EWD310 ~ 0

Hierarchical Ordening of Sequential Processes

by Prof.dr. Edsger W. Dijkstra

The processing unit of a working computer performs in a short period
of time a sequence of millions of instructions and as far as the process-
ing unit is concerned this sequence is extremely monotonous: it just per-
forms instructions one after the other. And if we dare to interpret the out-
put, if we dare to regard the whole happening as 'meaningful", we do so
because we have mentally grouped sequences of instructions in such a way
that we can distinguish a structure in the whole happening. Similar con-
siderations apply to the store: high speed stores contain typically mill-
lons of bits stored in a monotonous sequence of consecutively numbered but
otherwise equivalent storage locations. And again, if we dare to attach a
meaning to such a vast amount of bits, we can only do so by grouping them
in such a way that we can distinguish some sort of structure in the vast
amount of information. In both cases the structure is our invention and not
an inherent property of the equipment: with respect to the structure mention-
ed the equipment itself is absolutely neutral. It might even be argued that
this "neutrality" is vital for its flexibility. On the other hand, it then
follows that it is the programmer's obligation to structure "what is happen-
ing where'" in a useful way. It is with this obligation that we shall concern
ourselves. And it is in view of this obligation that we intend to start with
a rather machine-bound, historical introduction: this gives us the unordered
enviromment in which we have to create order, to invent structure adequate

for our purposes.

In the very old days, machines were strictly sequential, they were con-
trolled by what was called "a program but could be called very adequately
""a sequential program'. Characteristic for such machines is that when the same
program is executed twice - with the same input data,if any - both times the
same sequence of actions will be evoked. In particular: transport of inform-
ation to or from peripherals was performed as a program-controlled activity
of the central processor.

With the advent of higher electronic speeds the discrepancy in speed be-
tween the central processor on the one hand and the peripheral devices on the

/..

../transcriptions/EWD03xx/EWD310.html

EWD310 -1

other became more pronounced. As a result there came for instance a strong
economic pressure to arrange matters in such a way that two or more peri-

pherals could be running simultaneously.

In the old arrangement one could write a program reading information
from a paper tape, say at a maximum speed of 50 char/sec. In that case the
progress through that plece of program would be synchronized with the actual
movement of the paper tape through the reader. Similarly one could write a
program punching a paper tape, say at a maximum speed of 30 char/sec. To have
both peripherals running simultaneously and also closely to thelr maximum
speed would require a tricky piece of program specifically designed for this
mix of activities. This was clearly too unattractive and other technical so-
lutions have been found. Channels were invented;a channel is a piece of hard-
ware dedicated to the task of regulating the information traffic between the
store and the peripheral to which it is éttached, and doing this synchronized
to the natural speed of the peripheral device, thus doing away with the impli-
cit mutual synchronization of the peripheral devices that would be caused if

both were controlled by the same sequential program execution.

The introduction of channels created two problems, a microscopic and a
macroscopic one. The microscopic problem has to do with access to the store.
In the old arrangement only the central processor required access to the
store and when the central processor required access to the store it could get
it. In the new arrangement, with the channels added - chamnels that can be
regarded as "special purpose processors' - a number of processors can be com-
peting with eachother as regards access to the store because such accesses
from different processors very often exclude eachother in time (for technical
or logical reasons). This microscopic problem has been solved by the invent-
ion of the "switch", granting the competing processors access to the store
according to some priority rule. Usually the channels have a lower traffic
density and a higher priority than the central processor: the processor works
at full speed until a chamnel requests access to the store, an arrangement
which is called "cycle stealing'. We draw attention to the fact that the unit
of information in which this interleaving takes place - usually "a word' -
1s somewhat arbitrary; in a few moments we shall encounter a similar arbitrari-

ness.

The macroscopic problem has to do with the coordination of central pro-

cessor activity and channel activity. The central processor issues a command

2/..

EWD310 - 2

to a channel and from that moment onwards, two activities are going on
simultaneously and - macroscopically speaking - independent of eachother:

the central processor goes on computing and the channel transports inform-
ation. How does the central processor discover, when the execution of the
channel command has been completed? The answer to this has been the "interrupted".
Upon completion of a channel command the channel sets an interrupt flip-
flop; at the earliest convenient moment, (but never sooner that after com-
pletion of the current instruction) the central processor interrupts the
execution of the current program (in such a neat way that the interrupted
computation can be resumed at a later moment as if nothing has happened) and
starts executing an interrupt program instead, under control of which all now
appropriate actions will be taken. From the point of view of the central pro-
cessor it interleaves the various program executions, the unit of interleav-
ing being - similarly arbitrarily - "the instruction'.

The above scheme can be recognized in all larger, modern computers that
I ever studied. It has been embellished in many directions but we don't need
to consider those‘embellishments now. We go immediately to the next questions:
given a piece of equipment constructed along the lines just sketched, what are
the problems when we try to use it and in what direction should we look for

their solution?

What are the problems? Well the main point is that from the point of
view of program control such a piece of equipment must me regarded as a
non-deterministic machine. Measured in a grain of time appropriate for the
description of the activity of the centrol processing unit -~ clockpulse or
instruction execution time - the time taken by a peripheral transport must
be regarded as undefined. If completion of such a peripheral is signalled to
the central processor by means of an interrupt, this means that we must regard
the moment when the interrupt will take place (or more precisely: the point
of progress where the computation will be interrupted) as unpredictable. The
problem is that in spite of this indeterminacy of the basic hardware, we must
make a more or less deterministic automaton out of this equipment: from the
outside world the machine will be confronted with a well-defined computational
task and it has to produce a well-defined result in a microscopically unpre-
dictable way!

3/..

EWD310 - 3

Let me give a simple example to explain what I mean by "a more or less
deterministic automaton''. Suppose that offering a program to the machine
consists of loading a pack of cards into a card reader (and pushing some
button on the reader in order to signal that it has been loaded). Suppose
now that we have a machine with two readergYare not mutually synchronized,
i.e. we regard both speeds as unpredictable. To what extent will the total
configuration be a deterministic automaton? It will be fully deterministic
in the sense that eventually it will produce both output A and output B. If
these outputs are to be produced by the same printer, they will be produced
in some order and the system may be such that the order in which the respect-
ive outputs appear on the printer does depend on the relative speeds of the
two readers. As far as the operator is concerned, who has to take the output
from the printer and to dispatch it to the customers, the installation is
non-deterministic: what he has to do depends on the unpredictable speed ratio
of the two readers, which may cause output A to precede or to follow output
B. For both cases the operator has his instructions such that in both cases
all output is dispatched to the proper customer. The "computation centre"

- i.e. installation and operator together - are deterministic. We can regard
the operator's activity as an outer layer, "wrapping up the installation,
shielding from the outside world a level of interior indeterminacy.

