EWDi155 - O

Context Dependent Names,

Q: "Who is there?™
A: "It is me."

Introduction.

Under regrettable circumstances I can truthfully make the statement:
"My nose is bleeding.". Having only one nose I have identified the bleeding
object considersbly better than in a statement such as "My finger is bleeding.,",
the bleeding rose is even uniquely identified if I were the only person
or animal existing. This not being the case, the question "Which nose is
bleeding?" can be raised and the proper snswer would be "Edsger W.0ijkstra's
nose is bleeding.". Having a very rare Christian name I can safely assume that
my name identifies my person uniquely in the population of this world, and my
second statement then identifies the bleeding nose among the human noses of this
vworld. Of course one can then ask “Which world? etc. Our conclusion must be
that identification is a process of a recursive nature, that names will only
identify an object, provided it is known in which cantext this name is to be
understood; in actual fact, each identification stops with the proviso "If you
understand what I mean.,”,

In automatic data processing, particularly in the sspect of it that I have
called "Information Management" we are faced with the problem how to identify
objects, how to name them and how to keep track of the context in which such a
name is to be understood.

A potential way out is to decide, once and for all, upon & universe of
discourse, a context in whith each object is uniquely identified and to performs
the processes in terms of those universal identifications. However, if I have to
take care of my bleeding nose, it seems a somewhat rcundsbout way of doing if
I first translate this task into "Take care of the nose of Edsger W.Dijkstra.",
facing myself thus with the preliminary task to select from the world's populaticn
the human being thus identified. On the contrary, taking care of my bleeding
nose is an action that I can take, unconscious of the presence of other fellow
human beings and irrespective of how I am identified among them,

The problem to be solved is whether we can find a suitsble technique for
identifying objects with names that will have & meening in the context in which
they accur, without making sny assumptions about the total size of the universe
in which the process in question happens to be embedded, i.e. by keeping the
identification problem at that side open ended.

To be more concrete: [may have two independent programs in both of which
occur thirty objects, within each program suitably identifisd by the numbers
(used as names) from O through 29, If these programs are sound by themselves, they
should without eny recoding remain so, when the two programs are executed con-
currently in a multiprogrammed machine,

For the time being I ahall stress the logical structure of auch an identifi-
cstion technigue, intentionslly disregarding many aspects of efficiency. Once the
structure stands clear, we may hope to see, where additicnal equipment can be
used at good advantage.

EWD155 - 1

Starting points.

There is na peint in trying to conceal the fact that multiprogrammed
systems are one of my major concarns,

Years ago the idea wag that each individual user had at his private disposal
a von Neumann kind of memory, addressed by positive integers, starting at zero
up to a certein 1limit, that often had to be given a priori.

Embedding many such programs within a single machine consisted of sllocating
contiquous areas of memory space to each of the progrsms. The transition from
address, as mentioned in the program, to the physical location in store consisted
of the additicn of a so-called "base address", viz. the starting point of the
memory area alotted to the progream in guestion.

Let us review this technique. Its kernel implies that by the process
—either from the text as stored within the computer or as a computed intermediate
result- & non-negative value is supplied to the selection process, which then
establishes (by the addition of the apprnprlate base address) the 1dent1ty of
the object identified.

I feel a strong urge to try to retain the integers as the kernel of our
identification technique. When elements of a set are numbered (fram ZETIO onwards)
we shall call the integer values with such a specific role of identification within
the set ™an index"

There are two reasons to try to use indices. The first reason is. that
from the users point of view they have proved to be extremely useful. If a
procedure body starts with. the declaratiaon

“..I.'.B...E.l. X,¥,z"

it is for a translator a trivial renaming to gensrate for them in order the
index wvalues "O", "1" and "2", thus creating an object text that produces indices
quite naturally. Arrays and stacks are well-known {and essential!) programming
devices, in the use of which the jindex values are part of the subject matter of
the process itself. When keeping the role of the index as central as possible,
we may in case of doubt derive comfort from the respectsable company of von
Neumann and Peano.

The second reason is founded upon the possibility of implementation:
madern electronic equipment is remarkably efficient in performing additions. In
the following I shall refrain from speculations about large associative memories,
and therefore the index controlled selection is taken as the kernel of- the
identification mechanism, The act of the sslection under control of a single
index shall be called "a primitive selection".

Such a primitive selection, however, can only be performed provided that it
is understood with regard to which population of numbersd elements the index
value supplied should be used, v, provided that the base address to be incremen-
ted by the index is known. For lack of a better term I shall call the contents
of this understanding "the condition of the primitive selection", The condition
of a primitive selection sees to it, that the indax supplied to it is related to
the proper population.

