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Guarded commands, non-determinacy and a calculys for the derivation of

pragrams.

1. Introduction,

In section 2, two statements, an alternative construct and a repet-
itive construct will be introduced, together with an intuitive (mechanistic)
definition of their semantics. The basic building block far both of them
is the so-called "guarded command"”, a statement list prefixed by a boolean
expression: only when this‘buolean expression is initially true, is the
statement list eligible for execution. The potential non-determinacy
allows us top map otherwise (trivially) different programs on the same

program text, a circumstance that seems largely responsible for the fact that
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now programs can be derived in a more systematic manner than before.

In section 3, after a prelude defining the notation, a formal defi-
nition of the semantics of the two constructs will be given, together with

two theorems for each of the constructs (without prccf).

In section 4, it will be shown, how upon the above a formal calculus
for the derivation of programs can be founded. We would like to stress
that we do not present "an algorithm" for the derivation of programs: we
have used the term "a calculus™ fer a formal discipline --a set of rules--
such that, if applied successfully
1) it will have derived a correct program
2) it will tell us ihat we have reached such a goal.

(In choosing the term "calculus" we have been inspired by the "integral

calculus" and the "propositional calculus" where we have a very similar

situatinn.)

2. Two statements made from guarded commands.

If the reader accepts "other statements" as indicating, say,
assigmment statements and procedure calls, we can give the relevant syntax
in BNF [2]. In the following we have extended BNF with the convention
that the braces "{...}" should be reed as: "followed by zero or more

instances of the enclosed".

<. guarded command > ;:= < guard > - < gquarded list >

< guard > ::= << boolean expression >

< guarded list > ::= < statement > {; < statement >}

< guarded command set > ::= < guarded command >-{ﬂ < guarded command >}
< alternative construct > ::= if < guarded command set > fi

< repetitive construct > ::= do < guarded command set > od

< statement > ::= << alternative construct >>l < repetitive construct >

"other statements" .

The semicolons in the guarded list have the usual meaning: when the
guarded list is selected for execution its statements will be executed

successively in the order from left to right; a guarded list will only be
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selected for execution in a state such that its guard is true. Note that

8 guarded command by itself is pot a statement: it is component of a
guarded command set from which statements can be constructed. If the
guarded command set consists of more than one guarded command, they are
mutually separated by the separator "[|" ; our text is then an arbitrarily
ordered enumeration of an unordered set, i.e. the order in which the guarded

commands of a set appear in our text is semantically irrelevant.

Our syntax gives two ways for canstructing a statement out of a
guarded command set. The alternative construct is written by enclosing

it by the special bracket pair: "if ... Fi". If in'the initial state none
of the guards is true, the program will abort, otherwise an arbitrary

guarded list with a true guard will be selected for execution.

Note. If the empty guarded command set were allowed "if fi" would be

semantically equivalent to "abort" . (Fnd of note. }

An example --illustrating the non-determinacy in a very modest fashion--
would be the program that for fixed x and y assigns to m the maximum

value of x and vy :

Af x>y ~ mi= x
ﬂ ¥y 2 X =mi=y

The repetitive construct is written down by enclosing a guarded
command set by the special bracket pair "do ... od" . Here a state in
which none of the guards is true will not lead to abortion but to proper
termination; the complementary rule, however, is that it will only terminate
in 8 state in which none of the guards is true: when initially or upon
completed execution of a selected guarded list one ar more guards are true,
a new selection for execution of a guarded list with a true guard will take
place, and so on. When the repetitive construct has terminated properly,

we know that all its guards are false.

Note. If the empty guarded command set were allowed "do o0d" would be

semantically equivalent to "skip" . (End of note.)



EWD418 — 3

An example --showing the non-determinacy in samewhat greatef,glory——
is the program that assigns to the variables ql, q2, g% and g4 a permutation
of the values Q1, 02, 03 and Q4, such that ql <q2 <q3 <q4 . Using

concurrent assignment statements for the sake of convenience, we can program

ql, 92, q3, g4 :=Q1, Q2, Q3, a4;
do q! >q2 - g1, g2 := g2, qf
g2 > g3 - g2, g3 := g%, g2
Q3 > q4 - q3, g4 := q4, g3

[ I

-

To conclude this sectieon we give a program where not only the computation
but also the final state is not necessarily uniquely determined. The program
should determine k such that for fixed value n (n >'O) and a fixed

function (i) defined for O =i<n, k will eventually satisfy:
O<k<n and Vi: 0<i<n: flk) > f(i)) .