Now, even if the operator is aware of not having a fully deterministic
machine, we should recognize that he has only to deal with two cases - output
A before output B or the other way round - while the number of possible se-
quences of occurrences at cycle time level is quite fantastic. In other words,
by far the major part of the "shielding of indeterminacy is done by the in-
stallation itself. We call the resulting installation "more or less determi-
nistic' because as the case may be, a few degrees of limited freedom - here
one boolean degree of freedom - may be left unpredictable.

We have called the operator's activity "an outer layer', shielding a
level of indeterminacy, and of course we did so on purpose. At the other end
we may distinguish an inner layer, viz. in the channel signalling (via an
interrupt signal) that the next card has been read: it tells the central pro-
cessor that the next card image is available in core, regardless which storage
cycles have been stolen to get it there. The terms "inner layer" and '"outer
layer' have been chosen in order to suggest that in the total organization we
shall be able to distinguish many layers in between. But an important remark

\Yfand that we want to load it with two programs, A and B, and that we can
do this by loading both card readers and pressing both buttons. We assume 4/ ..
that the two card readers

EWD310 - 4

1s immediately appropriate: I assume that with the card read command an
area in core has been designated to receive this card image: the remark
that the interrupt signalled the completed transfer of the card image ir-
respective of which cycles had been stolen to transport its constituents

is only true, provided that no other access to the designated core area
took place in the period of time ranging from the moment the command was
given up to the moment that the completion was signalled! Cbvicus but vital.

It draws our attention to an element of structure that must be display-
ed by the remaining programs if we wish to make the total organization in-
sensitive to the exact identity of the cycles stolen by the chammel. And
from the above it is clear that this insensitivity must be one of our dear-
est goals. And on next levels (of software) we shall have to invent similar
elements of structure, making the total organization insensitive (or "as in-
sensitive as possible") to the exact moment when interrupts are honoured.
Again it is clear that this must be one of our dearest goals. And on a next
level we must make our organization insensitive (or 'as insensitive as pos-
sible") to the exact number of cards put into the readers for program A and
B, and so on This "layered insensitivity" is, in two words, our grand
plan.

I have used the term "layer" on purpose, because it has seemed to pro-
vide an attractive terminology in terms of which to talk about operating
systems and their total task. We can regard an operating system as the basic
software that '"rebuilds" a given piece of hardware into a (hopefully) more
attractive machine. An operating system can then be regarded as a sequence
of layers, built on top of eachother and each of them implementing a given
"improvement''. Before going on, let me digress for a moment and let me try

to explain why I consider such an approach of ordered layers a fruitful one.

There is an alternative approach, which I would like to call the approach
via unordered modules. There one makes a long list of all the functions of the
operating system to be performed, for each function a module is programmed
and finally all these modules are glued together in the fervent hope that
they will cooperate correctly and will not interfere disastrously with each-
other's activity. It is such an approach which has given rise to the assumed
law of nature, that complexity grows as the square of the number of program
components, i.e. of the mmber of "functions'.

5/..

EWD310 - 5

In the layered approach we start at the bottom side with a given
hardware machine AU’ we add our bottom layer of software rebuilding AO
into the slightly more attractive machine AT’ for which the next layer
of software is programmed rebuilding it into the still more attractive
machine A2 etc. As the machines in the sequence AU’ AT’ AZ’ ... get more
and more attractive, adding a further layer gets easier and easier. This
is in sharp contrast to the approach via unordered modules, where adding

new functions seems to get progressively worse!

So much in favour of a layered approach in general. When one wishes
to design an operating system, however, one is immediately faced with the
burning question, which "improvement' is the most suitable candidate to be

implemented in the bottom layer.

For the purpose of this discussion I will choose a very modest bottom
layer. I do so for two reasons. Firstly, it is a choice with which for his-
torical reasons | myself am most familiar. Secondly, as a bottom layer it
1s very modest and neutral, so neutral in fact that it provides us with a
mental platform from where we can discuss various alternatives for the struct-
ure of what is going to be built on top of it. As a bottom layer it seems
close to the choice of minimal commitment. The fact that this bottom layer
is chosen as a starting point for our discussion is by no means to be inter-
preted as the suggestion that this is the best possible choice: on the con-
trary, one of the later purposes of this discussion is the consideration of

alternatives.

With the hardware taking care of the cycle stealing we felt that the
software's first responsibility was to take care of the interrupts, or, to
put it a little more strongly, to do away with the interrupt, to abstract from
its existence. (Besides all rational arguments this decision was also inspired
by fear based on the earlier experience that, due to the irreproducibility of
the interrupt moments, a program bug could present itself misleadingly like
an incidental machine malfunctioning.) What does it mean '"to do away with the
interrupt''? Well, without interrupt the central processor continues the
execution of the current sequential process while it is the function of the
interrupt to make the central processor available for the continuation of
another sequential process. We would not need interrupt signals if each se-
quential process had its own dedicated processor. And here the function of
the bottom layer emerged: to create a virtual machine, able to execute a

6/..

EWD310 - 6

number of sequential programs in parallel as if each sequential program had
its own private processor. The bottom layer has to abstract of the existence
of the interrupt or, what amounts to the same thing, it has to abstract

from the identity of the single hardware processor. If this abstraction is
carried out rigorously it implies that everything built on top of this bot-
tom layer will be equally applicable to a multiprocessor installation,
provided that all processors are logically equivalent (i.e. have the same
access to main memory etc.). The remaining part of the operating system and
user programs together then emerges as a set of harmoniously cooperating

sequential processes.

The fact that these sequential processes out of the family have to
cooperate harmoniously implies that they must have the means of doing so, in
particular, they must be able to communicate with eachother and they must
be able to synchronize their activities with respect to eachother. For rea-
sons which, in retrospect, are not very convincing, we have separated these
two obligations. The argument was that we wished to keep the bottom layer
as modest as possible, giving it only the duty of processor allocation: in
particular it would leave the "neutral, monotonous memory" as it stood, it
would not rebuild that part of the machine and immediately above the bottom
layer the processes could commmnicate with eachother via the still available,

commonly accessible memory.

