EWDAC3 - O

EWD408.html

A _time-wige hierarchy impnsed uporn the use of a8 two-level stare.

Disclaimer. This no+te.descrites a way of looking at a class_of
virtual store implementations; the way seems illuminating and, as a result,
virtual store implementations to which it is applicable may be expected to
display some sensible characteristics. Not knowing ail the --extensive!--
literature on fhe subject, I do not claim any novelty; Denning's sufvey
article [1] of 1970 does not seem +o mention it, not could I find it in

the book by Coffman and Denning [2] of 1973 (nor in five other articles

on demand paging and multipregramming that at scanned).

Some simplifying assumptions about the hardware.

In Urder not to complicate the discussion unduly at the start I
shall make a few simplifying assumptions. At the end of our discussion we
may reconsider some of them; some are easily weakened, of others, hawever,
we may come to the conclusicn that, if our hardware does not allow such
idealizations, the scheduling problem will be "complified" seriously, per-
haps even beyond our comprehension and control, In the latter case we
dan't need to feel having failed "to cope with the problem", on the contrary:
the identification of a seriously "complifying" factor seems in the light

nf the present state of affairs a valuable discovery.

As primary store we assume a stnre as randomly accessible as, say,
@ core store. As. secondary store we assume a device with the characteristics
of, say, a drum pr a head-per-track disc, such that
1) place of information in secondary store need not influence decisions
to change the contents of ﬁrimary stofe
2) tire processor speed is sufficiently slow and/or the'cycle time of
the primary store is sufficiently small and/or the transfer rate between
primary and secondary store is sufficiently low that slowing down of the
- processor as a result of cycle stealiné by the channel (to all intents and
purposes) can be ignored,
3} a dedicated channel for the transport between the storage levels.
Furthermore 1 assume
a) demand-paging with fixed-size pagés

5) 8 single channel for transport between primary and seconrdaty store

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD408.html

EWDA0S - 1

6) a single processor

7) such a modest. amount of processor~status information (registers
included!) that the time neeaed for switching the processor from ope process
to another can be ignared in vieQ of the upper bound on the frequency this
switching has to take place |

8) no page sharing between user prugramsrffor instance possible on

account of a comman procedure library).

Note 1. The ahove assumptions are --or at least: were—— not unrealistic.
All but the last one were satisfied in the case of the THE Multiprogramming
. Systeh fDrI¥Hé‘EL~X8. Had we known at that time Simoﬁ's-article [3], the
following considerations could well have been reflected in the design of
that system in which, for instance, thrashing control has now been left to

the operator.

Note 2. Usually the channel between the two levels of store is a semi-duplex
channel, allowing @ transport command either to read from or to write into
secondary store. This results in the temptation

a) to keep track of "unmodified pages“ in core store that need not be
dumped because the original information is still on the drum, and, even

worse

b) to allow the information which pages are still unmodified, to influence
the replacement algorithm.

In the following I assume that this temptation does not exist —--in a swapping
drum with a full duplex channel it would be absent-- or -—if such an ideal
situation is denied to us-- it can be resisted. Cur goal is "separation of
concerns" and a coupling between the decisions what shall when be where on
the one hand and the fact whether a page has been written irto on the other
seems contrary to that goal. (A milder form of yielding to the temptation

is a separation between —-constant-- program pages which are never dumped

and data pages which are always dumped, even if in fact unchanged while
residing in core. 5till I would prefer hardware that made the distinction

pointless, at least in the case of fixed size ﬁages.)

The role of the replacement algorithm.

We assume a constant number of page frames in main store dedicated

Ewndog - 2

to a particular program. Upon a so-called "page fault" --i.e. the desire to
reference a page that is currently not in maim store-- the missing page

must be brought in from secenday store; parallel to that a page that occu-
pied one of the Q frames has to be dumped. It is the task of the "replacement
slgorithm" to choose that victim, its goal is to keep the interesting pages
in main store. Cbviously, for each reasonable strategy, unreferenced pages

have a tendency to disappear sooner or later from main store.

Unable to look forward, each replacement algorithm looks backwards,
i.e. its reasonableness is justified by the assumption of some sort of
continuity and thglexééttations regarding the near future are based upon
the near past. (Very much like the whether prediction for tomorrow "Same
whether as today.") Replacement algorithms differ in the amount of data

they collect about past history and the way in which they extrapulate.

A well-known replacement algorithm records about the past history
only the identity of the 0 pages currently occupyirg the frames. When a
victim has to be chosen, it makes --for lack of further information—-

a (quasi) random choice. As a replacement algorithm it i$ not too bad.

Arnother one is called FIFO: the page that is in main core for the
longest period of time is chosen as the victim. As a rule that strategy
genereates considerably more page faults thao the random choice described

ahove.