(Eventually k should be the place of a maximum.)

i= 05 ji= 1
do i £ n = if £(§) < k) - ji= j + 1

Fi) = Flk) = ki= ;5 je= j + 1

=3

Only permissible final states are possible and each permissible final

state is possible,

3. formal definition of the semantics.

3.1. Notational prelude.

In the following sections we shall use the symbols P, @ and R
to denote (predicates defining) boolean functions defined on all peints of
the state space; alternatively we shall refer to them as "conditions",
satisfied by all states for which the boolean function is true. Two special
predicates that we denote by the reserved names "T" and "F" play a
special role: T denotes the condition that, by definition, is satisfied

by 8ll states, F denotes, by definition, the condition that is satisfied
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by no state at all.

The way in which we use predicates (as a tool for defining sets of
initial or final states) for the definition of the semantics of programming
language constructs has been directly inspired by Hoare [1], the main
difference being that we have tightened things up a bit: while Hoare
introduces sufficient pre-conditions such that the mechanisms will not
produce the wrong result (but may fail to terminate), we shall introduce
necessary and sufficient --i.e. so-called "weakest"-- pre-conditions such

that the mechanisms are guaranteed to produce the right result,

More specifically: we shall use the notation "wp(5, R}" , where S
denotes a statement list and R some condition on the state of the system,
to denote the weakest pre-condition for the initial state of the system such
that activation of S is gquaranteed to lead to a properly terminating
activity leaving the system in a fipal state satisfying the post-condition
R . Such a "wp" —-which is called "2 predicate transformer", because it
associates a pre-condition to any post—condition R ~- has, by definition,

the following preoperties.

1) For any S , we have for all states
wp(S, F) = F

(the so-called "Law of the Excluded Miracle").

2) For any 5 and any two post-conditions, such that for all states
P=>0Q

we have for all states

wp(s, P) = wp(s, Q) .
3) For any 5 and any two post-conditions P and B we have for all
states (wp(S, P) and wp(S, Q)) = wp(S, P and Q) .
4) For any 3 and any two post-conditions P and Q we have for all
states

(wp(S, P).EE wp(S, Q)) = wp(S, P a Q) .

e

Together with the rules of propositional caleculus and the semantic

definitions to be given below, the above four properties take over the
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role of the "rules of inference" as introduced by Hoare [1].

We take the position that we know the semantics of a mechanism S
sufficiently well if we know its predicate transformer, i.e. can derive

wp(S, R) for any post-condition R .

Note. This pasition is taken in full acknnwledgameﬁt of the fact that in
the case of non-deterministic mechanisms, the knowledge of the predicate
transformer does not give a complete description: for those initial states
that do net necessarily lead to a properly terminating activity, the
knowledge of the predicate transformer does not give us any informetion
about the final states in which the system might find itself after proper

termination, (End of note.)

Example 1. The semantics of the empty statement, denoted by "skip", are

given by the definition that for any post-condition R , we have

wp("skip", R) = R .

Example 2. The semantics of the assignment statement "x:= E" are

given by X

wp("x:: E", R) = R
E N

in which R; denotes a copy of the predicate defining R in which each

occurence of the variable "x" is replaced by "(E)".

Example 3. The semantics of the semicolon ™;" as concatenaticn operator

are given by wp("S1; 52", R) = wp(St, wp(s2, R)) .

3.2. The alternative canstruct.

In order to define the semantics of the altermative construct we
define two abbreviations.

" n
Let "IF" denote f B - 5L1 D...1 Bn - SLn fi ;

=1

let "HB" denote @

1<i<n: Bi)

then, by definitien
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wp(IF, R) = (BB_a_'ﬂ Ni: 1 <i<n: Bi =>wp(SLi, R)) .

(The first term "BB" requires that the alternative construct as such will
not lead to abortion on account of all guards false, the second term
requires that each guarded list eligible for execution will lead to an
acceptable final state.) From this definition we can derive --by simple

substitutions—-

Theorem 1. From
Mi: 1 <i<n: (Q and Bi) =>wp(SLi, R)) for all states
we can conclude that

(Q and BB) = wp(IF, R) holds for all states .

Let -"t" denote some integer function, defined on the state space,
and let "wdec(S, £)" denote the weakest pre-condition such that activation
of 5 1is guaranteed to iead to a properly terminating activity leaving the
system in a final state such that the value of t is decreased by at
least 1 (cumpared to its initial valué). In terms of Mwdec™ we can for-

mulate the very similar

Theorem 2. From
(Vi: 1 <i<n: (Q and Bi) deec(SLi, t)) for all states

we can conlude that

(Q and BB} => wdec(IF, t) holds for all states.

