Copyright Notice

The following manuscript
EWD 447: On the role of scientific thought
is held in copyright by Springer-Verlag New York.

The manuscript was published as pages 60-66 of

Edsger W. Dijkstra, Selected Writings on Computing: A Personal Perspective,
Springer-Verlag, 1982. ISBN 0-387-90652-5.

Reproduced with permission from Springer-Verlag New York.
Any further reproduction is strictly prohibited.

Ewp447 - 0

EWD447.html

On the role of scientific thought.

Essentially, this essay contains nothing new, on the contrary: its
subject matter is so old, that sometimes it seems forgotten. It is written
in an effort to undo some of the more common misunderstandings that I en-
counter (nearly daily) in my professional world of tomputing scientists,
programmers, computer users and computer designers, and even colleagues
engaged in educational politics. The decision to write this ess5ay nNow was
taken because 1 suddenly realized that my confrontation with this same
pattern of misunderstanding was becoming a regularly itself repeating
occurrence.

Whether the misappreciation of the proper role of scientific thought
that 1 observe within the "computing community" is a phenomenon that is
specific for the computing community, or whether it also a current phenomenon
in other disciplines, is not for me to judge. One thing seems certain: in
the computing community itself we can find enough historical explanation,
and we don't need to look for outside influences when we try to understand
how the phenomenan came about, (This is not meant to say, that those outside
influences have been absent!)

As we shall see in a moment, the adjective "scientific" when used in
the expression "scientific thought" more refers to a way of thinking than
to what are the thoughts about: to use the Latin expressions: jt refers to
the "guo mado" rather than to the "quod". This partly explsins why the
tradition of scientific thought has only been imported into the computing
world to such & limited extent by the many pioneers who immigrated in the
early days from other scientific disciplines. The early academics wha became:
invnlved with computers all had had their training in other scientifie
disciplines and many of them were quite able to prattice "scientific thaught"
in their original field of intellectual activity. But for a great number of
them, that bad been the only confrontation with scientific thought. As a result,
it is understandable that they associated their notion af scientific thought
as much with the specific field in which they had practiced it as with a
general way of thinking that could (and should!) be transferred to their .
new field of activity, In additian, many of them must have felt that scientific
thought was a luxury that one could afford in the more established disciplines,
but not in the intellectual wilderness they now found themselves in. But, as
we shall also see in a short while, scientific thought is not a luxury made
pessible in established scientific disciplines, on the contrary: it has been
the tool that has made the establishment of those disciplines possible!

Besides emigrants from other academic fields, the computing world has
attracted people from all over the world: businessmen, administrators, cperator:
musicians, painters, unshaped youngsters, you name it, a vast majority of
peaple with no scientific background at all. By their sheer number they
form all by themselves already an explanatian for the phenomenon.

To introduce the subject, I would like to quote two paragraphs from
a letter that I recently wrote to one of my professional friends.

"let me try to explain to you, what to my taste is characteristic for
all intelligent thinking. Tt is, that cne is willing to study in depth an
aspect of ore’s subject matter in isclation for the sake of its own CONsis-
tency, all the time knowing that one is vccupying oneself only with one
of the aspects. We know that a program must be correct and we can study

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD447.html

EwWD447 - 1

it from that viewpoint only; we also know that it should be efficient and
we can study its efficiency on another day, so to speak. In another mood

we may ask ourselves whether, and if so: why, the program is desirable. But
nothing is gained --on the contrary!-- by tackling these various aspects
simultaneously. Jt is what 1 sometimes have called "the separation of
concerns", which, even if not perfectly possible, is yet the only available
technique for effective ordering of one's thoughts, that I know of. This is
what I mean by "focussing one's attention upon some aspect": it does not mean
ignoring the other aspects, it is just doing justice to the fact that from
this aspect's point of view, the other is irrelevant. It is being one- and
multiple-track minded simultaneously.

"I remember walking with Ria when we were engaged --it was near Amster-
dam's Central Station-- when I explained to her that 1 wanted to be glad
and bappy with my eyes fully open, without fooling myself in the belief that
we lived in a pink world: to be happy to be alive in the full knowledge of
all misery, cur own included...." (End of quotation.)