The best result have been achieved with LRU (Least Recently Used):
here the pages in main store are permarently ardered (logically, not phy-
sically!) in the arder of last reference to them anrd the one that has not

been referenced for the longest period of time is chosen as the victim.

The LRU-algorithm, besides making the impression of being sensible,
has a deep advantage: if the same program is re-executed with a larger value
of U, the number of page faults generated by this program shall not be
larger. This property of monotonicity makes it very sttractive. A disadvantage,
howevef, is that the collection of the information --i.e. the ordering

according to last reference-- is rather expensive.

EWD403 - 3

A good compramise seems to have been discovered in the so-called
"Second Chance Algorithm". Here only a boalean is associasted with each
page %rame, a boolean which is*set to true at each réference to the corres-
ponding page. In the case of a page fauli these booleans are scanned in
a cyclic order: if the baclean is true, it is set to false and the scanning
proceeds to the next orne, if the boolean is false, the victim is found.. At
the next page fault scanning will start at‘tha next boolean, Its ease of
implementation and the fact that it is hardly noticeably worse than LRU
have given the Second Chance Algorithm a well-deserved popularity. (I have
described the Second Chance Algorithm in more detail because I do not know
of a publication of it; I would love to give credit where credit iQ due, but
this is one of those delightful small inventions that, by word of mouth,

spread like wildfire.)

It is worth noticing that neither LRU, nor the Second Chance Algorithm,
although reasonable, are always cptimal. On the cantrary: in the case of
cyclic references to Q+! pages, LRU is as bad as possible, as bad as FIFO.
Instead of refining the replacement algorithm it seems in such a case wiser
to detect the poor performance and to incfaase . Mind yau, 1 am not advocating
a brute force method --1 am too much a puritan for that!-- but if we have
the choice between spending our investment in a neutral facility tilke more
core or in the implementation of a very refined replacement strategy, we
should realize that there will always be reference patterns for which our
refined strategy will fail miserably compared to other strategies. Some more
primary store, however, will never do barm and will be useful under a greater
variety of loads. Much of the extensive research spent on a great variety

of replacement algorithms strikes me as rather ill-directed.
I honestly assume that something simple like Random or the Second
Chance Algorithm will do, in spite of the fact that they fo not enjoy the

property of monotonicity such as LRU.

A program-wise balance between traffic time and computation time.

Let for a given program T be the total time the transport facilities
bétween the storage levels have been monopolized on behalf of its page faults.
Let for that same program C he the total time the processor has been mohopo-

lized on behalf of the progress of the corresponding cemputation. While

EWD408 - 4

C is given by the computation to be performed, T depends on the chosen
replacement algorithm and the number Q of dedicated page frames, the so-called
. "window size". {For the time. being we assume that the window size . is kept

constant over the whole :umputatian.)

When we now chose for each program a window size leuch that each
program's T/E—ratin is about equal to 1, then each program absorbs the
same fraction of the two resources "traffic" and "computation" and we can
schedule them together as a single shared resource, assigning "priorities™
as we please. Under what further éssuhptinns would such:system work reasonably

well?

To start with, no program can ever utilize more than 50 percent of
the combined.resource and far full utilizestion we need therefore at least
two programs. With two programs, full machine utilization is only possible
provided the twa programs gemerate their page faults with great regularity,
for instance: during the first transport one idles and the other proceeds,
which generates its page fault as socon as the idler can proceed. Such
reqularity is more than we can hope for, we must expect that the compu-
taion times between successive page faults will differ. It is also clear
what has to be done about it: increase the degree of multiprogramming. I
have a gut feeling that with four or five programs simultaneously in the
machine (and net too extreme schedulinq) most of these irregularities will
be absorbed. {The gqut feeling is based on an old experiment; for a conservative
two-particle system Boltzmann's distribution --which tells that for any
particle at any moment of time the probability of a kinetic energy between
U and U+dlU is proportional to exp(—U/kT)dU—m cannot hold; I simulated a
three particle system and the exponential distributions came out beauti-
fully! Admittedly the analogy is not too strong, yet it gives me the feeling
that four or five is a reasonable guess; at a later stage we could try some
baby-queueing-theory.)

For a given program we can we can plot the TC consumptinnf while
C increases we move a pencil point to the right, while T increases we move
a pencil point upwards. On the average our pencil point must rise under an
angle of 4% degrees. Type a) is a pfogram with small irregularities, type b)
is a program with larger irregqlarities, pre c), however, is a challenge
to our assumption that a window size constant all-thrdggh the computatiaon

is indeed a good thing: during the first half, which displays a T/C-ratio-

EWD408 - 5

~
|
)

e)

greater than 1, we should like to decrease T, what may be achieved by)
increasing the window size; In the second half a smaller window size might

bring the T/C-ratio cleser to 1.