The mutual synchronization, however, is a point of concern. Closely,
related to this is the question: given the bottom layer, what will be known
about the speed ratios with which the different sequential processes progress?
Again we have made the most modest assumption we could think of, viz. that
they would proceed with speed ratios, unknown but for the fact that the speed
ratios would differ from zero. I.e. each process (when logically allowed to
proceed see below) is guaranteed to proceed with some unknown, but finite
speed. In actual fact we can say more about the way in which the bottom layer
grants processor time to the various candidates: it does it "fairly' in the
sense that in the long run a number of identical processes will proceed at
the same macroscopic speed. But we don't tell, how "long" this run is and the
said fairness has hardly a logical function.

This assumption about the relative speeds is a very ''thin" one, but as
such it has great advantages. From the point of view of the bottom layer, we
remark that it is easy to implement: to prevent a running program to monopolize

7/

EWD310 - 7

the processor an interrupting clock is all that is necessary. From the
point of view of the structure built on top of it is also extremely at-
tractive: the absence of any knowledge about speed ratios forces the design-
er to code all synchronization measures explicitly. When he has done so he
has made a system that is very robust in more than one sense.

Firstly he has made a system that will continue to operate correctly
when an actual change in speed ratios is caused, and this may happen in a
variety of ways. The actual strategy for processor allocation as implement-
ed by the bottom layer, may be changed. In a multiprocessor installation
the number of active processors may change. A peripheral may temporarily
work with speed zero, e.g. when it requires operator attention. In our case
the original line printer was actually replaced by a faster model. But
under all those changes the system will continue to operate correctly

(although perhaps not optimally, but that is quite another matter).

Secondly - and we shall return to this in greater detail - the system
1s robust thanks to the relative simplicity of the arguments that can con-
vince us of its proper operation. Nothing being guaranteed about speed
ratios means that in our understanding of the structure built on top of the
bottom layer we have to rely on discrete reasoning and there will be no
place for analog arguments, for other purposes than overall justification
of chosen strategies. I trust that the strength of this remark will become

apparent as we proceed.

Let us now focus our attention upon the synchronization. Here a key
problem is the so-called "mutual exclusion problem'". Given a mumber of cyclic
processes of the form

cycle begin entry;

critical section;

exit;

remainder of cycle

end

program “entry' and "exit' in such a way that at any moment at most one of
the processes is engaged in its critical section. The solution must satisfy
the following requirements:
a) The solution must be symmetrical between the processes; as a result we
are not allowed to introduce a static priority.

b) Nothing may be assumed about the ratio of the finite speeds of the process-

8/..

EWD310 - 8

€s; we may not even assume their speeds to be constant in time.

c) If any of the processes is stopped somewhere in "remainder of cycle",
this is not allowed to lead to potential blocking of any of the others.
d) If more than one process is about to enter its critical section, it
must be impossible to devise for them such finite speeds, that the decis-
ion to determine which of them will enter its critical section first is
postponed until eternity. In other words, constructions in which “'After
you" - "After you'" - blocking, although improbable, is still possible,

are not to be regarded as valid solutions.

I called the mutual exclusion problem "a key problem'. We have met
something similar in the situation of programs A and B producing their out-
put in one of the two possible orders via the same printer: cobviously those
two printing processes have to exclude eachother mutually in time. But this
is a mutual exclusion on a rather macroscopic scale and in all probability
it is not acceptable that the decision to grant the printer to either one
of the two activities will be taken on decount of the requirement of mutual
exclusion alone: in all probability considerations of efficiency or of
smoothness of service require a more sophisticated printer granting strategy.
The explanation why mutual exclusion must be regarded as a key problem must
be found at the microscopic end of the scale. The switch granting access to
store on word basis provides a built in mutual exclusion, but only on a
small, fixed and rather arbitrary scale. The same applies to the single pro-
cessor installation which can honour interrupts in between single instruct-
ions: this is a rather arbitrary grain of activity. The problem arises when
more complicated operations on common data have to take place. Suppose
that we want to count the number of times something has happened in a family
of parallel processes. Each time such an occurrence has taken place, the
program could try to count it via

"m:= n+1"

If in actual fact such a statement is coded by three instructions

"R:= n;
R:= R+t
n=RR "

then one of the increases may get lost when two such sequences are executed,
interleaved on single instruction basis. The desire to compound such (and
more complicated) operators on common variables is equivalent to the desire

to have more explicit control over the degree of interleaving than provided

9/..

EWD310 - 9

by the neutral, standard hardware. This more explicit control is provided

by a solution to the mutual exclusion problem.

We still have to solve it. Our solution depends critically on the
commumication facilities available between the individual processes and
the common store. We can assume that the only mutual exclusion provided
by the hardware is to exclude a write instruction or a read instruction,
writing or reading a single word. Under that assumption the problem has
been solved for two processes by T.J. Dekker in the early sixties. It has
been solved by me for N processes in 1965 (C.A.C.M., 1965, Vol. 8, nr. 9,
pag. 569). The solution for two processes was complicated, the solution
for N processes was terribly complicated. (The program pieces for "'enter"
and "exit'" are quite small, but they are by far the most difficult pieces
of program I ever made. The solution is only of historical interest.)

It has been suggested that the problem could be solved when the indi-
vidual processes had at their disposal an indivisible 'add to store' which
would leave the value thus created in one of the private process registers
as well, so that this value is available for inspection if so0 desired.
Indicating this indivisible operation with braces the suggested form of the
paraliel programs was:

cycle begin while {x:= x+1} # 1 do {x:= x-1};

critical section;:
{x:= x-11;
remainder of cycle
end |
Where the "add to store'' operation is performed on the common variable "x'
which is initializedwith the value zere before the parallel programs are
started.

As far as a single process is concerned the cumulative Ax as effected
by this process since its start is =0 or =1; in particular, when a process
is in its critical section, its cumlative Ax = 1. As a result we conclude
that at any moment when N processes are in their critical section simulta-
neously, x > N will hold.

A necessary and sufficient condition for entering a critical section is
that this process effectuates for x the transition from 0 to 1. As long as
one process is engaged in its critical section (N = 1), x > 1 will hold.
This excludes the possibility of the transition from 0 to 1 taking place

10/..

EWD310 - 10

and therefore no other process can enter its critical section. We conclude
that mutual exclusion i1s indeed guaranteed. Yet the solution must be reject-
ed: it 1s not difficult to see that even with two processes (after at least
one succesful execution of a critical section) "After you™ - "After you'' -
blocking may occur (with the value of x oscillating between 1 and 2).