Scientific thought comprises "intelligent thinking" as described above.
A scientific discipline emerges with the ~~usually rather slow!-- discovery
of which aspects can be meaningfully "studied in isolation for the sake of
their own consistency”, in other words: with the discovery of useful and
helpful concepts. Scientific thought comprises in addition the conscious
search for the useful and helpful concepts.

The above should make it clear that I want to discuss the role of
scientific thought for the sake of its practical value, that ! want to ex-
plain my pragmatic appreciation of a tool. It is no slip of the pen that
the above guntation refers to the "effective ordering of one's thoughts":
the efficiency of our thinking processes is what I am talking about. I
stress this pragmatic appreciation because I live in a culture in which
much confusion has been created by talking about the so-called "academic
virtues" (sic!) with moral, ethical, religious and sometimes even political
vvertones. Such overtones, however, only confuse the issue. {(If you so _
desire, you may observe here scientific thought in action: I do, far instance,
not deny politiecal aspects,] would be a fool if I did so! The anti-intel-
lectualistic backlash against "the technocrats™ that is so en vogue today,
is inspired by a --largely unjustified-- fear for the power of him whao
really knows how to think and by a --more justified-- fear for the actions
of him who erronecusly believes to know how to think. These political
considerations, however, have noihing to contribute to the technical problem
of ordering one's thoughts effectively, and that is the problem that I want
to discuss "in isolation, for the sake of its own consistency”.)

I intend tc describe for your illumination the most common cases in
which the "average" computing scientist fails to separate the various con-
cerns; 1n doing so I hope and trust that my colleaques in the profession do
interpret this as an effort to help them, rather than to insult them. For
the sake of the non-professional, 1 shall present the least technical cases
first.

One of the concerns, the isolation of which seems most often neglected,
is the concern for "general acceptance”. (In the world of pure mathematics
--with which I have some contacts-- this problem seems to be fairly ahsent.)
The concern itself is quite legitimate. If nohody reads the poems of a poet
that wanted to communicate, this poet has failed, al least as a communicating
poet. Similarly, many cemputing scientists don't just solve problems, but

Ewpad? - 2

develop tools: theories, techrigues, algorithms, softwareAsystems and pro-
gramming languages. And if thase, that ~-~they feel-- could profit from
their designs, prefer to ignore these inventions and to stick to their own,
old, rotten routines, the authors get the miserable feeling of failure.

Have they? Yes and no. They can adopt the Galileian attitude: "Nothing
becomes true because tenthousand people helieve it, nor false because ten-
thousand people refuse to do s0.", and can decide to feel themselves, in
splendid isolation, superior to their fellow computer scientists for the
rest of their lives. I can dery no inventor who fedls underappreciated,

such a course of action. I don't recommend it either: the sterile pleasure
of being right tends to get stale in the course of a lifetime. If one's aim
is to design something useful, one should avoid designing something useless,
because unused: in other words, I fully accept "germeral acceptance® as a
legitimate concern. We must, however, he willing to ignore this concern
temporarily --for a few days or a few years, depending on what we are under-
taking-- for unwillingness to do so will paralyze us.

Some time ago I visited the computing center of a large research
laboratory where they were expecting new computing equipment of such a
radically different architecture, that my colleagues had concluded that a
new programming language was necded for it if the potential concurrency
were to be exploited to any appreciable degree. But they got their language
design never started because they felt that their product should be so much
like FORATRAN that the casual user would hardly notice the difference "for
otherwise our users won't accept it". They circumvented the prohlem of
explaining to their user community how the new equipment could be used at
best advantage by failing to discover what they should explsin. It was a
rather depressing visit.,..

The proper technigue is clearly to postpone the concerns for qeﬁeral
acceptarce until you have reached a result of such a quality that it deserves
acceptance. It is the significance of your message that should justify the
care that you give to its presentation, it may be its "unusualness" that
makes extra care necessary., And, secondly, what is "general"? Has Albert
Einstein failed because the Theory of Relativity is too difficult for the
average highschaool student?

