EWD264 - O

0n Understanding Programs.

Un & number of occasions I have stated the requirement that if we ever
want to be able to compose really large programs reliably, we nead a discigline
such that the intellectual effort E'(measured in some loose sense) needed to
understand a program does not grow mare rapidly tham proportional to the
program length L (measured in an equally loose sense) and that if the hest
we can attain is a growth of E proportional to, say, LE, we had better admit
defeat. As an aside I used to express my fear that many programs were written
in such a fashion that the functional dependence was mare like an exponential

growth!

I now offer, for the reader's consideration, an example showing how
the same praogram can be understood in twa different ways: in the one way, E

grows proportional to L, in the other way it growé (even worse than) expanentially.

I express E in the rumber af "steps of reascning" reeded, a number which

is determined as folliows.

Let us consider a "stretched" program of the form

2; seey SN" ’ (1)

i.e. the corresponding computations are a time—succession of the executions aof

e
51, 5

51 through SN ir that order. When the nett effect of the execution of each
individual statement Si is given, my measuring convertion states that it takes
N steps to understand program (1), i.e. to establish that the :umulativé effect
of the N successive actions satisfies the requirements imposed upor the

computations evoked by pragram (1),

In the case of a program of the form

1

where, again, the nett effect of the executian of the statements Sq and 52 has

been given, my measuring canvention states that it takes 2 steps to understand

"if B then S, else 5," (2)

program (2), viz. aone step for the case B and another for the case non B.

EwD264 - 1

Comsider naw a program of the form

"if H1 then S11 else 512;

if 1 ;
if 32 then 521 else 522,

o n
if By then S . else S . (3)

According to the measuring convention it takes 2 steps per alternative

statement to understand it, i.e. to establish that the nett effect aof

"if B, then §., else §5,6_"
— i i iz

1
is eguivalent ta that of the execution of an abstract statement Si. Having N
such alternative statements it takes us 2N steps to reduceiprngram (3) to one
of the form of program (1); to understand the latter form of the pragram

takes us anathern N steps, giving 3N steps of reasoning in toto.

If we had not introduced the abstract statements Si' but had tried to
understand pragram (3) directly in terms of executions of the statements Sij'
each such computstion would be the cumulative effect of N such statsment
executions and would as such require N steps to understand it. Trying to
understand the algoritthim terms of the Sij’ however, implies that we have
to distinguish between 2 different routings through the program and this would

N
lead to N*2 steps of reasoning!

If by pow the reader protests that the second way to try to understand
program (%) is utterly foolish, then I have him exactly in the positicn where
I want him to be, for then we could nat agree more fuily. The point is; that
any effort to improve upon the second method yields a methad more similar ta
the first one: one will find oneself introducing the abstract statements Si (or

combinations of them)!

The whole demonstration is an urgent plea to use aur powers of abstraction
as consciously as possible (and to restrict ourselves in pragramming to those
program structures in which these powers can be exploited at greatest advantage!)

The reader who has followad me thus far may wonder whether he has been confronted

EwD264 - 2

with something deep or something trivial. So did I, when I discovered this
example; I have, however, decided to submit it for publication when I felt

that it was probably both.

Edsger W.Dijkstra
Technolagical University
EINDHOVEN

The Netherlands

. EWD264 - O

i

O égg._ W@L@rﬂﬂLﬁﬂ‘oJHY— 4; {‘&)ﬁmﬂs,

8n-Understanding Programs, | g0
g]ofb'

¥

\

On & number of occasions I have stated the raguirsment that ifiwn evar

L S)'\ (29 L”‘S b ol 3 'qu%OjC:\\w(t_ PO Ry

want to be able to compose really large programs rellably, we nead n;diaciplinu'
such that the intellectual effort € (measured in some looss senss) nseded to
understand a program does not grow more rapidly than géaESiﬁﬁlﬁﬂi to the

program length L (measured in an equally looss sesnes) snd that if the best

we can attain is a growth of E proportional to, say, L2, we had better admit
defeat. As an aside I used to express my fear that many programe were written

in such a fashion that tha functional dependsnce was mors like an exponentisl

growth!

I now offer, for the reader's consideration, an example showing how

the same program can be understood in twe diffarent ways: in the one way, E

grows proportional to L, in the other way it grnuﬁ (even worse than) axponsntially,
I express E in the number of "steps of reasoning” needed, a number which

is determined as follaws.

Let us consider a "stretched" program of the form .
"S13 Sy s S ' (1)
i.e. the correspanding computstions are a time~succession of the executions of
S1 through SN in that order. When the nett affect of the execution of each
individual statement Si is given, my measuring convention states that it takes
N steps to understand program (1). i.e. to establish that the cumulative affect
of the N successive actions satisfies the requirements imposed upon the -

computations evoked by program (1).

In the case of a program of the form
"if B then S, else 5" (2)
where, again, the nett effect of ths executian of the statements 51 and 52 has
been given, my measuring convention states that it takes 2 steps to understand

program (2), viz. ane step for the case B and another for the case hnon B,

EwD264 ~ 1

Consider now a program of the form
4 '
'if B1 then S11 slse 512;

if 32 then 5‘?1 glse 522;

then S, elss S " . (3)

il B 2lse S\,

N
According to the measuring convention it tekes 2 steps per altarnative

statement to understand it, i.e. to establish that the nett sffect of

“if B, then § . else 5, "

=i/ il === Ti2
is equivalent to that of the exscution of an abstract statement Si. Having N
such alternative statemsnts it takss us 2N steps to reduca'prngram (3) to one
of the form of program (1); to understand the latter form of the program

takes us another N steps, giving 3N steps of ressoning in tota,

If we had not introduced the sbstract statements Si' but had triad to
understand program (3) directly in tarms of executions of the statements sij'
each such computation would be the cumulative effect of N such statement
executions and would as such require N steps to understand it. Trying to

understand the algorithm in terms of the Si y however, implies that we have

j

to distinguish between 2N different routings through the program end this would

lead to N*2N steps of reasoning!

If by now the reader protests that the second way to try to understand
program (3) is utterly foolish, then I have him exactly in the position where
I want him to be, for then we could ﬁot agree more fully, The point is, that
any effort to improve upon the second method yields a method more similsr to
the first one: one will find oneself introducing the abstract statements Si (or

combinations of them)!

The whole demonstration is an urgent plea to use our powers of abstraction
as consciously as possibla‘(and to restrict ourselves in programming to those
program structures in which these powers can ba exploited at greatest advantagse!)

The reader who has followed me thus far may wonder whether he has been confronted

EWD264 - 2

with something deep or something trivial. So did I, when I discovered this
example; I have, however, decided to submit it for publication whan [felt
that it was probably both,

Edsger W.Dijkstra
Technological University
EINDHOVEN

The Netherlands

