EwWD238 - 0

Computation versus program,

I will use twa simple examples to illustrate a very basic experience, Two
computations that produce the same output are equivalent in that sense and & priori
not in any other,

In the relation between program and computation we observe the program:
spread out in text space and the computation spread out in time, For any given
combination of pragram and computation the so-called sequencing describes how
progress of the computation {as time "progresses") is mapped on progress through
the program (as text "orogresses!).

What is emerging are ways to compare programs; one wants to do so in order
to compare the corresponding computations. The basic experience is that it is
impossible (or fruitless, or terribly hard or unattractive or what you wish) to
compare computations by comparing the corresponding programs when on the level
of comparison the seguencings through the two programs differ,

In a little bit more detail: when we can parse twa camputations as a
sequence of actions and we can map the two sequences of actions on each other,
we can compare them by comparing the program texts, provided that the program
texts can beequally parsed in instructions, each of them corresponding to an actiaon.

Let me give two examples, an abstract one and a concrete one. The abstract
example is the following one. Excluding side effects of hoolean inspection and B2 constant

"while B! do if B2 then §1
else 52"

is equivalent with

"if B2 then while B! do Si
else while B1 do 52" .

The first construction is primarily one in which sequencing is constrolled
by a repetition clause, the second canstruction is primarily one in which sequencing
is controlled by an alternative clause. I cam establish the equivalence af the
output of the computations but I cannot regard them as equivalent in any other
useful sense.

The concrete example is to construct a program generating xmRSuENEEs naon-
empty sequences of O's, 1's and 2's without non-empty, element-wise equsl
adjoining subsequences, generating these sequences in alphabetic order until a
sequence of length 100 (i.e. of 100 digits) has heen generated, (The start of the
list of sequences to be gererated is:

0
01

010

0102

01020

010201

0102010

0102012)

EwD238 ~ 1

The programmer may make use of the knowledge that a sequence of length 100
satisfying the conditioms actually exists, Fach solution (apart from the first one)
is an extension (with one digit) of a solution and the algorithm is therefore a
straightforward backtracking ane.

We are looking for the "good" sequences, we assume a primitive available
investigating whether a trial sequence is good. If it is good, the trial sequence
is printed and extended with a zero to give the next trial sequence; if the trial
sequence is no good we perform on it the operatiom "increase” to get the next
trial sequence, i,e. final digits = 2 are removed and then the last digit remaining
is increased by 1. {The existence of a solution of length 100 and our stopping
there will see to it that removal of final digits = 2 will never give rise to an
empty sequence.)

Version 1a uses the fact that a single zero is the first true solution,

Version la:
"Set trial sequence to single zero (and length to 1);
while length < 10t da
begin if good then
begin print trial sequence; exterd trial sequence with zero end
increase trial sequence
EEE"

Version 1b regards the empty sequence as a virtual solution, not to be printed:

Version lb:
"Set trial sequence empty (and length ta 0);
while length < 100 do
begin extend trial sequence with zero;
while no good do increase trial sequence;
print trial sequence
Eﬂll

One marked difference is in the statement to be repeated. MHXXEAXXX In
Version 1a (conditional) printing of a solution preceeds the generation of a
next trial, in Version 1b the printing is at the end of the repeated statement,
This difference explains the difference in initialization and repetiticn test,
But this is a minor difference as Version 1c¢ shows:

Version 1c:
"Set trial sequence to single zero (and length to 1);
while length << 101 do
beqin while no good do increase trial sequence;
print trial seguence;
extend trial sequence with zero
E':IE“ .
.’/
The tremendaus difference is, that in version 1a the two repetitions are
merged into cne, while version 1b can be regarded as a detailing of version Ob:
"Set current sequence to virtual solution (and length to O);
while length < 100 do
begin transform current sequence to next solution;
print current sequence -
..?.D.ci"

Versions ta and 1b are fairly incomparable. That was my basic experience.

