EWD41E - O

EWD416.html

On avoiding the infinite.

This chapter should be skipped by most of my readers: it should be
Skippea by ali thecse that could not care less, it should also be skipped
by all dyed-in-the-wool logicians, who probahly care too much. Its
inclusion is the consequence of a few piercing remarks made by John C.
Reynolds in earlier correspondence hetween him and me. It goes without
saying thzt he is in no way to be held rfresponsible for the following

exposition, which, 1 am sure, is somewhat shaky anyhow.

With respect to modelling what computers can do for us, there are

two extremist views.

The ore view stresses the fact that computer stores have only a
finite capacity and that therefore our machines can be regarded as a finite
state automaton. This has as a consequence that if the computation proceeds
without terminating , it must return within a finite number of steps in
2 state in which it has been befecre. If the machine is fully deterministic,
history will from then onwards repeat itself, and the computation will
therefore never terminate., If the machine is non-deterministic in the sense
as we have introduced non-determinacy --i.e. that in some states there is
a choice between a finite number of alterrmatives-- the situation is more
complicated. We may have states wheres the machine will never terminate,
we may have states where the maechine will certainly terminate and we may
have states where the machine may terminate after am a prieri unbounded

" "

number of steps. In a machine with two boolean variables "gtop™ and "go aon

we can investigate the following program:

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD416.html

EWD416 - 1

do go on — skip

stop — skip

=]
]
J

— —
)
[u]
3

stop — stop:= true

If "go on" is true, it will remain so and proper termination is excluded.
If "go on" is false, we have to distinguish between two casss: if "stop"
is true, termination is ensured, if, however, "stop" is false, the non-
determinacy leaves the choice between the second and thé third guarded
command open. As lang as the third guarded command is not selected, "stap"
remains false and the secoﬁd command may be selected an unbounded number

of times: termination is not guaranteed but it remains possible.

The other view stresses that, although the number of states of a
modern computer is indeed finite, it is in practice sao incredibly large
that the remark that the determimistic machine is bound to start cycling
is rather irrelevant, because the length of most cycles is such that we
could never live long enough to see the machine perform sucH a cycle.

The freedom to forget about the fact that we can only distinguish between
a finite number of different states is then immediately exploited by
introducing variables of type integer whose range --all whole numbers--
is clearly infinite. In our previous examples we bave very clearly done
go, How does this model, however, relate to what can take place in our

admittedly finite comouters?

EWD416 - 2

The extremists with the second point of view forget that nobody but
the Good Lord could make such a machine --and that up £ill mow He has
failed to do sol-- and have made it a subjsct of intensive study, to the
extent that they have pondered about what it could do when we would set
it in motian from row until eternity. As soon as one starts asking oneself
such questimﬁs, however, its infinite size is no longer only a luxury
but also creates problems, problems we should like to avaid. In this
monograph we try to steer a middle course between the Scylla of the
finite constraints and the Charybdis of the unfathomed infinite. We shall
try to come away with just enough theory for dealing with the behaviour
of the unlimited machines only for initial states such that proper ter-

mination is guaranteed.

Let us first restrict ourselves to the simpler case that the unlimited
machine is fully deterministic. In each initial state activation of our
machine will then give rise to & unigue happening; if that happening termi-
nates after a finite number of cnmpﬁtational steps have taken place, a finite
number of integer values have been manipulated and therefore their maximum
absclute value had a unigue lowest upper bound. We repeat that that lowest
upper bound is uniguely determined by the initial state. For that initial
state we apparently did not need our unlimited machine! The computatiaon
could have been dorne by a machine of finite size, and even stronger: we

-—or at least the Good Lord-- could decide upan & sufficient size a priori.

The critical step in the above reasoning is that the knowledge of
an upper bound for the number of computational steps allows us to conclude
an upper bound for the maximum absclute value of integers to be catered

far. Let us now consider a non-deterministic machine and the class of

EWDA16 - 3

of possible happenings that may take place when we activate it in an
initial state such that only properly terminating computations can ensue.
Fach individual computation of that class will only manipulate a finite
number of values, but if the class of possible computations is infinite,
a maximum abolute value manipulated is no longer necessarily bounded. That
wauld be nasty and we should try to convince ourselves that the form af
non-determinacy we have introduced is so mild, that infinity of the class
of possible computatiaons when termination is guaranteed, is excluded.
buckily we can, if the if ... fi- and the do ... pd-constructs are our
only source for non-determinacy. Firstly each guarded command list con-
taing a fixed and finite number of alterratives. Secondly the a priori
upper bound on the number of computational steps implies an upper bound
on the number of times the non-deterministic chcice can be made. From
these two considerations it follows that the form of non-determinacy

we have introduced is aptly described as "bounded non-determinacy". As

& result also in the case of our bounded non-determinacy, we --ar again
at least the Good Lord-- could for each initial state decide a priori

upen a sufficient size of a finite machine that could do the jab.

The maral of the story is that a bounded number of computational
steps and bounded non-determinacy tocgether imply that the number of
possible happenings and the maximum value possibly manipulated are hoth

bounded as well.

The fact that the nun-determinacy is bounded is very intimately
tied to the guarded commands. For not only do they not introduce unbounded
non-determinacy as we have seen, but also in the presence of unbounded

non-determinacy --supplied by some other magical means-- the semantic

EWD416 — 4

definition of the repetitive construct would be subject to doubt, to say

the least.

