Copyright Notice

The following manuscript
EWD 376: Finding the maximum strong components in a directed graph
is held in copyright by Springer-Verlag New York.

The manuscript was published as pages 22-30 of

Edsger W. Dijkstra, Selected Writings on Computing: A Personal Perspective,
Springer-Verlag, 1982. ISBN 0-387-90652-5.

Reproduced with permission from Springer-Verlag New York.
Any further reproduction is strictly prohibited.

EWD376 - O
:) EWD376.html

Finding the maximum strong components in a directed graph.

This essay récords an exercise in orderly program composition. The
record is not completely truthful in the sense that prior to its writing
some thinking without pencil and paper was done. As a result, the
following text contains a few “"surprises" in the sense that suggestions
are made without am elaborate heuristic justification, When I noticed
myself doing so, some hearistic justification has been added afterwards.

Yhe moral of all this is: in case of surprise, please go on reading!

Given a set of nodes and a set of directed arcs leading from a nede
to @ node, it is reguested to partition the set of nodes inta maximal
strong components. A strong compenent is a set of nodes such that the
arcs betwecn them provide a path from any node of the set to any node of
the set; a single node is a special case of a strong comporent: then the
path can he empty. A meximal strong component is a strong compeorient to

which no nodes can be added.

We shall use the acronym “sa® for a set of arcs, the acronym "sn"
for a set of nodes. Dur final answer is a partitioning, that is a sct of
sets of nodes with empty intersections: for that latter objsct we shall
use the acronym "ssn®, Similarly, when tHe need arises, we shall use the
acronym "ssa" for a set of sets of arcs with empty intersection. (Note

added while typing out ibe manuscript: this need has not arisen,)

Let "sn" be the given set of nodes, Iet "sa" bz the given set of
arcs. Lel the final value of "ssn" be the desired answer. We then write

the desired final relaticn as

ssn = MSC{sa)

where MSC, the set of Maximal Strong Comporents, is regarded for constant

sn as a function of the set af arcs sa.

We want to inspect the arcs one by one (irn a suitable order still
to he chozun), i.e. we introduce iwo disjoint subsets of sz, viz., sal and

=a?, such that

sa = sal + za?

(1)

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD376.html

FWN376 -

where sal comprises the arcs inspected {initially empty, finally = sa)

and sa?2 the arcs uninspected (initially = sa, finally Bmpty).

Similarly, we want to build up the final value of ssn. We shall

do so by maintaining the invariant relation
gsn b sent = MSC(sal) (%)

Here each node of sn will either occur in an element of ssn or in an element
of ssnl, but never in both. (Besides that we can, as will be shown later,
restrict nurselves to ssni-values being sets of sets of single nodes.) The
following idea was underlying the introduction of ssnl: ssn is a set of
maximal strang components, for which —we write an algerithm for a sequential
machine!- we may expect to establish one after the other that they will

tecur as element of the final value of ssn, Our aim is that at any moment

in time, ssn will only contain elements of its final value: they are the
maximal strong companenti definitely found. Then we need ssnl for the remaining

nodes.

The initialization corresponding to- sal = empty is ssn = empty and
ssnl with each node of sm in a separste element of ssnl. When we succeed

in establishing
ssnt = empty and sa2 = empty (4)

urder invariance of (3), the desired relation (1) has been established, as

the second term of {4) implies on account of (2) that sa = sal.

We have not established yet the relation between the way in which
the nodes are divided over ssn and ssnt on the one hand and the arcs over

sal and sa? on the other. We shall maintain the following relations (5) and (6):
pach axrc originating in a node of ssn will be in sal (5)

gach arc terminating in a nnde of ssnl will be in sa2 . (6)

Relations (5) and (6) are compatible with the initial situation:
because ssn = empty, there will be no arcs originating in a node of ssn and
iherefore sal can be empty (i.e. (5) is not vinlatcd) and because ssni
camprises all nodes, all arcs should be inm sa2, in accordance with the

initial condition sa? = sa {i.e. (6) is satisfied).

EWD376 - 2

; Relations (5) and (6) are also compatible with the final situation:
because then ssn will comprise all nodes, all arcs must be in sal, in accor—
dance with sal = sa (i.e. (5) is satisfied) while {(6) is satisfied because

then both ssnl and sa2 will be emptly (see (4)).

