EwWD282 - O
EWD282.html

A tree-~structured system.

This report is a summary of the discussians we (i.e. Bomhaff, Bron, Feijen
and I) held during January 1970, in a first effort to give some shape to the
Programming Labaratory Project. It is a highly condensed summary: many detours
and hblind allegy will be left unmentioned., Besides that, it was the first.month
that this group of four people tried to think together and many a day was just
spent in getting used to the ather's way of coining words, of twisting sentences
and of struggling with half-baked ideas.

We have assumed that programs are conveniently conceived and considered as
"necklaces", i.e. as linearly ordered sets of "pearls"., (I know only too well
that the only convincing examples I have far this assupption are rather small examples,
as trying it cut for larger examples is tao expensive now, I also dare to be
content with that experimental evidence, at least for the time being, for after
all, I arrived at the concept of pearls in a necklace by rather independent
means and the examples worked out were anly cnnfirmations.) The relatively small
examples gave already rise to rather long necklaces (6 pearis in a small program),
it also became clear that my main goals (provability, adaptability) are served
by small pearls. Therefoee,if a large program can be made in a way in which
these main goals are reasonably well achieved, we must be prepared to process
programs composed as very long necklaces. Our first.effort was to get a feeling
far the implementational consequences of the great length af the na:k’ﬁces.

o

The pearls are ordered in a linear kierarchy, at the bottom side we have
"the machine", at the top we have —-if we 0o to extremes= the famous pearl "Do
All Work", the function of each pearl being to rebuild the machine underneath
it into & more attractive machine to be used above it.

In the beginning it turned out to be very hard to come to grips with our
problem, to discover what we were supposed to be talking about. The sky became
somehwat clearer when we discaovered the main source of our difficulty. Assuming
that cne has at one's disposal a sufficiently automated tool to cumpose programs
from pearls, then we believe to have & taogl that caters reasonably well for
operational and representational abstraction as far as the subject matter of these

programs is concerned! But the problem we were tacklihg was "haw to represent
pearl texts inside the machine so that they can be interpreted reasonably
efficiently", It is a kind of bootstrapping problem, but it took us same time to
discaver that this was the case. (The dilemma is perfectly giear if we think of
subroutines, i.e, the well-known form for operational abstraction: whatever

new operational primitive you wish to introduce, you can make a subroutine for it.
But you cannot apply this standard technique when the primitive you want to make
is.... the subroutine jump!)

As announced in EWD279, one of our first concerns would be a binding policy.
To rephrase the question: when you go along the necklace from bottom to top,
you will find existing concepts’ losing their applicability and new concepts
becoming applicable as you go along. In the pearls at the different levels, the
object code must refer to them and the guestion becomes: in what terminclogy?

We have played with the following idea. Fach pearl "owns" the concepts it
introduces and distinguisheg betwsen them via a local index. Besides this, it
distinguishes via an "underindex" between the concepts that are already there.
furthermore, we assumed that each concept is suitably identified globally by
@ couple, consisting of a global identification of the pearl owning it and the
local index used by this pearl to distinguish between its property.


http://www.cs.utexas.edu/users/EWD/transcriptions/EWD02xx/EWD282.html

EwWD282 - 1

Such a convention implies for each pearl a kind of "binding list" for the inter-
pretation of underindex values and immediately one is faced with the question:
what entries do we find in this binding list? In one extreme the entry contains

by definition the bit pattern by which the immediately underlying pearl identifies
the concept. This has the unquestionable advantage that whatever is built on top
of a pearl is, in its representation, independent of the necklace structure
underneath the pearl in guestion. Attractive as this might be, it seems t¢ lead

to unacceptable consequences:

1) the individual binding lists tend +o get very long, for the underindex
values for each pearl have not only to distinguish between the existing concepts
it really refers to, but also hetween those, that it only transmits to above,

2) the accessing mechanism presents itself as a kind of indirect addressing

in which the length of indirection is equal to ths distance between the referring
pearl and the owning ane. This latter aspect makes this solutian hardly acceptable
for a system that would like to promote programming in terms of small pearls

and therefore af long chains! With N layers the accessing speed would be proportional
to 1/N and this we have rejected as general palicy.

30 a shartcut seems indicated and we have considersd the other extreme: in
the binding lists (or directly in the pearl object texts —this is anly a minor
difference) the accessing mechanism finds a bitpattern which directly identifies
the concept in a global terminology, i.e. the access time will be independent of
things such as pearl distance and chain length. In other words,we introduce a
global terminology and allow this this global terminology to diffuse through the
binding lists or pearl texts. (Intermediate form@ are conceivable, where at
certain "major cuts" in the necklace a completely new terminology is introduced
for all or part of the concepts transmitted to above; we shall not pursue that
nnw.) ‘

This suggests a binding policy in the direction from bottom to top, or,
if the necklace is generalized into a tree, starting at the root. Caonsider the
stage whers the tree has grown to a certain level and a next layer has to he
added. The binding function of the translatar then has the following function.
The source text has to be interpreted in terms of the concepts, relevant at that
level, a "source context". We can think of the source context as being defined
along the necklace and by searching fram top to bottom each source concept will
be found and can be translated into the "object context" which covers all concepts
along the chainm, (In ALGOL 60, the only way ta make an identifier, declared in an
outer block, inaccessible in an inner block, is "redeclaration" of the same
identifier in the inner block. A pearl could contain, besides the concepts it
introduces, an "introduction list", say, also a "removal list", i.e. a list of
existing concepts no longer applicable in the structures on top of it.)