EWD238 - 2

Cn reflection I shall ask attention for a third example as it presents a
border case. Given two arrays X[1:N] and Y[1:N]and a boolean "equal", make a
program that gives to "equal™ the meaning “"the two given arrays are element-wise
equal", Empty arrays are regarded as equal.,

Une cannot compare the twa arrays at a single stroke, one has to do so
element-wise; we introduce the integer "j" and give to the variable "equal" the
following meaning "among the first 1} pairs of elements no difference has been
found" and arrive at the following program part

Version 1:
ji:= 0; equal:i= irue;
while j << N do
begin j:= j + 1; egqual:= equal and (X[j] = Y[j]) end

This does the job: the initial situation is in accordance with j=0,
the statement under the repetition clause implements the induction step from
i to i+ 1 (no difference sa far and no new difference) and by the time that
Jj = N we have the desired value.

Inspecting the assignment

"equali= equal and ,...."

we can conclude that once "equal = false"holds, this relation will be permanent
and therefore further executicn of the repetition clause makes no sense. (Mind
you, we are only interested in the final value of "equal') This observation
gives rise to the following pragram section

Version 23
jr= 0; equal:= true;
while j <N and equal da
begin ji= j + 1; equali= equal and (X[j] = Y[j]) end

But now we have made the program in such a way that the repeated statement
will only start execution with "equal = true" and as a result "equal and"
can be omitted:

Versian %:

j:= 0; equal:= true;
while j < N and equal do
begin j:= j + 1; equal:= (X[j] = Y[l]) end

and that, presumably, will be aur final version.

The above is a form of "program patching” that I abhor. For instance,
the conclusion that led to Version 2 was derived from reading Version 1;
Version 2 is fairly ridiculous anyway, it only occurred as a stepping stone
between the other two versions. The guestion is: how are Version 1 and Version
3 related to each other? The sequencing is different, yet sufficiently similar
that I can map them on each other.

we have N+1 functions EQUAL[j] for O =] =N, defined upan the arrays
and given hy
EQUAL[C] = true
EQUAL[j] = EQUAL[5-1] and (x[3] = ¥[3])

and in terms of these functions it is requested to perform the assignment

equal:= EQUAL[N] .

EWD238 - 3

The common ancestor of Versions 1 and 3 would be somegthing like

jt= 0; equal:= EQUAL[O];
while "perhaps equal # EQUAL[N]" da
begin j:= j + 1; "equal:= EQUAL[j]“end

Now this is tricky and not toe well formulated. Each time the inspection
is done, the relation "equal = EQUAL[j]" will hold because the common ancestor
is made that way. At each inspection either "equal = EQUAL[N]" or not; I have
included the word "perhaps" and have put the conditions within guotes, just to
be on the safe side, in order to indicate whether we dare to guarantee that
the equality holds. If we refuse to give this guarantee, well then "perhaps"
the inequality holds.

Another way of saying why I have put the inspection within quotes is that
what I have given what meaning I shall attach to the truth and falsity of the
boolean expression, without stating what expression it is.

Our choice for the inspection depends on our lazyness, on the amount of
mathematical analysis we wish to spend on the definition of the functions
EQUAL. We can be lazy and say just: well, at the moment of inspection I know
that

equal = EQUAL [j]
and I refuse to conclude that

equal = EQUAL [N]
before i =N '

holds. This leads to Version 1.

We can apply some analysis to the recurrence relation and conclude
that for any j

EQUAL[j]= false implies EQUAL[i)= false for all i>j

The class of situations under which we are now willing to guarantee the
equality "equal = EQUAL[N]" is then widened to "i = N or equal = false" and
this leads to version 3.

Now the really tricky thing is the following. We can regard the inspection
"perhaps equal = EQUAL[N]“ as an open primitive to be chosen later on; but the
choice we make defines the set of circumstances under which the statement
to be repeated has to be executed. In version 1, the only thing we can do
is to follow the recurrence relation litterally. In version 3 the computation
of EQUAL[j] is restricted to the case EQUAL[j-1] = true, so what is demanded
of the other quoted action "equal= EQUAL[j]"

depends on the choice of the inspection. In version 3 it can be implemented by
"equali= (X{j] =Y[i" oz "if X[j] # ¥[3i] then equal:= false" ,

using the here known fact that initially "equal = true" will hold.
W
My common ancestor is an agkward parent!
Al

