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A Constructive Approach to the Problem of Program Correctness.

Summary. As an alternative to methods by which the correctness of given programs
can be established a posteriori, this paper proposes to control the process of
program generation such as to produce a priori correct programs. An example is
treated to show the form that such a control might then take. This example comes
from the field of parallel programming; the way in which it is treated is
representative of the way in which a whole multiprogramming system has actually
been constructed.

1, Introduction,

The more ambitious we become in ocur machine applications, the more vital
becomes the problem of program correctness. The growing attention being paid tao
this problem is therefore a quite natural and sound development. As far as I am
aware (833[1],[2],[3]), however, the problem has been tackled, posed roughly in
the following form: "Given an algorithm and given specifications of its desired
dynamic behaviour, prove then that the dynamic behaviour of the given algarithm
meets the given specifications.™ After sufficient formalizatian of the way in
whieh the algorithm and specifications are given, we are faced with a well-posed
problem that is apparently not without mathematical appeal.

In this paper I shall tackle the problem from the other side: "Given the
specifications of the desired dynamic behaviour, how do we derive from these
an algorithm meeting them in its dynamic behaviour?". For certain mathematical
minds the latter problem will be less attractive (for one thing: the algorithm
to be derived is not uniquely defined by the specifications given); it seems,
however, to be of much greater practical value because, as a rule, we have to
construct the algorithm as well.

This paper has been written because the approach seems unusual, while we
have followed it very consciously and seem %io have done so to our great advantage.
We alsa publish it in the hope that it may serve as a partial answer to the many
doubts evoked by our claim to have canstructed a multiprogramming system of
proven flawlessness.

In this paper I shall illustrate the method by deriving an algorithm
meeting very simple specifications, whose simplicity hes been chosen in order
to avoid an unnecessarily lengthy paper. In doing se I am running the risk of
readers not believing in the practicability of the method when applied to large
problems. To those I can only make the following remarks., First, that the art of
reasoning to be displayed below is faithfully representative of the way in which
we have actually designed a multiprogramming system with fairly refined management
rules. Second, that it is my firm belief that by consistent application of such
methods our ability to deal with large problems will rather increase than decrease.
Third, that to anyone who doubts the practicability af the method 1 can only
recommend to try to apply it. Finally, that I know only too well that I can force
no one to share my beliefs.

(The chasen problem is a synchronization problem of the type as encountered
in multiprogramming. Many of my readers will be unfamiliar with this type of
problem and the article may therefore strike them as two articles merged into
one: one dealing with multiprogramming and another dealing with the constructive
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approach. This shortcoming of the paper has been pointed out to me by various
unD?Ficial‘referees of its preliminary version: I agree with their eriticism and
apologize to my readers. I have, however, stuck to my multiprogramming example,

for the general reader's unfamiliarity gives me a unique opportunity to illustrate
the approach by treating a simple example, the solution of which is not immediately
obvious to everyone. And this, 1 feel, illustrates the power of the approach more
convincingly than treating a traditional problem.)

2. The problem.

For the purpose of demonstration I have chosen the following problem. We
consider two parallel, cyclic processes, called "praducer" and “consumer"
respectively. They are coupled to each other via a buffer (in this example aof
unlimited capacity) for "portions" of information. In each of its cycles the
producer puts a next portion into the buffer, in each of its eycles the consumer
takes a portion from the buffer. The buffer is allecated in the universe
surrounding the two processes; after introduction and initiation of this
universe, the two processes are started in parallel, as indicated below by the
bracket pair "parbegin" and "parend". It is also indicated that the activity
of the producer as well as the activity of the consumer can be regarded at this
stage as an alternating succession of two actions. It is understood that the
actions labelled P1 (i.e. actual pruduction) and £2 {i.e. actual :Unsumption)
are the time-consuming actions (prnbably synchronized to other processes) of
which the possibility of parallel execution is of actual interest, while the
actions labelled P2 and C1, in which portiors are tramsmitted into or from the
buffer (the only ones in which reference to the common buffer is made) will
be very cencise actions (scme bookkeeping with pointers and links, say), the
potential parallelism of which can be discarded if desired. We depart in our
example from the (thefully Now self-explanatory) structure given below; here
the actions invoked are to be considered as available primitives.

