Copyright Notice
The following manuscript
EWD 196: The structure of the 'THE'-multiprogramming system

was published in Commun. ACM 11 (1968), 5: 341-346. It is
reproduced here by permission.

EWD196 - O

The structure of the THE-multiprogramming system

Introduction

Papers "reporting on timely research and development efforts" being
explicitly asked for, I shall {ry to present a progress report on the multi-
programming effort at the Department of Mathematics at the Technological
University, Eindhoven, the Netherlands.

Having very limited resources (viz. a group of six people of, on the
average, half time availability) and wishing to contribute to the art of system
design - including all the stages of conception, construction and verification -
we are faced with the problem of how to get the necessary experisnce. To solve
this problem we have adopted the following three guiding principles:

1) Select a project as advanced as you can conceive, as ambitious
as you can justify, in the hope that routine work can be kept to & minimum;
hold out against all pressure to incorporate auch system expansions that would
only result into a purely guantitative increase of the total amount of work
to be done.

2) Select a machine with sound basic characteristice (e.g. an
interrupt system to fall in love with is certainly an inspiring feature); from
then onwards try to keep the specific properties of the configuration for
which you are preparing the aystem out of your considerations as long as
posaible.

3) Be awars of the fact that experience does by no means auto-
matically lead to wisdom and understanding, in other words: make & conscious
effort to learn as much as possible from your precious experiences.

Accordiﬁgly, I shall tzry to go beyond just reporting what we have done
and how, and shall try to formulate as well what we have learned.

I should like to end the introduction with two short remarks on working
conditions, remarks I make for the sake of completeness. I shall not stress
these points any further.

EWD196 - 1

The one remark is that production speed is severely dezraded if one
works with half time people, who have other obligations as well. This is at
least & factor four, probadbly it is worse. The people themselves lose time
and energy in awitching over, the group as a whole leses decision speed as
discussions, when needed, have often to be postponed until all people concerned
sre available.

The other remark is that the members of the group - mostly mathematicisns -
have previcusly enjoyed as good students a university training of 5 to 8 years,
and are of Master's or Ph.D. level. 4 lesa qualified young man, originally
included, found our activities beyond his mental grasp and left the group.

I mention this explicitly, because at least in Holland, the Intellectual level
needed for system design is in general grossly underestimsted. I am more than
ever convinced that this type of work is just difficult and that every effort
to do it with other than the best people is doomed to either failure or moderate
Buccess at enormous expenses.

The tool snd the goal

The system has been designed for a Dutch machine, the EL X8 (N.V,
Electrologica, Rijawijk (ZH)), Charmcteristims of our configuration are:
1) core memory cycle time 2.5 mms., 27 bits; at present 32K.
2) drum of 512K words, 1024 words per track, rev.time 40 ms.
3) an indirect addressing mechanism very well suited for stack implementatiorn
4) & sound system for commanding peripherals and controlling of interrupts
5) a potentially great number of low capacity channels; ten of them are
used {3 paper tape readers at 1000 cha.r/aec; 3 paper tape punches at
150 char/sec; 2 teleprinters, & plotter and a line printer)
6} absence of a number of not unusual awkward features.

The primary goal of the aystem is to process smoothly a continuous flow
of user programs as a service to the University. A muliiprogramming system has
been chosen with the following cobjectives in mind:

1) & reduction of turn mround time for programs of short duration

2) economic use of peripheral devices

EWD196 - 2

3) automatic control of backing store to be combined with economic use
of the cantral processor

4) the economic feasibility to use the machine for those applications
for which only the flexibility of a general purpose computer is needad,
but (a8 a rule) not the capacity nor the proceasing power.

The system 1z not intended as a multi-access system. There is no common
data base via which independent usera can communicate with each other: they
only share the configuration and a procedure library (that includes a tranalator
for ALGOL 60 extended with complex numbers).

Compared with larger efforts one can state that quantitatively spesking
the goals have been set as modest as the equipment and cur other rescurces.
Qualitatively speaking, 1 am afraid, we got more and more immodest as the
work progressed.

A _progress report

We have made some minor mistakes of the usual type (such as paying too
much attention to speeding up what was not the real botile neck) and two major

ones.