We observe that, because sal and sa2 have an empty intersection, there
will be no arcs oviginating in a node of ssn and terminating in a node of
asnl. On the other hand, an arc originating in a node of ssnl and terminating

in a node of ssn may be either in sal er in sal.

The structure of our program hecames, if we want to apply the Tundamental

invariance theorom for loops:

sal 1= empty; sa2:= 23

4]
0]
3
i

emply; ssnl:= "the set of all single node sets";

while ssnl # empty or sa? # empty do

ntransfer arc(s) from sa? to sal" and/or
ntransfer node(s) from ssnl to sen'
under invariance of (3), (5) and (6)

od

-

Relation (5) allows us to simplify the last boolean expression:

a

anl = empty implies that all nodes are in ssn; this implies that all arcs

are in sal, which implies that sa2 = empty. Therefore it can be simplified to

while ssni £ empty do .

Relations (5) and (6), which may have come as a surprise, have been

suggested by

Theorem 1. When the set of nodes are subdivided into two sets nsA and nsB,
such that ther: are no arcs originating in a node of nsA and terminating

in a nade of nsB, then the set of strong components is unchanged when the
arcs (if any) originating in a node of nsB and terminating in a node of nsA
are removed and, secondly, no strong component comprises nodes from both

sets.

Here the nodes in ssn play the role of those in snA and Theoorem 1

tells us that the maximal strong components they will give rise to cannot

EWD3T6 - 3

depend on the arcs still in sa2., Therefore they can only depend on the
arcs in sal that have already been inspected. As a result each element
{i.e. @ maximal strong component} of an intermediate value of ssn will be

an element of its final value.

In order to detail the repeatable statement we introduce a chain of
strong components (a chain of sets of nodes), called "csn"; empty at the
beginning and at the end of the repeetable statement. The transfer of
a node from ssnl to ssn will take place in two steps: first the node will
be trans?erred.(individually) fram ssni to csn, at a later stage the node
will be transferred {together with all the nodes of the same maximal strong

compoﬂent) from csn to ssn.

The strong components in csn are so by virtue of arcs of sal and

their chaining is performed by arcs of sal, more precisely

two successive strong components in csn are connected by one arc from sal
originating in a node of the predecessor and terminating in a node of the

SuUCC2550T (7)

no arc in sal will originate at a node of an element of con end terminate

at a node of a preceding element in csn . (8)

The chain can has beenintroduced as & tool for the searching for

cycles, an sctivity that is suggested by

Theorem 2. When a nunber of strong components can be connecied via a

cyclic path, they belong to the same maximal strong component,

This theorem suggests that we try to extend the chain at one end:
whenever we encountier an arc leading from its end element to a preceding
element in the chain, from and inciuding that preceding element uvp to and
including the terminal element can he combined to form the new terminal
element, We shall call this eoperation "combine end ngments of cen'; its

purpose 1s to restore the validity of (8).

When the chain csn is non~empty, we investigate whether sa? contains
an arc f having its origin in {ene of the nodes of) the terminal element

af csn.

EWD376 - 4

If such an arc f points to one of the nodes in ssn, it can be ignored
{on account of Thecrem 1).

If such an arc f points to a node in the terminal element of csn,
it can be ignored as well —we knew already that the nodes in this terminal
element formed a strong component.

If such an arc points to (é node in) a preceding element of csn,
the end elements of csn are combined.

If such an arc leads to a node in ssni, that node is appended +to
the chain and will form, &l11 by iiself, the new terminal element of csn.

In all four cases the arc f is transferred from sa2 to sal.

If no such arc exists, the terminal element of the chain must be
a maximal sirong component of the final greph, will be removed from csn and
added to ssn, which now grows by one element. This conclusion, again, is
justified by Theorem 1. (Note. Here Thecorem i1 is applied iwice: the terminal
node is a maximal strong component because it has no outgoing arcs in the
reduced graph that we get by removing all arcs leading back to a node of
ssn after it has been established that ssn already contains maximal strong

components for the total graph.)