A correct solution exists when we assume the existence of an indivisible
operation "'swap'' which causes a common variable (x) and a private variable
(loc) to exchange their values. With initially x = 0 the structure of the
parallel programs is:

begin integer loc; loc: = 1;

cycle begin repeat swap (x, loc) until loc = 0;

critical section;
swap (x, loc);

remainder of cycle
end

end
The invariant relation is that of the N+1 variables (i.e. the N loc's and

the single x) always exactly one will be =0, the others being =1. A process
is in its critical section if and only if its own loc =0, as a result at.
most one process can be engaged in its critical section. When none of the
processes 1s in its critical section, x = 0 and "After you'' - "After you'" -
blocking is impossible. So this is a correct solution.

In a multiprogramming environment, however, the correct solutions referred
to or shown have a great drawback: the program section called "enter' contains
a loop in which the process will cycle when it cannot enter its critical sect-
ion. This so-called 'busy form of waiting" is expensive in terms of process-
ing power, because in a multiprogramming environment (with more parallel pro-
cesses than processing units) there is a fair chance that there will be a more
productive way of spending processing power than giving it to a process that,
to all intents and purposes, could go to sleep for the time being.

If we want to do away with the busy form of waiting we need some sort
of synchronizing primitives by means of which we can indicate those program
points where - depending on the circumstances - a process may be put to
sleep. Similarly we must be able to indicate that potential sleepers may have
to be woken up. What form of primitives?

Suppose that process 1 is in its critical section and that process 2 will
be the next one to enter it. Now there are two possible cases.

1/..

EWD310 - 11

a) process 1 will have done "exit' beforeprocess 2 has tried to "enter';
in that case no sleeping occurs

b} process 2 tries to "enter' before process 1 has done "exit'; in that
case process 2 has to go sleep temporarily until is woken up as a side-

effect of the "exit" done by process 1.

When both occurrences have taken place, i.e. when process 2 has suc-
cesfully entered its critical section it is no longer material whether we
had case a)} or case b). In that sense we are looking for primitives (for
"enter" and "exit') that are commutative. What are the simplest commutative
operations on common variables that we can think of? The simplest operat-
ion is inversion of a common boolean, but that is too simple for our pur-
pose: then we have only one operation at our disposal and lack the possi-
bility of distinguishing between "enter" and “exit'. The next simplest
commutative operations are addition to (and subtraction from) a common in-
teger. Furthermore we observe that "enter' and "exit" have to compensate
eachother: if only the first process passes its critical section the com-
mon state before its ''enter' equals the common state after its "exit" as
far as the mutual exclusion is concerned. The simplest set of operations
we can think of are increasing and decreasing a common variable by 1 and
we introduce the special synchronizing primitives

P(s) : s : = s-1
and

V(s) : s : = s+]
special in the sense that they are "indivisible' operations: if a number
of P- and V-operations on the same common variable are performed 'simul-.
taneously' the net effect of them is as if the increases and decreases are
done "'in some order',

Now we are very close to a solution: we have still to decide how we
wish to characterize that a process may go to sleep. We can do this by mak-
ing the P- and V-operations operate not on just a common variable, but on a
special purpose integer variable, a so-called semaphore, whose value is by
definition non-negative; i.e. s > 0.

With that restriction, the V-operation can always be performed: un-

synchronized execution of the P-operation, however, could violate it.

We therefore postulate that whenever a process initiates a P-operation

on a semaphore whose current value equals zero, the process in question will

12/..

EWD310 - 12

go to sleep until (another) process has performed a V-operation on that

very same semaphore. A little bit more precise: if a semaphore value equals
Zzero, one OT more processes may be blocked by it, eager to perform a P-
operation on it. If a V-operation is performed on a semaphore blocking a
number of processes, one of them is woken up, i.e. will perform its now ad-
missible P-operation and proceed. The choice of this latter process is

such that no process will be blocked indefinitely long.A way to implement

this is to decide that no two processes will initiate the blocking P-operation
simultaneously and that they will be treated on the basis "first come, first

served" (but it needsnot be done that way, see below).

With the aid of these two primitives the mutual exclusion problem is
solved very easily. We introduce a semaphore "mutex'" say, with the initial
value

mutex = 1,
after which the parallel processes controlled by the program

cycle begin P(mutex);

critical section;

Vimutex);

remainder of cycle
end

are started.

Before proceeding with the discussion I would like to insert a remark.
In languages specifically designed for process control I have met two other
primitives, called "wait' and "cause'', operating on an "event variable",
which is a (possibly empty) queue of waiting processes. Whenever a process
executes a "wait' it attaches itself to the queue until the next "'cause"
for the same event, which empties the queue and signals to all processes in
the queue that they should proceed. Experience has shown that such primitives
are very hard to use. The reason for this is quite simple: a "wait™ in one
process and a ''cause' in another are non-commutative operations, their net
effect depends on the order in which they take place and at the level where
we need the synchronizing primitives we must assume that we have not yet ef-
fective control over this ordering. The limited usefulness of such "wait"
and "cause' primitives could have been deduced a priori.

As a next interlude I am going to prove the correctness of our solution.
One may ask '"Why bother about such a proof, for the solution is obviously cor-

13/..

EWD310 - 13

rect'. Well, in due time we shall have to prove the correctness of the im-
plementation of more sophisticated rules of synchronization and the proof

structure of this simple case may then act as a source of inspiration.

With each process "j" we introduce a state variable ”Cj”, characteriz-
ing the progress of the process.
Cj =0 processj is in the 'remainder of c¢ycle"
Cj =1 processj is in its "critical section'.
While processj performs (i.e. "completes") the operation P(mutex)j the trans-
lation Cj=0 > Cj=1 takes place, when it performs the operation V(mutex)j the
transition Cj=1 - Cj=0 takes place. (Note that the Cj are not variables
occurring in the program, they are more like functions defined on the current
value of the order counters.) In terms of the Cj the number of processes en-
gaged in its critical section equals

N
£ C.
=1/

In order to prove that this number will be at most =1, we follow the
life history of the quantity

K = mutex + § C.
j=1
The quantity K will remain constant as long as its constituents are constant:
the only operations changing its constituents are the 2N mutually exclusive
primitive actions P(mutex]i and V(mutex)i (for 1 < i < N).
We have as a result of
P(mutex)i: aK

N
Amutex + A(I

j=1
Amutex + ACi

i}

Cj)

i

-1+1=20
and similarly, as a result of
V(mutex).: aK = amutex + aCy
+1 -1 =0

As these 2N operations are the only ones affecting K's constituents, we
conclude that K is constant, in particular, that it is constantly equal to
its initial value,

N

K=1+ ¢

j=

0=1
1

14/..