Note (which can be skipped at first reading). The relation between "wp"

and "wdec" is as follows. For any point X in state space we can regard

wpl(S, t < to)

as an equatiaon with to as the unknown. Let its smallest solution for to
be tmin(X). (Here we have added the explicit dependence on the state X.)
Then tmin(X) can be interpreted as the lowest upper bound for the final

value of t if the“mechanism S is activated with X as initial state.

Then, by definition,

wdec(S, t) = (tmin(X) < t(X) - 1) = (tmin(X) <ft(X)) .

(End of note.)
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3.3. The repetitive construct.

As is to be expected, the definition of the repetitive construect

do B —-5L1l]...]]13n-.51_n3g

1
that we denote by "DO" , is more complicated.

Let Ho(R) = (R and non BB)
and for k > O: Hk(R) = (wp(1F, Hk“1(R)) or HO(R))

(where "IF" denotes the same guarded command set enclosed by "if  fi")

then, by definition

wp(D0, R) = (Fk: k > 0: Hk(R)) .
(Intuitively, Hk(R) can be interpreted as the weakest pre-condition guar-
anteeing proper termination after at most k selections of a guarded list,

leaving the system in a final state satisfying R .) Via mathematical

induction we can prove

Theorem 3. From

(P and BB) ﬁ>~(wp(IF, P} and wdec(IF, t)) for all states
and C?)’Bg,-_ﬂsi P\Q {(t > 0) for all states

we can conclude that we have for all states
P => wp{DD, P and non BB) .

Note that the antecedent of Theorem 3 is of the form of the consequents of

Theorems 1 and 2.

Because T 1is the condition by definition satisfied by all states,
wp(S, T) is the weakest pre—condition guaranteeing proper termination for
S . This allows us to formulate an alternative theorem about the repetitive

construct, viz.

Theorem 4. From
(P and BB) £>-wp(IF, P) for all states,
we can conclude that we have for all states

(P and wp(DD, T))} = wp(DO, P and non BE) .

In connection with the above theorems "P" is galled "the invariant relation”
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and "t" is called "the variant function".

4, Formal derivation of programs,

The formal requirement of our program performing "m:= max{x, y)"

--see above-- is that for fixed x and y it establishes the relation

Re (m=xo0 m=y)andm2xandm2y .

Now the Axiom of Assignment tells us that "m:= x" is the standard

"

way of establishing the truth of "m = x" for fixed x, which is a way

of establishing the truth of the first term of R. Will "m:z= x" do the

job? In order to investigate this, we derive and simplify

wp("rﬁ::x", R) =(x=x_c_!_1"x=y) and;czxg_ngxzy

——

= x2Zy .

Taking this weakest pre-condition as its guard, Theorem 1 tell us that

if x 2y = m:=x fi

will produce the correct result if it terminates succesfully. The disad-
vantage of this program is that BB £ T, i.,e. it might lead tc abortion;
weakening BB means looking for alternatives which might introduce new

n it

guards. The obvious alternative is the assignment "m:= y" with the quard

wp{"ms= y", R) = y > X

thus we are led to our program

if x 2y »m=x
[ y2x=m=y
i

and by this time BB = T and therefore we have solved the prohlem, (In
the mean time we have proved that the maximum of two values is always
defined, viz. that R considered as equation for m has always a

solution.)

As an example of the deriviation of a repetitive construct we shall
derive a program for the greatest common divisor of two positive numbers,

i.e., for fixed, positive X and Y we have to establish the final relaticon
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X = gcd(X, Y) .

The formal machinery only gets in motion, once we have chosen aur
invariant relation and our variant function. The program then gets the

st t
ructure "establish the relation P to be kept invariant";

do "decrease t as long as possible under invariance

of P" od .

Suppose that we choose for the invariant relation
P g:d(X, Y) = gcd(x, y) and x >0 and y >0
a relation that has the advantage of being easily established by

xi= X3 yi= Y .

The most general "something™ to be done under invariance of P is

of the form x, yi= E1, E2

and we are interested in a guard B such that

(P and B) => wp("x, y := E1, £2", P)
= (ged(X, Y) = ged(€1, €2) and £1 >0 and £2 > 0) .

Because the guard must be a computable boolean expression and should
not contain the computation of gcd(x, Y) -~~for that was the whole problem!--
we must see to it that the expressions E1 and E2 -are so chosen, that
the first temm

ged(X, Y) = ged(E1, E2)

is implied by P , which is true if
gdc(x, y) = gcd(E1, £2) .