Suppose that we have a non-deterministic primitive

"set x to any pasitive wvalue"

and consider now the program

5: do x >0 = xi= x - 1

ﬂ x <0 - set x to any positive value od

I expect mast readers tc agree that, no matter what irmitial value
of x , this program will terminate sooner or later with x = O , If
initially x > O, then we know a priori the number of steps (viz. the
initial value aof x); if initially x <0, we don't, but yet we have the
feeling that it must terminate because then the second altermative will
be chosen and after its successful executicen, x will have some pasitive
value that will be brought down to zero in a finite number of steps. As

we shall see, the crux can be pinned down to the proviso "after its

successful execution™.

Our formalism, however, gives far Hk(T) -—the weakest pre-condition

such that the construct terminates after at most k steps--:

HR(T) = (0 < x < k)

I
P
Il
x
~
v
(]
-
Pana
_‘
e
R

and wp(DU, T)

The inability to give for any negative x a priori an upper bound for

EWD416 - 5

the number of steps needed is translated into "for negative x termination

is not guaranteecd”. Have we failed?

That we have not can been seen by considering 2 possible implemen-

"

tation for set x to any positive value", e.q.

go oni= true; xi= 1;
do go on - x:= x + 1

B go oan — go on:= false

This construct will continue to increase x as long as the first alterna-
tive is chosen; as soon as the second alternative has been chosen ance, it
terminates immediately. Upon termination x may indeed be "any positive
value" in the sense that we cannot think of a positive valus= X such

that termination with x = X is impossible. However, terminatien is not
guaranteed either! If we substitute our implementation for "set x to

any positive value" we gat

[x <0 - go ont= true; x:= 1;
do go on - xi= x + 1

ﬂ go an — go an:= false

Mow it is fully correct not to guarantee terminatian for initial states
with »x =<0 , but not so much because we cannot say & priori how many steps
the outer cycle will take, but because we cannot guarantee termination for
the subprocess that would decide upon that number of steps: we cannot

guarantee termination for the process that is expscted to increase x ta

EWD416 - 6

an unbounded value! If it is expected to increase x possibly beyond any
bound, we must alsc accept that it will go on for an arbitrarily long time,

even forever.

There is still another reason for wanting to avoid unbounded non-
determinacy. The repetitive construct gives rise to a weakest pre-condition

of the form

)

(E k: k > 0: "

where

for k > 0Q: H =>H for all states
- k k+1

(This implication is intuitively clear from our interpretation "... after
at most k executions of a guarded command"; formally it is easily proved

by mathematical induction.) Such 2 condition might easily occur as post-

condition for snother statement, 5 say, and then we would like that

wp(s, (£ k: k > O o)) = (Ent n=0: we(s, H)) . (1)

For a statement 5 with unbounded non-determinacy, however, this

equality does not necessarily hold, as is shown by the example

H = 0 < x <k
k — —
S: set x to any positive value

Relation (1) does hold, however, under the assumption that the non-deter-
minacy of 9 is bounded. In ocrder to prove (1), we prove that for =211

states esach side of (1) implies the other.

Cormsider an initial state such that the righthand side of (1) is

true, i.e. there exists a value N such that in this initial state

wp (5, HN)

EwD416 -~ 7

holds. Because

Ho=> (E k: k> 0: H) for all stetes

N k

we may conclude that

wp(s, HN) => wp(S, (E x: k > 0O Hk)) far all states

and therefore in the initial state considered the lefthand side of (1)

must be true as well, We have proved that the righthand side of (1) implies
the lefthand side of (1) in 211 states without an appeal an the hound on
the non-determinacy; we need this bound to prove the implication the other

way round.

Consider an initial state such that

)) ;

wp{S, (£ k: k > O .

for such an initial state we guarantee termimation in a bounded set of

final states, each of them satisfying

(E_k: k = 0 Hk) :

because each Hk implies all its successors, for each of these fipal states

there is a minimum value kmin, such that
(A k: = kmin: H) .

Because the set of possible Tinal states is bounded, the set of kmin-values
is bounded and there is a maximum kmin-value, K say. As a result, our

initial state satisfies

wp(s, H)

and as wp(S, HK) :>>(E n: n > Oy wp(S, Hn))

the implication hss been proved in the other direction as well. Relatian (1)

has been proved for all states.

EWD416 - 8

As a consequence we can prove --with the usual meanings of BB, IF

and DO -- that

(BB and wp(DO, R)) = we(IF, wp(DO, R))
For wp(IF, wp(DO, R)) = wp(IF, (E k: k > O: Hk(R)))

= (E n: n > 0: wp(IF, Hn(R)))

(and because HO(R) => naon BB and for any P we have Wp(IF, P) = BB)

(R))

= BB and (E n: n > 0: wp{IF, HH(R)) or H

0
= BB and (E k: k > 1: Hk(R))

BB and wp{DO, R)

In other words, in all initial states such that BE holds

do B, - SL1H B, ~ SL, I ... B —SL od (2)

is equivalent to

if 8 -5t 08, ~sb, [.. 5, 5L fi;

go By - st {38, -5, [...] B — Sl od . (3)

In initial states where BB does not nold, program (2) would have acted

as "skip", while program (%) would have acted as "ahort".

I find it somewhat discorcerting that so much has been involued in
the formal procf of the partial equivalence of (2) and (3)s the more so
because this partizal equivalence is intuitively so cbvious. On the other
hand it gives some confidence that it can be done. At the beginning of
this chapter [have suggested that the msjority of my readers should skip
this chapter; at its end I express the hope that the few that have studied

it will appreciate its inclusion.