Our first major mistake haa been that for too long a time we confined
our attention to "a perfect installation™: by the time we considered how to make
the beat of it when, say, one of the peripherals broke down, we were faced
with nasty problems. Taking care of the "pathology" took more energy than we
had expected and part of our troubles were a direct consequence of our earlier
ingenuity, i.e. the complexity of the situation into which the aystem could
have manoeuvred itself. Had we paid attention to the pathology at an earlier
atage in the design, our management rules would certainly have heen less refined.

The second major mistake has been that we have conceived and programmed
the major part of the system without giving more than scanty though to ths
problem of debugging it. For the fact that this mistake had no consequences - on
the contrary ! one might argue as an afterthought - I must decline all credit.

I feel more like having passed through the eye of the needle.....

BRD196 - 3

As csptain of the orew I had had extensive experience {dating back
to 1958) in making basic soffware deamling with real time interrupts and I
lmew by bitter experience that as a result of the irreproducibility of the
interrupt moments, a program error could present iiself misleadingly like
an ocoasional machine malfunctioning. As a result I was terribly afrsid.
Having fears regarding the possibility of debugging we decided to be as careful
as possible and - prevention is better than cure! = to try to prevent bugs
from entering the construction.

This decision, inspired by fesr, is at the bottom of what I regard as the
group's main contribution to the srt of system design. We have found it is
possible to design a refined multiprogramming system in such a way that its
logical soundness can be proved s priori and that its implementation admits
exhaustive testing. The only errors that showed up during testing were trivial
coding errors (ocouring with & density of only one error per 500 instructions),
each of them located within 10 minutes (classical) inspection at the machine
and each of them correapondingly easy to remedy. At the moment of writing the
testing is not yet completed, but the resulting system will be guaranteed $o be
flawless., When the system has heen delivered we shall not live in the psrpetual
foar that a system derailment may still occur in an unlikely gituation such asz
might result from an unhappy "coincidence" of two or more critical occurences,
for we shall have proved the correciness of the system with a rigour and
explicitness that is unusual for the great mejority of mathematiocal proofs.

A gurvey of the system structure

Storage allocation In the claassical von Nsumann machine information is identified
by the addreass of the memory location containing the informafion. When we

started to think about the automatic control of secondary sicrage we were familiar
with a system (viz. GIER AIGOL) in which all information was identified by its
drum address (as in the classical von Neumann machine) and in which the function
of the core memory was nothing more than to make the information "page wise"

aceoessible.

We have followed another approach and as it turmed out, ito great advantage.
In cur terminology we made strict distinction between memory units (we called
them "pages" and had %core pages" and "drum pages") and corresponding informastion

EWD196 - 4

units (for lack of a better word we called them "segmenis") a segment just
fitting in a page. For segmenis we created & completely independent identification
mechanism in which the number of possible segment identifiers is much larger

than the total number of pages in primary and secondary store. The segment
identifler gives fast mccesa to & po-called "segment variable" in core whose
value denotes whether the segment is still empty or not and if not empty, in
which page (or psges) it cen be found.

As a consequence of this approach: if a segment of information, residing
in & core page has to he dumped onto the drum in order to make the core page
available for other use, there is no need to return the segment to the same
drum page 8s it originally came from. In fact, this freedom is exploited:
among the free drum pages the one with minimum lateney time is selected.

4 next consequance is the total absence of a drum alloeatlon problem: thers
is not the slightest reascon why, say, a program should occupy consecutive drum
rages. In a multiprogrammeing environment this is very convenient.

Processor allocation We have given full recognition to the fact that in a
single sequential process (such as performed by & sequential automaten) only
the time succession of the various states has a logical meaning, but not the
actual speed with whick the ssquential process is psrformed. Therefore we have

arranged the whole system as & soclety of sequential processes, progressing
with undefined speed ratios. To eagh user program, accepited by the system,
corresponds & sequential process, to each input peripheral corresponds a
sequential process {buffering input streems in synchronism with the execution
of the input commands), to each output peripheral ocorresponds a sequential
procesa (u.nbu.ffering output streams in synchroniam with the execution of the
output commands); furthermore we have the "segment controller" sssociated with
the drum and the "message interpreter" sassociated with the console keyboard.