Another separation of concerns that is very commonly neglected is
the one between correctness and desirability of a software system. Over the
last years I bave lectured for all sorts of audiences about the techniques
that may assist us in designing programs such that one can prove a priori
that they meet their specifications. One of the standard objections raised
from the floor is along the following lines: "Whet you have shown is very
nice for the little mathematical examples with which you illustrated the
techniques, but we are afraid that they are not applicable in the world of
business data processing, where the problems ars much harder, because there
one always has to work with imperfect and ambiguous specifications.” From
a logical point of view, this objection is nopsense: if your specificatiaons
are contradictory, life is very easy, for then you know that no program will
satisfy them, so, make "no program"; if your specifications are ambiguaus,
the dreater the ambiguity, the easier the specifications are to satisfy
(if the specifications are absolutely ambiguous, every program will satisfy
them!).

Pointing that out, however, seldom satisfies the man who raised the
cbjection. What he meanl, of course, was something different. He meant some-
thing along the following lines: "We make something with the best of intentions

Ewp44T - 3

in the hope of satisfying a need as we understand it, but when our product
has been put into action, it does not perform satisfactorily and how are

we to discover whether we have correctly made the wrong thing or whether
their is just a silly bug somewhere?". The point is that this question is
empty as long as the specifications do not define --are not accepted to
define by definition-- what the system is supposed to do. It is like asking
the judge to settle a business dispute caused by the absence of & contract
stating the mutual rights and obligations. It is the sole purpose of the
specifications to act{ as the interface between the system's users and the
system's builders. The task of "making a thing satisfying our needs" as a
single responsibility is splil into two parts "stating the properties of a
thing, by virtue of which it would satisfy our needs" and "making a thing
guaranteed to have the stated properties". Business data processing systems
are sufficiently complicated ip reguire such a separatien of concerns and
the suggestion that in that part of the computing world "scientific thought
is a non-applicable luxury" puts the cart before the horse: the mess they
are in has been caused by too much unscientific thought.

But from the abave, please don't conclude that unscientific thought
is restricted to the business world! In Departments of Computing Science,
one of the mest common confusions is the one between a program and its
execution, between a programming language and its implementation., I always
find this very amazing: the whole vocabulary te make the distinction is
generally available, and also, the very similar ceonfusion between a computer
and its order code, remarkably enough, is quite rare., But it is a deep
confusion of long standing. One of the oldest examples is presented by the
LISP 1.5 Manual: halfway their description of the progrsmming language LISP,
its authors give up and from then onwards try to complement their incomplete
lanquage definition by an equally incomplete sketch of a specific implemen-
tation. Needless to say, 1 have not been able to learn LISP from that booklet!
I would not worry, if the confusion were restricted to old decuments, but,
regretfully enough, the confusion is still very popular, At an international
summer school in 1973, a very well-known professor of Computing Science made
the statement that "ALGOL 60 was a very inefficient language", while what
he really meant was that with the eguipment available to him, he and his
people had rot been able to implement ALGOL 60 efficiently. (That is what
he meant, he did not mean to say it!) Another fairly well-known professor
of computing science has repeatedly argued in public that there is no point
in proving the correctness of one's programs written in a higher-levei_
language "because, how do you know that its compiler is correct?”. In the
motivation of a recent research propossl doubt is cast upon the adeguacy
of "the axiomatic semantics approach" as it may lead to deductive systems .
that are "undesirable in that they may not accurately reflect the actual
executions of programs", It is like casting doubt on Peano's Axiomatization
of the Natural Numbers on the ground that some people make mistakes when
they try io do an addition!

On the one hand we have the physical eguipment (the imolementatiun),
on the other hand we have the formal system (programmjng language). It
is pgrhaps a guestion of taste --1 don't believe su-- to whom of the two e
we give the primacy, that is whether it is the task of the formal system
to give an accurate description of (certain aspects of) the physical equipment,
or whether it is the task of the physiecal equipment to provide an accurate
model for the formal system --and [prefer the latter--. But under no circum-

stance we should confuse the two!

I have -~1 think-- very good reasons for my preference, because if I

, Ewpnad'7 - 4

cannot appreciate a formal system for the sake of its own consistency, but
must view it as description of physical equipment, I could not deal with

a programming language that has not been implemented! (And that is, for
instance, exactly what a language designer has to do.)

