EWD338.html

Copyright Notice

The following manuscript
EWD 338: Parallelism in multi-record transactions (with C.S.Scholten)
is held in copyright by Springer-Verlag New York.

The manuscript was published as pages 15-21 of

Edsger W. Dijkstra, Selected Writings on Computing: A Personal Perspective,
Springer-Verlag, 1982. ISBN 0-387-90652-5.

Reproduced with permission from Springer-Verlag New York.
Any further reproduction is strictly prohibited.

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD338.html

EWD338 - O

FParallellism in multi-record transactions.

by £.W.Dijkstra and C.5.5cholten

We consider a data base comprising a great number of individual recards
and transactions tc be carried aut on this data base. fach transaction is a
finite computation, involving & number of these records: the computation to
be carried gut —and even the identity of the records involved— will in
general be dependent on the initial state of the data base when the tramsaction
is initiated, When the data base grows, the following conflict ersrges: on
the one hand one may expect the number of transactions to be carried ocut to
grow as well, on the other hand the growing data base will make individual
record selection a mare and more painful process, slowing down the individual
transaction executions. Comes the moment that the stream of transactions,
carried out one after the other, no longer fits in real time. To solve this
real time problem we wust be willing to carry out a number of transactions

in parallel, This paper is devoted to the logical problems that then emerge.

The purpose of this paper is twofold: firstly to isolate (and to solve
to a certair extent) the logical problems involved and secondly, to demonstrate
the viability of our top—down approach in problem solving. This means that those
readers that are unfamiliar with the top—down approach but are familiar with
a number of these logical problems, must be patient. If they fimd us ignoring
a number of practical considerations in the beginning, they should read an
quietly: there is a fair chance that they will be taken into account in due

time.

The first model.

In the purely sequential execution of the transactions, we can execute the
transactions im the (supposedly unique) order in which they are requested and
at any moment in time there is at most one transaction under execution. In
our first model, we still assume that the requests for transections reach the
system in a unique order and with a speed regulated by the system in such a
way that the system can cope with the requests. We admit, however, that at
any moment in time the number of transactions currently under execution may

be larger than ane, although not exceeding some given finite upper bound. The

EWD338 - 1

execution of a transaction extends from the moment that the system has acknowledged
the request for the transaction until the moment that the system has completed

the transactien.

In the pureﬁy sequential execution, the systeﬁs net reaction to a number
of transaction requests may depend on the arder in which the transactions are
requested. In the case of parallellism we do not reguire that the system's net
reaction is identical to that of the sequential system when faced with the
stream of requests in the order in which the parallel system has acknowledged
these requests. We do require, however, that it is possible to order the requests
in such a way that the net reaction of the sequential system faced with the
requests in that order will be identical to the reaction of the parallel system.
(In many cases, viz. when we have two mutually non—interfering tramsactions,

this order need not be unique.)

Dur parallel system has three main obligatior§: it has to prevent

1} undesired interference, 2) deadlock and 3) individual starvation.

ad 1.

We assume each transaction identified only for the period aof its executian.
Let T[i] be a transaction currently under execution, let M[i] be the set of
racords manipulated up till now by T[i]. This implies that during the execution
af T[i], the set M[i] can never decrease, until transaction T[i]cgérminated and
M[i] ceases to exist. We can guarantee the absence of undesirsble interference

when at any moment in time

idi = MilaMil=§ 1)

i.e. for two different transactions the intersection of the correspending sets

M is empty.

ad 2.
If a and b are two different records and for i f j we bave at a given

mament

ae Mi] and bewi]

then we will find ourselves in trouble when the progress of T[i] requires
record b to be added to M[i] and also the progress of T[j} requires record a
to be added to M[j], for then there is no way in which T[i} or T[j] can progress

withol violating condition 1. This is called Mdeadlock". If we insist on the

EWD338 - 2

ghsence of the danger of deadlock ~and we do— the sbove cbservation tells us

that without any furthér knowledge about the future requirements of the transacticns,
parallellism is impossible. We thersfore associate with each transaction T[i]

a set F[i] of records, contairing all the records that may pessibly be added

to M[i]. (Note that this definition implies M[i]n F[i] = g.)