We then see a mechanism emerging in which the object cantext only grows and
grows as new pearls are added, while the binding function af the translator will
have a strang protective function, i.e. it has to see ta it, that abject text
-although it has the potential richness—never refers ta a concept qutside the
corresponding saurce context. It is this mapping of source context into object
context which strikes us mow as the main aspect of the binding function: for lack
of assocciative memories it is a painful process and for that very reasan it seems
a suitable candidate for what is usually called "the translation-fase". It implies
that the bottem part can be bound regardless of what will be built an top of it,
it also implies that (more than trivial) rebuilding of a bottom part calls for
"rebinding" of what has been built on top of it,



Ewpeg2 - 2

At present I expect us to take this decision: it is the only way I can see
such that the performance does nat degrade too much with increasing chain length,
This decision in favour of "matural order of growth" will only be taken after much
hesitation -as a matter of fact we already did so. The reason for hesitating was
that taking this decision struck us as giving up hope "to change a program while
it is running". It is quite clear that this will be difficult (if not impossible!)
and for reasons of design strategy one must impose an upper limit on the period
of time during which one allows aneself to be paralyzed by the (still apparent¥)
anattaingbility of such a goal, I think it has paralyzed us long enough. The
kind of flexibility necessary (but insufficient) for that goal seems very expensive;
at present I hope that the decision of "natural order of growth" provides a
framework in which the problem of dynamic program changing permits a more
precise formulation,

The next thing we talked about —although not very extensively- was the
representation of the object code, in particular the way in which it will be
parsed under control of its order counter. If working in an interpretative mode
slows down the performance by a factor of R, it is absolutely inacceptable if we
have to pay that factar for Bvery new pearl: for a necklace of length N we would
then get a slowing down by a factor R1N.

Qur conclusion was very similar to the one we drew in connection with
identification, where we concluded that the identifying bit patterns in the
object code should control rather directly a global accessing mechanism, indepen-
dent of pearl height etc. We concliuded that at all levels the instruction stream
should be parsed by essentially the same "instruction cycle", a requirement
which asks for a very flex%ble instruction format.

Our current guess is to combine the format flexibility of stack machines
which process the instruction stream as a string of syllables with the semantic
flexibility of the "extra cades" as have been implemented in one or more tnglish
machires. To be more precise: instruction execution takes place with the aid of
@ stack, the top section of which is considered as containing the active registers,
instruction register included. The instruction cycle reads syllables from the
program text that are essentially copied on top of the stack. They are subjected
ta a minimum amount of interpretation: a distinction iz made between "pasgive"
and"active" syllables (say: on account of a dedicated bit in the syllable
representation); as soon as an active syllable has been copied on top of the stack
an operation is started as described (primarily) by the contents af the top aof
the stack. This should cater for the format flexibility. We hope to achieve the
desired semantic flexibility by requiring that at each level active syllables
can be used irrespective of the question whether they are conceived as identifying
"a built=-in function" or "a primitive explained by software". (This is essentially
the notion of "extra codes"). If we succeed in doing this, we may build a software
system in which the top layers are —structurally, at least~ unsensitive ta the
question how many of the lower layers have been absaorbed by the hardware. (This
goal comes very naturally. At top side we wish the boundary between system building
and system usage to bscome more vague; similarly at the bottom side with the
(cunceptual) budEary betwesn hardwars and software.)

We did not wark this out in greater detail, we did discuss the question
of "ideal syllable length". Qur first (andksec nd!) impression was that on the
one hand it will be very hard to defend a %;;&ng choice for syllable length, but
that on the other hand (on account of the global activity of the instruction

stream parsing) it will be still harder to avoid the decision. Dear old Sartre!
*  * * '



EwD282 - 3

A next discussion, again, took a long time to get to the point, We saw a
tree-like structure emerging and the point in guestion turned out to be "far what
purposes do we hope to exploit this tree=like structure?".

Our original, first candidate was the notion of "parallel and nested
conceptual universes"., Let me describe how this notien came into being. In the
{constant) part of the THE-system we have a single set of layers: at aone level
we still bave a drum, on top of it we have a new universe, in which we have a
virtual store, but na drum anymore, the drum being "used up" for the implementation
of the virtual store. But here one could thirk of a "split level", on the one
hand a universe in which there is virtual store and on the other hand are in which
(part af) the core store and (part DF) the drum are still as available as ever,i.e,
we have made two warlds, one in which the concept of the virtual store is applicable
and ane where it is not. from thenm anwards, two mutually independent subsystems
can be developed. (In the top layer of the THE-system we actually do have the
split level: the five PM's, which, when loaded with programsM do create five
mutually independent interpretative mechanisms, viz. the interpretative mechanisms
for the five sets of user data.) The conceptual mutual independence of parallel
branches is cansidered to imply potential parallellism of the sequential processes
related to them: a singls sequential process could not be related to two parallel
branches, more than one seguential process in one branch was nat excluded a
priori. For after all: the function of a layer is "to rebuild a machine", the
given machine as well as the target machine may have mutually asynchrenous
comporients. We shall return to this question in a moment.

