form

whatavet is not permitted without written

aytharity from the proprietors.

&Hon

A rights witctly reserved. Reprodu.
or lssue to thied pasites In any

Property ol:
Nederland

NV, PHILIPS' COMPUTER INDUSTRIE

Eigendom van:
Apeldoorn

ling pan
ganares

derden in welke vorm aok 15 zonder
schatftelijke toestamming van de &)

niet geoarloold.

Y

tdrukkelitk v

b
i

Alte

Y]

Documentnumber L

Distribution

EWD275 - O

Structure of an extendable operating system.

For an operating system of the scope and purpose as the THE-
multiprogramming system, the conception of a linearly ordered
hierarchy of layers bas proved to be unsurpassed sofar: instead of
"complexity growing as the square of the number of system components"
(arnn), each XXYEEXXE next layer is easier to add, because the
environment in which it is to ne understood is closer to our "ideal
machine", i.e. our final goal. Knowing of na altzrnative arrangement
with that pleasant property -and stronger: finding the sxistence aof
such an alternative hard to conceive!- I take the linsarly ordered
structure as my starting point.

In two vitsl respects, however, its structure czlls for
generalization.
1) The THE-system has been designed to bridge & pre-defined, constant
gap, i.e. the gap between the given hardware (an EL-X8 with given
types af peripherals and bhacking stors) and & given target, i.e. five
parallel ALGGL-machines. Lonstructicn of the system and use of the system
were, at that time, viewed as completely different activities, different
in nature and taking place at different times. In the mean time, I
regard the intermediate product, consisting of the hardwars, covered
by a few of the lower layers, as " a system" with its own right of
existence and I regard the activity of adding a next layer no longer
s0 radically different from what a ussr daoes when he feeds his
ALGOGL-program into the completed system. In other words, I would
like to treat wherever possible, system embellishemt and system
usage as much as possible an the same footing. In this case, the
natural extension aof a fixed set of layers becomes a stack¥ of layers.
2) The tardet machine of the THE-system is not only constant in
time, it is also homogeneous in the sense that we produce a set of
equivelent ALGOL-machines. (In sctual fact, one of the five is
slightly special purpose, but that is irrelevant in this discussion.)
We wish to create in parallel different enviTonments. The ohvious
generalization of the stack of layers -corresponding to strictly
nested environments- is a tree of layers. And if I were to design an
cperating system, I would do my MXB utmost best to conceive it in
such a fashion, that I can recognize such a tree structure, and this
for two compelling reasons: as just shown, a tree structure is the
very least we can hope to come out with, on the other hand it is my
repeated experience that a tree-structure is asbout the most complicated
structure of hierarchical nature that I can cope with. I don't feel
like having a choice apymore. '

Supersedes doc. nr. L N.V. PHILIPS' COMPUTER INDUSTRIE Date
APELDOORN Page

380.00 5122 991 Q003

../transcriptions/EWD02xx/EWD275.html

Alt rights strictly reserved. Reproduction

ot ispue to third parlles i any form
whatever t5 not permitied without wriiten

authority frem the proprietors.

Ptopasty of:
Nederland

NV, PHILIPS' COMPUTER INDUSTRIE

Eigendom van:
Apeldaorn

decdwl
§ asn

ddging of
derdes in welke vorm ook Is zonder

schribelijke toestemming van de elgenares

niet geooricofd.

Alle rechton utdrukkelijk voorbehoudan,

Ver

Oocumentnumber L

Distribution

EWp275 - 1

Note. My above use of "parallel" refers to conceptual parallellism,
or "independence", not to parallel execution in time of a number

of sequential processes: what is regarded as a single layer, may
contain a number of co-operating segquential processes! (The functicn
of such a layer is to transform one machine into another: both
source- and target-machine may comtain asynchronous elements!)

I have given much thought -not 2ll of it conclusive- to the
question what abstraction from the hardware should be implemented
in what layer., In particular I have been thinking of the question
whether the bottom layer should implement the seguentiel processes
and the next one the virtual store (as in the THE—system) or the
other way round. The argument for the THE-arrangement was that the
impiementation of the virtual storage required -or at least could
make good use of- a seguential process (the so-called "XEKKM EXKHEN
segment controller") synchronized with the drum interrupts. 1f we
take as a backing store a device with such & high transfer rate that
demand paging is no longer & moiivation for change in processor
allacation, that argument is no longer valid. Yet [am inclined to
try to put processor allocation as low as possible, because above
that level, the interrupts have disappeared and the sooner that is
achieved, the better. In the THE-system processor allocation at level
zero is easy, because the number of processes is constant and the
relevant information is kept resident in core. In an extendable
operating system, however, the total number of processes (and
semaphores ar what you have) will vay in time and fixed allocation
in core seems out of the guestion. My present idea is to look for
a mixture: layer zero (and this may be in the hardware) will
contain the acces mechanisms for virtuslly addressed information
"orovided it is in core". Layer ane will contain processar allocation,
described in terms of virtual addresses, whereas the next layer will
be storage allocation, which has the duty never to remove (but possibly
to move in core) information pertaining to level one. As a result,
level ore will hardly make fixed core committments, yet will never

produce'a page fault.