When the current transactions can be renumbered such that
i<ji = FlilnMi]l=4¢ 2)

the danger of deadlock is absent, for then T[O] can be carried to completion

pesidts ©etahen i)
and after that the new T[O] etc. We call the situation M"safe" whery/tRETUTTEN
transactions can be renumbered such that relation 2 holds and‘\é shall keep the
system in a safe state. From the above we can conlude that decrease of the
set F[i] -as a result of progress of T[i]— will leave a safe situation safe; it
furthermore follows that such a decrease is sometbing to be encouragec, because

as long as F[O] = the universe, all M[j] with j > 0 must be empty, 1.e.

parallellism is not possible.

When we start each transaction with its F equal to the universe and insist
that T[i} can only add a record to M[i] by transferring it from F[ij, then this
is the only transition that might violate condition 1 or the safety, i.e.
this is the anly place where it might be necessary to hoid up the further execution
of the transaction,"to put the transaction to sleep". The "counter—occurrences",
on account of which a sleeping transaction could be woken up again are edssber

keoneae frem OLC reaun she = €x ht.j:“l-L .

In the above we have assumed that for each transaction, F would start
équal to the universe and would only decrease. Becagée this set is so huge,
one could think that it could be profitable to divide the execution of a
transaction into two successive phases, a first phase in which F is still
allowed to grow and a second phase in which this is no longer permissible. But
as far as the aveoidahce of deadlock is concerned, such a transaction is
equivalent to one with F equal to the universe during the first phase, decreasing

F to the stated amount upan the transition from the first to the second phase.

ad 3.

Our system has to allocate records to transitiens. When the allocation

strategy is such that each request of a £ — M transition is honoured as soon as

EWD358 ~ 3

this is compatible with the simultaneity restriction 1 and the safety conditiaon,
it is well—known that the execution of an acknowledged transaction may be post—
paned undefinitely long. If we have

1] < {a] FI1] = {c}

M[2] = {b} Fl2] = {c}

Mi3] = ¢ F(3] = {as b, ¢}

and suppose that T[3] would like to transfer record c to M[3], then it cannot

]
it

do os because otharwise the deadlock danger woul be introduced with respect
to both T[1] and T[E]. In the case of an infinite supply of transactions of
type 1 and type 2, T[S] could be kept asleep forever. This phencmenon is called

individual starvation and as a rule it is considered to be undesirable.

A crude way to exorcize the danger of individual starvation is the following:
as soon as a transaction is put to sleep, = fixed upper limit is imposed upan
the number of transaction that may be iritiated during that nap. We are not
going to look for a more refined technigue now, for there are other reasons why
we consider our first meadel as tog crude, and in our second model we shall

depart from it.

The second model.

Our main cnmpﬂlaint about the first model is that a record ance in set
M[i] remains in set M[i] until the transaction has run to completian. We would
like to be able to express that a transaction is such that a manipulated
record is no longer essential for the correct progress of the transaction.
We therefore split H[i] into two disjoint sets A[i] and P[i], i.e. the
records that are still active and the records that have been processed. A
record in set P[i] has srrived there from set F[i] via set A[i] and will

remain there until termination aof T[i].

Obviously

i = Ali]le aj] =4
ia a necessary condition, but this is no longer sufficient to guarantee that
the net reaction of the parallel system is identical to the reaction of a
sequential system after proper ordering of the requests, for it would not

exclude

AlilaPlil#ég and alilnrpli]ég .

EWD338 - 4

The first condition expresses that in the sequential ordering T[i} should follow
T[j] and the second condition requires it to be the other way round. The
situation is even worse, because if F[i] n P[j] # ﬂ, apparently, the order

in which the shared recordf has been processed has been decided in the past, and
this order is no longer expressed in the population of the various sets, but

in general it is still relevant.

In our second model, the virtual order for the pair T[i], T[j] is
irrevocably decided as far as their interference with the data hase is concerned,

as sgon as far the first time holds

Alilo Pli] A dor AljlnPli] 48 .

Therefore we associate with each pair an antisymmetric functign V(i,j) =
- V(j,i); when the pair is created ~i.e. when the second transaction starts ta
be under execution — U(i,j) ig initialized with the value O. During its life
time it may remain canstant, it may change its value once to either +1 or -1,

where V(i,j) -+ 1

means that in thé virtual order T[i] has to precedoT[jJ.

We now have the following invariant relations

45 = alilnai] k=@ 3)
Alilnrlil4d = v(i,3) =+1 4)
Vi, i) =+1 = Ali]nr[i]=¢ 5)
Pliln 51 # 8 = v(i,3) £0 Ly
and deadlock is prevented, provided that we can renumber the iransactions
currently under execution is such a way that
cwoi<y o= {Fliln(alilu i) =@ md V(4,5) 20} 7)
for then T[O] can be carried to completion without violation to the decided

virtual order.