Ewa155 - 2

5o we assume indices to be here to stay. Let us now return to the multipro-
gramming technique described earlier, in which each individual user has a single
set of consecutive integers at his disposal, the idea being that each individual
user <¢an now program as in & classical von Neumann type memory, starting at
address zero and of the appropriste size, To my feeling there is something wrong
in this approach. For one thing: the duty to embed the information in a reasonably
well filled linear store often imposes a considerable burden on the shoulders aof
the individual programmer, And after each programmer has taken this trouble, the
system as a whole is faced with the task to find & sufficiently large consecutive
ared available for such a program}

In other words: within such a system the condition of the primitive
selection wgee above- may differ from selection to selection; this facility,
however, should not be restricted in purpoge to distinguish between indices
originated in different programs, but we should try to place this facility
also in the hands af the individual programmer.

Locally totz)] selections.

Suppose that a programmer operates upon two integers "i" and "j" and a vector,
say, itself of integer elements. The use of an integer value ingicating as
an index indicating by enclosing it within squere brackets, we can rename

“L[O]" far "i",
"L[1]n for "j" and
"L[E]" for "k" .

" k"

{For the time being the capital letter "L" in front of the sqare opening
bracket can be regarded as”a noise symbul.}

In the case "L[0]" or "L[1]" it is clear, that the integer variable named
*i" or "j" has to be selected; "k", hawever, identifies a vector and in order to
select an element of this vector, we must supply @ second index such as in

m[2}[0o]" or rL[2)[7]" .

If the zeroth and seventh element of the array "k" exist as integers variables,
we may assume these integer variasbles suitably identified by the given successions
of two index values,

I regard the processing of such a sequence of index values as a gsequential
process, for the value of the first index determines, whether the second one is
applicable, It is then a succession of two primitive selections, the outcome of
the first being nothing else than what ws have called earlier "the condition
of the next primitive selection®,

I dao not regard the condition af the next primitive selection as belonging
to the subject matter of the precess, i.e. the information upon which can be
operated at programmer's whim: it csn only be used..... to control the next
selection,

This forces upon us the recognition that the three primery objects, named
"i", "j" and "k" are of vastly diffarent nature.

EWD155 - 3

The first two I call "terminal objects": their value, being PN¥X integers,
is part of the subject matter of the process, when they are gelected no next
index is permissible.

The last one I call "a non-terminal object": its "value" -in whatever domain
expressed- is the condition of a next primitive selection. The selection of a
non~terminal object requires a next index value to be supplied (and so on),
until a terminal object is reached.

Remark 1. This formalism allows a distinction between the terminal abject
"L[3]" and the set "L[3]" having *L[3]{0]" as its only (terminal) member.

I call a totel selection the succession of one or more primitive selections,
until a terminal object is reached., To be a little bit more explicit, I shall call
them "locally total selections", leaving the question open, whether previous
primitive selections are to be understood to condition the selection by the
leading index.

Remark 2. I have strong reasons for my refussl to regard "the value of a
non-terminal object" -i.e, the condition for a next primitive seleciion- as
part of the subject matter of the process, more in particular as data of which
arbitrarily many copies cen be made at programmers desire, Within a certain
context, the non-terminal object is invariantly identified by the index value
(sequence) leading to its selection: within this context its velue has only a
meaning for the next primitive selection. If we ask, how this value is represented,
we ask a question that is meaningless in terms of the subject matter of the pro-
cess itself, but that can -and must!- have s meaning in the inmEEXRKE X EMTEEMAN KN
immediately surrounding universe in which this process im embedded: it may
contain, say, a hase address.

In the surrounding universe, it may be desirable to change the way in which
the process is embedded: then one makes changes which are irrelevant to the pro=
cess itself. On the ather hand, such changes will result in updating of non-
terminal velues. On account of this lack of invariance of meaning, I feel obliged
to disallow any uncontrolled copying of non-terminal values.

{Ubviausly: under the assumption of the declaration "real x,y",‘ths
assignment
Iix: = yll

assigns to the variable "x" the current value of "y, i.e, an object, most
explicitly independent of the future history of the variable y! It can be
implemented thanka to the eternal existence and invariant representability of
numbers.)

The context.

To the implicit conditioning of the selection by the leading index we give
the name "the context",

By having different contsxts wa can attain thet the same index values may
point to distinct objects, s vital facility,

EW0155 -~ 4

In the nomenclature ysed in a program or program part, we may rightly
require the "resloving power of the nomenclature" to be sufficient to distinguish
between the different objects that this (part of the) program could possibly
refer to; it is irrealistic to require a resloving power able to distinguish
between all objects ever named, now or in the future. Nevertheless we can view
this program as embedded in the collection of all programs being written!