EWD310 - 14

As a result

N .
z C. =1 - mutex.
j=1

Because mutex is a semaphore, we have
0 < mutex,

and from the last two relations we conclude

Because this sum is the sum of non-negative terms we know

N
0 «<1x C.i
Combining this with

N
mutex = 1- 1 C.
j=1’

We conclude

mutex < 1.
i.e. mutex is a so-called "binary semaphore", only taking on the values 0
and 1.

Finally we observe that no process will be kept out of its critical
section without justification: if all processes are outside their critical
sections, all Cj's are =0 and therefore mutex is =1, thereby allowing the

first process that wants to enter its critical section to do so.

For later reference we summarize the structure of this proof. A central
role is played by an invariant relation among common variables (here only
the semaphore) and '‘progress variables' (here the Cj's). Its invariance is
proved by observing the net effect of the (mutually exclusive) operators
operating on its constituents, without any further assumptions about their
mutual synchronization, about which we can then make assertions on account
of the established invariance. In the sequel we shall see that this pattern
of proof is very generally applicable.

Before proceeding with more complicated examples of synchronization we
muist make a little detour and make a connection with earlier observations.
When a process 1s engaged in its critical section, a great number of other

15/..

EWD310 - 15

processes may go to sleep. When the first one leaves its critical section,

it is undefined which of the sleepers is woken up, the only requirement

being that no single process is kept sleeping indefinitely long. (This latter
assumption we have to make when, later, we wish to prove assertions about

the finite progress of individual processes.) In this sense our "family of
sequential processes' is still a mechanism of an undeterministic nature, but
the degree of undeterminacy is a mild one compared with the original hardware,
in which an interrupt could occur between any pair of instructions: the only
indeterminacy left is the relative order of much larger units of action, viz.
the critical sections. In this respect the bottom layer of our operating
system achieves a step towards our goal of "layered insensitivity".

It 1s in this connection that I should like to make another remark of
quantitative nature. The choice of the process to be woken up is left unde-
fined because it is assumed that it does not matter, i.e. we assume the
system load to be such that the total period of time that any of the processes
will be engaged in its critical section will be a negligible fraction of real
time, in other words, nearly always mutex = 1 will hold. It is for that -
reason that such a neutral policy for waking up a sleeper 1s permissible.

This is no longer true for our macroscopic concerns regarding so-called
"resource allocation". In the case of a number of programs producing their
output via the same printer, these printing actions have to exclude eachother
mutually in time, but it is no longer true that the total time spent in print-
ing will be a negligible fraction of real time! On the contrary: in a well-
balanced system the printer will be used with a duty cycle close to 100 percent!
In order to achieve this - and to satisfy other, perhaps conflicting design
requirements - such a neutral policy which is adequate for grahting entrance
into critical sections will certainly be inadequate for granting a scarce re-
source like a printer. For the implementation of a less neutral granting policy
we shall use the critical sections, entrance to which is granted on a neutral
basis. (For an example of a more elaborate synchronization implemented with

the aid of critical sections we refer to the Problem of the Dining Philosophers
to be treated later.) This is the counterpart of the "layered insensitivity'':
going upwards in levels we gain more and more control over the microscopic in-
determinacy, but simultaneously macroscopic strategic concerns begin to enter
the picture: it seems vital that the bottom layer with its microscopic concerns
does not bother itself with such macroscopic considerations. This observation
seems to apply to all well-designed systems: I would call it a principle if

I had a better formulation for it.

16/..

EWD310 - 16

We now turn to a slightly more complicated example, viz. a bunch of
producers and a bunch of consumers, coupled to eachother via an unbounded
buffer. In this example all producers are regarded as equivalent to each-
other and all consumers are regarded as equivalent to eachother. Under
these assumptions - which are not very realistic - the semaphores provide
us with a ready-made solution.

In the commonly accessible universe we have
a) a buffer, initialized empty
b) a semaphore "mutex', initialized =1; this semaphore caters for the mutual
exclusion of operations changing buffer contents
¢) a semaphore 'numqueuepor''; this gives (a lower bound of) the number of
portions queueing in the buffer.
Then a producer may have the form
cycle begin produce next portion;
P{mutex);
add portion produced to buffer;
V (numqueuepor) ;
V(mutex)
end

with consumers of the following structure
cycle begin P(nunqueuepor);
P(mitex) ;
take portion from buffer;
V[ﬁutex);
consume portion taken
end

Note 1: The order of the V-operations in the producer is immaterial, the

order of the P-operations in the consumer is absolutely essential.

Note Z: The assumption is that the operations "produce next portion' and
"consume portion taken' are the slow, timeconsuming operations -
possible in synchronism with other equipment - for which parallelism
is of interest, while the actions "add portion produced to buffer'
and ''take portion from buffer' are very fast "clerical' operations.

In the above program the semaphore 'numqueuepor" is a so-called "general

semaphore', i.e. a semaphore whose possible values are not restricted to 0

17/..

EWD310 - 17

and 1. We shall now give an alternative program, using only binary sema-
phores.

In the commonly accessible universe we have

a) a buffer and an integer 'n", counting the number of portions in the buffer.
The buffer is initializedempty (incl. n:=0)

b} a semaphore "mutex' initialized =1; this semaphore caters for the mutual
exclusion of the operations changing the buffer contents, the value of
"n" and the inspection of "n".

c) a semaphore 'consal", initialized =0; if this semaphore is =1, a next con-
sumption is allowed.

Then a producer may have the form
cycle begin produce next portion;
P(mutex) ;
add portion to buffer (incl. n:=n+1);
if n=1 do V(consal);
V{mutex)
end

with consumers of the following structure
cycle begin P(consal);
P(mutex);
take portion from the buffer (incl. n:=n-1);
if n > o do V(consal);
V(mutex) ;
consume portion taken
end
Although it is not too hard to convince ourselves "by inspection'' -
whatever that may mean - that the above bunch of programs work properly, it
is illuminating to give a somewhat more formal treatment of their cooperation.
(I am now used to calling such a more formal treatment of their cooperation
'"a correctness proof", although I did not formalize the requirements that

such a piece of reasoning should satisfy in order to be a 'valid proof".)

The proof consists of two steps. The first step uses our earlier result,
viz. that the P(mutex) and V(mutex) establish mutual exclusion of the critic-

al sections. (Inside these critical sections we find no P-operations, as a

18/..