The next refirnement, of course, will be to. observe the T/C—ratios
for the individuasl programs, decrease the window size when it is too small
and increase it when it is too large. Compared with the target page fault
frequency for a given program, the frequency of its window size adjustments
must be an order of magnitude sﬁaller, because --unless, perhaps, the
window size is ridiculous-- the whole notion of a window size being
adegquate or not in view of the resulting T/C—ratin is only meaningful
over a longer strétch of T and € consumption. Picture c) indicates that,
if T and C are the accumulated consumptions since the last decision to
set or keep the window size at its current size, the absolute value
|T-E| —-i.e. the deviation from the diagonal--exceeding a threshold
could be a good indication to reconsider the window size. (Note: if
your target T/C-ratia is not 1, but 0.9, than one should take the
absolute value ’T—O.9Cl)

We may now hope to arrive at a very smoothly working system provided
that for each program there is indeed a window size such that its T/C-ratio
is close to 1, In the case of a progr;m with highly interleaved references
to 4 pages, howeverm a window size = 4 will give a T/E-ratio = Q0 and
a window size = 3 will give an arbitrarily high T/C-ratio. With window
size = 4, we have T = 0 and we shall reconsider after L= threshold; if
we then decide upon a window size = %, then in the extreme case C will
drop to zero and the window size is reconsidered when F = threshold, i.e.

two such periods together have again a T/E-ration =1 1 (This is just a joke,

EWD4C8 - 6

not an intended feature. When I saw this, I started ladghing. It says
something about the stability of the window size adjustment mecharisms at
this end of the scale and that, is very encourageing. 1 think that I would
keep the window size = 4 for longer periods of time: the wincow size oscil-

lation with extreme T/Emratios is not difficult to detect.)

InVEhe-case of a program with high vagrancy -a random refeiencing
through thOO-OOO pageérand hardly apy computing at all-- we shall always
have a very high T/C-ratio and if the system reacts upon this reqrettable
state of affairs b& increasing and increasing its window size, then the
system comes in a silly state that should be avoided. (At this side of
the spectrum the window size adjustment mechanism suggested has not that
stability.) It would be nice if for each program the system kept a list
of the identities of the last so-many dumped pages: fram'this list we can
derive a very good indication whether the most recent computation would
have given a smaller T/E-ration with a larger window size. (If I am not
mistaken, the guess can be absclutely accurate if the LRU strategy has
been used for-replacement; Second Chance Algorithm or Random seem to
allow a good estimate.) We must be able to detect that increasing the
window size is no good, yeah, even that, although the T/E—ratin is too high,
a decrease of the window size might not make it worse; in the latter case
the window size must tentatively be decreased until oscillation as mentioned

above.

Change of window size will change the number of free pages -- when
the number becomes too large or too small, we may or must decide te change

the degree of multiprogramming.

* *

The above has been written for many reasons. To a large extent it
was like paying an old debt, repairing an old omission: we should have
thought such type of thoughts a decade ago when we were designing the THE
Multiprogramming System in which the replacement algorithm was. LRU but then
applied to the whole of main store. As a result a program with high

vagrancy proceeded very slowly and could reside very leng in the system.

I remember that we have considered for a moment to keep track of

which page frames were used by which program but that we have given up

.

EWD408 - 7

tp pursue this idea rather quickly, because we had difficulties with the
shared library pages. What the difficulties were I don't remember, for now
it seems obvioLs what to do. If prograﬁ A requests access to a shared page
‘that happens to be in the window of ﬁrugram H, the number of free pages
increases by 1 because the_tﬁn windos. are made to overlap on that page;
Both programs keep indeperndently of eachother track of their awn usage for
the sake their own replacement algorithm. When the first of the two pushes
the shared page out of its window the number of free pages decreases by
one. When the last owner of the page pushes it out of jits window, then the
page disappears from main store. The possible gain of page sharing sbould
not be too great, for otherwise the pressure to schedule such as to maximize

such coincidences becomes too strong. Such pressure should be resisted, vielding

to it would be terrible! (Immediately after I had written down and underlined

this sentence, I found in Denming [4] "Allocation policies should terd to
run two processes together in time whenever they are sharing information..."

etc.!)