In other words: we allow different programmers to use the same identifica-
tions for locsel usage and if such an identifier is used in more then aone
meaning, this is an sccident of combinatoriel mature: the fact that KEYXK their
different prograsms heppen to have besn written.

The combinatorial nature of the origin of the need for more than one context
is most clearly demonstrated by a cloeer inspection of the mechanisms neede for
procedure execution,

Taking for granted the availability of some primitive "whistle", we can
write a procedure, "twentywhistle", say, that perfarms the action "whistle"
20 times in succession:

“procedure twentywhistle;
begin dinteger i; i:= 203
while 0 < i do begin whistle; i = i - 1 end
end"” .

We can regard the procedure body 8s the constant value of the object
named "twentywhistle" and we may talk about its life time. Within its life time
it can be in action and it will be in action as meny times as it is called.

With each call, hawever, the creation of a few variable "i" must take place,
an object that will belog to, and the life time of which will extend over, the
execution of "twentywhistle” as a result of this cell. At the return, the local
variable will be destroyed. In other words, it is the call of twentywhlstle
(and not its deflnltlﬂn) that creates the variable as an object. In general we
are bound to do s0, as we have no guarantee that the intersection of the different
periods of execution of "twentywhistle"” will be empty. In multiprogramming,
where different sequential processes may invoke the same procedure, such an gver-
lay of execution times may occur by accident; im uniprogramming such an ocverlay
is generated by structure each time a procedure invokes itself, a thing that
recursive procedures generally do,

It is very tempting to regard procedure call and procedure return &as actions
of & very special nature, viz. as actioms in which a new context is born and
annihilated respectively. The declarstiocns at the beginning of the procedurs
body are the commands controlling what context will be horn.

(Nata. I have reasons enough to give the procedure concept & central paosition
in my considerations:
1) in 1962 {(An attempt to unify the constituent part concepts of ser;al program
execution) I have shawn that the most natural conception of & varisble is
a8 procedure that upon cell produces the value agaigned to it.
2) in the multirunning mystem we ars constructing at present, the status of
a user program is that of an (anonymous) procedure, whose body is defined
during "load" and that is celled at "go".
The procedure concept thus covers a wide spectrumt)

EWD155 - 5

Context Identification

Q._Introduction.

We, i.e. somewhat external observers, can take a snapshot of the full
program status somewhere in the middle of its execution, say when the program
has called procedure A, which has called procedure H which has called procedure
€. We can then observe the existence of four different contexts: the one that
was the current ane before A was called and that will restored to this status
after A's completion, and those belonging to the activetions of A, B and C.
(Note: If A happens to call itself, e.g. when C = A, we can still distinguish
four different cnntexts!)

On account of their nicely nested lifetimes they can conveniently be
identified with the elements of a stack; thus giving the outer context the index
value "0", the one belonging to A the value "1", the one belonging to B the
value "2" and the one belonging toc C the value "3",

Let us call this "the stack of activations"; upon procedure entry an
glement is added to it, upon return its top element is unstacked.

Such 8 stack of activations becomes an object associated with a single
sequential BXX¥X process. In a multiprogramming system one could consider a
single "activation list" for the union of sll activations of all progrems
running in the system. The objects —i.e. activations— will then no longer have
nicely nested life times, but something could be done about that, e.g. giving
to sach new activation the lowest free index availeble. I most emphatically
propose not to do so: creation of a new context implies then the analysis what
index should be used for its_identification in the total "activation list", and
a5 a result concurrent context creations would have to exclude each other mutually
in time, We could also remark that the introduction of the different stacks
{ane for each sequential process) ia nothing more than the creation of a termi-
nology that exploits nicely the life time relations as far as they are present;
essentially this is the same argument.

It may be clarifying to inspect thes conssquesnces of the psarallel processing
ss described in "Coopesrating Sequential Processss", where the different constituent
statements of a se=called "parallel compound" ars asctivated in parallel and ehould
be executed concurrently. Instead of a mingle slement to be stecked as in the
cass of the procedur® call, a numbar af slemsnts have to be stacked together;
sssociated with thass slsments is not a context (as in the case of a procedure
csll) but = new stack of sctivations, viz. ons for each of the constituent
parts of the parallel compound. We shall return to this in greater dstail below.

Now a number of questions should be raised {and answered in some sense)
e.g. "Why do we want to identify contaxts by indices" and "Of what nature
will tha value be to bs fournd in the activation stack?".Tao the last question
we can give our usual vague answex "It will be ths condition of the next primitive
selection.”