EWD310 - 18

result they cannot give rise to deadlock situations.) This observation
allows us to regard the critical sections as indivisible operations and to
confine our attention to the state of the system at the discrete moments

with mutex =1 (i.e. no one engaged in its critical section).

In the second step we define three mutually exclusive states for the
whole system and shall show that whenever the system is started in one of
these states, it will remain within these states. For the purpose of state
description we introduce a function defihed on the progress of the consumers,
viz.

K = the number of consumers that have performed "P(consal)'’ but

have not yet entered the following critical section.
Now we can introduce our three states
S1 : n=0 and K=0 and consal=(
52 : n>0 and K=0 and consal=1
S3 : n>0 and K=1 and consal=0
Three operations; (viz. P{consal) and the two critical sections) operate on
the constituents of these boolean expressions; for each state we investigate
all three.
ST : (initial state)
P(consal) : impossible (on account of consal=0)
critical producer section : transition to S2
critical consumer section : impossible (on account of K=0)

S2 ¢
P(consal) : transition to S3
critical producer section : transition to S2

critical consumer section : impossible (on account of K=0)

53 :
P(consal) : impossible (on account of consal=0)
critical producer section : transition to S3

critical consumer section : transition to §1 or S2

This concludes the second step, showing the invariance of
S1 or S2 or S3
{from which we conclude N>0 and consal<1)

19/..

EWD310 ~ 19

A few remarks, however, are in order, for we have cheated slightly.
Let us repair our cheating first and then give our further comments. In
our second step we have investigated the isolated effect of either P(consal)
or the critical producer section or the critical consumer section. For the
critical sections this is all right for they exclude eachother mutually in
time; the operation P(consal), however, can take place during a critical
section, and we did not pay any attention to such coincidence. We can save
the situation by observing that in the case of coincidence the net effect
is equal to the execution of the critical section immediately followed by
P(consal}. This is really a messy patching up of a piece of reasoning that

was intended to be clean. Now our further comments.

1) The proof shows why the mutual exclusion problem is worthy, of the name
'""a key problem'. Thanks to the mutual exclusion of critical sections we
only need to consider the net effect of each single, isolated section. If
these sections were not critical, i.e. could take place in arbitrary inter-
leaving, we would have to consider the net effect of one section, the net
effect of two sections together, of three sections together, of four etc.!
With N éooperating processes the number of cases to be investigated would
grow like ZN (i.e. the powerset!). This is one of the strongest examples
showing how the amount of intellectual effort needed for a correctness proof
may depend critically on structural aspects of the program, here the aspect
of mutual exclusion. It is this observation that is meant to justify the

inclusion of the above proof in this text.

Z) The proof is complicated considerably by the fact that P(consal) is an
operation sequentially separate from the following critical section: this
caused the messy patching up of our piece of reasoning, it called for the
introduction of the function "K". If the conditional entrance of critical
sections is going to be a standard feature of the system, a more direct way
of expressing this would be essential. A minimal departure of the current
formation would be the introduction of the parallel P-operation, allowing
us to combine the two P-operations of the consumer into

P(consal, mutex)

3) For the sake of completeness we mention that in the THE multiprogramming
system, were we used general semaphores to control synchronization along
information streams, each information stream had at any moment in time at
most one consumer attached to it. As a result a general semaphore could

block at most one process and when a V-operation was performed on it there

20/.-

EWD310 - 20

was never the problem which process should be woken up. The absence of the
possibility that mor€ than one process is blocked by a general semaphore is
not surprising: it is the semaphore ''consal' that may be equal to zero for
a long period of time; as a result it is not to be expected that it is irre-
levant which of the processes will be woken up when a V-operation is per-
formed on it. In the design phase of the THE multiprogramming system the
parallel P-operation has been considered but finally it has not been imple-
mented because we felt that it contained the built-in solution to an irreal-

istic problem. But it would have simplified proof procedures.

We now turn to the problem of the Five Dining Philosophers. The life
of a philosopher consists of an alternation of thinking and eating:
cycle begin think;
: eat
end

Five philosophers, numbered from 0 through 4 are living in a house where the
table laid for them, each philosopher having his own place at the table:

Their only problem - besides those of philosophy - is that the dish
served is a very difficult kind of spaghetti, that has to be eaten with two
forks. There are two forks next to each plate, so that presents no difficulty:
as a consequence, however, no two neighbours may be eating simultaneously.

A very naive solution associates with each fork a binary semaphore with
the initial value =1 (indicating that the fork is free) and, naming in each
philosopher these semaphores in a local terminology, we could think the follow-
ing solution for the philosopher's life adequate

cycle begin think;

P(left hand fork); P(right hand fork);

eat;

V(left hand fork); V(right hand fork)
end

21/..

EWD310 - 21

But this solution - although it guarantees that no two neighbours are
eating simultaneously - must be rejected because it contains the danger of
the deadly embrace. When all five philosophers get hungry simultaneously,
each will grab his left hand fork and from that moment onwards the group
is stuck. This could be overcome by the introduction of the parallel P-operat-
1on, combining the two P-operations into the single

P(left hand fork, right hand fork).

For the time being we assume the parallel P-operation denied to us -
later we shall reject the solution using it on other grounds - and we shall
show how (using only single P-operations and binary semaphores) we can de-

rive our solution in a reasonably controlled manner.

In order to be able to give a formal description of our restriction, we
associate with each philosopher a state variable, "C" say, where
Cli] = 0 means: philosopher i is thinking
Clil = 2 means: philosopher i is eating.
In accordance with their first act, all C's will be initialized =0. In terms
of the C's we can state that it is disallowed
A ; (€11 = 2 and CL(i*1) mod 51 = 2), (1)

in words: no philosopher may be eating while his left hand neighbour is eating
as well. From this formula it follows that for a C the transition from 2 to 0
can never cause violation of the restriction (1), while the transition from
0 to 2 can. Therefore we introduce for the last transition an intermediate
state

CLil = 1 means: philosopher i is hungry
Now each philosopher will go cyclically through the states 0, 1, 2, 0
The next question to ask is: when has the (dangerous) transition from 1 to 2
to take place for philosopher K? Well, three conditions have to be satisfied
1) CIK1 = 1, i.e. he himself must be mmgry
2) CL(K+1} mod 5] # 2, because otherwise

CLK1:=2 would cause violation of (1) for i=K
3} CL(K-1) mod 5] # 2, because otherwise

CLK]1:=2 would cause violation of (1) for i=(K-1) mod 5
As a result we have to see to it that the state

E} K(C[(K—1) mod 51 # 2 and C[K] = 1 and C[(K+1) mod 51 # 2) (2)

is unstable: whenever it occcurs, it has to be resolved by assigning C[K]:= 2
and sending philosopher K to the table.