A second reason for writing the above down was an effort towards
unmuddling my own mind. Last week the Dutch Computer Society NRMG organized
a two-day Symposium on Operating Systems. (I spoke, but not at all about
strategies; my subject was the mathematical relation between synchronization
and sedquencing, between deadlock and termination.) It was a depressing
symposium: while most speakers wanted to talk about how to design a good
operating system, the majority of the audience wanted to hear how to live
with a bad one. And that is a different subject.... 1 was appalled during
the discussion by the guestions that came from the floor; I got the impression
of operating systems that cause the machine's behaviour to be extremely
sensitive to all sorts of workload.characteristics, anrd, even worse, in
a hardly predictable way. Ahd I have the feeling that a machine is only
useful provided the relevant aspects of its behaviour are reasonably well
Vpradi:table and, also, as unsensitive to workload characteristics as we
can poséibly achieve. Such "smoothness" in the systems reactions seems much
more important than the utmost efficiency, that justifies all complications
that have been introduced. Honesty should even force us to add, that after
éll, efficiency considerations justify only the efforts and not the result.
For from various participants I heard that they would regard a cen}ral
processor utilizdtion of 75 percent as a great achisvement of the Uperéting

system! In what crazy world are we living? So 1 started to think.

EWD40S ~ 8

The sketched approach --aiming both at smoothness and avoidance
of extreme situations~- can be viewed as an.effort to design with Simon's
"The Architecture of Eomplexity"_in mind. For the praper functioning of a
hierarchical organizatian a necessary condition is that the naturai grain
for understanding each level grows by an order of magnitude when we‘go
one level up. Here we are tryjng to understand what happens in time and
our grains are therefore grains of time. The minimal time grain is of
microseconds: the occurrence is & reference to 8 word in main store. This
is applicable for the description of the happening during C-growth, betwsen
page faults. The next time grain is of the order of magnitude of a few
centiseconds: at that level the relevant occurrence is the transport
generéted by a page fault. The next time grain will be of the order of
magnitude of a second, viz. when for a program its window size will be
reconsidered. The decision to change te degree of multi-programming will
be taken witH still lower frequency. On account of past experience I judge

this as inspiring canfidence.

The whole .model gives me a better grasp on what you should say
to someone who complains that he cannot keep his processor busy. If he
is content with his throughput, you should say "Why bother?” or "What about
a slower processor?" (In the early days I have seen, at an English University,
where an IBM 7090 could not cape with the load, that this was replaced by
an IBM 7094, so that that machine could wait four times as fast an its
mag&etic tapes!) If be bothers, faster store and tramsport will always do
the job --this is, mathematically, of course the same suggestion as slowing
down the processor. Just inereasing the store Qill not help if the real
source of the difficulties are the high vagrancy programs, it will help
if bhe can increase his degree of multiprogramming in order to absorb the
apparently severe irregularities. {Somehow I cannot expect that these
severe irregularities in page fault occurrence can be successfully absorbed

by a modest increase of the window Size.)

Finally -I have understood why I;have never been able to see much
significance in Denning's notion of the working set, viz. the éet of
pages referenced in the last t seconds of computation time: in that notion
the intensity of the interleaving of tHe references is disguised, if not
hidden and it is this intensity of interleaving which tells us how much the

T/Curatia might rise.

EWD408 - 9

A firal word about our simplifying assﬁmptiuns.'Dhe channel and
one pracessor are not essential, nor the ahsence of page sharing. Assumption
T is not used explicitly in this note, it is.of qourse essential in the
realm of processor scheduling where yaulwant to give the processor to the
most uréen job and do not like to make this choice a compromise between
the above desire and the desire to minimize the switchings from one. to
another. The fixed size pages are attractive for the simplicity of the
tonsiderations, to figure out how complicated this story would become for
variable size pages (in the sense of "quanta of presence in main store")

I just don't know. I guess that a similar story can be told.
Assumptions 1 and 2 seem pretty essential and so does number 3.

Finally, let there be no misunderstanding about this note: it has no
gcientific pretensions, nor should it be regarded as a suggestion for new
implementations, It has been writter for my own clarification and all others

that would like to read this note are welcome to do so.

[1] Dpenning, Peter J., "Virtual Memory".EUmputing Surveys VYo0l.2, No 3 (Sep.
1970) 153 - 189

[2] Coffman, Jr., Edward G. and Denning, Peter J., "Operating Systems
Theory", Prentice-Hall, Inc., Englewnod Cliffs, 1973

[3] Simon, Herbert A, "The Architecture of Complexity”, reprinted in
Simon, Herbert A."The Sciences of the Artificial" MIT-Press 1968

[4] nDenning, Peter J., "The Working Set Model for Program Bebavior"
Comm.A.C.M. Vol.11, No 5 (May 1968), 323 - 333

-Author's address: prof.dr.Edsger W.Dijkstra
Burroughs . ‘ Research Fellow
Plataanstraat 5

NUENEN - 4565

The Netherlands

