EWD241 - 0

Towards correct programs.

The purpose of this paper is to stress what mental aids we have at our disposal
in designing and understanding algorithms, to show some patterns of programming
that we may hope to apply without losing our intellectual grasp on what we ars
doing and to stress the need that our programs (i.e. the final pragram and the
intermediate programs leading to it) mirror as tlosely as possible our understanding
of the problem and the algorithm solving it.

Among the mental aids available I should like to mention three explicitly:
1) Enumeratian
2) Mathematical Induction
3) Abstraction.

I regard as an appeal to Enumeration the mental effort required to understand
either a sequential program gensrating a fixed time sequence af actiens or a
conditiornal or alternative clause (the so-called "case construction" includad).

As one of the principle properties of the human mind I take that the appeal to
enumeration should be small. In particular this means

1a) that the text describing a sequential program fragment should generate a
small number of actions (i.e. that the corresponding computation can be grouped,
understood as the time succession of a small number of actions)

1b) that the number of cases to be distinguished in an alternative clause should
be small.

Mathematical induction is mentianed explicitly because it is the standard
pattern of reasoning to understand recursiuﬂprocedures and the (much more :Ummnn)
loops; I shall restrict myself to loops generated by some form of repetition
clause.

Abstraction is regarded as the main mental tool needed for the application
of mathematical induction -~i.e. to form the concepts in terms of which the nett
effect of the induction step can be described- and valuable in the effort to
reduce the appeal to enumeration: in the case of an altermative clause it should
provide the concepts in terms of which the nett effect can be described
regardless the path taken.

With the above in mind I shall tackle the following problem. Given 32
cyclically arranged positions, make a program generating all ways (if any) in
which these positions can be filled with zeros and ones {one digit per pnsitiun)
such that the 32 quintuples of five adjoining positions present the 32 different
patterns of five binary digits. Fillings that only differ from each other by
rotation are regarded as equivalent, all solutions have to be generated with
the five zeros leading. (The last sentence reduces the number af "independent
solutions" by a factor 32.)

C.Ligtmans has shown that the above cyclic problem is equivalent to the
following linear problem. Given a lipear array of 36 positions, make a program
generating all ways (if any) in which these pusitions can be filled with zeros
and ones (one digit per position) such that the 32 guintuples of five adjoining
positions present the 32 different patterns of five binary digits. We may restrict
ourselves to sequences starting with five zerss, the 32 leading digits of a
solution of the linear problem present a solution of the cyclic one and vice
versa. (The proof by C.ligtmans runs as follows. Each solution of the linear
problem starts with 000001... -because the pattern 00000 may occur anly once-;
furthermore the pattern 10000 must cecur onee; as the latter patterns can only
be followed hy Q0000 or 00001 (presented already by the first two quintuples),
the pattern 10000 canmot aecur in the interior of the lipear sequence and therefore

EwWD241 - 1

it must occur at the end. As a result each solution of the linear problem ends
with four zeros and therefore the ring closes!) We shall solve the linpear problem,
imposing the further candition that the solutions (if more than one) have to be
generated in alphabetical order.

The coarsest description of the program is as a single instruction
Version O:
"da all wark” .

This description is campletely general, but alsao completely useless, for it
reflects none of our understanding of the problem nor anything about the
structure of the algorithm. In order to be able to proceed we have to analyse
the problem further.

I take for granted that, given a sequence of 36 binary digits the boolean
function stating whether this seqguence represents a solution is computable and
that we could write an algorithm camputing it. In principle we could write a
program generating all 36-digit seguences wWith five leading zeros in alphabetical
order and subjecting all these sequences to the test just mentioned, thereby
selecting those satisfying the test. This gives a very unrealistic program and
we shall not.pursue 1it; we only remark that generating the trial sequences in
alphabetical order will ensure that the salutions, wher found, will be found in
alphabetical order as well.

Remark. Our final program could be regarded as a derivation from the one
sketched above, viz. by the introduction of some significant short-cuts. At
present] do not feel inclined to stress this relatian any further for it seems
too tightly cannected with this specific problem.

In our next approach we shall again generate our solutions by (generating 2
and) scanning a larger set of seguences from which by a suitable criterion all
solutions will he selected.

Let us define as "length of a seguence" the number of quintuples it contains
(i.e. length = number of digits - 4)}. Let us call a sequence "acceptable" if no
two different quintuples in it present the same digit pattern. With these defi-
nitions the solutions are a subset of the set of acceptable sequences, viz.
those with length = 32.