Note. The concept of a virtual store is nat restricted to multilevel
storage machines. Alsc on a machine with a single level storage it
is conceivable that virtual store is a very useful concept. In ths
latter case. level two would restrict its activity to rearrangement

of the core store contents.

The function aof a layer in the THE-system is to provide some
facilities in terms of some others. Take for instance the layer in
which peripherals are allocated. Below this layer we have unbuffered

Supersedes doc. nr. L N.V. PHILIPS' COMPUTER INDUSTRIE Date
APELDOORN Page
380.00) 5122 991 0031

Alt rights sirictly reserved. Reproduciion

or issun to third partles 1 any form
whatever Is not permitted without writien

authority from the propreetors.

Property of:
MNedesland

NV, PHILIPS' COMPUTER INDUSTRIE

Eigendom van:
Apeidoorn

9 a8n

ik voorbehouden,
o ded

ing ven de et

Qlng of
in walke vorm ook # 2onder

Id

Afle rachten untdrukkeb
V.

derden

schrittedijke ¢

riel geoorloptd.

Documentaumber

Distribution

EwWp275 - 2

physical peripherals, abave it we have information streams, i.e.
buffered virtual peripherals. Above that layer a maintenance engineer
has npo longer the possibility to introduce a program for the
unbuffered exercising of @ specific peropheral, far it "is no

longer there". If we wish to create that facility, one of the
peripherals should be taksn cut of the common pool serving the
virtual units and suddenly we have two environments: ope enviranment
for programs referring ot virtual units (to be served by the remaining
physical units) and one for the maintenance engineer. In a situation
like that I see the first traces of a tree of environments emerging
(Environmant is here used as "interface between software layers").

1) the environment with the physical, unbuffered peripherals

2) the environment with the speeific unbuffered peripheral
retained, plus virtual peripherals (to be served by the pool of the
remaining physical peripherals)

3a) for the users the environmment of the virtual units

3h) for the maintenance engineer the environment of the specific
unit. (This example may be too simple: in practime, the maintenance
engineer will probably use the remaining virtual units as well. 0K,
then we have the identity transformation ~probably implemented by
an empty layer- between 2 and 3b,) '

A layer performs the transition from one environment to an
environment on top of it. A translator has the function to produce
such a layer. (In the THE-systemX we have at the users disposal an
ALGOL-enviromment: when his program has been translated he hasg
temporarily added a new layer, which provides the environment in which
his date can be "interpreted™). This implies that a translator can
only work when the environment, which serves as +the "underface" of
the layer it hss to produce, is known, i.e., for its activation
we must give "the underface" as a parameter. For a variety of
reasons I am strongly inclined to relate this "underface parameter"
very ciosely to the environment from which the translator is called.
Traditional ALGDL-translators supply the environment of the Library
s a constant presetting of (the bottom of) the name stack, as if
the library has been declared in an (implicitly embracing) outer block.
1 would like to repeat this arrangement for inner blocks: a translator
first translates the outermost block, thereby creating the envirorment
in which the next set of inner blocks are to be understood. Then -and
this closely resembles the start of the execution of the declarative
part of the outermost block- the translator is called again for the
translation of the procedures declared in the outermost block; these
translator calls will get the newly created enviranment as the
underace parameter¥. Here we have an arrangement in which the creation

Supersedes doc. ar. L N.V. PHILIPS' COMPUTER INDUSTRIE Date
APELDOQORN Page

380.00 5122 9%t

All nghts strictly reserved. Reproduction
thotity from the prop

or dssue fo third partles in any form
whatever is not permitted withoul written

Froperty of:
Nederland

NV, PHILIPS' COMPUTER INDUSTRIE

Etgendom ven:
Apeldoarn

dedeling san
genaies

of
derden In welke vorm ook 18 zonder

schrifielijke toesiemming van de ¢l

nlet geoorigold.

Ao kb alitk

B

Alle

y,

Documentnumber L

Distribution

EWD275 - 3

of @ next layer can be considered as an activity to be understood

in the environment which squally serves as the underface far the level
to be created and this repeatedly. 1% is essential that the new
environment can again accept programs. It is by such means that I
should like %o achieve that "building up and tayloring" of the

system is not essentially different from using the system, that I

hope to treat "job contrcl language" and narmal programming

language an exactly the same footing,

Acknowledgements are cue to Harry Whitfield, Edinburgh University,
¥KI¥ whose experience with software design for an ICL745 (a 360/67
A¥E type machine) had made him think of more attractive alternatives.

november 1969 Edsger W.Dijkstra
Supersedes doc. nr. L N.V. PHILIPS' COMPUTER INDUSTRIE Date
APELDOCRN Page

380.00 5122 9%1 90031