The need to identify them becomes mpparent if we pay attention to the
psrameter mechanism, for instance the ever present implicit paramester: the
return information, One of the parameters of a procedurs shall be what context
to restors to its status of "ths current one™ upon return!

EWDB155 - 6

1._ Ihe Stack of Activations.
In & single sequential process our activations have nested lifetimes and
we can assume the values specifying the corresponding contexts to be stacked,

To my taste the difference between 8 stack and a push down store is that
in the push down store accessibility is by definition restricted to the top
element, whereas in s stack, interior elements may be eccessed. That is, we
regard a stack as a vector with a moving upper bound

tarray stack{O : M1

(where MI stends for "Maximum Index"} in which terminoleogy "to stack™ cen be

expresses as "MI:= MI + 1, stack[MI]:: "element to be stacked"",

Thus we ensure that each stack element is unigquely identified —within the
stack and during its lifetime- by the index value giving its distance from the
stack bottom.

1f an expression to be interpreted under the current context is to be
handed over as a parameter to a procedure with the effact that its sctual intsr-—
pretstion will tske place at a stage where the context relevant to the parameter
is no longer the currsnt one =but at that stage may be deep down the stack- then
the context can be identified by its indexvalue in the stack of activetions: this
is an invariant identification in contrest to its distance from the then current
top of the stack.

Within the program, the actual value of MI is without any meaning! The only
operations in which Ml plays & role are increase of it, decrease of it and selection
under control of it or under control of a capy of an earlier value. It are these
operations that hsve a meaning within the program, the interpretation of the
values, identifying contexts, falls cutside tbe scope of the context itself. It
is like making with you an appointment for "tomorrow":; I request you to increase
the current date by 1, it is irrelevant whether you translate this in terms of
the Julisn or the Chinese calendar; I may process this appointment without
calendar, such as children do "after one night sleeping".)

During specification of parasmeter, at entering into or returning from
procedures, the process has to operaste secundum regulas artis upon the MI,
associated with the -implicitly understood stack of activations. The copies made
from such Ml values will only be used (to be copied or) to control the selection
of the contexts. Such an MI is not a logal variable of the prucess, it is a
variabls in whoea valus the process dutifully reports its behaviour.

I regard the MI, i.e. the stack length a3 part of the conditiom under
contral of which an element of this stack can be salectad, because it gives
the upper bound of the index values that cen be processed by the nsxt primitive
selection,

EWD155 - 7

Within a sequentisl process including procedural processing a stack of
activations is implicitly understood. We shall now try to visualize the
entrance of an n=fold parallel compound.

Then n new elements will be added (simultanenusly) to the current steck
of activstions, each for one of the parallel statements; when the execution of
the n parsllel statements have all been completed, the n elements will be removed
together end the stack of sctivations from which they have been remuved will
return top its former status of "the current one",

Upon creation each of the n elements will get as value the condition
far selection in a new stack, that also will be created (either empty or
suitably initialized). The n stacks thus created will act as the current stack
of activations for the n different parallel statements, The n different stacks
to be implicitly understood during the activity of the parsllel compound are
thus elements with an identity within the stack from which they blossomed out;
the actusl index values by which each stack is identified depends on the
momentaneous Tilling of the "mother stack" at the mament that the parallel
compound has to he entered.

For the interpretstion of the n parallei constituents of the compound =i.s.
the sequence of primitive selections to be performed before the appropriste
context is identified and the next primitive selection suitably conditioned-
one primitive selection more than before blossoming must be done: if before
the entrance of the parallel compound a sequence of DC index values was sufficient
to identify the current context within the universe, then now DCH index values
will be needed.

This DC is a variable, gravely enalogous to MI ("DC" being short for
"Depth Counter™), During the lifetime of & stack of activations a constant DC-
value is associsted with it; the stacks created upon entry of a parallel compound
will all have a DC-value associsted with them that is one higher. The actual
value of DU depends on the distence from the root of the univers, but inside
the processes this value is as meenzngless es the distance of the bottom of
the stack. :

in the previcus gection we have shown that as long as we have ons
. seguential process, the current MI value will be sufficient to identify this
context for further reference. If on top of this context parallel blossoming
occurs, we do no longer know, to which stack of activations the fixed MI valus
refers, This problem is now solved by identifying ths current context by a
combination of the current values of MI and DC, ’

Thus we have achieved that contexts can identify themselves in a terming-
logy indepasndent of the size, complexity and total hiearchical structure of
the universe in which they are to be understoed.