A second purpose for which the tree~structure can be exploited is a
straightforward one. If parallel branches are conceptually independent, the
going on of a sequential process somewhere high up in the tree can only
depend fprimarily) on concepts explained along the path leading from its
position in the tree downwards to the root. This has a number of consequences,

1) For the effective executability of & sequential process, various
degrees of "presence of information" can be defined. The highest form of
presence is presence in primary store, the second form is dumped an
secondary store but with the descriptors itself still present in primary
store, the third form could have even the descriptor absent from primary
stare, stc. By placing the descriptors themselves in the appropriate
positian in the tree, it is conceivable that "off-path" descriptars cauld
be dumped from primary store without introducing the well-known horror
of the "recursive page fault",

2) As primary reference will only be along the path .leading downwards to

the root, we only need an identifying terminology distinguishing elements alang
that path. As shawn [by Brian Randell and myself) this circumstance is

strongly suggestive for various speeding-up devices -e.g. the "stack display".
Besides that, it makes parallel branches truly independent in the sense that

in the representation of their texts the same identifying terminolagy can

{and in all probability will) be issued by the translator. (Cf. numbering the
Dutch babies for the sake of identification in order of moment of birth:

such a convention requires synchronization all over the country between

all maternity wards!)

We now return to the relation between the tree and sequencing. Consider a
single chain of pearls., In one of the higher pearls & primitive is invoked. On the
level where it is used, such a primitive represents a single action, and it is
anly when we show a more microscopic interest in what is happening that the
activity of such a primitive presents itself, in 1ts turn, as the execution of



EwD282 -~ 4

@ sequential program. With this in mind we turn our attention te the critical
secticns as implemented in the THE-system. What are they? They are "single
actians" in the program in which they occur. It is only because the basic
machinery allows for a finer grained parallellism that we must encapsule the
sequential sub—process by means ofa P-V bracket pair operating on a semaphore
introduced for mutual exclusion. It is the kind of mutual exclusion that on a
lower level =say the cross bar switch—~ is guaranteed by the hardware. This ohser-
vation is strongly suggestive for the following approach.

If a number of parallel processes contain secticns critical with respect
to each other {(THE terminology), we can "“take them out", consider them on the
level of the parallel processes as primitives and refine them in the common
trunk, in the implicit understanding that the common trumk will serve "one at a
time", in exactly the same way as in multiprogramming, where the single central
pracessor switches from cne program to another only between instructions.

Arguments in favour of exploiting the tree structure for mutual exclusion
as well, are the following ones. (To a certain extent this list amounts to an
enumeration of anomalies in the THE=-system!)

1) Critical sections have been introduced for the unambiguous inspection and
setting of common state variables; in the design of the THE-system it became a
wise discipline never to access these common variables outside critical sections,
not even in those cases where a piece of (usually very tricky) reasoning could
Justify it., In those years, the wisdam of this discipline was a "scientific
discovery”; now we have made it, we must conclude that the common state variables
should not be accessible from outside critical sections. As long as we regard
them as normally accessible —but programs sre not allowed to access them outside
their critical sectiams— this calls far specific protection measures. By moving
the critical sections to a comman "secretary", down in the trunmk, this problem

is solved by structure.

2) In the THE-system we use the same P- and V-operations on two very different
kinds of semaphores. This is expensive and {worsel?) canfusing. I remember our
"scientific discovery" that these two classes of semaphores were both attractive
and sufficient. Again, this difference sheculd preferable by represented by struc~
ture.

3) For reasons of reaction time we had to introduce for the PM's a priarity

(as far as processor allocation was concerned) that varied in time: as soon as

as PM entered a critical section, it got the maximum prigrity as long as it

stayed in the critical section: not the process itself was in a hurry, but its
"being in a critical section" caused the urgency. In the necklace model, activity
in the higher pearls only takes place by virtue of the activity of lower pearls

and in that model it is gquite natural to assign the highest prisrity to the

lowest pearls. Also the priority rule of the THE system as far as critical sections
are concerned, finds a natural place in the hierarchy we are cansidering,

4) Hendriks has already pointed out that if our only mutual synchronization

is in the form of mutual exclusion via perhaps many mutual exclusion semaphores,
deadly embraces are guaranteed to he absent, provided the bracket pairs are

nested and the semaphores associated with the nested pairs are ordered in

a tree fashion, i.,e. exactly the kind of ordering we are considering! (In the
THE=system his observation has not played a very important role because we

only had two mutual exclusion semaphores. Having only one processor there was

not much economic pressure to introduce more of them., But his remark was perfectly
valid.)



	Button1: 