The structure of the repeatable statement —only starting when the

chain cen = empty and sant # empty- can be the following:

transfer an arbitrary element of ssnl and append it to an
initially empty chain csn;
while csn # empty do
if sa? contains no arc f originsting in a node of csn's terminal
element
then transfer csn's terminal element to ssn
else transfer such an arc f from sa2 to sal;
Aif f terminates in {a node of) an element of ssnl
then transfer that element from ssnl by appending it to csn
else if F leads to (a node af) a preceding eiement of csn
then combine end elements of csn

Li

EWD376 -~ 5

We have now to choose a way for representing the information. It is
assumed that the nodes are numbered from 1 through N. Because we intend to

chain nodes, it is a wise precaution to add '"a virtual node" with number O.

In the representation of ocur sets of nodes we can exploit the fact
that we know that the elements of sani are single node sets. In ssn and
csn pur elements are strong components, in cshn we can number them from
+1 upwards, in son we can number them from -1 downwards and thus we come

to the following representation with an integer array sn[O:N]

sn[i]3> C means: node i is a member of elemont sn[i]'cf csn
sn[i] < 0 means: node i is a member of element sn[i] of ssn
sn[i] = O means: rnode irig {o nodeluf} an'element of ssni
snf0] = O .

In order to scan nodes we introduce for nodes in csn or ssn an integer

array pc[1:N], whure for nade i in one of the two sets of sets

pc{i] = j means: with respect to node i, node j is the next oldest node in

the same set of sets; when j = O, node i is its oldest node.

In order to be able to trace these pc-chains we introduce two handles:

Yo = the number of the youngest node in sty when csn = empty, yo = O

ys = the number of the youngest node in ssn; when ssm = empty, ys = O.

In order to speed up the search for am arbitrary node in ssnl for
the initialization of csn, we introduce the integer k, such that ssni

contains no nodes with a number < k.

Further we introduce, in order to be able to fix the ordinal numbexr
of a new element

ec the number of elements in csn

il

€8s = the number of elemsnts ip ssn
and, in order to decide whether ssnl is empty

est = the number of elements in ssnl,

In ocur program we have to establish whather sa?2 contains an arc f
originating from the terminal element of csn. We do so by investigating the

nodes of the terminal element and on account of the poc—chaining we do so in

EWD3T76 ~ 6

nrder of increasing age in csn. Because guite a number of nodes may be a
member of the terminal element it seems a bit wasteful in time to start

this search always at the youngest node and therefore we introduce

yun = the number of "the youngest possibly unexhausted node® i.e.
8a2 contains no arcs originating in a node of csn younger than

nr. yun (if any). Again, in the extreme case, yun may get the value 0.

fur algorithm presupposes that for each node we can find "its putgoing
arcs". We therefore assume that the arcs are sorted in the order of increasing
starting node and that in that order their terminal nodes are listed in the
global integer array t[1:number of arcs] while the boundaries are given
by the integer array b[O:N], such that b[0J}= O, b[N] = number of arcs
and the nodes at which the arcs originating at node i terminate will be

t[k], with k ranging

o oplim1] <k <bli} .

For the representation of the partitioning sa = sal + sa2 we introduce

inteqer array c[O:N]

such that all arcs originating in node i and belonging to sal will have

an ordinal number k satisfying
bli~1] <k < eli]

and those in sa2 a k satisfyiﬁg
c[i] <k <bl[i] .

We assume E[O] — 0 for the sake aof safety (i.e. sa2 contains no arcs

priginating from the virtual node) .

In the follcwing program the varisble Tt is used to identify the
terminal naode of arc f, while the variable h is used for a wild collection
of short range purposes. I know that this is a poor style: I too have my

weak moments!