Versian O:
begin irnitiate an empty buffer;
parbegin

producer: begin local initiation of the producer;
Pt: produce next portion locally;
P2: transmit portion into the buffer;

goto P1
end;

consumer: begin local initiation of the consumer;
Cl: transmit portion from buffer;
€2: consume new portien locally;

goto €1

end

parend
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For the proper co-operation of the two processes as described above we must
assume an implicit synchronization, preventing the consumer to try to take a
portion from an empty buffer. In the following we shall refuse to make any
assumptions about the speed ratioi of the two processes and our task is to program
the synchronization between the two processes explicitly. (The synchronizing
primitives I intend to use for this solution will be described in due time.)

Note. For brevity I omit the proof -although for this simple example not
too difficult- that the above problem is well-posed in the sense that a
synchronization satisfying the above requirement does not contain the danger of
the so-called "deadly embrace", i.e. one or more processes getting irrevocably
stuck because they are waiting for each other. I do so because this proof is
more concerned with the problem as posed thanm with the task of pragramming it
and the latter is the true subject of this paper.

3. Formalization of the required dynamic behaviour.

Our first step is the introduction of suitable variables in terms of which
we can give a more formal description of the specification of the required
dynamic behaviour. As stated, the consumer should bebave in such a way that it
does not try to take a portion from an empty buffer. The first question is: how
do we keep track af its emptyness? As a result of transmitting a portian into
the buffer, the buffer becomes non-empty, as z result of transmitting a portion
from the buffer the latter only becomes empty if its last and only portion has
been taken from it. Im other words, we can keep track of its emptyness (i.e.
whether the buffer caontains zero portinns) provided that we can answer the
question whether the (non—empty) buffer contains exactly 1 portion. Repeating
the argument we conclude that the number of portions in the buffer is a vital
guantity. Therefore we introduce an integer variable, "n" say, whose value has
ta equal the number of portions in the buffer. The rule to be followed this time
is particularly simple: first, initiate the value of "n" together with the
initiation of the buffer, so that the relation

"m = number of portions in the buffer" (1)

is satisfied to start with. Fram then onwards, adjust the value of the variable
called "n" whenever the number of portions in the buffer is changed, i.e. when

transmitting a portion into it or from it. As a result the relation (1) will be
always satisfied.

From now onwards the three actions initiating or changing the buffer
contents are regarded as actions including the proper operation on the variable
called "n". To indicate this, we may write Version 1:

begin integer n;

initiate an empty buffer including "n:= O";
parbegin
producer: begin local initiation of the producer;
Pt: produce next portion locally;
P2: transmit portion into the buffer including "mi= n + 1";

goto P1

end;
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consumer: beqin local initiation of the CONSumer;
Cl: transmit portion from buffer including "pi=n - 1";

C2: consume new portion locally;

goto €1

parend

Thus we have achieved that the specification of the dynamic behaviour can
be formulated by the reguirement that the inequality

n>0 (2)

will always be satisfied.

(Remark. It may well be, that already in the transition from the original
Version O to Version 1 we can observe one of the origins of the efficiency af
the constructive approach. If we had regarded the Version 1 as given but in
addition to this wanted to identify the current value of n with the current
number of portions in the buffer, we would have to observe its initiation and
its adjustments, but in excess to this we would have to read the whale program
in order to verify that no other operations on it can pccur, while we, however,
exploit the given fact that the actions labelled P1 and C2 by definition do not
refer to the buffer.)

4. Analysis of the formalized requirements.

We now proceed from Versien 1 and requirement (2). The latter requirement
is satisfied ipitially; we have only to synchronize the two processes in such a
way that it remaing satisfied.

From the fact that requirement (2) concerns the value of the variable called
"n" only, it follows that the processes can only cause violation by acting on
this variable, i.e. only via the actions labelled "P2" and "C1" respectively.
Closer inspection of the requirement ("n E:O") and the-actions shows that the
action labelled "pP2" (including "mi= n + 1") is quite harmless, hecause

n=0 implies n + 1 >0 R

but that the action labelled "C1" (including "m:=n - 1") may indeed cause a
viplation. More precisely, as

n>1implies n-t>0 |,
the action labelled "C1" is harmless when initiated when
n =1 (3)

while when n = O it would cause violation; under the latter circumstance it has
to be postponed.