This enabled us to design the whole system in terms of these abstract
"sequential processes". Their harmonious co-operation is regulated by means
of explieit mutual synchronization statements. On the one hand, this explicit
mitual synchronization is necessary, as we do not make any assumption about

EWIM96 - 5

speed ratics;. on the other hand this mutusl synchronization is possidble,

because "delaying the progress of ancther process temporarily' can never be
harmful $o the interior logic of the process delayed. The fundamentsal consequence
of this approach - viz., the explicit mutuasl synchronization - is that the
harmoniocus co-operation of a set of such sequential processes can be established
by discorete reasoning; as a further consegquence the whole harmonious society

of co-operating sequential processes is independent of the actual number of
processors available to carry cut these processes, provided the processors
available can switch from process to process.

Syatem hierarchy The total system admits a strict hisrarchical structure.

On level O we find the responsibility for processor allocation to one
of the processes whose dynamic progress is logically permissible (i.e, in view
of the explicit mutual synchronization). At this level the interrupt of the
real time clock is processed, introduced to prevent any process to monopolize
procesaing power. At this level a priority rule i1s incorporated to achieve
quick response of the system where this is needed. Cur first abstraction has
been achieved, above level O the number of processors actually shared is no
longer relevant. On the higher levels we find the activity of the different
sequential processes, the actual processors having lost their identity, having
disappeared from the picture.

At level 1 we have the so-called "segment controller", a sequential
process synchronized with respect to the drum interrupt and the sequential
processes on higher levels. At level 1 we find the responsibility to cater
for the bookkeeping resuliing from the automatic backing atore, the dynamic
relating of segments of information o pages of store. At this level our next
abgstraction has besen achieved: in all higher levels identification of information
takes place in terms of segwents, the actual storage pages having lost their
identity, having disappeared from the picture.

At level 2 we find the "message interpreter", taking care of the allocation
of the console keyboard via which conservationa between the operator and any

of the higher level processes can be e¢arried out. The message interpreter works

EWD1g6 - 6

in close synchronism with the operator: when the operator presses a kay a
character is sent to the machine, together with an interrupt signal to

announce this next keybosrd character: the actual printing is done on account
of an output command generated by the machine under control of the message
interpreter.. {is far as the hardware is concerned the comsole teleprinter is
regarded as two independent peripherals: an input keyboard and an output
printer)If one o the processea opens a conversation it identifies itself

for the benefit of the opsrator in the opening sentence of this conversation.
If', however, the operator opens & conversation he must identify the process

he is addressing, in the opening sentence of the conversation, i.e. this
opening sentence must be interpreted before it is kmown to which of the
processes the conversation is addressed! There lies the logical reason to
introduce a separate sequential process for the console teleprinter, a reason
that is reflected in its name "message interpreter”. Above this level it is

as if each process had its private conversational console. The fact that they
share the same physical console ia translated into & resource restriction of
the form "only one conversation a time", a restriction that is satisfied via
mitual synchronization. At this level the next abastraction has been implemented:
in all higher levels the actual console teleprinter has loat its identity.

(If the message interpreter had been on the same level as the segment controller,
then the only way to implement it would have been tc make & permanent reservation
in core for it; as the conversational voesbulery might get lsrge (as soon as
our operators wish to be addressed in fancy messages) this would result in too
heavy a permanent demand upon core storage. Therefore the wocabulaxy in which
the messages are expressed is stored on segments, l.e. as information units
that can reside on the drum ag well., Therefore the message interpreter is of

& level one higher than the segment controllesz)

At level 3 we find the sequential processes associated with buffering
of input streams and unbuffering of output streams. At this level the next
abstraction is effected, viz. the abstraction of the actual peripherals used,
that are allocated at this level to the "logicel communicetion units" in terms
of which is worked in the still higher levels. The sequential processes
associated with the peripherals are of a level above the message interpreter,

because they must be able to converse with the operator (e.g. in the case of

EWD196 - 7

detected malfunctioning). The limited number of peripherals again acts as
a resource restriction for the processes on higher levels, to be satisfied by

muitual synchronization between them.

At level 4 we find the independent user programs, at level 5 the operator
(not implemented by us).

The system structure has been described at length in order to make the
next seotion intelligible.

Desism experience

The conception stage took a long time. During this period of time the
concepts have been born in terms of which we sketched the aystem in the previous
section. Furthermore we learnt the art of reasoning by which we could deduce
from our requirements the way in which the processes should influence each
other as regards mutual synchronization so that these requirements were met.
(The requirements being that no information can be used before it has been
produced, that no periphersl can be set o two tasks simultanecusly, ete.)
Finally we learnt the art of reasoning by which we could prove that the society
composed of processes thus mutually synchronized by each other, would indeed

in its time behaviour satisfy all requirements.