| EWD376 - 7

begin integer array sn, t© [0 : N], pc [1 : N];

integer yc, ¥S, €Cc, 9, est, yun, h, ft, k;
{initislize sal and sa2}
cf[0]:= 0; hi= O; while h < N do h:= h + 1; c[h]:= b[h~1] od;
{initialize ssn end ssnl}
hi= Q; while h <N do sn[h]:= O; hi= h + 1 od;
ysi= Q3 esi= 0; esl:= N; ki=1;
while es! = 0 '
do
{search for a node k in ssni}
while sn[k] £ O do k:= k + 1 od;
{remove it from ssni and initialize csn with node k}
esti= esl - 1; sn[k]:: 1,
pc[k]:: 0; yoi= ki eci:= 13 yun:i= k;
{note that at this moment node k is oldest and youngest and youngest
possibly unexhausted node of csn}
.'fﬁhilﬁ ec =~ 0
do
{search for the youngest unexhausted node of the terminal element
of csn}
while sn[yun] = ec and cfyun] > blyun] do yun:= pclyun] od
{this loop will certainly terminate, possibly with yun = O};
if sn[yun] £ ec
then {there is no arc f in sa? originating in the terminal
element nr. ec of csn and therefore this terminal element

will be transported to ssnj

es:= es + 1;
while sn[yc] = BC
do snlycli= = es; hi= pclyc]; pelve]i= ys;

!

ysi= yc; yci= h
od;
ec:= ec = 1; yun:= yc
else { c[yun]'< b[yqn], therefore the next arc originating at
node nr. yun will be transferred from sa? to sal; this is arc f}
clyun]:= ef[yun] + 1; Ft:= t[c[yun]]; hi= sn[ft];
{now Tt is the termimal node of arc f and h = sn[ft] to save

dynamically a few subscriptions!}

EWD376 - 8

if h=0
then {node ft has to be removed from ssnl and to be
attached to csn} |
esii= est = 1; eci= ec + 1; sn[ft]i= ec;
pc[Ft):: vec; ye:= ft; yuni= ye
if O<h and h < ec

elap
then fft is a node of the non—terminal element
nr., h of csn, with which the younger elements
have to be combined}
ec:= h
{this ends the use of h as h = sn[Ft]};
h:= yc; while sn[h] > e
Qg.sn[h]:: ec; h::lpc[h]
od
{ note that in combining, pc, yo and yun can
remain unchanged]

! else {arc f points either to csn's terminal
element or to an element of ssn; in either
case it can be ignured}

Fi
ii_!the case that arc f existed has been dealt with}
fi {csn's terminal element has heen inspe:tcd]
EH‘{ESH is again empty}
od {ssn1 is empty, the cowputation bas been dune};
{print the results; the maximal strong componentis appear numbered in
decreasing order}
while es >0
do newling; printtext(“maximal straong companent nr.");
printvalue(es); printtext(fcnnsists of the nodes:“);
while sn[ys] = — ES gg_printvalue(ys); ysi= pc[ys) od;

es:= es — 1

EWD%76 - 9

Concluding remarks.

In order to avoid the usual misunderstandings it might be a good
thing to point out, once again, that the approach that has been illustrated
in this exercise does not pretend to be an infallible cure against fallibility.
We have tried two things: we have iried to develop a progfam in a way that
leadé to a higher confidence level than the one that can be reached when
the designer "rushes into coding" and we have tried to make the reader
share our conviction —strengthensd by the above experiencel!- that the
simultancous develapment D% the correctness proof gives indeed a strong

) . . - - 2
heuristic guidance in the process of shaping the program.

A5 the reader will have noticed we have not spent a single word of
explanation on the repeatable statement of the small innermost loops. I
think that this is in accordance with normal mathematicsl practice: the
reasoning has to be broken down in steps so small that they can be made
"in canfidence" and that a more deteiled proof, a more detailed justification
could be given when they are challenged, but that that should not bhe done

without compelling reason. We should not waste our time on trivial

The situation at the innermost loops, where we deal with guite
standard coding technigues, is quite different from the situstion at
“the outermost levels where we have to manipulate with, concepts and relations
cooked up and discovered for the specific purpose of solving this specific
problem: it is at the latter level that the greater explicitness seems most
urgently needed, Also, it is in that part of the analysis and synthesis
that thbe most heavy demands are made upon the programmer's ability to

express himself effectively.
Finally we draw attention to the fact that we did not reed a single
example to explain what we were talking about or (even worse!) to discover

what the program should do. And this, of course, is as it should have been.

Acknowlecdgements.

We express cur gratitude towards J.A.G.M.Kexbosch and J.C.Wortmann for

bringing this problem to our attention and Lhereby presenting the challenge.

Z0th May 1975 Edsger W.Dijkstra