22/..

EWD310 - 22

In a similar analysis we ask : which transitions in the life of
philosopher w can cause the unstable situation and for which values of K?
1) when C[w]:
2) when Clwl:= 0 - i.e. when C{w] loses the value 2 - instability may be

created for K = {w+1) mod 5 and for K = (w-1) mod 5.
In words: when philosopher w gets hungry, the test whether he himself should
be sent to the table is appropriate, when he leaves the table the test
should be done for both his neighbours.

1 is executed, instability may be created for K = w

In the universe we assume declared
1) the semaphore mutex, initially = 1
2) the integer array C[0:41, with initially all element = 0
3) the semaphore array prisem [0:4] with initially all elements = 0
4) procedure test (integer value K);
if CL(K-1) mod 5] # 2 and CCK] = 1 and CL(K+1) mod 5] # 2 do
begin C[Kl:= 2; V(prisem [K]) end;

(This procedure, which resolves unstability for K when present, will only
be called trom within a critical section).

In this universe the life of philosopher w can now be coded
¢ycle begin think;
P{mutex) ;
Clwl:= 1; test (w);
V(imutex) ;
P(prisem {w]); eat
P(mutex);
Ciwl:= 0; test [(w+1) mod 51; test [(w-1) mod 51;
V({mtex)
end

And this concludes the solution I was aiming at. I have shown it, together

with the way in which it was derived, for the following reasons.

1) The arrangement with the private semaphore for each process and the common
semaphore for mutual exclusion in order to allow for unambiguous inspection
and modification of common state variables is typical for the way in which in
the THE multiprogramming system all synchronization restrictions have been im-
plemented that were more complicated than straightforward mutual exclusion
or synchronization along an information stream (the latter synchronization has

23/..

EWD310 - 23

been implemented directly with the aid of a general semaphore).

2) The solution (inclusive the need for the introduction of the intermediate
state called "hungry'") has been derived by means of a formal analysis of the
synchronization restriction. It is exemplar for the way in which the flows
of mutual obligations for waking up have been derived in the design phase of
the THE multiprogramming system. It is this analysis that I have called "A
constructive approach to the problem of program correctness'.

With respect to this particular solution I would like to make some fur-
ther remarks.
Firstly the solution as presented is free from the danger of deadlock, as
it should be. Yet it is highly improbable that a solution like this can be
accepted because it contains possibility of a particular philosopher being
starved to death by a conspiration of his two neighbours. This can be over-
come by more sophisticated rules (introducing besides the state "hungry"
also the state 'very hungry"); this requires a more complicated analysis
but by and large it follows the same pattern as the derivation shown. This
was another reason not to introduce the parallel P-operation: for the solut-
ion with the parallel P-operation we did not see an-automatic way of avoiding
the danger of individual starvation.

Secondly we could have made a more crude solution: the procedure 'test"
has a parameter indicating for which philosopher the test has to be done;
also in the critical sections we call the procedure "test' precisely for
those philosophers for whom there is a chance that they should be woken up
and for no others. This is very refined: we could have made a test procedure
without parameter that would simply test for any K if there was an unstabili-
ty to be removed. But the problem could have been posed for 9 or 25 philo-
sophers and the larger the number of philosophers, the more prohibitive the
overhead of the crude solution would get.

Thirdly,I have stated that we '"derived our solution in a reasonably con-
trolled manner': although the formal analysis has been carried out almost
mechanically,I would not like to suggest that it should be done automatically,
because in real life, whether we like it or not, the situation can be more

complicated.

We consider two classes of processes, class A and class B, sharing the

same resource from a large pool. {The situation occurred in the THE multi-

24/..

EWD310 - 24

programming system with the total pool of pages in the system.) Suppose now
that processes from class A ask and return items from this pool at high fre-
quency, while those from class B do so at low frequency only. In that case
it is highly unattractive to pose upon the highly frequent item releases of
class A the (possibly) considerable overhead involved in the analysis of
whether it is necessary to wake up one or more blocked processes. This high-
frequency overhead was avoided by delegating the waking-up obligation to
(some) processes of class B and by garanteeing that at least one of these
processes would be active when the boundary of the resource restriction was
in danger of being dpproached. In other words, in order to reduce system
overhead we removed the highly frequent inspection whether processes had to
be woken up at the price of increasing the ''reaction time'' there where an
ultra short "response' was not required. The taking of such decisions seems
a basic responsibility of the system designer and I don't see how they could

be taken automatically.

The above concludes my discussion of the chosen bottom layer. In the
final part of this paper I would like to discuss briefly an alternative solut-

ion.

The chosen bottom layer implements a family of sequential processes
plus a few synchronizing primitives, the remaining part of the system, to be
composed on top of it, will exist of a set of harmoniously cooperating se-
quential processes. The interface is characterized by a number of features
a) the bottom layer treats all sequential processes on the same footing
b) the sequential processes communicate to eachother via commonly accessible

variables
c) critical sections ensure the unambiguous interpretation and modification

of these common variables.

One or two objections can be raised to this organisation; they center
around the observation that each sequential process can be in one of two
mutually exclusive, radically different states: either the process is inside
its ¢ritical section or it is not. Inside its critical section it is allowed
to access the common variables,outside it is not. In actual fact this differ-
ence does not only pertain to accessibility of information, it has also a
bearing on processor allocation as implemented in the bottom layer. Given a

process without hurry it is permissible to take the processor away from it

25/..

EWD310 - 25

for longer periods of time, but it is unattractive to do so in the middle of
a critical section: if a process is stopped within a critical section it
blocks for the other processes the mechanismneeded for their cooperation and
the remaining processes are bound to come to a grinding halt. In the THE
multiprogramming system this has been overcome by giving processes two
colours - red or white - by making each process red while it is in a critical
section and by never granting the processor to a white process if a red one

is logically allowed to proceed.

Furthermore there is the aspect of reproducibility. To an individual
user, offering a strictly sequential program to the system, we should like
to present a strictly deterministic automation. In the system a number of
sequential processes are dedicated to the processing of user programs, they
act as slots into which a user program can be inserted; whenever the user
program refers to a shared resource the translator effectively inserts - via
a subroutine call - the critical section required for this cooperation. As
a result, what happens in this slot is perfectly reproducible as long as the
sequential process remains outside critical sections. But if we wish to
charge 6ur user and also insist that the charge be reproducible, we can only
charge him for the activity of the slot outside critical sections! What hap-
pens inside the critical sections is situation dependent system overhead:
it does not really "belong' to the activity of the process in which the cri-

tical section occurs.