The conatruction stage has been rather traditional, perhapa even old-
feashioned: plain machine code. Reprogremming on account of a change of
specifications has been rare, a circumstance that must have contributed greatly
of the feasibility of the "steam method". The fact that the firsi two stages
took mors time than plammed was somewhat compenssated by a delay in the delivery
of the delivery of the mschina.

In the verification stage we had, during short shotas, the machine
completely at our disposal, shots during which we worked with & virgin machine
without any software aids for debugging. Starting st level O the system has
been tested, each time adding {a portion of) the next level only after the
previous level had been thoroughly tested. Each test shot itself contained on

EWD196 - 8

top of the (partial) system to be tested a number of testing processes with a
double function. Firstly they had to force the system into all different
relevant states, secondly they had ‘o verify that the system continued to
react according %o specification.

I shall not deny that the construction of thepe testing programmes has
been a major intellectusl effort: to convince ongself that one has not overlooked
"a relevant state" and to convince cneself that the testing programmes generste
them all is no simple matter. The encourageing thing is that (aa far as we

are awars!) it could be dome.

This {fact was one of the happy consequences of the hierarchical structure:
testing level O (the real time clock and processor allocation) implied a
number of testing sequen%ial processes on top of it, inapecting together that
processor time was divided among them according to the rules.

This being established, sequential processes as such had been implemented.
Testing the segment controller at level 1 weant that sll "relevant states"
could be formulated in terms of sequential processes making (in various
combinations) demands on core pages., situations that could be provoked. by
explicit synchronizing among the testing programs. At that stage the existence
of the real time clock - although interrupting all the tims - was s0 immaterial
that one of the testers indeed forgot its existence!

By that time we had implemented the correct reaction upon the (mutually
unsynchronized) interrupts from the real time olock and the drum. If we had
not introduced the separate levels © and 1 and if we had not oreated a
teminology (viz. that of the rather "abstract" sequential processes) in which
the existence of the clock interrupt could be discarded, but had tried instead
to make in a non-hierarchical construction the central processor directly react
upon any weird time succession of these iwo interrupts, the number of "relevant
states" would have exploded to such a height that exhaustive testing would
have been an illusion. (Apart from that, drum speed and clock speed being
outside our control, it is doubiful whether we would have had the means to

generate them all.)

EWD196 - 9

FYor the sske of completensss I must mention a further happy consequence.
As stated before, sbove level 1 core and drum pages have lost their identity
and buffering of input and output streams (at level 3) therefore occurs in
toerms of segments. While testing at level 2 or 3 the drum channel hardware
broke down for quite some time, but tesiing could proceed by restricting the
number of segments so that they all could be held in core. If building up the
line printer output streams had been implemented as "dumping onto the drum"
and the actual printing as “printing from the drum" this advantege would have
been denied to us,

Conclugion

As far as program verification is concermed I present nothing essentially
new. In testing a general purpose object (be it & pience of hardware, a program,
a machine or a system) one cannot subject it to all possible cases: for a
computer this would imply that one feeds it with all possible programs!
Therefore one must test it with a set of relevant {est cases. What is relevant
or not, cannot be decided as long as one regards the mechanism as a black box,
in other words it has to follow from the intemsal structure of the mechanism
to be tested. It seems the designer's responsibility to construct his mechanism
in such a way - i.e. 8o highly structured - that at each stage of the testing
Procedure the number of relevant teat casea is so small that he can try them
all and that what is being tested is so perspicuous that it is clear tkhat he
has not overlooked a situation. I have presented a survey of our system because
I think it & nice example of the form such a structure might take.

In my experience, I am sorry o say, industrial software makers tend to
react to it with mixed feelings. On the one hand they are inclined to judge
thet we have done & kind of model job, on the other hand they express doubts
whether the technigques used are applicable outside the sheltered atmosphere of
a University Department and express the opinion that we could only do it this
way thanks to the modest scope of the whole project. It is not my intention
to underestimate the organizing ability needed for z much bigger job with ten
or more times as many people, but I should like to venture the opinion that
the larger the project, the more essential the structuring! A hierarchy of
five logical levels might then very well turn out to be of modest depth, in
particular when one designs the aystem more consciously than we have done with
the aim that the software c¢an be smoothly adspted to (perhaps drastic)

configuration expansions.

