EWDz36 - O

Complexity controlled by hierarchical ordering of function and variability.

by Edsger W.Dijkstra

Reviewing recent experiences gained during the design and construction of
a multiprogramming system I find myself torn between two apparently conflicting
conclusions. Confiniry myself to the diffi:uities more or less mastered I feel
that such'a job is {or at least should be) rather easy; turning my attention to
the remaining problems such & job strikes me as cruelly difficult. The difficulties
that have been overcome reasonably well are related to the reliability and the
producibility of the system, the unsolved problems are related to the sequencing

of the decisions in the design process itself.

I shall mainly describe where we feel that we have been successful. This
choice bas not been motivated by reasons of advertisement for one' own
achievements; it is more that a good knowledge af what -and what little!- we can
do successfully, seems a safe starting point for further efforts, safer at least
than starting with a long list of reguirements without a careful analysis whether

these requirements are compatible with each other.

Basic software such as an operating system is regarded as an integral part
of the machinme, in other words: it is its function to transform a (For its user
or for its manager) less attractive machine (Dr class aof machines) into a more
attractive one. If this transformaticn is a trivial one, the prDElem is solved;
if not, 1 see only one way out of it, viz. "Divide and Rule", i.s. effectuzte
the transformation of the given machine into the desired ore in a modest number
of steps, each of them (hopefully!) trivial. As far as the applicability of this
dissection technique is concerned the construction of an operating system is

nat very much different from any other large programming effort.

The situation shows resemblance to the organization of a subrputine library
in which each subroutine can be considered as being of a certain "height", given
according to the following rule: a subroutine that does not call any other
subroutine is of height O, & subroutine calling one or more other subroutines
is of a height one higher than that of the highest height among the ones called

by it. Sush a rule divides a library into & hierarchical set of layers. The

EWD236 - 1

similarity is given by the consideration that lpading the subroutines of layer O
can be regarded as a transformation of the given machine into one that is more

attractive for the formulation of the subroutines of layer 1.

Similarly the software of our multiprogramming system can be regarded as
structured in layers. We conceive an ordered sequence of machines: A[O], A[?J,...
A[n], where A[O] is the given hardware machine and where the software of layer i
transforms machine A[i] into A[i+1}. The software of layer i is defined in terms
of machine A[i], it is to be executed by machine A[i], the software of layer i

uses machine A[i] to make machine A[i+1].

Compared with the library organization there are some marked differences. In
the system the "units of dissection" are no longer restricted to subroutines, hut
this is a minor difference compared with the next one. Adding a subroutine aof
height O to the library is often regarded as an extension of the primitive
repertoire which from then onwards is at the programmer's disposal. The fact
that, when the subroutine is used, storage space and processor time have been
traded for the new primitive can often be ignored, virz. as long as the store
is large enough and the machine is fast enough. Consequently the new library
subroutine is regarded as a pure extension. One of the main functions of an
operating system, however, happens to be resource allocation, i.e. the software
of layer i will use some of the resources of machine A[i] to provide resources
for machine A[i+1]: in machine A[i+1] and higher these used resources of machine

A[i] must be regarded as no longer there! The explicit introduction (and functional

description!) of the intermediate machines A[1] through A{n-1] bas besn more than
mere word-play: it has safeguarded us against much confucion as is usually
generated by a set of tacid assumptions. Fhrasing the structure of our total

task as the design of an ordered sequence of machines provided us with a useful

framework in marking the successive stages of design and productian of the system.

But a framework is not very useful unless one has at least a guiding principle
as how to fill it. Given a hardware machine A[O] and the broad characteristics
of the final machine A[n] (the value of "n" as yet being undecided) the
decisiané we had to take fell into two different classes:
1) we had to dissect the total task of the system into a number of subtasks

2) we had to decide how the software taking care of these various subtasks

EWD236 - 2

should be layered. It is only then that the intermediate machines {(and the

ordinal pumber "n" of the final machihe) are defined.

Roughly speaking the decisions of the first class (the dissection) have been
taken on account of an analysis of the total task of transforming A[O] into A[n],
while the decisions of the second eclass (the ordering) have beem much more hardware

bound.

The total task of creating machine A[n] has been regarded as the implementation
of an abstraction from the physical reality as provided by machine A[O] and in
the dissection process this totsl abstraction has been split up in a number of
independent abstractions. Specific properties of A[OJ, the abstraction from

which we wanted toc implement, were:

1) the presence of a single central processor (wa wanted to provide for multi-
prugramming)
2) the presence of a two level store, i.e. core and drum (we wanted to offer

each user some sort of homogeneous store)
3) the actual number, speed and identity (hot the type) of the physically

available pieces of I/U equipment (readers, punches, plotters, printers etc.)

The subsequent ordering in layers has been guided. by convenience and was
therefore, as said, more hardware bound. It was recognized that the provision of
virtual processors for each user program could conveniently be used to provide
alse one virtual processor for each of the sequential processes to be performed
in relatively close synchronism with each of the (mutually asynchronous) pieces
of I/D equipment. The software describing these processes was thereby placed in
layers abave the one in which the abstraction from our single processor bad to

be implemented.

The abstraction from the givven two level stare implied automatic transports
between these two levels. A careful analysis of, one the ane hand, the way in
which the drum channel signalled completion of a transfer and on the other hand
the resulting actions to be taken on account of such a completion signal, revealed
the need for a separate sequential process -and therefore the existence of a
virtual processor- to be performed in synchronism with the drum channel activity.

It was only then that we had arguments to place the software abstracting fram

EWD236 - 3

the single processor belaw the software abstracting from the two level store. In
actual fact they came in layer O and 1 respectively, To place the software
abstracting from the two level store in layer 1 was decided when it was discovered
that the remaining software eould make good use of the quasi homogenecus store. Etc.

It was in this stage of the design that the intermediate machines A[T], A[Z],...

got defined (in this Drder).

At face value aur approach has much to recommend itself. For instance, a
fair amount of modularity is catered for as far as changes in the configuration
are concerned. The software of layer O takes care of processor allocation; if our
configuration wauld be extended with a second central processor in the same core
memory then anly the software of layer O would need adaptation. If our backing
store were extended with a second drum only the software of layer 1, taking care

of storage allocation, would need adaptation, etc.

But this modularity (although I am willing to stress it for selling purposes)
is only a consequence of the dissection and is rather independent of the chasen
hierarchical ordering in the various layers, and whether [can sell this, remains

to be seen. The ordering has been motivated by "convenience™....

The point is that what is put in layer O penetrates the whole of the design
on top of it and the decision what to put there has far reaching consequences. Prior
to the design of this multiprogramming system I had designed, together with C.S5.
Scholten, a set of seguencing primitives for the mutual synchronization of a
number of independent processors and I knew in the mean time a systematic way
to use these primitives for the regulation of the harmonious co-operation between
a number of sequential machines (virtual or not). These primitives have hbeen
implemented at layer C and are an essential asset of the intermediate machine A[1].
I have still the feeling that the decision to put processor allocation in layer O
has been a lucky one: among other things it has reduced the number of states to
be considered when an interrupt arrives to such a smaal number that we could try
them all and that I am convinced that in this respect the system is without lurking
bugs. Fine, but how am I ta judge the influence of my bias due te the fact that I
happened to know by experience that machine A[1], with these primitives included,

was a logically sound foundation?

