W -
Burroughs EWD432 - 0

3%
w

PLATAANSTRAAT § NUENEN THE NETHERLANDS
DR, EDSGER W. DIJKSTRA

Professor C.A.R.Hoare

Department of Caomputer Science

The Queen's University of Belfast

BELFAST BT7 1NN

Northern Ireland 13 July 1974

Dear Tony,

I feel very guilty for not having given you my reactions to your
St;ford report "STAN-CS-7%-400: Recursive Data Structures”, although I have
it already for six mdths in my possession. I have read it many times, I
liked most of it very much and should have told you so much earlier. Please

forgive me my long reaction time.

In a guite different context I had already used very tentatively
"equations" as a kind of "guards" thst are to be considered true when the
equation has a solution, which then can be used in its guarded statement.
I had done so successfully, but only in a very restricted environment; to
see you doing something very similar in a much more general environment,

was a great encouragement for wme, for which I am thankful.

Last week I was doing al sorts of little experiments, introducing

new data types with a ANF-notation, like

< record file > ::= {<Zrec0rd >} < final record >

<C transaction > ::t= < deletion 3" < update > | < insertion > ,

it seemed to work after a fashion, but as soon as I iried to find the

correct generalization of the instance I had constructed,l got in a hope-
less mess. So, in utter despair, I picked up again your repaort "Recursive
Data Structures" and immediately saw the trap I had fallen into --inm spite
of having studied your report a number of times: I am very slow-witted and

it takes a lot of time to sink in!-—-. The trap of BNF, of course, being

-1
Burroughs FWpase

B

PLATAANGTRAAT 5 NUENEN THE NETHERLANDS
DR, EDSGER W, DIJKSTRA

that all generators, as introduced by you, are kept anonymous. And very
quickly I found myself dregged into the adhoeccery of introducing all sorts
of implied transfer functions and the mess was complete. Yet the stupid

exercise taught me something, that I would like to try to explain to you.

I started thinking "why introduece such data type definitions in the
first place?". For after all, one only introduces an enumerable set of
distinct values, and why not just identify them with the integers O, 1, 2..7
The answer is chvious: because we want to introduce operations on and functions
of these values, operations and functions which become utterly chaotic, when
expressed in terms of these identifying integers. It is for that purpose
that one needs a more adequate terminology for the description of these
values. The first moral is, that the introduction of a new data type can
only be.justified, after the set of operations and functions has been decided
upon. (You probably knew this already a long time ago, I even may have read
it in your writings; for me it was a good thing to discover this obvious

truth in all clarity for myself.)

The next thing I realized is that many such functiens --see, for
instance, EWD428-- are not mutually independent, and that the separation
between "primitive" and "derived"™ functions, which is then always possible,
is often too arbitrary to be attractive. And it is exactly such an arbitrary
choice that your data type definitions force upon us, as lang as we insist

upen each value being generated in a unique way. For instance, with
type string = simple(letter) l conc(string, letter)

the function "last" -—last(abcd) = d-- is much better catered for by the
syntax than the function "first" —-first{abed) = a—-. It does, of course,

not help to switch to
type string = simple(letter) | canc(letter, string)

for then we have the misery the other way round. So, I searched for a syntax,

that would cater equally well for both functiens "first" and "last".

Burroughs EWD432 - 2

R

PLATAANSTRAAT § NUENEN THE NETHERLANDS
DR. EDSGER W. DIJKSTRA

The answer is that our syntax must be ambiguous, that our data type
definitions must be able to generate the same value in more than one way.
This seems in full accordance with well-known types, such as "integer"
where we really deo not care whether the state x = 21 has been broughf
about by 17 +4 or by 13 + 8 : its value is more interesting than the
history that created it, the fact that different histories can lead to
the same values is exactly the sort of information destruction that seems

s0 characteristic for all meaningful computing.

S0 I would venture
type string = simple{letter) l ass conc(string, string)

indicating explicitly that the generator "conc" is associative; as a result
I shall admit in my equations "cone" with more than two arguments, when that

is convenient. Then

last(s:string):letter; first(s:string):letter;
last:= case s of first:= case s of
(simple(v) -V (simple(u) - u
ﬂ conc(u, simple(v))-» v ﬂ conc(simple(u), v) - Uu

))
and finally

sym(s:string):buolean;
sym:= case s of
(simple(x) - true
H conc(simple(x), simp;e(y)) - X =y

ﬂ cnnc(simple(x), Vs simple(z)) - x =z and sym(y)

)

With the unique syntex of the previous page, the coding of the body

of "sym" becomes a glorious horror, its execution becomes orders of magnitude

Burroughs EWD432 - 3

B/

PLATAANSTRAAT § NUENEN THE NETHERLANDS
DR, EDSGER W, DIJKSTRA

worse. You should code it, if you have not already done sc yourself. (My
guess is that the true LISP-addict won't complain, er, still more foolish,

will proudly show his optimizing LISP compiler!)

Instead of inserting the reserved characted "ass", telling that the

generator "conc" is associative, one could also insert the axiom, say
conc(con(x, y), z) = cnnc(x, cunc(y, Z)) ’

but T don't know, what Pandora's Box we then have opened! It thesbegins to
smell like artificial intelligence, a subject, my safe distance from which

I have never had reasons to regret.

As you will realirze without me pointing that out, we have now nan-

deterministic functions like

rot(s:string):string;

rot:= case s of (cnnc(u, v) - canc(v, u))

(leading to abortion in the case s = simple(x) , for which we have not
catered; rot(abc) = beca or cab.) Is it the traditiaonal fear for non-deter-

ministic programming languages that has made LISP the way it is?

The above ideas emerged when I tried to tell Carel 5.5cholten --with
whom I work now quite regularly for more than 20 years!-- what I liked
about your report and in what respect 1 had my hesitations. The above ideas
are therefore perhaps as much his as mine, The possibility of indicating

that a generator is a symmetric function bhas been mentioned, but not explored.

I hope that in terms of "inspiration" I have repaid some of my debt

to you!
cc.: R.D.Merrell Yours ever
D.E.Knuth Edseer
£.5.5cholten
M.Woodger prof.dr.Edsger W.Dijkstra

(list not necessarily exhaustive) Burroughs Research Fellow

PS L seem o hove developed o Yendonc, G skippmg my e ! e,

