15

X2h
D15
D15
D15
D1
X2

X0
X2
X2
X2
X2
X2
D1
X0
D3
X0
D18
D18
X1
D1
D21
XS
X1
X2
X0
D19

A

14
14

1%
14
14
14

R e

O

-159-

DI
Z

1y

A

=)

Skip DO and blanks?

Punch D
Punch blanks
Skip DS and blanksa?

Punch D
Punch S
Punch blanks
Obliterate TPWW
finished
Autostart 2

]aet to "no translation"

end of autostart

X1 susceptible and all classes allowed
Autostart 8

Subr.Punch binary tape
Type-punch program sctlve?
if Bo, walt
remove 6 from interruption permit

]transport parameter
1ink in A (for the

=» 8tandard entrance)

164

=0
H — 1

CWw o1 O Fow

27
28
21 D26 — 29
30
31

DA O
6L 3
0Y 126
2n 8
2LA 26
28 3
oY ©
2T A
0Y 6%
28 1
oA 8
63 4
6B 5
6T 8
2B 8
24 O
25 4
6T 22
27 13
7B 26
2B 22
2A O
3B 26
65 27
6A 26
28 22
68 25
23 1
hgs 25
ks 30
2A 27
23 26
28 13

D22

X2
X3

X0
X2
XS
D22
XS

X0
Xe
X2
D1
X0
X0
X2
D22
D1
X2
X0
X0
X2
X2
X2
X0
X2

X2
X2
X2
x2

-160-

DI

o I e Ilg

[¥

Subr.Type (8)

walt cycle for
non-activity
of type-punch
program

Standard
entrance
type-punch
program

i

1] type code=» (A)

to internal type routine
Exit type-punch program
preserve (B), Internal subr.Type {3

] type code =p (A)
restore (B)

store 1lnltial number
store initlal type code

] transport link
increase link by 1

column count

for + slgn

165

W o~ Oy o Fw N oa o

EE Y
A O

12

13

15 =14
15

20 D24 16
17

18

19

20

21

22

23

24
20 = 25
26
24 > 27
28

29

30

31

zZ =

Koz =

H A Ko

DA

28
6T
62
6T
27
5P
13
5P
6T
6A
2A
28
OP
68
6T
2T
2LA
27
28
OP
2T
OP
2s
23
2T
OP
28
62
6T
2s
oP
63

12
15

15

12

28
192
26

29
21
14

g5
ol
29
25
14
63
27
12

15
29

29

D23

D1
Xr
DA
XP
AA

AA
D25
X2

X2
SS
X2
D2k
D23

D25
X2
38
D23
35

D23
53

XF
DA
X2
S8
X2

~161-

DI

A E
14

14

13

14

=
]

14

)

for -slgn
TEWW
type s8lgn
TPWW
check aign
if 1t has
been typed

3ubr.Prepare for conversion

tranaformed number

set 0071:1000000 =
state+count

transformed type code;non-typing cycles?
Subr. Produce next decimal
still more non-typing cycles
finished
start checking
Punctuation

if 00 or 01

1t 10, type .

1f 111, type space

with affirmative condltion
1f 01, type nothlng

if 00, type -

TPWW] type punctuation

shift transformed type
code over four places

166

A

JL O
L I T T T S S G S N A Tl #
-r-mro_\omoo«qcxm-r-mm.;oxooo-\lm\n-r-‘mm_so

2725
26
27
3028
29
30
31

-

or

Da

213
oP
2LS
08
2LA
213
1P
1P
6T
3LA
2LA
08
6Z
3LA
6T
3Z
oS
43
28
27
27
6A
2A
25
53
08
OA
2T
18
14
2T
OP

AW A A O

896

20
21
256
768
6%

768

D24

53

AA
SA
D24

XP

D1
XFP

X2
X2
D2k
D23
X2
X2

X2

D14
D2k

D15
D2k
AA

B o e P

14

=

14

-162-

DI

‘g

[

Set new astate:
1s it I(mperative)?
001 if I
‘make (S).=011 1f L~
100 if F
old state F'(=000)?
if 80 F'sF and I L
shift bits of new atate
] to the left of the count
Subr.Produce next declmal
I L, if last decimal
Ior F'?
NB. -0+64% = +64
type diglt; not a space?
I=Land F'» F
TPWW
read diglt back
correct for space
add to transformed number

more digits 1n same group
end of group

Subr. Produce next decimsl

count

] try to exceed
the new digit
in steps of 4

i

go back
in steps of 1

167

W oo~ vl = w o Ao

19 17
18

19

20

21

22

23

17 D23 =3 24
25

26

27

28

29

30

31

DA
6A
OP
hp
2A
4a
2A
2T
23
OF
T
6A
24
OP
14
oP
2T
23
62
1A
2T

14
3P
2T
2A
5r
6T
1A
35
2A
2T
038

22
27

28
30
1
15
31

D25
X2
AA
X2
Xe
X2
X2
X0
X2
53
X0
X2

85

S3
D25

D25
X2

AA
X0
X2
AA
D25
X2
X2

D26
X2

14

—163-

DI

miltiply the

remainder

oy ten

7 double the type code:

teat for end of group
restore (4)

finished

Subr. Prepare for conversiocn

whole number?

preserve fraction

-

for m diglts
after polnt,
form m+1 =3 [A]

2.10™ = 8]

miltiply the fractlon
by 10™ and
round-off

- absolute value of

] inttlal number
Subr. Prepare for conversion
Check; 18 1t correct?

- ¢olumn count

1f incorrect, NICR, etfc.
€111 busy on line?

168

-164-

DA O D26 DI

O[N{4S 30 X2 if not, set column count
1IN[2T 9 D26 A —>j] to zero, and then glve NICR
2 A 20 X2
3|ul2LA 4 A Z|] X3 or XT?
slnj6T 28 D1 |14 |= Obliterate TPWW] .
5|N|2T 10 D26| A L» and type nothlng
6{Ul2LA 2 A Z x3?
7TiY!3A] A 1f so, -0 for space
8IN{3A 53 a 1f not, -63+10 for Tab
1 9| |6Y 2 XP P layout
510! [2A 26 X2 type code used
11 25 27 X2 number typed
12 2T 25 X2 Z|=> finished
20=313 3A B3 A Position carrlage

14 6T 15 D1 |1k = TPWW

30 D25 —-»15 6Y 2 XP P NICR &snd then Tab
16{N|3A 12000

18 »17|N|oA 1
18i{N{2T 117 D26

19| (08 1
20|N|2T 13 D26
21| (2T 29 D22
25 D1T=22{ |25 24 D26
231 |27 8 D9

] delay cycle

e
A count
another Tab

—=» type agaln
Directive DT

e

-t
2 D10=>2k| |6T 21 D5 |1) Subr. Analyse c Assemblage (p1T)
o5lUl1s 13 A Z
26|N|2A 12 A 1f non-A
271Y|2A 8 A
28|y |6T 15 DO {14 = LWW if A
aglyYles 24 X0

30|0(|18 3 A Z = G?
31N |oLa 3 A if B or E

22 —»

Y
= 0OW 0~ U &£ WP ao

-

U 512

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

DE 30 D27 = 30
9,1 D28 — 31

R AR

-4

DA 0

15 18
OLA
28

23

1P

OP

25 2
1P 2
oP 2
6T 15
23 24
13 24
oP

15 1
2T 12
oLaA 1
6T 15
23 24
18 24
28 3
18 31
6T 15
2T 4
6P

oOP 2
25 24
2LS 5
10> S
6T 15
2T 27
28 11
6Y 2

= 0N WYW o

D27

S8
SA
X0
83
SA
Do
X0
X0
AA

D27

DO
X0

DO
D27
AA
AA
X0

Do
D12

XP

C - - -

14

p]

14

o

14

14

T

-165-

DI

L

[

= E?

if E

J
if G or B, set cond.affirmative

form the 4 bite
specifying punctuation
and zerc suppresslon
for the next group

d
LWW for length of group

for typing cycle
for non-typing cycle
add correct

]set count

number of zeros
by ahifting
and set a 1
LWW

] for punctuation 8

new group

take layout
symbol Into
account -

.
IWW for transition

to end of assemblage

Tab-tape
NICR or space

170

iy v

L
wd
C W

12 = 11

13
14
15
16
17

DA

13
2T
2A
14
27
6T
2T
2T
3A
2T
25
6T
2T
oY
yp
6T
6T
27

31
20000

D28

D27

D28
D10
X2
D8

D27
X0
D1
D28
XS
SA
D1
D19

D1

b A B -

14

> >

14
14

-166-

DI

YV L }

¥

v L

J L L

count for number of spsaces

delay to enable
operator to set
tab-stop
Asgsemblage subroutine
after detection directive
to processing cycle!
new number of
] spaces in [S]
Subr.Extra line blank
TPA? walt for non-activity
type-punch program
standard entrance
for type-punch
program
Internal subr.Extra line blank
Standard exit type-punch program

In the above program the 2T-order occurs in the Z- and

E-version as well. For the time being the Z-version will
be equivalent to the normal case and the E-version to the
P-version.

171

STELLINGEN

1.

In een sutomatische rekenmachine zou de facllitelt,
het teken van operatles conditioneel te kunnen inver-
teren, van groot nut zijn.

2.

Als Ernst Mach het begrip van de trage massa op grond
van botsingsproeven invoert, laat hl) onvoldoende dul-
delijJk ultkomen, dat hiervoor botsingsproeven met drie
wlllekeurige massapunten noodzakellJk zijn; de door hem
in dit betoog genoemde experimenten zljn onvoldoende.

E. Mach. Die Mechanik in ihrer Entwicklung. 7te
Auflage F.A. Brockhaus, Leipzig, 1912. pag 213-21%,

3.

E.A. Guﬁgenheim b1lijft in zijn "Thermodynamics” zijn
belofte: "... that we do and shall consisfently use
symbols to denote physical quantities, not thelr mea-
sure in terms of particular units." nlet getrouw.

E.A. Guggenheim, Thermodynamlics. 2nd Editlon
North Holland Publishing Company, Amsterdam,
1950 pag 20.

E.A. Guggenhelim., Phil.Mag. 33 (1942) pag 479.

Jeffreys & Jeffreys. Methods of Mathematlcal
Physics. Unlversity Press, Cambridge (1946)

pag 3-4.
4

.Voor het vinden van de kortste boom tussen n punten
bestaat een betere methode dan die gepubliceerd door
Ioberman en Weinberger of Kruskal.

E. Loberman and A. Weinberger. Formal Procedures
for Connecting Terminals with a Minimum Total Wire
Iength. Journal of the A.C.M. 4 (1957) pag 428-437.

J.B. Kruskal Jr. On the Shortest Spanning Subtree
of a Graph and the Travelling Salesman Problem.
Proc.Amer.Math.Soc. 7 (1956) pag 4#8-50.

E.W, Dijkstra. A Note on Two Problems 1ln Connexion
with Graphs. Num.Math. 1 (1959) pag. 269-271.

5.

Het slordig gebruik van automatische rekenmachines,
zoals bv. door R.C. Minnick, dle een tafel publiceert
met In een oogopslag detecteerbare fouten, moet ten
zeerste afgekeurd worden.

R.C. Minnick. Tshebveheff Avporoximations for Power

172

6.

Als in een lsotroop medium een electrostatisch veld
heerst, hetzl] tengevolge van dlscrete, starre ladingen
dan wel van ladingen op een geleider, dan kan een gela-
den voorwerp, dat ultslultend onderworpen is aan krach-
ten door het veld er op ultgeoefend, zlch niet in sta-
blel evenwlcht bevinden.

7.

In een algebralsche ultdrukking kan men de prioritelt
der operatles behalve met behulp van haakJes ook aan-
geven door aan elk operatleteken twee binaire kenmerken
toe te voegen, Dit is mogelljk met behoud van de volg-
orde der operatletekens en operandsymbolen, zonder dat
daardoor de analyse verzwaard wordt.

8.

Het 1s wensell]k, dat gepropageerd wordt(de symbolen
"y " respectievelijk " € ult te spreken: ‘minstens”
respectlevalijk "hoogstens",

9.

Gegeven zijn n volledig geordende elementen 2a,. Uit
elke greep van k elementen ult deze n klezen we het mi-
nimale element; de - formele - som van deze () elemen-
ten duiden wlj aan met 8y. Dan 1ls - formeel -

n
k-1
max a, = E;%(-) 8y -

D1t resultaat ken elegant bewezen worden met behulp van
een symbolische vermenigvuldiging.

10, _
Indien A een antisymmetrische matrix 1s van de orde 3,
dan is gemakkelijk in te zlen, dat geldt A3 = c.A, waar-
bij de scaler ¢ negatlef is als de elementen van A reéel
z1jn. Van dit felt kan met vrucht gebrulk gemaakt worden
b1j een beschouwing over draalingen In een driedimensio-~
nale ruimte,.

1.

In een systeem ter beschrijving van informatleverwer-
kende processen zl] het toegestaan, dat verschillende
namen dezelfde betekenls hebben.

12,

In een systeem ter beschrijving van Informatleverwer-
xende processen z1J] het toegestaan, dat eenzelfde naam
met verschlllende betekenissen gebrulkt wordt.

173

13. :

Het is wenselljk dat onderzocht wordt of de gebrek-
kigheid der documentatle, waarmee veelal de industrie
haar producten op de markt brengt, een gevolg is van
een mogelljke oppervlakkigheld der toekomstige kopers.

14,

Bi1J matrixinversie door eliminatle moet, indlen de
berekening met drijvende komma wordt ultgevoerd, het
criterium, op grond waarvan steeds de "pivot" gekozen
wordt, in principe ongevoellg zijn voor vermenigvul-
diging van rijen en/of kolommen met willekeurige fac-
toren. '

N.P.L. Notes on Applied Science No.16 Modern Com-
puting Methods. Her MajJesty's Statlonery Office,
London (1957).

15.

In programmeurshandleidingen voor (geheel of gedeel-
telljk) binair werkende rekenmachines moet het gebrulk
van het achttallig stelsel vermeden worden.

174