The second madel shows great similarity to the first one. Again, the anly
point where it might be necessary to put a transaction to sleep is where it
would like to transfer a record from set F to set A. The points of progress
in one transaction that could result im the situstion that sleeping transactions

could be woken up are (as before) explicit F-decrease and termination, but in

addition to those two the transition from A to P.

The problem of individual starvation can be dealt with in the same crude

EWD338 - 5

fashion as in the first model and far the time being we shall leave it at that,

The third model.

The second model is appropriate when each transaction modifies all its
active records. But that seems a ratber exceptional situation arnd in our third
model we would like to exploit that simultareous inspection of a current
record value by a number of parallel transactions is an abseolutely innocent
operation., For that reason we split all sets into two: F in FR and FW, A into
AR and AW and P into PR and PW. Here AR are the "read only records", while a
records in set AW may also be modified. Initially the transaction starts with
FW equal to the universe and the other five sets empty. Permissible transfers
of a record are: from FW to FR and AW, from FR to AR, from AW to PW and fram AR
to PR.

Now formulae 3) through 7) can be modified systematically by changding
xtiln v[j]
inta O[] a wl3]) o i) n YRED v OR[L] o vW{3])

i.e. from the four cross—products only the three in which writing is possibly

involved, but not the fourth, the RR combinmation.

After this sytematic change we have formulae 3'} through 7'), describing
a model in which records shared for inspection only do not impose any mutual
exclusion or virtual ordering. The only difference between the third and the
second model is that in one transaction the transfer of a record from FW to

FR could have the side—effect of waking up a sleeping transaction.

Note. If a transaction upen inspection of a record in set AW (because it might
have to modify it) discovers that it can leave the record unchanged, we can, if
we so desire, admit the tramsfer of this record from set AW to set AR. In that
case also this transition could have the side—effect that another sleeping

transaction can now be woken up.

Avoiding the danger af individual starvation.

In view of the formal relationship between the second and the third
model it sufficesto discuss the starvatian problem in terms of the simpler far-

malism of the second model.

EWD338 - 6

By the time, however, that we are going to tackle the starvation problem
seriously, we should bear in mind that wp till now we have assumed that the
only reasocn for preventing progress of a transaction would be that otherwise
relations 3 or 7 would be vislated. In a genmeral system one must assume that
there will be other reasons as well: by the time that we bring into the picture
that most aof the records will be in secondary store most of the time, reduction
of the traffic density between primary and secondary store might become =z
worthy goal and we can envisage a system trying to collect transactions im-
volving the same records. The system can try to do so by postpaning transactions,

but alse that strategic postponement must be void of the starvation danger.

With each transaction T[i] currently under execution we can associate
an so-called "allowance counter" ac[i] and its value will be equal to the
maximum number of other transactions allowed to run to completion before T[i]
will *un to completion. This implies that upon termination of & transaction
all ac's associated with the remaining transactions will be decreased by 1.
We W now superimpose upon ocur original safety condition that the transaction

can be renumbered in such & fashion that besides relation 7 also

i <acli] 8)

holds.

In that cese T[O] can run to completion; its termination will decrease
the remaining ac's by 1; simultaneously the remaining transactions will shift
down over one place (i.e. the old T[1] becomes the new TBJDand as a result

relation 8 will continue to hold.

Inside a transaction we have now three types of points where the system
may decide tu put a transaction to sleep:

request for record transfer from F to A

retuest for potential strategic postponement

request to terminate.
Whenever a transaction makes such a regquest that can be honoured without
vielating conditions 3, 7 and 8, the system is in general free to refuse the
request and te put the transaction to sleep. That would admit the possibility
of & completely sleeping system and no real time guarantee could be given, even
if a maximum execution time for a transaction is known., We therefore impoze

the requirement that

when the set of current transactions is non-empty, at least one

EWD338 - 7

transaction must be non-sleeping.

When a transaction is initiated and its ac is introduced its initial
value must be sufficiently high to guarantee 8; the rumber of transactions
currently under execution will certainly be sufficient. The higher the initial
value of the ac's, the greater the systems freedom in shuffling with the

transaction order, but the weaker any real time guarantee about possible delays.

Finally in the above parallel system the order in which the transactions
are terminated is a possible order for the transaction stream processed by the

purely sequential system that should show the same net reaction.