(Remark. Our last conclusion is, that the only possible harm is trying to
make the buffer more empty than empty. Its obviocusness here is a direct consegquence
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of the simplicity of this example. The point is, that this conclusion could be
reached by inspection of the formalized regquirement (2) and the operatians on
the variables concerned. In the case of a more refined management, the
requirements analogous to (2) are no longer a simple inequality and their
analysis will really tell you all the danger puints.)

5. Consequence of the preceding analysis; the unstable situation.

In the previous section we have concluded that the action labelled "C1" is
the only danger point. Having here only one consumer, we could have solved the
problem logically by inserting just in front af it a wait cycle

"CO: if n = 0 then gota CO"

but we refi =d to implement this busy form of waiting, because in a multiprogrammed
environment it seems a waste to spend central processar time or a process that

has already established that for the time being it cannot go on; furthermore

this solution does not admit a straightforward generalization to, say, more
consumers.. Therefore we have implemented means -viz. the synchronizing primitives-
by which a process can go to sleep until further notice (a sleeping process

being by definition no candidate for processor time), leaving of course to the
other processes the obligation to give this "further notice” in due time. This

is so closely analogous to usual optimizing techniques that 1 proceed with this
multiprogramming example in full confidence that the uniprogrammer will be able

to apply similar considerations to his own tasks.

We see ourselves faced with the decision whether the action labelled "C1"
should take place or not. Earlier we have seen that this decision depends on the
current value of the variable called "n". Recently we have seen that under
certain circumstances we refuse to regard this as a private decision of the
consumer (this would imply the busy form of waiting) but wish to delegate it
(via the mechanism of the further notice} to the producer. As long as it was a
private decision of the cansumer, inserting it at the right place in the
consumer's text was a sufficient means to ensure that the decision was taken
in accordance with the dynamic progress of the consumer. As soon as this decision
might be taken by another process -in this example by the producer- the dynamic
pragress of the consumer becomes a question of general interest, in particular
whether the consumer is ready for the next action labelled C1. We introduce a

boolean variable, called "hungry" whose
the consumer's progress has reached the
to postpone the action labelled "C1" is

Ta ensure that the variable called
insert withip the consumer's cycle

1)

in front of the statement labelled "Ccrvy
include the assignment "bungry:= false" as part of the action labelled "C1";
initiate in the universe the variable called "hungry" in accordance with

2)
3)

value has to indicate explicitly that
stage that the decision to execute or
relevant.
"hungry" has this meaning, we must
the assignment "hungry:= true" just

the starting point in the consumer's eycle.

The variable called "hungry" is an

explicit coding of the consumer's

progress, analogous to the variable called "n", introduced as an explicit
coding of the number of portions in the buffer. We arrive at Version 2:
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begin integer n; Boolean hungry;

initiate an empty buffer including "n:= O";
hungry:= false;

parbegin

producer: begin local imitiation of the producer;
P1: produce next portion locally;

P2: transmit portion into the buffer including "ni=n + 1"

gota Pt
end;
consumer: beqgin local initiatien of the consumer;
€0: hungry:= true;
C1: transmit portion from buffer including "ni=n - 1" and
"hungry:= false";
C2: consume new portion locally;

qoto QO

end

parend

end

From relation (3) and the meaning of the variable called "hungry" we now
deduce that the action labelled "C1" should take place whenever

n>1 and hungry (4)

becomes true, the action labelled "C1" itself causing (4) to become false again.
In other words: we must see to it that (4) characterizes what we could call

"an unstable situation", for as soon as it emerges it should be resolved by the
action labelled "C1",

Having no permanently active observer that will give alarm whenever the
unstable situation arises, we must allocate the inspection for the unstahble
situation {and, if found, its subsequent resolution by action "C1") somewhere
in the sequential processes. The necessary and sufficient measure is te attach
this inspection as an appendix to each action that may have generated the
unstable situation from a stahle one, thus pinning the responsibility to
resolve the unstable situation down to the process that has generated it.