The confusion is perhaps most clearly demonstrated by the often ex-
pressed opinion that "one cannot use a programming lanquage that has not
been implemented", But this is nonsense, of course one can! One can use
any well-defined programming language, whether implemented or not, fer
writing programs inj it is only when you want to use those programs to
evoke computations, that you need an implementation as well. Being well-
defined, rather than being implemented, is a programming language's vital
characteristic,

The abave remarks are no jokes, nor puns, on the contrary: they are
pertinent to multi-million-dollar mistakes. They imply for instance that
the development projects --erroneously called "research projects"-- aiming
at the production of "natural language programming systems" --currently en
vogue again-- are chasing {heir own tails.

Note (which I hate to add, because it is nearly an insult tec my readers,
whom its inclusion accuses of possible superficiality). I have not said
that when considering a programming language, ane should not care about
its implementability: one had better! But also this concern, no matier how
serious, is one we should try to isolate.{End of note.)

In my opening paragraph I also mentioned colleagues engaged in pduca-
tional polities. The writing of this essay was, as a matter of fact, also
promted by a recent study of two Computing Secience Curricula at university
level. They were from different sides of the Atlantic Ocean, but shockingly
similar in two respects: unbelievably elaborate budgets and a total lack of
understanding of what constitues a scientific discipline.

A scientific discipline separates a fraction of human knowledge from
the rest: we have to do so, hecause, compared with what could he known, we
have very, very small heads. It also separates a fraction of the human
abilities from the rest; again, we have to do so, because the maintenance
of our non-trivial abilities requires that they are exercised daily and a
day --regretfully enough-- has only 24 bours, (This explains, why the
capable are always busy.

But of course, any odd collection of scraps of knowledge and an
arbitrary bunch of abilities, both of the proper amount, do not constitute
a scientific discipline: for the separation to be meaningful, we have also
an internal and an external requirement. The internal requirement is one
of coherence: the knowledge must support the abilities and the abilities
must enable us to improve the knowledge. The external reguirement is ane of
what I usually call "a thin interface"; the more self-suuporting such an
intellectual subuniverse, the less detailed the knowledge that its practi-
tioners need about other areas of human endeavour, the greater its viability.
In the terminology of the computing scientist I should perhaps call our
scientific diseiplines "the natural intellectuval modules of our culture".
(When the layman asks the computing scientist, what is meant by "Modulari-
zation", a reference to the way in which the knawledge in the world has
been arranged, is probably the best concise answer.)

EWDA4AT - 5

In view of the preceding it becomes guite obvious why many earlier
efforts to concect Computing Science Curricula at our universities have
been such dismal failures. They were just cocktails! For lack of other
ingredients, they tried to combine scraps of knowledge from the most diverse
fields that seemed to have some relation to the phenomenon Computer. That
the ingredients of the cocktail did not mix into a coherent whole, is not
surprising; that the cocktail did not taste too well, is not surprising
either.

In those early days, the only alternative was waiting, as for instance
still in 1969 urged by Strachey: "I am quite convinced that in fact computing
will become a very important science. But at the moment we are in a very
primitive state of development; we don't know the basic principles yet and
we must learn them first. If universities spend their time teachlng the
state of the art, they will not discover these principles and that, surely,
is what academics should be doing." I could not agree more.

Now, of course, one can argue whether five years later we computing
scientists have enough of sufficiently lasting value that can be "studied
in isolation, for the sake of its consistency”. I think that now we have
encugh to start, but if you think ostrachey's advice still appropriate now,
you have my full sympathy.

The two recent(!) curriculum proposals I just referred to, however,
presented the old cocktail as if absolutely nothing had happerned, and, not
as a timid first step, but as the final geal..... And when scientists no
longer know, what science is supposed to be about, we are in bad shape,
Hence this essay.

30th August 1974 prof.dr.Edsger W.Dijkstra
Burroughs Burroughs Research Fellow
Plataanstraat 5

NUENEN - 4565

The Netherlands

	EWD447:

