Some meditations on Advanced Programming _ EWD32 - 1

EWD32.html

In case you expect me to glve a complete, well—baianced and neutral survey of
the advanced programming act1v1tles of the world, I must warn you that I don't feel

~ inclined, nor entitled to do so.

My title already indicates that. I am going to meditate on the subject, which is
something,quite different from giving a survey. Perhaps the title of my paper wouldv
have been more outspoken if it had been "My meditations on Advanced Programmihg" for
I intend to, present a picture in the way I wigh to see it; and I should like to do
so in ‘all honesty without any claim to objectivity. I intend to do so because I have
a feeling that I serve you better by giving you an hodgat personal conviction than
by presenting you with the colourless average of conflicting current opinions of other

people,

You will observe that I shall fail to .give you a generally acceptable definition
of the subject "Advanced Programming". I.think that in my own appreciation of the eub—
ject the description "Advancing Programming" would heve been a better qualification,

I do like many activities which are wotthy, 1 think, of the name "Advanced Programming"
bdt'I dcn‘t like these activities so much for the sake of their output, the programs
‘that have resulted from them, as for what these activities can teach us. And if I am
willing to study them) to meditate upon them, I am willing to do so in the hope this
~study or these meditations will give me a clearer understanding of the programmers
task, of his ends and his means. Therefore I should like to draw your attention in
particular to those efforts and considerations which try to improve "the state of

the Art" of progremming, maybe to such an extent that at éome time in the future

we may speak of "the state of the Science of Programming".

- And a little look around us will convince us that this improvement is
very urgent, for on the whole the programmers world is a.very dark oné with only
just the first patches of a brighter sky appearing at the horizon. For the pressnt-
day darkness&in the programmers world the programmers themselves are responsible

and nobody else. But before we put too much blame on them look for a moment how their


http://www.cs.utexas.edu/users/EWD/transcriptions/EWD00xx/EWD32.html

EWD32 - 2 .
woild came into existence.

When the first automatic electronic computers started to work more or less
properly, mankind was faced with a new technical wonder, with a most impressive
achievement of technical skill. And, as a result, everybody was highly impressed
and rightly so. Under these circumstances it was completely natural that the
structure of these early machines was mainly decided by the technical possibilities
at that time. And under.these circumstances it would have been an undreamt-off
undecency if programmers had dared to suggest that those clever designers had not.
built at all the machines that programmers should like to have. Therefore, this
thought hardly struck the programmersvminds. On the cdntrary:-faced on the one hand
with the new computers and on the other hand heaps of problems waiting for their
solution, they have done their utmost best totaccomﬁlish the task with the equipment
that had become available. They have accepted the full challenge. The potentialities
of the computers have exhausted to slightly beyond their utmost limits, the nearly
impossible jobs have yet been done by using the machines in all kinds of curious
and tricky ways, which were completely unintended and even not foreseen by the
designers. In this atmosphere of pioneering programming has arisen not as a science
but as a craft, as an occupation where man, under the pressure of the circumstances,
was guided more by opportunism than by.sound principles. This -I should like to call
it "unhygienic"- creativity and shrewdness of the programmers has had a very bad in--
fluence on machine designers, for after some time they felt free to include all kinds
of curious facilities of doubtful usability, reassuring themselves by their experience
that, no matter how crazy a facility they provided, always a more crazy programmer
would emerge that would manage to turn it into something profitable - as if this\

were sufficient justification for its inclusion.

In the mean time programming established itself as a discipline wﬁere on the
whole the standards for quality were extremely crude and primitive. The main —and
often only- possible virtues of a program were its quantitative characteristics, viz.
its speed and its storage requirements. Space and time became the exclusive aspects
of efficiency. And in various places these standards are still in full vigour: not

so long ago I heard of two cases, one where a machine was not bought because its



EWDS2 — 3

multiplicatioﬁ speed was too low -and this may be a valid argument- and another case
where a certain machine was selected because its multiplication was so fast. And

this last decision was taken without the validity of this criterion being qpestioned.

Apart from the programs that have been produced the programmers contribution to
human knowledge has been faily useless. They have concocted thousands and thousands
of ingenuous tricks but they have given this chaotic contribution without a mecha—
nism to appreciate, to evaluate these tricks, to sort them out. And as many of these
tricks couls only be played by virtue of some special property of some special
machine their value was rather volatile. Bdf the tricks were defended in the
name of the semi-god "Efficiency" and for a long time there was hardly an inkling
that there could be anything wrong with tricks. The programmer was judged. by his
ability to invent and his willingness to\épply tricks. And also this opinion is
still a wide-spread- phenomenon: in advertisements agking for programmers and in
psychological tests for this job i£ is often required that the man should be "puzzle-
minded", this in strong contrast to the opinion of the slowly growing group of people

who think it more valuable that the man should have a clear and systematic.mind.

But, as I told you, the sky above the programmers world is brightening slowly.
Beforé I am going to draw your attention to some discoveries that are fesponsible for
this improvement I should like to state as my opinion that it is relativély unimportant
whether these discoveries are really new discoveriés or whether they are rediscoveries
of things perfectly well knawn to people like, say, Turing or von Neumann. For in the<
latter case the important and new thing is that a greater number of people become
aware of such a fact and that a greater number of people realize that these conside-
rations are not just theoretical considerations but that they may have tangibie, practical
results. In this light ﬁne might feel inclined to summarize the achievements of
advanced programming as some purely educational successes:; "At last programmers
have started torneducate one another to at least some extent.". I shall not protest
- against this summary provided one agreis with my opinion that mutual education. is

one of the major difficult tasks of mankind.

One important rediscovery is that of the well-known equivalence of designing a _

machine and making a program. At this moment one might well ask oneself why I ask



EWD32 - 4

attention for such a well-known fact. Well, I have very good reasons to do so, for
it has a great potential influence which is often overlooked: it enables the man that
regards himeelf as a programmer to contribute to the field that is generally regarded

as "machine design". And this is a very fortunate circumstance.

Some fifteen or fen years ago the design and construction of a new, unique
computer was a well-established and respectable occupation for University Laboratories;
And many of these "laboratory machines" were, each in. their own private ways,
revolutionary contraptions. From then onwards this custom died out and dﬁsign and
construction of automatic computers became more and more an exclusively indfustiiai
activity. Five years ago most af us felt this as a perfectly natural development:
construction of new computers became an extremely costly affair and it was generally
felt that the time had come to leave this activity to the specialized industries. Now,
five years later, we can only regret this development, for the computers om the
market today are, on the Qhole, very disappointing. All right, they are faster, they
are much more reliable than the old labotatory machiﬁe, but, on the other hand, they
are ofteﬁ boring, uninspiring and hopelessly old-fashioned as well., For instance;
the commercial requirement that all the programs made for some older machine from
the same manufacturer should, without any modification, be'acceptable to the new
machine has led to the design of new machines the order code of which included;th;
order code aof fhe'previous one in its-entirety. Such a policy, howeverm is a nsver
failing mechanism to prolong the lifetime of previous mistakes. Some time ago we
‘were offered the slagans about "“the computers of the siéond generation", butAto my
taste many of them were as dull as their parents. Apparenfly a. nice computer has at
least one property in common with a gentleman, viz. that if takes at least three

geﬁerations to produce one! Most of the industries, particularly the bigger gnes,
Aproved to be very conservative and reactionary. They seem to design for the

customér that believes the salesman who tells him that machine so-and -so is just the
machine he wants. But the poor customer who happend to know already, all by himself,
what he wants is often forced to accept a machine with which he is already disggsted,
before the thing is installed in his‘establishment. Under the present circumstances

if-is,'commcrcially speaking, apparently not too attractive te put a nice computer

on the market. This is a sorry state of affairs, many a programmer suffers regularly
from the monstruosity of his tool and we can-only hope for a better futurs with nicer



EWD32 ~ 5

machines. In the mean time he can program; taking some efficiency considerations for
granted he can force his machine to behave as he wishes: .when making a programming
system hé designs a machine as it should have been. Thanks to the logical equivalence
between designing a machine and making a program, programmers can contribufe to
future machine design, by exploring on paper, in software, the possibilities of

machines with a more revolutionary structure.

The equivalence of making a program and designing a machine has another, may be
far-reaching consequence of a much more practical nature. It is not unusual . to regard
a classical computer as a sequential computer coupled to a number of communication
mechanisms for ihput and output. Such a communication mechanism, howsver, performs
in itself a sequential process - usually of a cyclic nature, but tHat feature isa.
of no importance now. For this reason we can regard a classical machine, his commu-"
nication mechanism included, as a group of loosely connected sequential machines, with
interlocks,where necessary, to prevent them to get too much out of phase with one
another. The next step is to use the central computer not for only one sequential
process'but to equip it with the possibility to divide its attention between an
arbitrary number of such loosely connected sequential processes. One can do so with
compiete preservatioﬁ of the symmetry between the sequential processes to which a
distinct q53CE of hardware corresponds on the one hand and those which are taken care
of by the central computer on the other hand. Or even by one of the central processors,
as the case may be. The difference between a modest and an ambitious installation
may be that a couple of sequential précesses, that in the modest installation axe
performed by the central computer, are performed by private hardware in the ambitious
installation. But the above mentioned equivalence between designing a machine and
making a program, between performing a process either by hardware or by software,
should be exploited to guarantee that the program acceptable for the one installation
is aléo acceptable for the other. The above considerations are important because a
machine rigotously designed along the abeove lines should grcatly’faci}itnte
the manufacturers task to equip hisAproduct with the required software. The moral of
this is that, if at the present moment many manufacturers have great difficulties in
‘fulfilling their software obligations and if one bf the main sources of their trouble

"is that no two installations of the same machine are idenfical, their trouble could



EWD32 - 6
very well be a self-inflicted pain.

In this connection I should like to mention that I am fully aware of the fact
that my previous picture of the commercial computer market was somewhat
one-sided. Many of you will realize that af least one of the commercial products
shows a great number of the "nice properties" just mentioned. in my opindon,
this pafzcular computer should be regarded as one of the brighter patehes in the

sky.

Now I am turning my attention to one of the most important facts that happened
in the programmers world since the UNESCO Conferencc"in 1959, viz.the publigation
af the famous "Report on the Algorithmic Language ALGOL 60", edited by Dr Peter
Naur. I shall not discuss here the meri%s of the language ALGOL 60, nor shall I go
into the question whether it has reached its original aims or not. I intend to restrict
myself to a discussion of the consequences of this publication, of the influence it
has had in the world of programming. For, this influence has been tremendous. In
a short summary I could formulate as follows: through its merits ALGOL 60 has inspired
.a great number of people to hake translators for it, fhrough its defects it has
induced a great number of people to think about the aims of a "Programming Language".
ALGOL 60, in all probability and in accordance with the intention of its authors,
will be supersedéd by some beter language in due time, but much, much longer we

shall be able to tface,its educational effects.

Programming language, translator and computer, these three together for a tool,
and in thinking about this tool as a whole, new dimensions have been added to the
old concept of "reliability". In connection with the. third of the three components,
viz. the computer, concern about its reliability is as old as the compﬁtere them-

selves, the acceptance test is a well-known phenomenon.

But what is the value of such an acceptance test? It is certainly no guarantee
that the machine is correct, that the machine acts according to its specifications.
It only says that in these specific testprograms the machine has worked correctly.

If the design is based on some critical assumption, we cam only conclude, that -in



EWD32 - 7

these test programs the corresponding critical situations apparently did not arise.
If the design still contains logical errors, we can conclude, that in these specific
test programs these logical errors apparently did not matter. But as a user, we are
not interested in the test programs, we are interssted in our own programs. And from
the succesful acceptance test we should like to conclude, that the machine works
correctly in our programs also! But we cannot draw this conclusion. The best thing

a succesful acceptance test can do is to strengtheh.our

believe in the machines correctness, to increase the plausibility that it will per-
form any program in accordance with the specifications. The basic property of the
program of the user is that it will certainly require from the machine to perform
actions it has never done before. Machine designers have seen this difficulty quite
clearly. They have realized that the succesful acceptance test has only value as

far as future prog;ams are concerned, provided the actions performed in the test
programs can be regarded as representative for all its possible operations. And they
can only be representative by virtue of the cleanq:g‘systematic structure of the ma-
chine itself. The above is common knowledge among machine designers; curiously enough,

this is not true for translator makers, far whose activity the same considerations

apply.

In order that the tool, consisting of programming language, translator and
machine, be a reliable tool, it is, of course, mandatory that all its components be
reliable, One should expect that the translator maker, who imn contrast to the machine
designer has to deal with logical errors only, should do his job at least as well as
the machine builder. But I am afraid that the converse is true, At the Rome Conference
last spring I was surprised to hear that the extensive translators for symbolic
languges constructed in the United States continued to show up errors for years.

1 was shocked, however, when I saw the fatalistic mood in which this sorry state
was accepted as the most natural thing in the world. This same attitude is refelcted
in the terms of reference of an IS0 committee which deals with the standardization
of programming languages: there one finds the recommendation te construct for any
_standard langauge a set of standard test examples on which any new translator for
such a language could be tried out. But no hint that the correct processing of

’

these standard test examples obviously is only a trivial minimum requirement, no



EWD%2 -~ 8

trace of the consideration that our belief in the correctness of a translator can
never be founded on succesful tests alone, but is ultimately derived from the clean
and systematic structure of the translafor and from nothing else. In deciding
between reliability of the translation process on the one hand and the

producfion of an efficient object program on the other hand the choice often has
been decided in favour of the latter. But I have the impression that the pendulum

is now swinging backwards,

For instance: if one gets a much more powerfull machine in ones establishment
than the one one had before, one can react to this in two different ways. The clas-
sical reaction is that the new machine is so much more expensive, that it is ever so
much more mandatory that no expensive computing,time of the new machine should be
wasted, that the new machine should be used as efficiently as possible, etc. etc..

On the other hand one can also reason as follows: as the new machine is much faster,
time does not matter so very much any more; as in the new computer the cost per
operation is less than in the previous one, it becomes more readistic to investigate
whether we can invest some of the machines speed in other things than sheer production,
say in convenience for the user -what we do already when we use a convenient programming
language~ or in elegance and reliability of the translator, thus increasing the

quality of our output.

Also it is more widely recognised now than a couple of years ago that the
construcfion of an optimizing translator is, esscntially, a nasty job. Optimizing
means improving the object program, i.e, making a more efficient object
program than the one produced by straightforward, but reliable and trustworthy
translation techniques. Optimization means "taking advantage of a special s¥tuation".
Well, if one optimizes in one respect, it is not an impossible burden to verify that
tﬁe shortcut introduced in the object program does'nat lead to undesired results.

If, however, one obtimizes in two different respects, the duty of verification
becomes much harder, for one has to verify not only, that the two methods are correct
in themselves, but one must also check that they do not interfere with one another,
If one optimizes in more different raspecté; the task to create confidence in the

translators correctness explodes exponentially. As a result it is no loanger possible



EWDZ2 - 9

to recommeﬁd a computer by pointing to, say, the size of the translators available
for it. On the contrary: the more extensive and shrewd a-translator is, the more
doubtful is its quality. And further: for the necessity of such extensive
optimization efforts one might, finally, blame the computer in question: if we
really need such an iﬁtricate process as an optimizing translation to load our
programs one feels inclined to defend the opinion that, apparently, the computer is
not too well suited for its task. In short, the construction of intricate optimizing
translators is an act the wisdom of which is subject to doubt and there is certainly
a virtue in efforts to remove the need for them, e.g. the design of computers

where these optimization tricks don't pay, or at least don't pay so much.

With regard to the structure of a translator ALGOL 60 has acted as a great
promoter of non-optimizing translators. The fact is that the language as it stands
is certainly not an open invitation for optimization efforts. For those that thought
they knew how to write optimizing translators -be it for less flexible
languages- this has been one of the reasons to reject ALGOL 60 as a serious tool.

In my obinion these people bet on the wrong horse. I don't agree with them although
I can sympathize with them: if one has solved a problem one tends to get attached to
it and if one likes ones solution for it, it is, of course, a little bit hard to
switch over to an attitude in which the problem is not consideresd worth solving
anymore. The experience with ALGOL 60 translation has taught us still another thing.
Some translator makers could not fefrain from optimizing, but finding the task

as such too difficult to do they tried to ease matters by introducing additional
restrictions into the language. The fact that their translators had only to deal
with a restricted language, however, did not speed up translator construction: the

task to exploit the restrictions to full advantage has prevented this.

Smocthly we have arrived at the third component of our tool, viz. the language:
also the language should be a reliable one. In other words. it should assist the
programmer as much as possible in the most difficult aspect of his task, viz. to
convince himself -and those wothers who are really interested- that the program‘he
has written down defines indeed the process he wanted to define. Obviously the

‘language rules may not contain traps of the kind of which there are still some in

- ALGOL 60, where, for instance, "real array" may be abreviated into "array", but



EWD32 --10

\

" "own real array" may not be abbreviated into "own array". The next obvious
reqUirement is that those rules which define a legal text don't leave any doubt as
to whether a given text is legal or not, e.g, if there should be a restriction
with respect to recursive use of a procedure, it should be clear under what conditions
these restrictions apply, in particular when the term "“recursive use" applies. I
mention this particular example because here it is by no means obvious. Finally,
when faced with an undoubtedly legal text we want to be quite sure what it means.
This implies that the semantic definition should be as rigorous as possible. In
short: we need a complete and unambiguous pragmatic definition of the language,
stating explicitly how to react to any text. So much for the necessity that the
tool be reliable.

As my very last remark I should like to stress that the tool as a whole should
have still another quality. It is a much more subtle one; whether we appreciate it
or not depends much more on our personal taste and education and I shall not even try
to define it. The tool should be charming, it should be elegant, it should be
worthy of our love. This is no joke, I am terribly serious about this, In this respect
the programmer does not differ from any other craftsman: unless he loves his tools

it is highly improbable that he will ever create something of superior quality.

At the same time these considerations tell us the greatest virtues a

program can show: Elegance and Beauty.