Some elementary leogic applied to (4) tells us that this transition can
only be effected by an action assigning the value true to the variable called
"hungry" or by an action increasing the value of the variable called "n" (or
by an action doing both, not cccurring in this example). In terms of Version 2:
the instability may be reached as a result of the action labelled "CO" (on
account of "hungry:= true") and of the action labelled "P2" {on account of
"n:=n + 1"). So the action labelled "P2" -allocsted in the producer- might get
attached to it as a appendix the action labelled "C1", originally allocated in
the consumer!
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6., Interlude on synchronizing primitives.

At this stage of the discussion we must insert ar,interlude that has nothing
to do with this particular problem, nor with the main train of thought of this
paper The interlude has been inserted because 1 expect many a reader to be
unfamiliar with the basic problems of programming parallel processes, the field
from which our example happens to have been taken.

We need primitives to caontrol that processes may go to sleep or may be
woken up. For this purpose we introduce
1) special purpose binary valued variables, called "semaphores". A semaphare
may have the values O and !. Semaphores are allocated in the surrounding
universe and are inritiated before the parallel processes are started. (Semaphores
can be (and have heen) generalized from two-valued quantities to non-negative
integers. In this artiele we do not do s0, for our example is sp simple that
the generalized semaphore would provide a ready made solution!)
2) two special operations, called the P- and the V-operation respectively.
The parallel processes shall access the semaphores via these operations only.

The P-operation on a semaphore can only be completed at a moment that the
semaphore value equals 1. Its completion implies that the semaphore value is
reset to O, If a process initiates a P-operation on a semaphore with at that
moment a value egual to 0, "the process gaes to sleep, the P-pperation remains
pending on this semaphore™.

The V-operation on a semaphore is only defined if its initial value equals O,
It will then set the semaphore to 1. If no P-operation is pending on this semaphore
the V-operation has no further effect. If one or more P-operations are pending aon
it, the V-operation will have the further effect that exactly one of the pending
P-operations will be completed (thereby resetting the semaphore to the value O),
i.e. the process in which this P-operation occurred is woken up again.

As a result a semaphore value equal to 1 implies that there are at that
moment no P-operations pending on it.

The semaphores are used for two entirely distinct purposes; both standard
usages will oeccur in the example.

On the one hand we have the so-called "private semaphores”, each belaonging
to a specific sequential process, that will be the only one to perform a P-operation
on it, viz. where the process might need to be delayed until some event has
occurred: the semaphore values O and 1 at the initiation af the P-operation
represent the situation that the event in question has not yet or has already
occurred. As a rule the universe initiates private semapbhores with the value O,

On the other hand we have the semaphore(s) used for the implementation of
so-called "ecritical sections”, the executions of which have tg exclude each other
in time. Such critical sections can be implemented by opening them with a
F-operation and closing them with a V-aperation, all on the same semaphore with
initial value 1. At each moment the value of such a semaphore for mutual exclusion
equals the number of processes allowed to enter a section critical to it. The
purpose of critical sections is to cater for unambiguous modifieation and
interpretation of universal variables (such as "n" and "hungry" in our example).
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Alternatively: at a certain level of abstraclion we can visualize a single
sequential process as a succession of "immediate actions"; the time taken to
perform them is logically immaterial, only the states (as given by the values of
the variables) observable in between the actions have on that level a lagical
significance. It is only when we shift to a lower level of abstraction and
implement the actions themselves by means of (smaller) sequential sub-processes,
that the intermediate states as well as their periods of execution enter the
picture.And it is only at this lower level that "mutual exclusion in time" has
a significance. In a single sequential process successive actions (now regarded
as sub-processes) exclude each other in time automatically, because the next one
will only be initiated after the preceding one has been completed. In
multiprogramming the mutual exclusion at the lower level of abstraction is no
longer automatically guaranteed and the fact that on the higher level we regard
them as single "immediate actions" reguires then explicit recegnition. This is
exactly what the critical sections cater for.

7. Resolution of the unstable situation and synchronization of the processes.

Our analysis of the unstable situation ended with the canclusion that the
action labelled "C1", originally allocated in the consumer, will be attached
as a conditional appendix to the actions labelled "CO" and "P2" respectively, to
the ones that might generate the unstable situation.