In other words we are invited to massage the value pair (x, y) in such
a fashjon that their gcd is not changed. Because ~-and this is the place

where to mobilize our mathematical knowledge about the gcd-function--
gcd(x, y) = gcd(x - ¥, y)

@& possible guarded list would be
Xt= X = y

Deriving
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wp("xi= x - y", R) = (ged(X, ¥) = ged(x - y, y) and x - y >0 and y >0)
and omitting all terms of the conjunction implied by P we find the guard
x >y

as far as the invariance of P is concerned. Besides that we must require
guaranteed decrease of the variant function t . Let us investigate the

consequences of the choice

t = X + y .
From " "
wp( xi= x - y", tfto) =
wp{Mxi= x - y", x +y < ty) = (x < %)

we conclude that .
tmin = x

-

therefore wdec("i== x - y", t) = (x <x + y) = (y >-O) .

The requirement of monotonic decrease of t imposes no further
restriction of the quard because wdec{"x:= x - y", t) is fully implied

by P and we come at our first effort

x31= X; yi= Y3

do x>y - xi=x-yod .

Alas, this single guard is insufficient: from P and non BB we
are not allowed to cormclude x = gcd(X, Y). Ina completely analogous
manner, the alternative y:= y - x will require as its guard y > x

and our next effort is
xi= X; yi= Y,
do x>y = xi=x -y

. [y>x-yi=y-x
o .

Now the job is done, because with this last pragram nan BB = (x = y)

and (P and x = y) = (x = gcd(X, Y) because gdc(x, x) =x .

Note. The choice of t = x +2y and the knowledge of the fact that the

ged is a symmetric function could have led to the program
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Xi= X5 yr= Y;
do x >y = xi=x -y

ﬂ Y2 X =%, ¥ 1=y, x
od .

The swap "x, y := y, x" can never destroy P : the guard of the last
guarded list is fully caused by the requirement that t is effectively

decreased.

In both cases the final game has been to find a large enough set of
such guarded lists that BB , the disjunction of their guards, was suffi-
ciently weak: in the case of the alternative construct the purpose is
avoiding abortion, in the case of the repetitive construct the goal is
getting BB weak enough such that P and non BB is strong enough to

imply the desired post-conditionm R .

5. Concluding remarks,

The research, the outcome of which is reported in this article, was
triggered by the observation that Euclid's Algorithm could also be regarded
as synchronizing the two cyclic processes "do xi= x - y od" and "dg yi= y-x od'
in such a way that the relation x >0 and y >0 would be kept invariantly
true. It was only after this abservation that we saw that the formal
techrniques we had already developed for the derivation of the synchronizing
conditians that ensure the harmonious co-operation of (cyclic) sequential
processes, such as can be identified in the totzsl activity of operating
systems, could be transferred lock, stock and barrel to the development
of sequential programs as shown in this article. The main difference is
that while for seguential programs the situation "all guards false" is a
desirable goal --for it means termination of a repetitive construct--.,

one tries to avoid it in operating systems --for there it weans deadlock,

The second reason to pﬁrsue these investigations was my personal
desire to get a better aﬁpreciation --among other things in order to be
able to0 evaluate how realistic some claims towards "automatic programming”
were-— which part of the programming activity can be regarded as formal
routine and which.part of it seems to require "invention". While the

design of an alternative construct now seems to be a reasonably straight-
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fofward activity, that of a repetitive construct requires what I regard as
*the invention" of an invariant relation and a variant function. For me,
the main value of the calculus shown in section 4 is that it has strenght-
ened my skepticism about some of the claims or goals of "automatic pro-
gramming"; me presenting this calculus should not be interpreted as me
suggesting that all programs shﬁuld be developed that way: it just gives

us another handle.

The calculus does, however, explain my preference for the axiomatic
definition of programming language semantics via predicate transformers
above other definition techniques: the definition via predicate transformers
seems to lend itself most readily to being forged into a tool for the goal-

directed activity of program compesition.

Finally I would like to say a word or two about the role of the pe-
tential non-determinacy. I quote in this conrection C.A.R.Hoare: "A system
which permits user programs to become nan-deterministic presents dreadful
problems to the maintenance engineer: it is not a "facility" to be lightly
granted." (This is particularly true in the absence of self-checking hard-
ware.) I myself had to overcome a conmgiderable mental resistance before I
fournd myself willing to consider non-detérministic programs seriously, It
is, hawever, fair to say that 1 could not have discovered the calculus
shown before having taken that hurdle and I leave it to the environment
whether the non-determinacy is eventually resolved by human intervention
or mechanically, in a reproducible manner or not. (1t is only in an envi-
ronment in which all programs should be deterministie, where non-reproducible
behaviour is interpreted as machine malfunctianing: I can easily think of
an environment in which non-reproducible user pragram behaviour is guite
naturally and almost always correctly taken as an indication that the user

in question has written a non-deterministic program!)
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