We do not know whether there are any solutions at all but we do know that
the set of acceptable sequences is non-empty (e.g. "00000"): we do not have a
ready made criterion to recognize "the last solution" when we encaunter it,
in our set of acceptable sequences, however, we can designate a "virtual last
one" (viz."OOOG1"): when that one is encountered we know that all acceptable
sequences with five zeros leading have been scanned and that no further solutions
will be found.

Summarizing, we know of the set of acceptable sequences
1) it is non-empty and finite
2) we know a first member {("00000")
%) we know a virtual last member ("00001")
4) we can transfor an acceptable sequence inta the next acceptable sequence
5) solutions are all acceptable seguences (excluding the virtual one) satisfying
the further condition "length of sequence equals 32",

The transition fram considering only the set of solutions to considering
the set of acceptable sequences seems to mark a step in our anaslysis sufficiently
relevant to justify that it be expressed in our first refinement, a program in

EWD241 - 2

which all instructions operate upon (a still rather abstract) object, called
"sequence",

Version 1:

"set sequence to first acceptable one;
repeat if length of seguence equals 32 dog

begin accept sequence as solution;

print sclution

end;

transfrom sequence into next acceptable one
until sequence is (first or) virtual last member"

In explaining this pragram, two remarks seem appropriate.
Remark 1. The final test "sequence is (first Dr) virtual last member" has to
distinguish the virtual last member from all members excluding the first one,
as the first one will not be schjected to the test. Basically there would be
no objection to the first member being egual to the virtual last one (say: the
empty sequence). The above freedom is expresses by putting "first or" within
parentheses.
Remark 2. The statement "accept sequence as solution" may well puzzle the
reader. It may turn out to be an empty statement. It is inserted to express that
"at the following semicolen" the sequence is regarded as representing a solution.
(One may think of it as extracting the 32 leading digits.)

The criterion "aceeptable™ has a further important property:
6) no extension of a sequence that is not acceptable will be acceptable.

and it is this impaortant property that will be exploited in the refinement of
"transform sequence into next acceptable one". As a direct consequence of property
6, the acceptability test need only be applied to so-called "promising sequences™,
where a premising sequence is defined as a one-digit extension of an acceptable
sequence. This leads to our next refinement

transform sequence into next acceptable ane:
"transform acceptable seguerce into next promising one;
while promising sequence not acceptable do
transform promising sequence into next promising one;
accept sequence as acceptable"

When we regard "transform sequence into next acceptable ene” as an available
primitive, the value of "seguence" as always acceptable; it is only in the in-
terior of its dissection -viz. at the semicolons of the above refinement- that
the current value of "seguence" is a promising sequence.

In view of the required alphabetical ordering "transform acceptable sequence
into next promising onme" forms a new sequence equal to the old ome extended with
a zero, while "transform promising sequence into next promising one" farms a
new sequence equal to the old one up to and excluding the last zero, fellowed
by a one, or more explicitly as in the next refinement

transform promising sequence into next promising one:
"while sequence ends with a ane do remove final digit from sequence;
replace final zero by a ane” .

In the above step-wise refinements we have focussed our attemtion upon the
sequencing of the program. Now the time has come to introduce more explicit the
decisions as how the still rather abstract object called "sequence" has to be
represented.

EwD241 - 3

We introduce an intéger k and decide that k = length of the sequence.
furthermore we introduce an integer array d[-3:33] to represent the digits with

d[—3] d[-2].....d[k] representing the sequence. {1

Remark 1: d[—B} through d[O] will be equal to zera.

Remark 2: The maximum length of an acceptable sequence = 32; as the algorithm
handles promising sequences and a promising sequence is a one-digit extension of
an acceptable one, the maximum length of the sequence is 33.

The above cenventions serve as a basis for the more explicit statement of
the property "acceptable". We have to characterize digit patterns as presented
by the quintuples contained in the current value of the sequence. I propose to
characterize such a digit pattern by the integer value one gets when interpreting
the digits of such a quintuple as the digits of a binary number. In other words
we define the function H{i) for 1 < i <k

Hi) = d[i-4]1%16 + d[i-3]%8 + d[i-2]% + d[i-1]*2 + d[i] (2)

The property "acceptable" means that
for 1<i,j <k, i#] implies H(i) £ H(j) . (%)

At each moment the function H(i) is defined an the current value of sequence
far 1 < i < k. Instead of recamputing these function values whenever we need
them (i.e. in the acceptability test) we can tabulate them in an integer array

h[1:33].