To pin the responsibility for the resolution of the unstable situation
down to the process that has generated it, the latter one must be uniquely
defined (which is not the case if the effective assignments "n:= 1" as part of
P2 and "hungry:= true" as part of CO are allowed to take place simultaneously)
and it must have resolved the unstable situation before the other process may
have discovered it. In other words, creation of the unstable situation and its
subsequent reselution must be regarded as a single "immediate action" in the
sense of the last paragraph of the interlude. We shall implement them by critical
sections controlled by a semaphore, "mutex" say, that will he initiated with the
value 1.

Finally, in Version 2 the sequential nature of the consumer guaranteed that
each execution of the action labelled "C2" would be preceded by one execution of
the action labelled "C1". This implicit sequencing can be made explicit with the
aid of a private semaphore of the consumer, "consem" say, {(to be initiated with
the value 0} by concluding the action labelled "Ci" with "V(consem)" and opening
the action labelled "C2" with-"P(consem)". The sequencing has to be made explicit
because the action labelled "C1" may now occur as an activity of the producer.

After these considerations the final version of the program is giwven. For
reasons of clarity and economy (uf writing and thinkiﬂg) the action labelled
"C1" has been inecluded in the body of a procedure declared in the universe.

Note 1. The program given below does not pretend to be the only, or the
best or the most economical solution. It pretends to be a correct solution. It is
general in the sense that more complicated similar problems can be solved along
the same pattern.

Note 2. As announced (in section 2) the potential parallelism of the action
"transmit portion into the buffer” and "transmit portion from buffer" would
would be discarded if desired. This indeed has happened, as the actions anly
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occur within critical sections. The generalization to more producers, more
consumers etc. is now straightforward.

Note 3. The step from Version 2 to the Fimal Version is rather large: for
various unofficial referees of the preliminary version of this paper the final
Version still came straight from "The Magician's Box". I can understand their
feelings, I have not succeeded in remedying the situation, "in buffering the
shock of invention®.

Fimal Version:

begin integer n; Hoolean hungry; semaphare mutex, consem;

procedure resolve instability if present;
begin if n > 1 and hungry then
begin transmit portion from buffer; ni=n - 1;

hungry:= false; V(consem)

end;

initiate an empty buffer; n:= 0;
hungry:= false; mutex:= 1; consem:= O;
parbegin
praducer: begin local initiation af the producer;
P1: produce next portion locally;
P2: F(mutex); '
transmit portion into the buffer; ni=n + 1;
resolve instability if present;
V(mutex);
goto P1
end;
consumer: begin local initiation of the consumer;
CO: P(mutex);
hbungry:= true; resolve instability if present;
V(mutex);

c2: P(cnnsem); consume new portion locally;

goto CO

parend
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The above is as faithful a reproduction as I can give ot the kind of reasoning
we applied in the construction of a multiprogramming system, albeit interlaced
with explanatory paragraphs, covering the insights we had already gained at an
earlier stage by just thinking about the problems involved in the programming
of parallel processes. At the end, when we were all familiar with this type of
problem, the reasoning needed to derive the program from specifications much
more complicated than the present example, used to be given on a single page or
less.

8. Concluding remarks,

First, one can remark that I have not done much more than to make explicit
what the sure and competent pragrammer has already done for years, be it mestly
intuitively and unconsciously. I admit so, but without any shame: making his
bebhaviour conscious and explicit seems a relevant step in the process of transformin
the Art of Programming into the Science of Programming. My point is that this
reasoning can and should be done explicitly.

Second, I should like to stress that by using the verb "to derive" I do
not intend to suggest any form of dutomatism, nor to underestimate the amount of
mathematical invertion involved ip all non-trivial programming. (On the contrary!)
But I do suggest the constructive approach sketched in this paper as an
accompanying justification of his inventions, as a tool to check during the
process of invention that he is not being lead astray, as a reliable and inspiring
guide.

Third, I am fully aware that the style of reasoning I have applied, though
possibly appealing to some, might easily appal others. For this difference in
taste I blame them as little as they should blame me. I can only hope that they
will find a way to follow the constructive approach im a style satisfactory to
them.

Finally, I should like to point out that the constructive approach to
program correctness sheds some new light on the debugging prablem. Personally
I cannot refrain from feeling that many debugging aids that are en vogue now
are invented as a compensation for the shortcomings of a programming technique
that will be denounced as obsolete within the near future.
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