Finally, we know how to interpret the evolution of a sequential process
as a path through "its" state space as is spamned by ''its'" variables. But
for this interpretation to be valid, it is necessary that all variables

"belong' uniquely to one sequential process.

It is this collection of observationsthat was an incentive to redo some
of our thinking about sequential processes and to reorder the total activity
taking place in the system. Instead of N sequential processes cooperating in
critical sections via common variables, we take out the critical sections and
combine them into a N+1st process, called "a secretary'; the remaining N pro-
cesses are called "directors". Instead of N equivalent processes, we now have
N directors served by a common secretary. (We have used the metaphor of direct-
ors and a common secretary because in the director-secretary relation in real-

life organisation its also unclear who is the master and who is the slave!)

What used to be critical sections in the N processes are in the directors

"calls upon the secretary'.

26/ ..

EWD310 - 26

The relationlbetween a set of directors and their common secretary
shows great resemblance to the relation between a set of mutually independ-
ent programs and a common library. What is regarded as a single, unanalysed
action on the level of a director, is a finite sequential process on the
level of the secretary, similar to the relation between main program and sub-

routines.

But there is also a difference. In the case of a common library of re-
entrant procedures, the library does not need to have a private state space:
whenever a library procedure is called its local state space can be embedded
(for the duration of the call) in the (extendable} state space of the calling

program.

A secretary, however, has her own private state space, comprising all
"common variables'. One of the main reasons to introduce the concept of "a
secretary' 1s that now we have identified a process to which the "common

variables' belong: they belong to the common secretary.

To.stress the specific nature of a secretary, I call her "a semi-sequent-
ial process'. A fully sequential process consists of a number of actions to
be performed one after the other in an order determined by the evolution of
this process. A secretary is a bunch of actions - "operators in her state
space' - to be performed one after the other, but in an undefined order, i.e.
depending on the calls of her directors.

A secretary presents itself primarily as a bunch of non-reentrant rou-
tines with a common state space. But as far as the activity of the main pro-
gram is concerned there is a difference between the routine of a secretary
and a normal subroutine. During normal subroutine call we can regard the main
program "asleep", while the return from the subroutine 'wakes" the main pro-
gram again. When a director calls a secretary - for instance when a philo-
sopher wishes to notify the secretary that now he is hungry - the secretary
may decide to keep him asleep, a décision that implies that she should wake
him up in one of her later activities. As a result the identity of the calling
program cannot remain anonymous as in the case of the normal subroutine. The
secretary must have variables of the type "process identity' whenever she is
called the identity of the calling process is handed over in an implicit in-
put parameter, when she signals a release - analogous to the return of the

normal subroutine - she will supply the identity of the process to be woken up.

27/..

EWD310 - 27

In real time a director can be in three possible states with respect

to his secretaries

a) "active", i.e. his progress is allowed

b) "calling", i.e. he has tried to initiate a call on a secretary, but the
call could not be honoured, e.g. because the secretary was busy with
another call

¢} "sleeping", i.e. a call has been honoured but the secretary's activity
in which he will be released has not ended.

The state "calling'" has hardly any logical significance: it would not
occur if the director was stopped just before the call that could not be

honoured.

With respect to her directors a secretary can be
a) "busy'", i.e. engaged in one of her (finite) algorithms
b) "idle'", i.e. ready to honour a next call from one of her directors.

Note that a secretary may be simultaneously busy with respect to her
directors and calling or sleeping with respect to one of her subsecretaries.

In two respects, the above scheme asks for embellishments. :
Firstly, a secretary may be in such a state that certain calls on her service
are inconvenient. With each call we can associate a masking bit, stating
whether with respect to that call she is "responding'" or "deaf'. A secretary
managing an unbounded buffer could be deaf for the consumer's call when her
butfer is empty. Here we have another reason why a director may. be in the
state "calling': besides being busy the secretary could be deaf for the call
concerned. For the reasons stated I have my doubts as to whether this embel-
lishment is very useful, but I mention it because it seems more useful than
similar embellishments that have been suggested, e.g. making a secretary res-
ponding to an enumerated list of directors. The secretary has to see to it
that certain constraints will not be violated, i.e. she may be in such a state
that she can not allow certain of her possible actions to take place. This
has nothing to do with the identity of the director calling for such an action.

A more vital embellishment is parameter passing: in general a director
will like to send a message to his secretary when calling her - a producing
director will wish to hand over the portion to be buffered; in general a
director will require an answer back from his secretary when she has released
his call - a consuming director will wish to receive the portion to be unbuffered.

28/..

EWD310 - 28

Note that this message passing system is much more modest than various
mail box systems that have been suggested in which processes can send mes-
sages (and proceed!} to other processes. In such systems elaborate message
queues can be built up. Such systems suffer fram two possible drawbacks.
Firstly, implementation reasons are apt to impose upper limits to lengths
of message queues: "message queue full' may be another reason to delay a
process and to show the absence of the danger of deadly embraces may prove
to be very difficult. Secondly, and that seems worse, with the queueing
messages we have reintroduced state information that carmot be associated

with an individual process.

From an esthetic point of view the relation director-sectetary is very
pleasing because it allows secretaries to act as directors with respect to
subsecretaries. This places our processes in a hierarchy which avoids deadly
embraces as far as mutual exclusion is concerned in exactly the same way in
which mutual exclusion semaphores would need to be ordered in the case of
nested critical sections. Whether, however, actual systems can be built up
with a meaningful hierarchy of secretaries of reasonable depth - say larger
than two - remains to be seen. That is why I called this point of view
"esthetically pleasing".

Finally: I can only view a well-structured system as a hierarchy of
layers and in the design process the interface between these layers has to
be designed and decided upon each time. I am not so much bothered by designer's
willingness and ability to propose such interfaces, I am seriously bothered
by the lack of commonly accepted yardsticks along which to compare and eva-
luate such proposals. My 'playing" with a bottom layer should therefore not
be regarded as a definite proposal for yet another interface, it was meant to
1llustrate a way of thinking

Acknowledgement is due to my former studentsJ. Bomhoff and W.H.J. Feyen
and to Professor C.A.R. Hoare from the Queen's University of Belfast.