Our caonvention is that for all sequence values will hold

hi] = H(i) for 1 <i <k, (4)

This convention implies that modifications of the value of sequence in
general includes updating of the array h in order to maintain relation (4).

The acceptability test is now -analogous to (3)- that for 1 <i,i<k
i# i implies h[i] £ n[j].

Next we exploit the fact that the only sequences to be subjected to the
acceptability test are promising sequences, i.e. one~digit extensions of an
acceptable sequence. For a promising sequence we can conclude that it is
acceptable if and only if

h[i] # h[k] for 1t <i <k (5)

i.e. when the last quintuple presents a pattern different from all the preceding
anes,

This, again, would imply scanning, but we can repeat the trick and tabulate
whether a certain digit pattern already occurs. The mast elegant way tmximkrmeue
is to introduce a boalean array in[0:31] where for 0 <m <31
in[m] means:

for an acceptable sequence: m occurs among h[1]...h[k]

for & promising sequence: m occurs among h[1],..h[k—1] (6)

Note. When the sequence is acceptable, each pattern can only be presented once and

a boolean variable is sufficient to record whether it occurs. In a promising sequence
h[k] may equal h[i] for 1 <k; therefore convention 6 distinguishes between
acceptable and promising seguences.

We now give the final version of the program. What were names of primitives
now necnr as lahels (either of statements or of expressions)

EwDz241 - 4

begin integer k; integer array d[—3:33};
integer array h[1:33]; boolean array in[0:31];
set sequence to first acceptable one:
begin d[-3]:= d[-2]:= d[-1]:= d[0]:= d[1]:= 0; k= 1;
h(1]:= 0; in{0]i= true;
begin integer m; mi= 1;
repeat in[m]:= false; m:=m + 1 until m = 32

end

end;
repeat if length of sequence equals 32 (k = 32) do
begin accept sequence as solution: new line carriage return;
print solution:
begin integer m; m:= Q;
repeat prlnt(d[m—B]) t=m+ 1 until m = 32

and

and;
transform sequence into next acceptable one:
begin transform acceptable sequence into next promising ane:
begin k:= k + 1; d[k]:: 0;
hik]i= 2 * h[k-1] - 32 * d[k - 4]

&nd;
while promising sequence non acceptable: (in[h[k]]) do
transform promising sequence into next acceptable one:
begin while sequence ends with a ane: (d[k] = 1) do
remove final digit from sequence:
begin k:= k - 1; 1n[h[k]] false end;
replace final zero by a one:
begin d[k]:= 1; h[kJ:= h[k] + 1 end

end;
accept sequence as acceptable: in[h[k]]:: true
end

until sequence is virtual last member: (k = 1)
end

In explanation:
1) "accept sequence as solution', that could have been an empty statement
has been givern the meaning of tran51tlon to a new line
2) "accept sequence as acceptable" has got contents, due to cmnventlon (6)

where distinction is made between promising end acceptable sequences,

Concluding Rekarks.

We have shown successive program versions, leading from the original
problem statement to the final program, In our final program, the merging of
these successive versions has been done by hand and the more abstract versions
have been reduced to comment in the form of labels.

For large programs this merging process itself becomes a major data
processing task and I expesct the growth of interactive program compositian
techniques in which the service of computers will be enlisted for the benefit
of this process.

Furthermore: at present the more abstract versions are only reflected as
explanatory comment, inserted for human understanding. The origin of this is
that we want at present a program formulated at a constant semantic level, viz.
the level of the programming language. For the more abstract versions we have
at present during run time no mechanical use. In future I expect the more abstract

EwD241 - 5

versions to be an integral part of the program,

Finally, we have considered only a single lins of programs leading from
the problem statement to a working program expressed at the desired semantic
level, In future I expect that this single line will be extended to a more or
less tree-structured class of programs in which is also room for altarnatiﬁes,
thus structurely tying together program composition and program madification.

Edsger W.Dijkstra
Department of Mathematics
Technological University
P.D.Box 513

E INDHOVEN

The Netherlands

{This paper has been produced in relation to a talk given at the University of
Grenohle in December 1967.)

